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Abstract

Dosher and Lu (1998) [Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting.
Proceedings of the National Academy of Sciences of the United States of America, 95 (23), 13988-13993.] proposed three mechanisms of
perceptual learning: stimulus enhancement, external noise exclusion, and multiplicative noise reduction. In this study, we used pre-train-
ing as a manipulation to evaluate the separability of these mechanisms as a key test of the theoretical framework. Observers were trained
in identifying the motion direction of a moving sine-wave grating in fovea with varying amount of superimposed external noise across
trials, after receiving no pre-training, pre-training in high external noise, or pre-training in zero external noise in the same task. We
found: (1) Without pre-training, perceptual learning significantly reduced contrast thresholds by about the same amount across all
the external noise levels. (2) Both types of pre-training significantly reduced contrast thresholds in the corresponding conditions. (3)
Pre-training in high external noise greatly reduced subsequent learning in high external noise, accounting for 64.6% of the total (pre-
training + subsequent) improvements in that condition. On the other hand, the amount of subsequent learning in low external noise con-
ditions was essentially the same as the total (pre-training + subsequent) amount of improvements in high external noise, suggesting that
pre-training in high external noise had mostly only improved performance in noisy displays. (4) Pre-training in zero external noise prac-
tically eliminated or left very little additional learning in all the external noise conditions. We concluded that the two mechanisms of
perceptual learning, stimulus enhancement, and external noise exclusion, can be trained independently in motion direction discrimination
in fovea; training in low noise suffices to improve observer performance over all the external noise conditions.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Performance improvements through training or practice
have been observed over a wide range of perceptual tasks
in adult humans (Ahissar & Hochstein, 1996; Ball & Sekul-
er, 1982; Beard, Levi, & Reich, 1995; DeValois, 1977;
Dosher & Lu, 1998; Dosher & Lu, 1999; Fahle & Edelman,
1993; Fine & Jacobs, 2000; Fiorentini & Berardi, 1980;
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Fiorentini & Berardi, 1981; Furmanski & Engel, 2000;
Karni & Sagi, 1991; Karni & Sagi, 1993; Mayer, 1983;
McKee & Westheimer, 1978; Mollon & Danilova, 1996;
Ramachandran & Braddick, 1973; Saarinen & Levi, 1995;
Sagi & Tanne, 1994; Shiu & Pashler, 1992; Vogels &
Orban, 1985). These improvements often exhibit significant
specificity to the trained stimuli or tasks (Ahissar & Hoch-
stein, 1996; Ahissar & Hochstein, 1997; Ahissar, Laiwand,
Kozminsky, & Hochstein, 1998; Ball & Sekuler, 1987;
Berardi & Fiorentini, 1987; Dorais & Sagi, 1997; Fiorentini
& Berardi, 1980;Fiorentini & Berardi, 1981; Karni & Sagi,
1993; Liu & Vaina, 1998; Poggio, Fahle, & Edelman, 1992;
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Ramachandran & Braddick, 1973; Rubenstein & Sagi,
1993; Schoups, Vogels, & Orban, 1995; Shiu & Pashler,
1992). Studies on perceptual learning have traditionally
investigated transfer or lack of transfer of perceptual learn-
ing to modified forms of the same task or to different, relat-
ed tasks to assess the character and locus of learning.
Several recent studies, however, have focused on under-
standing what is learned, i.e., improvements of the percep-
tual system during the course of perceptual learning
(Chung, Levi, & Tjan, 2005; Dosher & Lu, 1998; Dosher
& Lu, 1999; Gold, Bennett, & Sekuler, 1999; Li, Levi, &
Klein, 2003; Lu, Chu, Dosher, & Lee, 2005; Lu & Dosher,
2004; Saarinen & Levi, 1995; Tjan, Chung, & Levi, 2002).

In 1998, Dosher and Lu proposed three mechanisms of
perceptual learning: a stimulus enhancement mechanism
that increases the gain of both the signal and the external
noise in the stimulus and is associated with reduction of
absolute threshold and performance improvements in the
presence of no or low external noise (Fig. 1B), an external
noise exclusion mechanism that optimizes the perceptual
template to exclude external noise or distractors and is
associated with performance improvements only in the
presence of high external noise (Fig. 1C), and an internal
multiplicative noise (or gain control) reduction mechanism
that increases system response to stimulus contrast and is
associated with improvements throughout the full range
of external noise (Fig. 1D). A paradigm based on a combi-
nation of the external noise method (Ahumada & Watson,
1985; Burgess, Shaw, & Lubin, 1999; Burgess, Wagner,

Jennings, & Barlow, 1981; Lu & Dosher, 1999; Nagaraja,
1964; Pelli, 1981;Pelli & Farell, 1999) with measurements
of performance at multiple criterion levels (a proxy for full
psychometric functions) throughout the course of percep-
tual learning was also developed to distinguish pure mech-
anisms and mechanism mixtures (Dosher & Lu, 1999).

The distinction of the three mechanisms of perceptual
learning was based upon parallel theoretical and empirical
developments in the study of attention (Dosher & Lu, 2000;
Lu & Dosher, 1998). The goal was to generate a theoretical
framework to accommodate all possible systematic pat-
terns of performance improvements in perceptual learning
(Lu & Dosher, 1999). In the domain of visual attention,
single mechanisms of stimulus enhancement and template
retuning have been observed in different, systematic cir-
cumstances [see (Dosher & Lu, 2000a; Lu, Lesmes, &
Dosher, 2002) for review]. In the domain of perceptual
learning, one key test of the theoretical framework is
whether one can empirically separate each of the three
mechanisms of perceptual learning within a task domain,
and specify the circumstances under which these mecha-
nisms operate.

In the first few studies of perceptual learning based on
the external noise approach, including orientation identifi-
cation and band-pass noise and novel face identification
(Gold et al., 1999; Gold, Sekuler, & Bennett, 2004), virtu-
ally identical magnitude of performance improvement
(contrast threshold reduction) was observed across all
external noise levels. Based on the observation of the virtu-
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Fig. 1. (A) Perceptual template model. (B-D) Performance signatures of the three mechanisms of perceptual learning.
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ally equal magnitudes of contrast threshold reduction in
two different criterion performance levels, Dosher and Lu
(1998, 1999) concluded that a mixture of stimulus enhance-
ment and template retuning rather than multiplicative
noise reduction occurred during perceptual learning in
their study. The same data pattern however led Gold
et al. (1999, 2004) to a single mechanism of improved effi-
ciency based on a simplified theoretical model of the
observer [see (Lu & Dosher, 2004) for detailed discussion].
Although these studies are very interesting (Hurlbert,
2000), they did not provide strong empirical evidence for
isolable mechanisms of perceptual learning. On the con-
trary, one could have concluded from these studies that
stimulus enhancement and external noise exclusion are
not independently trainable, or alternatively, that a single
efficiency mechanism underlies perceptual learning.

Lu and Dosher (2004) provided the first empirical dem-
onstration of a pure, that is, isolated, external noise exclu-
sion mechanism of perceptual learning in a psychophysical
study. We found that perceptual learning of Gabor orien-
tation identification in fovea showed substantial perfor-
mance improvements only in high external noise but not
in zero or low noise. An isolated stimulus enhancement
mechanism of perceptual learning has also been demon-
strated recently in perceptual learning of auditory ampli-
tude modulation detection (Kong, Lu, Dosher, & Zeng,
2004) and second-order letter identification (Dosher &
Lu, 2006). In all these studies, pure mechanisms of percep-
tual learning occurred “naturally,” reflecting the state and
plasticity of the perceptual system right before and
throughout training.

A stronger test of the separability of the mechanisms is
to use explicit experimental manipulations to saturate each
individual mechanism and to reveal the other mechanisms
in subsequent learning. For stimulus enhancement and
template retuning, one way to achieve this is to (1) select
a training task and demonstrate that both of these mecha-
nisms occur with roughly equal magnitude “naturally”; (2)
pre-train different groups of observers with procedures that
exercise one or the other mechanism; and (3) measure the
impact of pre-training on mechanisms of subsequent learn-
ing. If the mechanisms are completely independent and the
pre-training procedures exercise only individual mecha-
nisms, pre-training that exercises one mechanism should
only reduce or eliminate that particular mechanism in sub-
sequent learning while leaving potential performance
improvements associated with the other mechanism
unchanged.

In a recent publication, Dosher and Lu (2005) reported
an asymmetric pattern of transfer in perceptual learning of
peripheral Gabor orientation identification in clear and
noisy displays: training with low noise exemplars trans-
ferred to high noise performance, while training with target
objects embedded in white external noise did not transfer
to low noise performance. They concluded that (1) the
two mechanisms of perceptual learning, external noise
exclusion and stimulus enhancement, are independent,

and (2) different training protocols in zero and high noise
allowed different expressions of this independence.
Whereas training in high external noise could only optimize
the exclusion of external noise, training in zero external
noise may be sufficient to substantially optimize the exclu-
sion of external noise as well as enhance the stimulus.

The observed asymmetric pattern of transfer in Dosher
and Lu (2005) was highly unexpected but could have major
implications for the development of training protocols in
the applied field of perceptual learning: that is, training
in clear displays may suffice to optimize performance in a
range of clear and noisy task environments. It is of para-
mount importance to test the generality of the results in a
wide range of task domains and using different procedures.
In this study, we used a different procedure, manipulating
the type of pre-training, to investigate the separability of
the three mechanisms of perceptual learning in a complete-
ly different task domain. We chose sine-wave motion direc-
tion identification in fovea as the basic training task
because the same task in both fovea and visual periphery
was known to have generated essentially equal magnitude
of threshold reduction across all the external noise levels
(Lu et al., 2005) and because perceptual learning in both
zero and high external noise in similar tasks in foveal vision
have been documented in the literature (Ball & Sekuler,
1982; Ball & Sekuler, 1987; Liu & Vaina, 1998; Zanker,
1999). Three types of pre-training were administered to
three separate groups of observers: no pre-training, pre-
training in high external noise, and pre-training in zero
external noise. In the subsequent training phase, all observ-
ers performed (and practiced) the same task with stimuli
embedded in a wide range of external noise levels. Contrast
thresholds at two criterion performance levels were mea-
sured in ten training sessions. The perceptual template
model was then fit to the data to identify mechanisms of
perceptual learning. We compared the patterns and mech-
anisms of perceptual learning after exposure to different
pre-training conditions.

2. Methods

2.1. Observers

Ten paid students from the University of Southern California, all with
corrected-to-normal vision and ndive to the purpose of the experiment,
participated in the study. The participants were randomly assigned into
three groups, each of which received a different type of pre-training prior
to the same “main” experiment—identify the motion direction of a mov-
ing sine-wave grating embedded in (one of) eight levels of external noise.
Group I received no pre-training; Group II was pre-trained in the same
task with sine-wave gratings embedded in the highest level of external
noise.! Group III was pre-trained in the task with sine-wave gratings with
no external noise. There were three, three, and four observers in the three
groups.

1" A fourth observer (CI) was excluded because an incorrect experimental
procedure was inadvertently used on her.
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2.2. Apparatus

All the experiments were conducted on a Macintosh Power PC 7500
computer running a version of Psychtoolbox (Brainard, 1997; Pelli,
1997). The computer was equipped with a Nanao Technology Flexscan
6600 monitor with a P4 phosphor, a 640 x 480 spatial resolution, and a
refresh rate of 120 Hz. Fine control of luminance levels was achieved
through a special circuit, which combined two eight-bit output of a video
card to produce 6144 (12.6 bit) distinct gray levels (Pelli & Zhang, 1991). A
lookup table was generated using a psychophysical procedure that provid-
ed a linear transformation of pixel value to display luminance (Li, Lu, Xu,
Jin, & Zhou, 2003).

All displays were viewed monocularly with natural pupil at a viewing
distance of approximately 80 cm in a dimly lit room. A stereoscope ren-
dered the stimuli to one eye and the uniform background to the untested
eye (Fig. 2). Observers were instructed to maintain fixation throughout the
experiment. A chinrest was used to help observers maintain their head
positions.

2.3. Stimulus

Each motion stimulus consisted of five-frames of moving sinusoidal
luminance modulations with 90° phase-shifts between successive frames:

I(x,y) = 10{1.0+csin {2nfx+gn(k— 1) +9]}, k=1,...,5. 1)

where the DC luminance /; of the sine-wave gratings was the same as that
of the uniform background, set at the middle of the dynamic range of the
display (from 1 to 53 cd/m?). The spatial frequency of the gratings (f) was
3 ¢/deg. The contrast ¢ was determined by adaptive staircase procedures.
The initial phase (0 € [0,2n) and the direction of motion (1 = +1) were
chosen randomly across trials. The sine-wave gratings were rendered on
a 50 x 50 pixel grid, extending 1.54 x 1.54° of visual angle. They were cen-
tered in a 6.34 x 4.88° demarked rectangular box with a central fixation
cross (Fig. 2).

For each frame of the sine-wave gratings, an independent external
noise image frame of the same size was constructed. Made of 1 by 4 pixels
(0.03x0.12°), the luminance of each independent patch in the
external noise image was drawn independently from a Gaussian
distribution with mean [/, and standard deviation ¢/, where
o € {0,0.02,0.04,0.08,0.12,0.16,0.25,0.33} was determined by the chosen
external noise level in a given trial. Because the dynamic range of
luminance in the display was 2/, a sample with the maximum standard
deviation of 0.33/, conforms reasonably well to a Gaussian distribution.

33 msec

33 msec

33 msec

Time

Fig. 2. Display sequence of a five-frame moving sine-wave grating
embedded in external noise (via spatial and temporal integration).

Signal and external noise images were combined via spatial and temporal
sub-sampling and integration: in a given frame, signal and external noise
were displayed in alternating 0.03° rows; across frames, the pixels in a given
row were alternately drawn from signal and noise images. Each frame lasted
33 ms. The corresponding motion is therefore at 7.5 Hz—a relatively high
temporal frequency at which motion is probably only processed by the
first-order motion system (Lu & Sperling, 1995; Lu & Sperling, 2001).

2.4. Design

Observers identified the motion direction of a moving sine-wave grat-
ing in each trial. The grating was embedded in eight levels of external noise
in the main experiment and only one level of external noise during pre-
training. Interleaved adaptive staircase procedures (Levitt, 1971) were
used to measure contrast thresholds for motion direction identification
at two criterion performance levels in each external noise condition. One
staircase procedure (3/1 staircase), aimed at tracking thresholds at
79.3% correct (d'=1.634), decreased signal contrast by 10%
(Cnew = 0.90 X ¢) after every three consecutive correct responses and
increased signal contrast by 10% (chew = 1.10 X ¢) after every incorrect
response. The other staircase procedure (2/1 staircase), aimed at tracking
thresholds at 70.7% correct (d' = 1.089), decreased signal contrast by 10%
after two consecutive correct responses and increased signal contrast by
10% after every incorrect response. The staircases were initialized using
results from pilot tests in the first session. In all subsequent sessions, the
staircases were initialized using results from the last few trials of each stair-
case in the session immediately preceding them.

Groups II and III received pre-training in the highest and zero external
noise conditions, respectively. Thresholds at 70.7 and 79.3% correct were
collected using the two staircases with 160 trials per staircase in a single
noise condition in each session. Observers ran six sessions on separate
days. Each session lasted about 20 min.

In the main experiment, threshold versus contrast of external noise
(TvC) functions were sampled at eight external noise levels in all three
groups across ten training sessions in separate days. In each session,
observer underwent 80 and 60 trials for each of the eight 3/1 and 2/1 stair-
cases, respectively, for a total of 1120 trials. All external noise conditions
and staircases were inter-mixed. Each session lasted about 45 min.

2.5. Procedure

Following a key press, each trial started with a fixation display that
lasted 83 ms, followed by five signal/external noise image frames, each
lasting 33 ms, and the fixation display that lasted until the end of the trial
(Fig. 2). Observer responded by pressing different keys on the computer
keyboard to indicate different directions of motion. An auditory beep fol-
lowed each correct response.

3. Results
3.1. Learning curves

For each group, an average threshold versus training
session function (“the learning curve’) for each external
noise condition was calculated by averaging thresholds
across observers and criterion performance levels in the
corresponding external noise condition for each day of
training. A log—log linear regression:

log(c) = Blog(day) + R (2)

was computed for each learning curve using log(day) as the
predictor for log(c) using SPSS (SPSS, 1999). This is equiv-
alent to fitting power-law learning functions to the data
(Anderson, 1982; Logan, 1988; Suppes & Liang, 1998).
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3.1.1. Pre-training learning curves

Learning curves during pre-training are shown in Figs.
3B and D for Groups II and III, respectively. There were
a total of 36.9 + 5.3% and 44.1 4+ 13.0% threshold reduc-
tion for the two groups across the six pre-training sessions,
at rates of —0.27 +0.06 and —0.33 +0.03 log unit of
reduction per log unit of session for the two groups (Table
1). All the learning rates are significantly different from
zero (no learning; p < 0.02). However, the rates and total
amounts of learning were not significantly different
between the two groups (p > 0.15).
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3.1.2. Main learning curves

The learning curves from the subsequent main experi-
ment, after pre-training, are shown in Figs. 3A, C, and E
for the three groups separately.

For Group I (Fig. 3A), who received no pre-training,
significant threshold reduction as a result of training was
observed in all the external noise conditions (all p <0.01
except p <0.02 in one condition, Table 1) with an average
rate (B) of —0.281 4 0.058 log unit of threshold reduction
per log unit of training session (Eq. (2)) and a total of
40.7 £ 4.5% threshold reduction over the ten training ses-
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Fig. 3. Learning curves (log threshold contrast versus log training sessions) for the three training groups, averaged over observers and criterion
performance levels (70.7 and 79.3%) but presented separately for each external noise level. Straight lines represent best fitting linear regression of the data.
(A) Group I: no pre-training but training in all external noise levels. (B and C) Group II: pre-training in high external noise (B) and training in all external
noise levels (C). (D and E) Group III: pre-training in zero external noise (D) and training in all external noise levels (E).
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Table 1
Regression coefficients

Next Experiment 1 Experiment 2 Experiment 3
B+ SD R+ SD Sig B+ SD R+ SD Sig B+ SD R+ SD Sig

0 or .33 — — — —.27+.06 —2.65 +.12 .020 —.33+£.06 —3.67+.11 .000
.00 —.24 + .07 -3.03+.17 .007 —.54 £ .06 -3.19+ .14 .000 —.01+.02 —4.32 + .04 721
.02 —-.33+£.09 -2.82+.23 .008 —-.51+£.05 -331+.13 .000 —.04 £.02 —4.24 + .04 .039
.04 —-.21+.07 —-325+.18 .020 —.53+.06 —-3.28+.14 .000 —.07 +£.03 —4.22 + .06 .034
.08 —.32+.06 —-297+ .16 .001 —-.51+£.05 -339+.12 .000 —.07+.03 —4.21 +.08 .087
12 —.23+.05 -2.89+ .14 .004 —.44 + .04 —-348 + .11 .000 —.00 + .03 —4.28 +.08 778
.16 —-.37+.07 -2.07+.16 .001 —-33+£.05 -3.63+.13 .000 —.05+.02 —3.91+.06 .056
25 -.31+.07 —1.66 + .19 .004 —-.33+.03 —3.35+.06 .000 —.05+.02 —3.42+.04 015
.33 —-.24+.03 —1.43+.07 .000 —-29+.04 -3.17+.09 .000 —.01+.04 -3.10+.0.1 763

sions. Virtually identical magnitudes of threshold reduction
were observed in the low and high external noise conditions
(p > 0.30): in the lowest three external noise conditions,
thresholds reduced 42.2 + 2.7%; in the highest two external
noise conditions, thresholds reduced by about 40.4 £ 5.5%.
A regression analysis on the rate of improvement as a func-
tion of log external noise contrast found there was no sig-
nificant correlation between the rate of improvement and
the external noise level (p > 0.65). These results are com-
pletely consistent with those of Lu et al. (2005).

For Group II (Fig. 3C), who were pre-trained in high
external noise, thresholds also reduced significantly in all
the external noise conditions (p < 0.01). However, the rates
and magnitudes of threshold reduction were different in the
low and high external noise conditions (p < 0.001). In the
three lowest external noise conditions, the average rate of
threshold reduction was —0.527 + 0.015 log unit of reduc-
tion per log unit of training session with a total of
54.9 + 1.6% threshold reduction across ten training ses-
sions. In the two highest external noise conditions, the
average rate was —0.310 + 0.028 log unit per log unit of
training session with a threshold reduction of 25.5 &+ 5.0%
(relative to the first session in the main experiment) across
the ten training sessions. From the first day of pre-training
to the last day of the main experiment, training reduced
contrast threshold by a total of 51.8 & 4.7% in the highest
external noise condition, comparable to the amount of
learning in the low noise conditions (p > 0.25). On the
other hand, about 64.6% of the total (pre- and subsequent)
improvement in the highest external noise was due to pre-
training. The result suggests that pre-training in high exter-
nal noise had mostly only improved performance in high
external noise conditions.

For Group III (Fig. 3E), who were pre-trained in clear
displays, no significant (p > 0.50) threshold reduction was
observed in three external noise conditions (Nex = .0, .12,
and .33); marginally significant (0.05 < p <0.10) threshold
reduction was observed in two external noise conditions
(Nexy = -08 and .16); significant (p < 0.05) threshold reduc-
tion was observed in the remaining three external noise
conditions (Ngy = .02, .04, and .25). The rate of threshold
reduction was minuscule in all the external noise condi-
tions, including those exhibiting significant threshold

reduction. The maximum rate was only 0.07 log unit of
threshold reduction per log training session with an aver-
aged total threshold reduction of 4.7 4 3.2% across the
ten training sessions.

In summary, in the absence of pre-training (Group I),
training in ten sessions reduced contrast thresholds by an
approximately equal amount (40.7%) across all the external
noise conditions. For Group II, the total amount of
improvement in the highest external noise condition
(51.8%), including both pre-training and subsequent train-
ing in the main experiment, was comparable to that in the
low external noise conditions (54.9%) obtained in the sub-
sequent main experiment. Pre-training in high external
noise accounted for 64.6% of the total amount of threshold
improvements in that condition. It significantly reduced the
rate and magnitude of learning in high external noise con-
ditions. Most interestingly, pre-training in zero external
noise (Group III) virtually eliminated or left very little fur-
ther performance improvement in all the external noise
conditions.

3.2. TvC functions and PTM modeling

In the main experiment, observers in all three groups
identified the direction of sine-wave motion embedded in
eight levels of external noise in ten training sessions.
Thresholds at two criterion performance levels
(Pc =70.7% and Pc = 79.3%) were estimated in each exter-
nal noise condition using adaptive staircase procedures.
This design yielded a total of twenty [10 sessions x 2 crite-
rion levels] TVC functions, each sampled at eight external
noise levels. The TVC functions for the three groups are
shown in Figs. 4-6, pooled over every two sessions.

In all three groups, averaged thresholds across training
sessions increased as functions of external noise levels,
from 0.088 to 0.255, 0.049 to 0.084, and 0.050 to 0.115,
respectively. As expected, the more stringent performance
criterion (79.3%) required higher thresholds than the less
stringent performance criterion (70.7%). The threshold
ratio between the two criterion levels is essentially constant
across the eight noise levels and training sessions:
mean = 1.36 £ 0.20, 1.32 £0.17, and 1.34 +0.16, for the
three groups respectively. Ratio constancy across external
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Fig. 4. Experimental results (Group I). Upper panels: threshold versus external noise contrast (TvC) functions at two performance criterion levels (79.3
and 70.7% correct) across ten training sessions for observers TJ, YC, YY, and AVG, sampled at eight external noise levels and averaged over every two
training sessions. Lower panels: learning parameter 4,44 [relative amount of internal noise; with A,44(1 and 2) = 1] and A [relative amount of external
noise; with A, (1 and 2) = 1] as functions of training session for all the observers.

noise and practice levels indicates that practice did not alter
contrast-gain control properties of the perceptual system
(Dosher & Lu, 1999; Lu & Dosher, 1999).

TvC functions over training days were fit with the PTM
to identify mechanisms of learning during the main exper-
iment (Appendix A) for the three groups separately.

For Group I, performance improved via a mixture of
two mechanisms, stimulus enhancement and external noise
reduction. For the average observer, the corresponding
PTM accounted for 96.9% of the variance with 84% inter-
nal additive noise reduction (or an equivalent 525% stimu-
lus enhancement) and 39% external noise exclusion across
the training sessions. For all the observers, the model is sta-
tistically equivalent to the most saturated model that
assumes all three mechanisms of perceptual learning
(p>0.40) and is superior to all its subset models
(p <0.01) except it is only marginally better than a single
stimulus enhancement model for YY, while the model with
a single multiplicative noise reduction mechanism of per-
ceptual learning was significantly (p <0.001, TJ, YC, and

AVQG) or marginally (p <0.07, YY) worse than the most
saturated model. The parameters of the best fitting model
and the relevant statistics are detailed in Table 2.

For Group II, the performance improvements of the
average observer were accounted for 99.3% of the variance
with 92% internal additive noise reduction (or an equiva-
lent 1150% stimulus enhancement) and 21% external noise
exclusion across the training sessions. For KK and WX,
performance improved via a mixture of stimulus enhance-
ment and external noise reduction; the fit was statistically
equivalent to the most saturated model that assumes all
three mechanisms of perceptual learning (p > 0.09 for
KK; p > 0.50 for WX) and is superior to all its subset mod-
els (p <0.05). For MN, performance improved via a single
mechanism of stimulus enhancement, i.e., pre-training in
high external noise eliminated the mechanism of external
noise exclusion in subsequent learning. For all observers
in this group, the impact of external noise exclusion was
greatly reduced relative to Group I (p <0.025). The rele-
vant statistics are detailed in Table 2.
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Fig. 5. Experimental results (Group II). Upper panels: threshold versus external noise contrast (TvC) functions at two performance criterion levels (79.3
and 70.7% correct) across ten training sessions for observers KK, MN, WX, and AVG, sampled at eight external noise levels and averaged over every two
training sessions. Lower-right panels: learning parameter 4,44 (relative amount of internal noise; with A,44(1 and 2) = 1) and Ay (relative amount of
external noise; with 4. (1 and 2) = 1) as functions of training session for all the observers.

For Group III, performance improvements were
accounted for by a single mechanism of stimulus enhance-
ment for most observers (IB, SC, and YR), and a mixture
of stimulus enhancement and external noise exclusion for
JL and the average observer. For the average observer,
the two mechanisms model accounted for 99.6% of the var-
iance with 32% internal additive noise reduction (or an
equivalent 46.5% stimulus enhancement) and 12% external
noise exclusion across the training sessions (Table 2). The
magnitudes of stimulus enhancement and external noise
exclusion are very much smaller than those in Group I
(» <0.01 and p <0.025, respectively).

4. Summary and discussion

Using a motion direction identification task, we investi-
gated the impact of different types of pre-training on the
mechanisms of perceptual learning in subsequent training
of the same task using three pre-training groups of observ-

ers. We first established in Group I that without pre-train-
ing, perceptual learning reduced contrast thresholds by a
constant 40.7% across all the external noise levels, indicat-
ing equal contributions of stimulus enhancement and exter-
nal noise exclusion during perceptual learning. Observers
in Group II were pre-trained in high external noise, result-
ing in a 36.9% threshold reduction across six pre-training
sessions. Subsequent training with the same stimuli embed-
ded in varying amount of external noise reduced contrast
threshold by 54.9% in low external noise conditions but
only 25.5% (relative to the first session in the main experi-
ment) in high external noise conditions. On the other hand,
the total (pre-training + subsequent) amount of learning in
the highest external noise (51.8%) was virtually identical to
that in the low noise conditions. And pre-training account-
ed for most of the improvements (64.6%) in the highest
external noise condition. Combined with the fact the
observers in Group I exhibited essentially the same amount
of learning across all external noise levels, the pattern of
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Fig. 6. Experimental results (Group III). Left and upper-right panels: threshold versus external noise contrast (TvC) functions at two performance
criterion levels (79.3 and 70.7% correct) across ten training sessions for observers IB, JL, SC, YR, and AVG, sampled at eight external noise levels and
averaged over every two training sessions. Lower-right panels: learning parameter 4,44 (relative amount of internal noise; with A,q4(1 and 2) = 1) and Ay,
(relative amount of external noise; with A (1 and 2) = 1) as functions of training session for all the observers.

results in Group II suggests that pre-training in high exter-
nal noise had mostly only improved performance in noisy
displays. Consistently, modeling the TvC functions with
the PTM found that the impact of external noise exclusion
was greatly reduced in Group II. The results suggest that
pre-training in high external noise had largely tuned-out
external noise exclusion (by 64.6%) in subsequent learning
but had left stimulus enhancement in most of its full capac-
ity. In Group III, observers were pre-trained in zero exter-
nal noise, resulting in a 44.1% threshold reduction across
six pre-training sessions. Subsequent training with the same
stimuli embedded in varying amount of external noise
found only very small though significant amount of addi-
tional learning (<5% threshold reduction) in some external

noise conditions but no addition learning in other external
noise conditions. In other words, pre-training in zero exter-
nal noise practically eliminated or left very little additional
subsequent learning in the same task in all external noise
conditions.

The pattern of perceptual learning in Group I—equal
threshold reduction across all the external noise levels in
identifying motion direction of moving sine-wave grat-
ings—was anticipated, based on results in a prior study
using the same task in both fovea and periphery (Lu
et al., 2005). The pattern is also similar to that of Dosher
and Lu (1998, 1999) and Gold et al. (1999, 2004) using dif-
ferent perceptual tasks. Consistent with Dosher and Lu
(1998, 1999), we identified a mixture of stimulus enhance-
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Table 2

Parameters of the best fitting PTM’s
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Parameter Experiment 1 Experiment 2 Experiment 3

TJ YC YY AVG KK MN WX AVG IB JL sC YR AVG
Nonut 55 .54 .58 .56 52 .55 31 .53 .55 43 .54 .54 52
Nadd 1.0e—3 1.0e—4 3.7e—5 2.0e—4 13e—3 57e—2 43e—2  58-3 l.le—03 9.le-3 13e-3 24e—3 2.2e-3
B 91 1.5 77 97 3.8 6.0 43 4.1 3.5 2.4 54 438 3.4
y 3.5 3.5 3.5 3.5 3.4 3.5 2.0 3.5 3.5 2.3 3.5 3.5 3.1
Amu(2) 1 1 1 1 1 1 1 1 1 1 1 1 1
Aaqa(2) 17 35 39 26 32 41 .64 40 1.1 91 67 12 91
Aex(2) .59 65 92 81 90 1 81 86 1 1.1 1 1 1.1
Ama(3) 1 1 1 1 1 1 1 1 1 1 1 1 1
Apaa(3) .06 67 20 15 .16 05 .69 16 76 71 12 91 78
Aex(3) .50 67 74 .68 78 1 78 .80 1 .90 1 1 99
Amu(4) 1 1 1 1 1 1 1 1 1 1 1 1 1
Aaaa(4) .04 47 39 .14 17 .02 63 .10 84 75 1.04 1.5 82
Aex() 48 67 67 .62 79 1 67 75 1 95 1 1 96
Ama(5) 1 1 1 1 1 1 1 1 1 1 1 1 1
Auad(5) .10 32 24 .16 11 .02 .53 .08 .54 67 1.03 1.4 .68
Aex(5) .53 .58 .62 61 74 1 .80 79 1 85 1 .88
P 963 965 918 969 1990 969 991 993 985 985 988 986 996
df 68 68 68 68 68 72 68 68 72 68 72 72 68
F(4,64) 1.10™ 1.16™ 035"  0.05"°  2.11M .18™ o7 —2.3% 951 81 1.27% 231" 0.63™
F(4,68) 9.34%  124% 4.14* 15747 6.63" 6™ 3.89* 9.18% 1.60" 4.19* 1.48™ 1.88™  2.30M
F(4,68) 35.0% 4.62 153 1271% 36.5% 77.7% 13.9% 125.7% 3.41* 3.63* 225M 3030 3.23"
F(8,68) 28.3% 5.63% 276" 13.12%  24.9% 41.4% 12.1% 72.73% 2.66* 470" 1.94M 2.67" 2.79*

F(4,64): F-statistics resulted from comparing the qualities of the fits of the most saturated three-mechanism PTM to those of the two-mechanism (stimulus
enhancement and external noise exclusion) PTM. F(4,68) and F(4,68): F-statistics comparing the quality of the fits of the two-mechanism PTM to those of
each of the single-mechanism PTM. F(8,68): F-statistics comparing the quality of the fits of the two-mechanism PTM to those of the most reduced no-

learning PTM.
M 5 >0.05.
" p>0.10.
# p<0.0001.
N p<0.05.
T p<0.001.
* p<0.01.

ment and external noise exclusion as the mechanism for
perceptual learning. The results of Group I served as an
adequate baseline upon which the impact of pre-training
can be compared.

The general results from Group II were consistent with
our hypothesis that pre-training in high external noise
would reduce subsequent performance improvements in
high external noise conditions but have little or no impact
on the amount of performance improvements in low exter-
nal noise conditions. Based on the learning curve in the
corresponding condition in Group I and the learning curve
during pre-training in Group II, both of which saturated by
session six, we had expected that the amount of pre-train-
ing in high external noise, i.e., 1920 trials in a single exter-
nal noise condition in six sessions, would have completely
eliminated subsequent performance improvement in that
condition. Yet, we found that threshold in the two highest
external noise conditions was further reduced by about
25.5% (relative to the first session in the main experiment)
in subsequent training. This was not due to an increase of
threshold in high external noise conditions in the mixed
training environment, because the threshold in the end of
pre-training and the beginning of subsequent training in

the same external noise condition was virtually identical
(.104 and .105). The effect might reflect additional learning
in this condition in a new learning environment where
learning in low external noise conditions further improved
the perceptual template.

In the PTM observer framework, three separate mecha-
nisms of perceptual learning, stimulus enhancement, exter-
nal noise exclusion, and internal multiplicative noise (or
gain control) reduction, have been proposed to accommo-
date all possible systematic patterns of performance
improvements in perceptual learning (Dosher & Lu,
1999). Empirically, pure, isolated mechanisms of stimulus
enhancement (Dosher & Lu, 2006; Kong et al., 2004) and
external noise exclusion (Lu & Dosher, 2004) have been
documented. Prior to this study, we had expected that
pre-training in low and high external noise would only
reduce the magnitude of performance improvements in cor-
responding conditions during subsequent training. Even
though the pattern of results in Group II (pre-training in
high external noise) was consistent with our expectation,
that pre-training in zero external noise practically eliminat-
ed subsequent learning in all the external noise conditions
(Group IIT) was a complete surprise.
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That pre-training in high external noise is only effective
in high external noise without impacting learning in low
external noise (Group II) completely rules out a single
mechanism account of perceptual learning. In fact, any the-
oretical explanation of Group II results must invoke at
least two independent mechanisms, one of which is only
effective in high external noise. This dual mechanism
account does not however require independent manifesta-
tion of the two independent mechanisms in every circum-
stance—a particular training protocol could in fact train
both mechanisms simultaneously and therefore expose
both mechanisms together.

We suggest that, in this study, pre-training in high exter-
nal noise only impacted the external noise external noise
mechanism, but pre-training in zero noise impacted both
stimulus enhancement and external noise exclusion. In
the presence of high external noise, observer’s performance
is ONLY limited by external noise, not by internal noise.
The only way to improve performance is to re-tune the per-
ceptual template to eliminate external noise. That is how
observers learned in pre-training and continued to benefit
in subsequent learning. In zero external noise, observer’s
performance is limited by internal additive noise. They
did indeed improve their performance via stimulus
enhancement during pre-training and continue to benefit
in low external noise during subsequent learning. In addi-
tion, the observers were also exposed to the signal stimuli
and were exercising the perceptual template. We suggest
that the exposure to signal stimuli during pre-training in
zero external noise condition allowed the observers to re-
tune their perceptual templates (Seitz & Watanabe, 2003;
Watanabe et al., 2002). Although the retuning did not
directly benefit their performance during pre-training, it
benefited performance in subsequent testing in high exter-
nal noise.

The asymmetric effects of pre-training in high and low
external noise complement the results of Dosher and Lu
(2005), who found a similar asymmetric pattern of transfer
in perceptual learning of peripheral Gabor orientation
identification in clear and noisy displays: training with
low noise exemplars transferred to high noise performance,
while training with target objects embedded in white exter-
nal noise did not transfer to low noise performance. Rela-
tively simple visual stimuli and white external noise were
used in Dosher and Lu (2005) and the current study. Both
studies suggest that training in clear (low noise) displays
may suffice to optimize performance in a range of clear
and noisy task environments. In situations in which noise
is nonwhite, the noise environment and the optimal percep-
tual template cannot be known in advance. Training in
clear displays should remain useful, but training in the par-
ticular kind of nonwhite noise environment may also be
necessary to further optimize performance in that environ-
ment. Whether the same results will obtain for more com-
plex perceptual tasks needs further experimentation.

In many practical applications, perceptual expertise is
required in environments with various degrees of visual

noise, such as crowded or camouflaged situations (Parkes,
Lund, Angelucci, Solomon, & Morgan, 2001), and alterna-
tive sensor environments (Burgess et al., 1999; Sowden,
Davies, & Roling, 2000). The results of the current study
suggest that it may not be necessary to train the observers
in each operating environment. Clear displays may provide
the optimal training environment.
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Appendix A

The Perceptual Template Model (Lu & Dosher, 1999)
quantitatively models human performance in signal detec-
tion and discrimination. In the PTM, perceptual inefficien-
cies are attributed to three limitations: internal additive
noise that is associated with absolute thresholds in percep-
tual tasks; perceptual templates that is often tuned to a
range of stimulus features and often allows unnecessary
influence of external noise or distractors on performance;
and internal multiplicative noise that is associated with
Weber’s law behavior of the perceptual system. The basic
PTM consists of four parameters in the basic PTM: gain
to the signal stimulus (f8), exponent of the nonlinear trans-
ducer function (y), internal additive noise (N,qq), and coef-
ficient of the multiplicative internal noise (Ny,,). The three
mechanisms of perceptual learning were implemented by
multiplying the corresponding noise.” in the PTM with
learning parameters A,qq(?), Aex(?), and Apu(f) in each
training block 7, with A,qq(/) = Aex(l) = Amu(Z) = 1.0
(Dosher & Lu, 1999; Lu & Dosher, 2004). In the most sat-
urated PTM with all three mechanisms of perceptual learn-
ing, thresholds are expressed as functions of external noise
by the following equation:

[

1 (1 + (Amul(t)Nmul)z)(Aext(t)Next)zy + (Aadd (t)]vadd)2

Cr = —

ﬁ (1/d,2 - (Amul([)Nmul)z)

(A1)

All eight possible versions of PTM models, consisting of
various combinations of the three mechanisms of perceptu-
al learning, were fit to each set of TvC functions, separated
by training and transfer sessions. A least-square minimiza-
tion procedure based on fimins in Matlab 6.5 (Mathworks,
1998) was used to search for the best fitting parameters for
each PTM: (1) log(¢™°™) was calculated from the model
using an initial set of parameters for each external noise
condition, performance criterion, and training block; (2)
Least-square L was calculated by summing the squared dif-

2 In the PTM, stimulus enhancement is mathematically equivalent to
internal additive noise reduction Lu and Dosher (1998) External noise
distinguishes attention mechanisms. Vision Research, 38 (9), 1183-1198.
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ferences sqdiff = [log(c™*°™)— log (¢) across all the condi-

tions; (3) Model parameters were adjusted by fimins to
search for the minimum L using gradient descend and re-it-
erating steps (1) and (2). The proportion of variance
accounted for by the model form was calculated using
the r? statistic:

>-llog(c"™*™) ~ log(c)[’
3 [log(ctheo) — mean(log(c)))’

where > and mean() were over all the conditions.

The quality of the fits of the eight forms of PTM
was statistically compared to select the best fitting mod-
el for each data set. The best fitting model, statistically
equivalent to the fullest yet with minimum number of
parameters, identified the mechanism(s) of perceptual
learning. When appropriate, F-tests for nested models
were used:

P =10-

; (A2)

(rtz'ull — rfeduced)/dfl
(I =riw)/df,
where dfy = kg — kreduced> and dfy = N — kg The K's are

the number of parameters in each model, and N is the num-
ber of predicted data points.

F(dfy,df,) =

(A3)
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