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Serial Retrieval Processes in the Recovery of Order Information

Brian McElree and Barbara Anne Dosher

The retrieval of temporal order and item information from short-term memory (STM) are examined
with the cued-response speed-accuracy trade-off (CR-SAT) procedure and a complementary re-
action time (RT) task. The retrieval of order information was examined with a two-alternative
forced-choice (2AFC), relative judgment of recency (JOR) task. Analyses of the pattern of mean
RT, RT accuracy, and the overall shape of the RT distribution for correct JORs suggest that order
information is retrieved by a serial retrieval mechanism. Analyses of SAT retrieval functions
confirm that order information is retrieved by a recency-based, serial retrieval process. These
results contrast with previous SAT analyses of STM item recognition (B. McElree & B. A. Dosher,
1989), which indicate that item information is retrieved by a parallel or direct-access mechanism.
The dissociation between item and order information retrieval was further documented in a 2AFC

item recognition SAT study.

Human memory records not only individual events but
also relationships between events, including temporal, spa-
tial, logical, and causal relationships. An adequate model of
human memory must specify how both individual events and
relationships between events are stored and subsequently re-
trieved. This article examines how temporal order informa-
tion is retrieved from short-term memory (STM). Our pri-
mary focus is on the nature of the retrieval process,
specifically, whether temporal order information is recov-
ered by a serial or parallel retrieval mechanism.

We report evidence that indicates that order information is
retrieved from STM with a slow serial process. Our prior
work (Dosher & McElree, 1992; McElree & Dosher, 1989)
used a cued-response speed—accuracy trade-off (CR-SAT)
analysis to demonstrate fast parallel processes in the retrieval
of item information from STM. Here, we used CR-SAT and
collateral reaction time (RT) tasks to document strongly se-
rial processing for the recovery of order information from
STM under conditions comparable with those for item rec-
ognition. Furthermore, we show that the seriality of order
(i.e., before and after) recovery is not simply a consequence
of the need to consider more than one item. The contrast in
retrieval for item and order information documented here has
important implications for general memory models that at-
tempt to account for both types of information (e.g.,
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Lewandowsky & Murdock, 1989). The application of CR-
SAT procedures to the issue of serial and parallel retrieval
processes illustrates how SAT procedures in general provide
a strong empirical basis for discriminating between serial and
parallel processing architectures.

In the first part of this article we (a) review the evidence
for parallel retrieval of item recognition from STM, (b) de-
scribe the major paradigm for testing retrieval of order in-
formation and review the pattern of findings in RT measures,
and (c) provide details of the CR-SAT methods and the pre-
dictions of serial and parallel processing models for the re-
sulting data.

Serial and Parallel Processes in Item Recognition

The departure point for studies of serial and parallel re-
trieval processes in STM retrieval is Sternberg’s (1966, 1969,
1975) classic RT studies of short-term item recognition.
Sternberg argued that items were retrieved from STM by a
serial exhaustive scan. He based his arguments on the finding
that correct RT was a linear function of the number of items
studied, with approximately equal slopes for positive and
negative responses.

Unfortunately, mean RT data alone cannot in general dis-
criminate between serial and parallel processing mecha-
nisms. Often, with an appropriate set of assumptions, serial
and parallel processing organizations yield equivalent RT
predictions (e.g., Townsend & Ashby, 1983). One response
to this ambiguity has been to consider properties of RT data
other than the mean, including, for example, RT variance
(Shiffrin & Schneider, 1977; Townsend & Ashby, 1983) and
the shape (Hockley, 1984; Hockley & Corballis, 1982; Rat-
cliff, 1978; Ratcliff & Murdock, 1976) or higher order mo-
ments of the RT distribution (Sternberg, 1973).

A second method for more strongly contrasting serial and
parallel mechanisms is to examine the full time course of
processing with speed—accuracy trade-off procedures, in par-
ticular with the CR-SAT paradigm (Corbett, 1977; Corbett &
Wickelgren, 1978; Dosher, 1976, 1979, 1981, 1982; McElree



292 BRIAN McELREE AND BARBARA ANNE DOSHER

& Dosher, 1989; Ratcliff, 1978; Reed, 1973, 1976;
Wickelgren, 1977; Wickelgren & Corbett, 1977; Wickelgren,
Corbett, & Dosher, 1980). Retrieval time is controlled by
requiring subjects to respond immediately following a re-
sponse cue presented at various times during retrieval. Ac-
curacy can thereby be measured across the full time course
of retrieval, from an initial chance level to an asymptotic
level. The SAT asymptote is a measure of memory strength.
Retrieval speed is measured jointly by the rate at which the
function grows to asymptote and when it departs from
chance. We refer to this measure of retrieval speed as the
dynamics of retrieval. Serial and parallel models make dif-
ferent predictions concerning the dynamics of retrieval.

McElree and Dosher (1989) used CR-SAT to explicitly test
a variety of serial and parallel retrieval models for a Stern-
berg item recognition task, including serial exhaustive
(Sternberg, 1975; Treisman & Doctor, 1987) and serial self-
terminating (Theios, 1973) scan models, parallel scan models
(Murdock, 1971), and the diffusion or continuous random
walk model (Ratcliff, 1978). The dynamics of retrieval did
not vary with either set size (a list of three to six words) or
serial position within the lists, clearly indicating that item
retrieval is not serial but is a parallel (e.g., Ratcliff, 1978) or
direct-access (e.g., Reed, 1976) process. Set size is predicted
to control dynamics in serial exhaustive models; study
position is predicted to control dynamics in serial self-
terminating and some rate-varying (capacity-limited) paral-
lel self-terminating models. Serial models are also incon-
sistent with observed RT distributions. Serial processing
mechanisms predict that increasing the number of processes
carried on in series should increase not just the longest RTs,
but should increase the minimum, or leading edge RTs, as
well. Hockley (1984; Hockley & Corballis, 1982) found min-
imal impact of list length on the leading edge; only the long-
est trials were affected by list length.

Relative Judgments of Recency (JORs)

Many events, particularly salient events, may be directly
associated with specific times or dates or may be associated
to other time-tagged events by way of a causal relation
(Bower, 1972; Estes, 1985; Linton, 1975; Wickelgren, 1972).
Discriminating between the recency of two such events re-
quires little beyond a direct retrieval of time concepts asso-
ciated with each event. Of interest here are cases in which
simple inferential processes or an associated date are not
available; Bower (1972) cites examples such as determining
the order of the “arrival of pupils before a class, of concert-
goers at a symphony hall, or in-bound aircraft at Kennedy
airport” (p. 102). We analyze the recovery of order infor-
mation by examining the speed and accuracy of recency
judgments in the absence of inferential links or direct time
coding.

Judgments of recency have been examined in two para-
digms: absolute and relative. In an absolute JOR task, sub-
jects judge the absolute position of elements within a study
list (e.g., Hinrichs, 1970; Lockhard, 1969). Of primary in-
terest is the relationship of judged to absolute recency. In a
relative JOR task, subjects perform two-alternative forced-

choice (2AFC) recency discriminations, choosing which of
two items occurred more recently on a list. The measures of
primary interest in the relative JOR task are the speed and
accuracy of the order discrimination.

Untimed Accuracy

Early studies of relative JOR examined untimed accuracy
as a means to determine the form or type of memory rep-
resentation underlying JOR. One approach exemplified by
Yntema and Trask (1963) assumed that the memory trace
explicitly coded order information in the form of a temporal
tag. Other approaches asserted that temporal order informa-
tion was based on other properties of the memory represen-
tation, such as trace strength (Hinrichs, 1970; Morton, 1968;
Peterson, 1967), trace fragility (Wickelgren, 1972, 1974), or
attribute counts (Bower, 1972; Flexser & Bower, 1974). The
relevant property is assumed to decline monotonically with
the time since study, the number of items intervening be-
tween study and test, or both. In a relative JOR paradigm,
subjects are assumed to follow a decision rule that chooses
as the most recent the item with the largest strength, fragility,
or attribute value.

RT

The strength, fragility, attribute, and time tag theories dif-
fer representationally but share common processing assump-
tions: Information associated with each probe item is re-
trieved, the relevant recency metrics are compared, and an
appropriate response is executed. However, an examination
of RTs calls in to question this type of comparison model.

Muter (1979, 1980) and Hacker (1980) independently ex-
amined RT and associated accuracy for relative JOR as a
function of the study position of each of the items in the test
probe. Mean correct RT was found to be inversely related to
the study position of the more recent or later probe in the pair,
increasing as the later probe was drawn from more remote
positions, but was unaffected by the study position of the less
recent or earlier probe. Accuracy dramatically decreased
when the later probe was drawn from earlier study positions.
Holding the study position of the later probe constant, ac-
curacy slightly increased for more remote study positions of
the earlier probe, that is, as the separation in recency between
the two probe items increased. Hockley (1984) has also re-
ported the same pattern of results. If a response was executed
on the basis of a comparison of the respective recency metrics
of the two probe items, then RT should vary with the dif-
ference in recency between the two probe items. To the con-
trary, the data indicate that processing of the probes is self-
terminating on finding the first match to an item in the
memory set.

Hacker’s (1980) Model

Hacker (1980) proposed a retrieval model to account for
the pattern of RT and accuracy in which comparison of the
test probes with elements in the memory set is accomplished
by a backward or recency-based, serial search or scan. Stern-
berg (1969) proposed a related, although forward rather than
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backward, serial scan model for the recovery of order in-
formation under somewhat different experimental circum-
stances (see McElree & Dosher, 1991, for a discussion of
Sternberg’s model and data). The model assumes a memory
representation in which items are ordered by their position
in the study list. At test, the probability that any particular
item is still available in memory is represented in the model
by an availability parameter (0 < a; < 1). (Less recent items
are typically less available.) Test probes are compared with
elements in memory in a serial fashion, starting with the most
recent and moving backward through the memory represen-
tation. The scan is self-terminating in that the first test probe
that matches an item in the memory representation is chosen
as the more recent. If the later probe is unavailable (with
probability pr = 1 — g;), the earlier probe is incorrectly cho-
sen as the more recent. If both probes are unavailable, the
subject is assumed to be guessing. The model estimates mean
RT with three processing parameters: (a) a base time
b reflecting average time to encode probes and execute a
response, (b) a search time s that reflects the average time to
compare test probes with an individual item in the memory
representation, and (c) a guessing time g that estimates the
average time to guess when both probes are unavailable.
Equations for estimating probability correct, mean correct
RT, and mean incorrect RT for JOR pairwise comparisens are
detailed in the Appendix.

Hacker (1980) found that this relatively simple scanning
model produced very good quantitative fits of the percentage
correct, mean correct RT, and mean incorrect RT data. More-
over, although the serial scanning model was not fit to RT
distributions directly, the shapes of the correct RT distribu-
tions reported by Muter (1980), Hacker (1980), and Hockley
(1984) were generally compatible with a serial model in that
the leading (fast) edge of the RT distributions is affected by
the recency of the later test item (see the RT Distribution
section of Experiment la for a detailed treatment).

Remaining Ambiguities in Interpretation

Unfortunately, as acknowledged by Hacker (1980) and
Muter (1980), the mean and distributional data pattern for
relative JOR judgments, although consistent with a serial
scan model, do not necessarily rule out a parallel model. The
mean RT and error data may be consistent with a model in
which matches to items in memory are processed in parallel,
but the time to complete each comparison (to a criterion
level) varies with recency. Purely parallel models may be
consistent with the RT distributions as well. In at least one
model (Ratcliff, 1978), parallel retrieval processes that differ
only in the degree of match (i.e., strength) can produce shifts
in the leading edge of RT distributions.! To use RT means and
distributions to argue definitively for either serial or parallel
models requires precise quantitative development of both
models.

We pursue another alternative here, which is to examine
the full time course of retrieval by using the CR-SAT pro-
cedure. Full time course data can give converging informa-
tion that may allow us to rule out serial or parallel models
(cf. McElree & Dosher, 1989). The distinction focuses on the

availability of partial information about order when subjects
make a judgment after being interrupted early in processing.
The serial backward scan model predicts that tests including
a less recent later item should have longer initial periods
during the scanning process when information is at chance.

SAT Methodology

The CR-SAT method interrupts the retrieval process with
a cue to respond and measures accuracy at various points
across the full time course of retrieval. Full retrieval func-
tions generated from this method typically show a period of
chance performance, followed by a period of rapid increases
in accuracy, and finally an asymptotic accuracy level as re-
trieval time is further increased. Generally, three parameters
suffice to describe these functions: (a) an asymptotic accu-
racy parameter reflecting overall memory limitations, (b) an
intercept or minimal processing time, and (c) rate of rise from
chance to asymptote. The latter two parameters jointly sum-
marize the dynamics of retrieval. The rising portion of the
SAT function may reflect either continuous accrual of in-
formation or the distribution of finishing times of a quantal
process (Dosher, 1976, 1979, 1981, 1982; Meyer, Irwin,
Osman, & Kounois, 1988).

The CR-SAT method yields a strong empirical contrast of
parallel and serial processing models because of its ability to
separately assess the impact of experimental factors on dy-
namics and asymptotic performance. Differing numbers of
serial processes will alter the dynamics of information ac-
crual, independent of covarying or independent effects on
asymptotic performance. The duration of the serial process-
ing component controls the distribution of finishing times in
cases in which the underlying processing is discrete or quan-
tal, and most, if not all, serial processing models are cast in
discrete terms (see Meyer et al., 1988). Because SAT dy-
namics reflect the distribution of finishing times for discrete
processes, different finishing time distributions will result in
SAT functions that rise to asymptote disproportionately or at
different rates. The CR-SAT methodology has been profit-
ably used to critically examine serial processing claims in a
number of domains, including short-term item recognition
(McElree & Dosher, 1989; Reed, 1976), perceptual matching
(Ratcliff, 1981), retrieval interference (Dosher, 1981), long-
term sentence recognition (Dosher, 1982), and semantic-
verification tasks (Corbett & Wickelgren, 1978).

Differences in SAT dynamics are a necessary prediction of
serial processing models (see Dosher, 1981, 1982, 1984;
McElree & Dosher, 1989). Parallel processing models are
intrinsically more flexible. Whereas parallel processing
models are consistent with common dynamics (i.e., rise
strictly proportional to asymptote), dynamics differences can
often result from inherent differences in the rate of contin-
uous information accrual (Dosher, 1984; McElree & Dosher,

! More detailed analyses of the relative magnitudes of shifts in
the leading edge and tail of the RT distributions might rule out
specific parallel or serial models.
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1989) or from the type of decision rules governing infor-
mation combination (Ratcliff, 1978). Discriminating be-
tween serial and parallel models in the presence of dynamics
differences is therefore a more subtle process of precisely
fitting predicted to observed retrieval functions. We approach
this problem for JOR by deriving specific predictions of the
Hacker model for SAT data.

Note that RT data alone are not sufficient to estimate dy-
namics because RT may represent an unknown mixture of
dynamic and asymptotic effects. Empirically, RT has often
been observed to covary with asymptotic SAT differences,
even in the absence of differences in SAT dynamics (Dosher,
1982, 1984; McElree & Dosher, 1989; Ratcliff, 1978;
Wickelgren, 1977). In other cases, RT covaries with SAT
dynamics in the absence of asymptotic differences (Dosher,
1981; Dosher & Rosedale, 1989). Because asymptotic and
dynamic effects have distinct theoretical interpretations,
models constructed solely in response to RT data may sub-
stantially misrepresent the underlying processes. The ap-
proach of this article is to relate mean RT, RT distributions,
and accuracy in an RT paradigm to SAT data on the time
course of order judgments.

SAT Predictions From Hacker’s Model
In this section, we present SAT functions predicted by

the Hacker backward serial self-terminating model of rela-
tive JOR. Figure 1 illustrates the strong effect of recency

in SAT. The derivations of the functions are outlined in the
Appendix. In this figure, finishing time for each compari-
son process in the scan was exponentially distributed with
a rate (S) corresponding to the mean search time for each
comparison (s) in the RT model. Hence, the finishing time
distribution for the entire scan is gamma distributed with
an order equal to the number of serial comparison proc-
esses performed before a match is found (see Equation
A4). The expected number of serial comparison processes
for any test pair depends on the number of items remaining
in the memory representation at test. The item availability
parameters (a;) provided the basis on which to weight
gamma distributions to compute predicted accuracy at var-
ious retrieval times.

The SAT functions are derived for pairwise combinations
of the last four study positions (i.e., [34, 35, 36, 45, 46, 56])
of six-item lists by using model parameters reported by
Hacker (1980; see Figure 1 caption). Figure 1 presents pre-
dicted SAT functions in units of d'. The predicted SAT as-
ymptotic accuracies show a pattern equivalent to accuracy in
the RT studies of Hacker. The asymptotes of the SAT curves
are strongly affected by the recency of the later probe and,
to a much smaller degree, by the recency of the earlier probe.
Lower asymptotic accuracy reflects errors produced when
the later (more recent) probe is absent from the memory
representation. The earlier probe affects asymptotes only
when the later probe is unavailable; hence, errors with later
probes from Position 6 are virtually nonexistent.

o) -
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sp 56
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Figure 1. Predicted speed—accuracy trade-off functions for two-alternative forced-choice judg-

ments of recency from Hacker’s (1980) serial self-terminating scan model. (The curves show
predicted 4’ accuracy as a function of processing time for the six pairwise comparisons of the last
four serial positions [sp] in a list of six items. The curves were derived by using the method specified
in the Appendix with the parameters reported in Hacker [1980, p. 664]. Parameter values: ag = .946,
as = .662, a, = 577, a; = 474, search time per item, s = 209 ms, base encoding time, b = 209

ms.)
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Most critically, the study position of the later probe de-
termines the dynamics of the SAT function by means of the
serial scan mechanism. There are two parts to the predicted
dynamics differences illustrated in Figure 1. The first is an
apparent increase in the intercept as the later probe is drawn
from less recent study positions. The second is a concomitant
slowing of the rate of rise to asymptote. Although differential
rate of rise may be consistent with either serial or rate-
varying parallel processes, significant delays in the initial
availability of information will be taken as strong support for
a serial backward scan.

Experiments 1a and 1b: JOR

The RT results reported by Muter (1979, 1980), Hacker
(1980), and Hockley (1984) are robust across different rates
of presentation (2-16.7 items/s), different types of study ma-
terials (consonants and words), and different list lengths
(4-13 items). The experiments reported here use set sizes of
6 consonants presented at modest rates of presentation (2-3.3
items/s). Test probes are constructed from pairwise combi-
nations of all study positions, yielding 15 distinct types.

We were primarily interested in measuring properties of
the full time course SAT data to see if they conform to the
predictions of the serial, self-terminating model. Experiment
1b reports the SAT results. Experiment la reports an RT
experiment in which sufficient data were collected to deter-

SAMPLE TRIAL SEQUENCE
JOR SAT PROCEDURE

variable .1 - 3 sec
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mine the pattern of mean RT, RT accuracy, and the concom-
itant shape of the RT distributions. The RT results replicate
those reported by Muter (1979, 1980), Hacker (1980), and
Hockley (1984) and allow explicit comparison with full SAT
retrieval functions on an individual subject basis. RT data
is subject to speed—accuracy trade-offs and does not provide
a means of independently measuring the speed and ultimate
accuracy of retrieval. As such, it cannot be used in isolation
to evaluate unambiguously the applicability of serial versus
parallel retrieval mechanisms. Nevertheless, principled re-
lationships should exist between the RT and SAT data.

Method

Subjects

Four subjects participated in a total of 20 approximately 75-min
experimental sessions. Subjects EC and LB were paid for their
services. Subjects BM and GR were affiliated with the laboratory
and volunteered their services. All subjects had normal or corrected
vision.

Design and Stimuli

Each study list consisted of six consonants randomly selected
(with no replacement). The test probe consisted of two consonants
drawn from the study list. Across a session, each pairwise combi-
nation of study positions from the list was tested equally in arandom

207> | . LATENCY FEEDBACK
<tone>
x 8 < TEST PROBE
<- MASK

0.5 sec
K

X

0.5 sec

L
F STUDY LIST
B
Q
+
<- WARNING

Figure 2. A sample trial sequence illustrating the speed—accuracy trade-off (SAT) variant (see
Experiment 1b) of the relative judgment of recency (JOR) task. (In the reaction time variant of the
task [Experiment la], the identical procedure was used up to the presentation of the test probe, at
which point the tone was eliminated, and the test probe remained on the screen until the subject

responded.)
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order. The left-right order of presentation was completely coun-
terbalanced within a session.

Each session consisted of two blocks of 210 trials. Across the 14
SAT sessions, this yielded for each subject a total of 56 trials per
lag for each of the 15 pairwise contrasts. Across the six RT sessions,
this yielded a total of 168 trials per contrast. One RT session was
performed following every 3rd SAT session.

Procedure

Stimulus presentation, response collection, and feedback were
controlled by an IBM-AT compatible computer. The consonants in
a study list were sequentially presented in lower-case characters
(= 10 X 6 mm) in the center of the screen. The test probe consisted
of two lower-case characters presented simultaneously in a side-
by-side arrangement, separated by a 20-mm space.

The sequence of events that constituted a trial in each of the two
tasks is schematically presented in Figure 2 and was as follows:
(a) A centered, square fixation point was presented for 500 ms.
(b) Each study consonant was sequentially presented for 300~500
ms, followed by a 50-ms blank screen. (c) An asterisk was presented
for 500 ms to mask the final study itemn, alert subjects to a pending
test, and help maintain fixation on the center of the screen. (d) The
two items of the test probe were displayed in a left-right arrange-
ment. (¢) In the RT sessions, the probe items remained on the screen
until a subject pressed one of two keys indicating which of the
left-right test items was judged more recent. In the SAT sessions,
the probe remained on the screen for either 0.15, 0.35, 0.55, 0.75,

1.0, 1.5, or 3 s at which point the screen cleared and a brief (10-ms)
tone sounded to cue subjects to respond. Subjects responded by
pressing one of two keys indicating which item was judged more
recent. (f) Following a response, latency feedback was given. In the
RT task, it consisted of the RT to the probe. In the SAT task, feed-
back consisted of the latency to respond to the interruption cue.
Subjects were instructed to respond to the cue within 270 ms. They
were informed that responses longer than this were too long and that
responses under 130 ms were anticipations. A key press initiated the
next trial.

All subjects were given at least 1-hr practice with each type of
session. Initially the rate of presentation for items in the study list
was set at 500 ms. For subjects BM and GR, this rate was maintained
throughout all sessions. The rate was reduced to 400 ms for subject
LB and to 300 ms for subject EC in an attempt to reduce near-perfect
performance in some conditions.

Data Analysis

In a 2AFC task, such as the relative JOR task, accuracy can be
transformed into a d’ measure by either assuming symmetry or
asymmetry of the response alternatives and an underlying signal
distribution (Green & Swets, 1966). An asymmetric d' scaling ac-
commodates bias to one of the response alternatives: Assuming
equal variance Gaussian distributions, d' = [z(111) — z(112)] +
2'72, where z is the standard normal deviate of the probability of
responding that the most recent item was the first alternative, given
that the most recent item was either the first (11 1) or the second
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Figure 3. Average (over subjects) d’ accuracy in the reaction time variant of the judgment of
recency task (see Experiment la). (The study position [sp] of the earlier {less recent] test item is
plotted on the abscissa. The curve parameter is the sp of the later [more recent] test item. Open
symbols connected by solid lines show observed data. Dashed lines show fits of Equation Al from
Hacker’s [1980] serial self-terminating scan model [see Discussion section and Appendix]).
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(112) alternative. (Empirical estimates of d’ are bounded by a cor-
rection that substitutes a .001 error rate for perfect performance.)
Analyses with symmetric d' scaling, asymmetric d' scaling, and
proportion correct all yielded identical patterns. We report results
in the asymmetric d’ format, except when presentation order is of
explicit interest in which proportion correct is used.

Descriptive equations (see Equations 2 and 3) and model-based
equations (see Appendix) were fit to the data with an iterative hill
climbing algorithm (Reed, 1973), similar to Stepit, that minimized
the squared deviations of predicted from observed data. When fits
with differing numbers of (nested) parameters were compared, we
evaluated the quality of the respective fits with three criteria: (a) The
value of an R? statistic was computed.

S d, — d)Hn — k)
R2=1 -2 , ()

2 (d - dyin—1)

i=1

where the d, are the observed data values, the 3,. are the predicted
values, d is the mean, n is the number of data points, and k is the
number of free parameters (Reed, 1976). This R? statistic is the
proportion of variance accounted for by the fit, adjusted for the
number of free parameters [k]. It is the same equation for adjusted
r? often cited in multiple linear regression (e.g., Judd & McClelland,
1989). (b) We evaluated the consistency of parameter estimates
across subjects. (¢) Most important, we examined whether a fit
yielded systematic (residual) deviations that could be accounted for
with more parameters.

Experiment la Results: RT JOR Task

Accuracy

Figure 3 presents the average (over subjects) d’ in the RT
task as a function of the study position of the respective
probes in a test pair. Table 1 presents the corresponding in-
dividual subjects’ data. Although expressed in d' rather than
percent correct, these data are replications of Hacker (1980)
and Hockley (1984) with somewhat different timing and dis-
play characteristics; hence, we present an abbreviated sta-
tistical treatment. The data shown in Figure 3 illustrate the
two major phenomena of prior JOR accuracy data: (a) Ac-
curacy decreased dramatically as the later probe was drawn
from less recent study positions, F(4, 13) = 15.7, p < .005,
collapsing across study position of the earlier probe. (b)
Holding the later probe constant, the accuracy is also weakly
affected by the difference in recency between the two probes.
This trend was significant for pairs involving List Position
6, F(4, 12) = 3.62, p < .05, and Position 5, F(3,9) = 13.5,
p < .05. There were small 2%—6% differences in the accu-
racy for the two presentation orders (more recent item on the
right vs. more recent item on the left) that differed for dif-
ferent list positions of the most recent item. However, these
appear to be speed—accuracy trade-offs as the RT differences
are in the opposite direction (see below). Explicit fits of
Hacker’s model to the RT-accuracy data are deferred to the
Discussion section and after the RT mean and distributional
analysis and the SAT data are presented.

Table 1
Accuracy (d') in Reaction Time Experiment la

Study Study position of later probe
position of
earlier probe 2 3 4 5 6
Subject BM
1 0417  0.159 1.896  2.355 3.193
2 0.192 1.905 2355  3.555
3 2016 1.997  3.553
4 0.870  2.966
5 2.660
Subject EC
1 0.721 1.116 1.436 1.534 2355
2 0.677 1.472 1.655  2.545
3 1.436 1.586 2211
4 1.054 2077
5 1.896
Subject GR
1 1.175 1.294 1.547 2355  3.193
2 1.116 1.333  2.187 2966
3 1.669 1.796  2.545
4 1.620  2.798
5 1.749
Subject LB
1 0227 0.124 1.054 1.366 1.950
2 0263  0.745 1.322 1.788
3 0.629 1.299 1.705
4 0.669 0971
5 0.701
Mean RT

The number of errors in many paired comparisons fell well
below a level that would ensure reliable RT functions for
errors: Eight conditions had less than 100 errors pooled
across all subjects. Consequently, analysis and discussion of
RT is restricted to correct trials only.

Average correct RT as a function of study position is pre-
sented in Figure 4. Table 2 presents the individual subject
data on which the average data is based. Figure 4 clearly
illustrates that correct RT was dependent on the study po-
sition of the later probe, F(4, 12) = 12.49, p < .05, collapsing
across study position of the earlier probe. There was little
impact of the earlier probe. Subjects were faster on average
at responding to trials in which the presentation order ac-
corded with the study order (868 ms vs. 928 ms), F(1, 3) =
26.89, p < .0S. As noted earlier, accuracy varied in the op-
posite direction, suggesting that this difference likely reflects
a speed-accuracy trade-off.

The pattern of correct RT cleanly replicates the results
reported in prior studies (Muter, 1979, 1980; Hacker, 1980;
Hockley, 1984). The effect of the study position of the later
probe on mean RT is decidedly nonlinear and is adequately
fit (R?> = .965) as a logarithmic function of recency: RT =
510 + 428 X log(sp), where sp denotes the number of items,
including the test item, that intervene between study and test.
Strict serial models often predict linear functions for exper-
imental variables that determine the number of component
serial processes (e.g., set size in Sternberg’s [1966] serial
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Figure 4. Average (over subjects) mean reaction time (RT) in the RT variant of the judgment of
recency task (see Experiment la). (The study position [sp] of the earlier [less recent] test item is
plotted on the abscissa. The curve parameter is the sp of the later [more recent] test item. Open
symbols connected by solid lines show observed data. Dashed lines show fits of Equation A2 from
Hacker’s [1980] serial self-terminating scan model [see Discussion section and Appendix}).

exhaustive scan model). However, nonlinearity is an intrinsic
property of serial mechanisms of the type proposed by
Hacker (1980) in which the expected number of serial com-
parison processes is weighted by graded memory availability
parameters. For this class of models, a nonlinear function is
predicted in all cases in which availability in memory mono-
tonically declines with study position.

RT Distributions

Increasing the number of serial matching or comparison
processes should shift the entire distribution, including the
leading edge, the mode, and the skewed right tail, toward
longer times (Hockley, 1984; Hockley & Corballis, 1982;
Ratcliff & Murdock, 1976; Sternberg, 1975). However, dif-
ferences in mean RT often result from changes in the skewed
right tail of the distribution only. Increases in the tail of the
distribution are consistent with models in which only a pro-
portion of trials is affected. Serial processing components are
assumed to be common to all trials (Ratcliff & Murdock,
1976).

A number of methods have been proposed to fit and model
RT distributions (see Luce, 1986b). RT distributions of rec-
ognition judgments appear to be extremely well fit by the
convolution of a Gaussian and an exponential distribution

(Ratcliff & Murdock, 1976, following Hohle, 1965):

o -le—wymrozr:  ((Hmwal=olr
f@ = Y e ™" dy, 2)

The exponential component, with parameter 7, captures the
tail of the distribution: Large s reflect long tails. The Gaus-
sian, with its two parameters, namely the mean (u) and vari-
ance (o), roughly quantify the mode and leading edge of the
RT distribution.

RT distributions were calculated for individual subjects
and for group data for each of the 15 test probe conditions.
Figure 5 shows group RT distributions for all positions of the
later (more recent) probe, collapsing over the position of the
earlier probe. Rather than defining equal-interval bins and
calculating response frequency, a more stable method was
used that defines 15 equal-probability bins and adjusts the
width of time bins accordingly (Ratcliff, 1979). Group dis-
tributions were based on vincentized averaging (Ratcliff,
1979).

The study position of the later probe produced large and
stable effects on all three aspects of the RT distributions, as
summarized by the three parameters of the ex-Gaussian
equation. Figure 5 shows that as the probe is drawn from
more remote study positions, the leading edge and mode of
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Correct Mean Reaction Times (RTs; in Milliseconds) and Standard Deviations

in Experiment la

Swudy position of later probe

. 2 3
Study position

4 5 6

of earlier probe RT SD RT SD

RT SD RT SD RT SD

Subject BM
1 1,459 50 1,408 44 928 37 854 26 501 19
2 1,389 49 914 34 829 28 482 19
3 930 34 870 29 521 22
4 992 42 467 14
5 552 31
Subject EC
1 995 51 1,061 59 930 49 831 49 383 11
2 1,200 47 951 41 898 40 460 22
3 980 45 887 43 457 22
4 870 34 443 19
5 423 15
Subject GR
1 1,320 51 1,370 52 1,254 55 1,069 52 635 35
2 1,448 53 1,384 61 1,136 57 638 32
3 1,216 55 1,177 54 657 32
4 953 44 623 32
5 577 25
Subject LB
1 655 45 694 38 475 19 459 23 428 i3
2 620 41 481 23 492 19 424 12
3 497 26 511 40 433 17
4 514 25 418 i1
5 407 15

the distributions (u and o) are shifted toward longer times.
The right tails of the distributions (7) are stable beyond Study
Position 6, but there is a sharp discontinuity between the most
recent position and all others.? Following the pattern of mean
RT, the position of the earlier probe had little impact on the
shape of the RT distribution (for a full analysis of all con-
ditions for individual subject data, see McElree & Dosher,
1991). Muter (1980), Hacker (1980), and Hockley (1984)
report similar shifts in the leading edge and mode with the
later probe.

Differences in the leading edge and mode of the distribu-
tions, in the context of the observed pattern of mean RT and
accuracy, are consistent with a serial self-terminating re-
trieval mechanism (Hacker, 1980; Hockley, 1984; Ratcliff &
Murdock, 1976; Sternberg, 1973). Unfortunately, they are
also consistent with certain classes of parallel self-
terminating mechanisms.

The shape of the RT distribution also may be contingent
on speed-accuracy criteria (Luce, 1986a; see also, Ratcliff,
1978, on criterion shifts and the predicted shape of the RT
distribution for the random walk model). For example,
whereas 3 of the 4 subjects’ data were completely consistent
with the average pattern in Figure 5, subject LB’s data
showed little change in the leading edge and the mode of the
distributions but large changes in the right tail. LB’s re-
sponses were much faster, but far less accurate, than the other

3 subjects. LB’s empirical SAT retrieval functions are not
different from other subjects’. So we conclude that her RT
data reflect a shift in criterion rather than a different retrieval
process. We suggest that this examination of individual sub-
ject’s data provides a clear demonstration of the need to in-
terpret RT distributional patterns only in the light of collateral
measures of controlled retrieval speed.

Experiment 1b Results: SAT Retrieval Functions

The serial and rate-varying parallel accounts of JOR are
both compatible with even the detailed analysis of RT data.
The full time-course SAT data will discriminate between
these differing accounts of JOR. This section presents a de-
scriptive summary analysis of the results from the SAT task.

SAT Retrieval Functions

Asymptotic accuracy. Figure 6 presents d’ values aver-
aged across subjects and presentation orders at the longest
interruption point (3 s) as an empirical measure of SAT
asymptotic accuracy. Presentation order did not systemati-
cally affect asymptotic accuracy, F(1, 3) < 1, p > .05. As

2 Position 6 is accorded special treatment in subsequent model
fits.
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Figure 5. The average (over subjects) reaction time (RT) distributions as a function of the study
position of the later (more recent) test probe, collapsing over the study position of the earlier probe.
(The bars show the estimated probability density at each of 15 time quantiles spanning the range of
RTs. Solid diamonds show fits of the ex-Gaussian model [see Equation 2). The estimated values
of i, o, and 7 [and range over subjects] are listed in each panel).

with the RT task, proportion correct significantly varied
with the study position of the later probe, F(4, 12) = 9.8,
p < .05, collapsing over the position of the earlier probe.
Unlike the RT task, however, accuracy did not signifi-
cantly vary with the earlier probe when the study position
of the later probe was held constant; all Fs < 1. Accura-
cies observed in the RT task were substantially lower than
those at SAT asymptote, indicating that subjects in the RT
task trade speed for accuracy.

Retrieval dynamics. Figure 7 presents the SAT functions
averaged over subjects for each pairwise combination of the
study positions. Panel A shows SAT functions for tests in
which Item 6 is most recent, Panel B for tests in which Item
5 is most recent, and so forth. Estimated d’ is graphed as a
function of total processing time (i.e., the average time from

test onset to response). Latency to the interruption tone de-
pended on the recency of the later probe (see McElree &
Dosher, 1991, for individual subject’s data and statistics).
The latencies averaged over lag and comparisons were 181
ms, 202 ms, 208 ms, 222 ms, and 222 ms for tests involving
Position 6, 5, 4, 3, and 2, respectively. Condition differences
of this magnitude are not typical for SAT data. However,
excluding latency in the SAT analysis would systematically
underestimate—though far from eliminate—dynamics dif-
ferences between conditions, which are an order of magni-
tude larger than the latency differences.

Empirical SAT retrieval functions of the form in Fig-
ure 7 can be closely approximated by an exponential
approach to a limit (Dosher, 1976, 1981, 1982, 1984;
McElree & Dosher, 1989; Reed, 1976; Wickelgren, 1977;
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Figure 6. Average (over subjects) asymptotic d' accuracy in the
speed-accuracy trade-off (SAT) variant of the judgment of recency
task (see Experiment 1b). (The study position [sp] of the earlier
[less recent] test item is plotted on the abscissa. The curve param-
eter is the sp of the later [more recent] test item. Open symbols
connected by solid lines show observed data. The longest inter-
ruption point [3 s] was used as an empirical estimate of SAT
asymptotic accuracy. Dashed lines show fits of Equation Al from
Hacker’s [1980] serial self-terminating scan model [see Discussion
section and Appendix]).

Wickelgren et al., 1980):
d'(t) = M1 — e B,

where A represents the asymptotic accuracy level, 8 the in-
tercept or time before which accuracy is at chance level,
and B represents the exponential rate parameter, indexing
the speed with which accuracy rises from chance to
asymptotic level. The parameters 8 and & jointly serve to
describe the dynamics of retrieval. Equation 3 quantita-
tively summarizes the impact of study position on the dy-
namics and asymptote of the SAT function.

Both a rate-varying parallel comparison model and a back-
ward serial self-terminating scan model predict differences
in SAT rate of rise to asymptote (8). If the substantial dif-
ferences in mean RT for JOR reflect a serial model, then we
must observe large shifts in intercept (6). If rate-varying par-
allel processing accounts for the differences in mean RT, then
we should observe no shifts in intercept but rather substantial
shifts in rate.

Examination of the data in Figure 7 reveals large differ-
ences in SAT intercept when the functions depart from
chance performance. Considering the first interruption point
(0.15 s), accuracy for contrasts involving later probes from
Position 6 (Panel A) is well above 1.0 d' units, whereas con-
trasts involving Positions 2 and 3 (Panel D) are at chance and
remain so until the third interruption point (0.55 s). Contrasts
involving Positions 5 (Panel B) and 4 (Panel C) yield in-
termediate results. These shifts in intercept, quantified in the
fits of the exponential, rule out parallel models, including

t>8 else O, 3)

those with variation in processing rate.

To fit all the data in Figure 7 with the exponential, it was
necessary for the asymptotes, rates, and intercepts to vary
with condition. Fits that ignored differences in any of the
three parameters produced systematic misfits and relatively
low R? values. Through extensive comparisons of compet-
itive fits, a S asymptote, 15 rate, and 3 intercept (SA-153-38)
model emerged as the best description of the data.

Estimated asymptotes differed only with the position of
the later probe as shown in Figure 6. The position of the
earlier probe had no measurable effect.

Estimated intercepts varied over an exceptionally wide
range, differing by as much as %2 s (186-683 ms) over test
probes. Although we can not rule out a fully graded pattern
of five intercepts—one for each position of the later probe—
only a subset of these differed enough to be significant. The
best competitive fit yielded three clusters of intercepts: (a) a
low intercept for contrasts with a later probe from the most
recent study position (Position 6) estimated at 186 ms in the
average data (ranging from 151 to 280 ms across subjects);
(b) a middle intercept estimated at 283 ms (ranging from 233
to 500 ms across subjects) for contrasts with the later probe
from Position 5 or 4; and (c) a long intercept estimated at 683
ms (ranging from 577 to 1,021 ms across subjects) for later
probes from Positions 2 and 3.

In addition to the large intercept differences, the speed
of rise to asymptote () also depends on the position of the
later probe. Separate examination of each panel in Figure 7
reveals that accuracy is better at earlier interruption points
when there is more separation in recency between the test
probes. This secondary effect was reflected in the rate
estimates.

The 5A-158-38 fit accommodates these three major
properties of the data. The parameter estimates and R” sta-
tistics are shown in Table 3 for the average data and for in-
dividual subjects. The lines shown in Figure 7 correspond
to this fit. All subjects show essentially the same patterns
of data.

The largest estimated dynamics (i.e., rate and intercept)
difference is between probes involving the most recent po-
sition (Position 6) and all other positions. Test probes in-
volving an item from Position 6 are cases of an immediate
repetition of a studied item and an element in the test pair.
Wickelgren et al. (1980) and McElree and Dosher (1989)
observed a similar rate advantage for immediate repetitions
in an item recognition task, as did Dosher (1981) for a
paired associate recognition task. Wickelgren et al. sug-
gested that the most recently studied item remains in an
active or primed state if no interfering mental activity in-
tervenes between study and test. Recognition of an active
item reflects a matching process in which normal retrieval
processes may be circumvented. The analysis of the RT
distributions also supports this view. The 7 parameter of
the ex-Gaussian model, reflecting the positive skew of the
distribution, was markedly smaller for cases of immediate

3 An alternative and similar equation results from the time-
bounded diffusion process (Ratcliff, 1978; see also Dosher, Mc-
Elree, Hood, & Rosedale, 1989, and McElree & Dosher, 1989).
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Table 3
Exponential Fits of Speed-Accuracy Trade-Off Judgment of Recovery Data
Subject
AV BM EC GR LB
Study
position A B 5 A B s A B ) A B 5 A B )
5-6 421 1.64 186 4.21 157 151 411 298 215 412 268 257 445 083 217
4-6 421 202 .18 421 155 151 411 579 215 412 242 257 445 179 217
3-6 421 266 .186 421 303 151 411 3.07 215 412 3.67 257 445 199 217
2-6 421 293 186 421 512 151 411 339 215 412 296 257 445 179 217
1-6 421 387 .186 421 354 151 411 469 215 412 429 257 445 474 217
4-5 336 0.89 276 278 035 285 339 154 493 419 103 394 328 137 172
3-5 336 107 276 278 221 285 339 078 493 419 087 394 328 149 172
2-5 336 108 276 278 146 285 339 092 493 419 073 394 328 230 .172
1-5 336 167 276 278 204 285 339 110 493 419 182 394 328 289 172
3-4 279 072 276 252 082 28 382 042 493 326 061 394 212 132 172
24 279 094 276 252 138 285 382 087 493 326 067 394 212 152 172
14 279 1.19 276 252 233 285 382 066 493 326 123 394 212 168 .172
2-3 213 051 685 123 047 967 218 061 577 377 029 639 181 1.18 971
1-3 213 062 685 123 045 967 218 061 577 377 062 639 181 056 971
1-2 134 1.13 685 050 129 967 207 064 577 178 154 639 118 025 971
R? 964 .900 923 .853 .871

repetition (Position 6) and did not systematically vary with
study positions beyond the most recent. A matching pro-
cess presumably would be both faster and less variable
than a standard retrieval operation yielding a lower overall
positive skew.

Even if conditions involving an immediate matching pro-
cess (Position 6) are excluded from consideration, the in-
tercept shifts among the remaining conditions are quite large
(400 ms). Subsequent sections provide detailed discussions
of the implications of the intercept and rate shifts for parallel
models and evaluate the serial model of Hacker (1980) as an
account of these time-course data.

Discussion
Empirical Summary

The RT task replicated all of the principal results re-
ported in the previous studies (Muter, 1979, 1980; Hacker,
1980; Hockley, 1984). Accuracy increased dramatically as
the later probe was drawn from more recent study posi-
tions and to a much lesser extent as the separation in re-
cency between the later and earlier probe was increased.
Mean RT was affected by the study position of the later
probe, decreasing logarithmically with recency, yet was
uninfluenced by the earlier probe. Fits of the descriptive
ex-Gaussian model demonstrated that differences in mean
RT primarily reflected differences in the mode and leading

edge of the RT distribution. The positive skew of the RT
distribution remained fairly stable beyond comparisons in-
volving items from Study Position 6 (a case of immediate
repetition between study and test).

The study position of the later probe had a large impact on
both the asymptotic and dynamic components of the SAT
retrieval functions. Asymptotic accuracy increased dramat-
ically as the later probe was drawn from more recent study
positions. The dynamics of retrieval also varied directly with
the recency of the later probe, reflected in substantially
shorter intercepts and faster rates of approach to asymptote
for more recent (later) probes. The study position of the ear-
lier probe did not affect asymptotic levels but did introduce
small but reliable differences early in retrieval. Accuracy rose
to asymptote at a faster rate as the earlier probe was drawn
from more remote positions where the separation in recency
between probes was largest.

Cross-Tasks Comparisons

There is, in general, a strong relationship between data of
the RT and SAT tasks in the current experiments. This is
consistent with prior studies that have run comparable ex-
periments using both tasks (Dosher, 1982; Dosher et al.,
1989; McElree & Dosher, 1989; Reed, 1976). We begin with
an examination of mean RT and accuracy, then further dis-
cuss aspects of the RT distributions.

Figure 7. Average (over subjects) d’ accuracy in the judgment of recency (JOR) task (see Exper-
iment 1b) as a function of processing time (i.e., lag of the interruption cue plus latency of response
to the cue). (Open symbols show observed d’ for earlier probes paired with later probes from Study
Positions [sps] 6 [Panel A}, 5 [Panel B], 4 [Panel C], 3, and 2 [Panel D]. Solid lines show the best
fitting exponential retrieval functions [see Equation 3] by using the parameter values for the average
data listed in Table 3. The corresponding filled symbols show reaction time [RT] data [observed d’

at observed RT] from Experiment 1b).
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To the degree that both RT and SAT tasks reflect com-
mon encoding and retrieval processes, RT points should lie
near the corresponding SAT curves (Dosher, 1982; Reed,
1976; Wickelgren, 1977). RT points (d' at observed RT)
are shown as solid symbols on the plots of the full SAT re-
trieval functions in Figure 7. (The RT points are for mean
correct RT; points including error RTs are similarly lo-
cated, perhaps showing slightly more spread over condi-
tions.) Inspection of Figure 7 shows that the RT points in-
deed lie quite close to observed SAT functions. There are a
number of reasons why we may not necessarily observe
perfect alignment of RT points with the SAT retrieval func-
tions (see Dosher, 1982). In this case, however, the align-
ment is remarkably close.

Figure 7 illustrates that SAT asymptotes are higher than
the corresponding RT accuracies across all conditions. This
is again a standard finding in direct comparisons between
the two methods (Dosher, 1982; Reed, 1976). In an RT
task, subjects typically select points on the speed—accuracy
operating characteristic that trade relatively large gains in
speed for modest decrements in accuracy. Here, possibly
because of the very lengthy processing for the most diffi-
cult conditions, the RT accuracies show substantial decre-
ments ranging from about half of SAT asymptote for tests
involving the more recent probes to about one quarter of
SAT asymptote for tests of the first few list items. Under
continuous retrieval models, trading speed for accuracy in
an RT task reflects the setting of a criterion or criteria for
information necessary to complete a comparison and elicit
a response. Under a discrete retrieval model, the trade-off
results either from fast guessing or from approximate time
deadlines, which serve to replace longer responses with
simple or partially informed guessing.

One superficial difference between SAT and RT accuracy
concerns the effect of the study position of the earlier probe:
RT accuracy significantly improved as the separation in re-
cency between the two probes increased, whereas the SAT
functions show no differences at asymptote as a function of
the earlier probe. Differences in RT accuracy for earlier
probes appear to reflect underlying dynamics differences
rather than differences in availability. Extrapolating from the
SAT functions, we predict that if subjects in an RT task op-
erated close to asymptote, then these differences in accuracy
would be eliminated or greatly reduced. In a weakly related
observation, Muter (1980) reported no effects of the earlier
probe for high-confidence responses.

Considering the RT-task data in more detail, we found
that shifts in the leading edge and mode of the RT distribu-
tions parallel large dynamic differences in the SAT data
(measured as intercept & and rate B in Equation 2) as a
function of the later probe. Previous cases of cross-subject
and experiment comparisons (Hockley, 1984; Hockley &
Corballis, 1982; McElree & Dosher, 1989) of item recog-
nition show that large SAT asymptotic differences in the
presence of minimal dynamics differences were coupled
with RT-distribution shifts in positive skew or tail and
minimal shifts in leading edge or mode. It is tempting,
then, to associate shifts in leading edge and mode with
large SAT dynamics effects. Unfortunately, empirically the

relationship between characteristics of RT distributions and
particular properties of the full time-course measures may
be significantly more complex. For example, Dosher
(1984, and unpublished RT-distribution data) found shifts
in leading edge and mode of RT distributions for visual
embedding (a form of masking), which corresponded to
shifts in rate, but not intercept, of comparable SAT func-
tions. In contrast, subject LB in the current experiments il-
lustrates a case in which both intercept and rate of the SAT
data show substantial shifts as a function of position of the
probes, but there are minimal shifts in the leading edge
and mode of the RT distributions. (The leading edge was
not a function of fast guessing for LB; accuracy for RTs in
the fastest quarter of the trials was almost as high as for
slower trials.) So shifts in leading edge of the RT distribu-
tion cannot be directly mapped into shifts in SAT intercept
on an empirical basis.

From a theoretical perspective, under discrete retrieval
models (including Hacker’s serial scan model), RT distri-
butions and SAT dynamics should both reflect the same un-
derlying distribution of finishing time distributions; early
portions of the RT distributions and intercept and rate of the
SAT are both associated with the initial portions of the fin-
ishing time distribution. However, Ratcliff’s (1978) model
predicts that shifts in leading edge and mode may occur as
a function of asymptotic differences alone. Hence, model-
based conclusions are also premature. Additional case stud-
ies that compare RT distributions and SAT dynamics, as well
as explicit modeling of trade-offs in speed and accuracy in
RT paradigms, are necessary before we can propose guide-
lines for the interpretation of RT distributions in the absence
of converging information about SAT functions.

Parallel Models

Both Muter (1979) and Hacker (1980) acknowledge that
the pattern of mean RT may be consistent with a parallel
self-terminating mechanism. Comparison processes could
act in parallel across the memory set, racing to reach a cri-
terion. Subjects select as the most recent the item whose
strength or attribute count first exceeds a criterion or thresh-
old. If the rate of information accumulation is faster for more
recently studied items, mean RT will be largely controlled by
the study position of the later probe. As it stands, this account
has not been developed sufficiently to determine whether
such a model is capable of accounting for not only observed
mean RT but also RT distributional patterns (see McElree &
Dosher, 1991, for a discussion of a diffusion model account).
However, one very salient feature of the SAT data is incom-
patible with parallel models—specifically, the clear and quite
profound differences in SAT intercept that arise with large
differences in the study position of the later probe. Although
this result does not rule out contemporaneous processing
models in which some processes are delayed in onset (cf.
Shaw & Shaw, 1977), the intercept shifts do rule out all
strictly parallel models. All strictly parallel models are un-
able to account for substantial differences in intercept in
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Estimated Availability (a;) Parameters From the Speed-Accuracy Trade-Off (SAT)

and Reaction Time (RT) Tasks

Study position

Subject 1 2 3 4 5 6 R?
SAT task
BM 0.524 0.503 0.609 0.898 0.924 0.986 0.973
EC 0.899 0.885 0.875 0.961 0.964 0.996 0.806
GR 0.050 0.764 0.877 0.943 0.982 0.998 0.827
LB 0.980 0.778 0.824 0914 0.976 0.996 0.805
Average 0.758 0.765 0.813 0.933 0.964 0.994 0.986
RT task
BM 0.100 0.241 0.228 0.866 0.816 0.979 0.911
EC 0.144 0.460 0.583 0.788 0.792 0.921 0.894
GR 0.368 0.702 0.741 0.824 0.897 0.950 0.773
LB 0.010 0.065 0.138 0.482 0.643 0.713 0.817
Average 0.091 0.356 0.444 0.749 0.796 0.899 0.891

other than an ad hoc manner.* By definition, in strictly
parallel-processing models all comparisons are initiated at
the same time and hence are associated with a common in-
tercept. This class of models can be clearly rejected by the
SAT data.

Serial Models

SAT intercept differences are the critical feature of the data
that motivate a serial model. In this section, we present fits
of the Hacker serial self-terminating model to mean RT, RT
accuracy, and the SAT data to demonstrate that a variant of
this particular serial model is capable of accounting for many,
though not all, facets of the data.

Accuracy data. The serial self-terminating search model
proposed by Hacker (1980) attributes differences in accuracy
to the availability of items in the search or memory set. The
availability parameters for each study position in the list were
estimated from the accuracy data by using Equation A1 in the
Appendix.

Table 4 presents availability parameters estimated from
SAT asymptotic performance and RT accuracy. Predicted
d’ accuracy is shown in dashed lines in Figure 3 for RT
and in Figure 6 for SAT. Consistent with standard assump-
tions concerning item decay, displacement, or both, the pa-
rameters monotonically and dramatically decline with
more remote study positions.’ The model clearly captures
the large and reliable differences attributable to the later
probe. The study position of the earlier probe has no effect
on the SAT asymptotic performance in Figure 6 and has
small effects on RT accuracy in Figure 3. In the model, the
recency of the earlier probe affects performance only
when the later probe is unavailable. Because all items
appear in the memory representation with very high prob-
ability, there is little room for an impact of the study posi-
tion of the earlier probe on SAT asymptotes. Absolute
levels of the estimated availability parameters are lower,

and the rate of decline is much faster for the RT task
(see Table 4). Subjects in the RT task operate on a point on
the SAT curve that is substantially less than the maximal
asymptotic level of performance. The RT accuracies are
lower than SAT asymptotes by a larger proportion for less
recent items (cf. Figure 7). The estimates of availability
from RT data are therefore contaminated by the speed of
access.

Retrieval dynamics. In this section, we model the
time-course and RT data with an extension of the Hacker
serial search model. In fitting the SAT functions, we
used the estimates of the six availability (a;) parameters
(see Table 4, top), together with several processing time
parameters. Details of how the SAT functions were de-
rived from the Hacker model are presented in the Ap-
pendix. Briefly, we assumed a base time for encoding
and response. The search time for each comparison
was modeled as an exponential distribution of compari-
son times, with mean corresponding to Hacker’s search

4 It might be assumed that recency serves to speed the encoding
of the test probe (cf. Sternberg, 1975) and thereby affects the
intercepts of the comparison processes. However, such an assump-
tion is implausible because recency does not appear to affect
encoding in other tasks such as item recognition (see Experiment
2; McElree & Dosher, 1989; Reed, 1976; Wickelgren et al., 1980)
in which the same principle should hold.

5 Although the parameters in Table 4 show a typical pattern of
declining with more remote study positions, there is no evidence of
a primacy effect for the first item in the list as is evident in the
observed data. This may be due in part to parameter trade-offs in
the fitting of Equation Al. Note that the primary list position enters
into Equation Al only as a component (a;) in the estimated con-
tribution of correct guessing for cases in which the other later item
(a,) in the test probe is not available. The availability estimate for
the primary position is therefore derived only in relation to the
availability estimates of the other list positions and as such may be
subject to rather extreme trade-offs.
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time 5.6 We altered Hacker’s model in two ways: first, with
the addition of an immediate match process and second, in
the treatment of guessing time.

Previously, it was argued that cases of immediate repeti-
tion may be plausibly viewed as a matching rather than a
search or scan process, which is consistent with other SAT
studies of short-term memory (Dosher, 1981; McElree &
Dosher, 1989; Wickelgren et al., 1980). If a matching strat-
egy was operative for cases of immediate repetition, then the
retrieval dynamics for contrasts involving later probes from
Study Position 6 should derive from a different underlying
finishing time distribution. Consonant with this notion, we
allowed a separate match process (assumed also to be ex-
ponentially distributed) for cases when the most recently
studied item was presented in the test probe and available
(ag) in memory. Models that excluded the immediate match
process resulted in systematic deviations and lowered R
Guessing was assumed to occur whenever information about
both probes was unavailable either due to insufficient proc-
essing time or loss from the memory representation. Because
of technical complications in joint estimation of comparison
and guessing times for full distributions, we assumed that
additional guessing time is subsumed in the latency to the
interruption cue.

The resulting nine-parameter model for SAT yielded a
good overall fit for all subjects, with an average R? of .930,
ranging from .764 to .911 across subjects. Matching times
were (with one exception) estimated to be substantially faster
than the corresponding search time.” This model’s predicted
retrieval functions for the average data are shown as the
smooth curves in Figure 8. The estimated parameters from
this model are presented in Table 5.

Mean correct RT from the RT task was fit with a com-
parable version of the Hacker model. In fitting RT, we in-
cluded a guessing time parameter as specified in the original
Hacker formulation (see Appendix), along with a base time
parameter, b, a search time parameter, s, and a matching time
parameter for tests involving Position 6.2

The dashed lines in Figure 4 show the predicted correct RT
for the average data. The model clearly captures the invari-

Table 5

Estimated Base, Search, and Match Parameters

(in Milliseconds) From the Speed-Accuracy Trade-Off
(SAT) and Reaction Time (RT) Tasks

Subject Base Search Match  Guess R?
SAT parameters
BM 100 322 190 — 0.801
EC 367 336 157 — 0911
GR 399 274 201 — 0.833
LB 100 243 260 — 0.764
Average 136 299 202 — 0.930
RT parameters
BM 300 245 199 500  0.949
EC 200 238 123 100 0.858
GR 500 251 121 100 0.853
LB 372 30 13 272 0.813
Average 300 251 118 100 0.951

ance of RT with earlier probe positions, yielding near-
perfectly flat functions. Increments in mean RT with the re-
cency of the later probe are also adequately captured,
although there is some slight tendency to overestimate the
differences for middling study positions and for the com-
parisons involving the primacy position. The model yielded
R? values of 0.951 for the average data, ranging from 0.813
to 0.949 across subjects. The parameter values for the av-
erage and individual subjects are listed in Table 5.

The estimated search parameters and, to a lesser degree,
the matching parameters are lower for the RT data as com-
pared with the SAT data. This is consistent with the trading
of speed for accuracy in the RT performance. The Hacker
model as currently formulated lacks a mechanism for the
trading of speed for accuracy in the RT task and for predicting
RT distributions. Nevertheless, the search times in both tasks
are reasonably comparable with the 209 ms reported by
Hacker (1980). In fits of the average and 3 of the 4 subjects’
data, the estimated base encoding time, b, is substantially
lower in the SAT task than in the RT task. The encoding time
parameter in the RT model estimates the mean time to encode
the target item and execute a response. In SAT, the compa-
rable parameter estimates the minimum time needed to pro-
duce above-chance performance. Consequently, the SAT pa-
rameter is expected to be lower.

Inadequacies of the serial self-terminating model. The
model listed in Table 5 and shown as smooth curves in Figure
8 gives an excellent account of the large shifts in SAT in-
tercepts and moderate shifts in SAT rate resulting from the
study position of the later, or most recent, test probe. How-
ever, there are systematic deviations between the model and
the data that involve the impact early in retrieval of the study
position of the earlier probe. The impact of the earlier probe,
as the functions approach asymptote, are either eliminated
(Positions 6 and 5) or greatly reduced (Positions 4, 3, and 2).
The model does predict small dynamics differences in the

S A single search parameter, s, assumes that all comparison
processes are independently and identically distributed. This as-
sumption of course can be modified in a number of ways. For
example, comparisons within a scan that result in a match might be
distributed differently from those that result in a nonmatch. Alter-
natively, comparison rates may vary for different study positions,
perhaps varying directly with availability (cf. Murdock, 1971;
Muter, 1979). Neither of these more embellished models, however,
substantially improved the quality of fit and, in fact, resulted in
lower R? in the average and across individual subjects.

7 The reversal in subject LB’s data are due to the relatively slow
rising function for the comparison involving items from Position 6
and 5. When this contrast is excluded from the fit, mean matching
time is estimated at 235 ms, whereas mean comparison time is
estimated at 270 ms.

8 RT measures do not provide a direct assessment of retrieval
speed and consequently do not provide direct support for the fast
matching process evidenced in SAT. Nevertheless, identical study
conditions were used in the RT and SAT experiments, so a similar
matching strategy for cases of immediate repetition was almost
surely operative in the RT task. Some independent support for a
matching strategy in the RT task derives from the contracted right
tail of the RT distribution for Position 6 (see Figure 5).
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comparison of probes from Positions 1, 2, and 3. These small
differences reflect guessing in the context of low overall
availability parameters. However, the smooth functions in
Figure 8 clearly illustrate that, for all other positions, the
model predicts near-identical retrieval dynamics, regardless
of the position of the earlier probe.

These differences in dynamics as a function of the earlier
probe are small in comparison with those observed for the
later probe. We believe they reflect the limited use of item
information when scan-derived order information is unavail-
able. Instead of randomly guessing whenever the interruption
cue occurs before a particular scan is complete or when the
scan terminates without finding a match, subjects may re-
spond on the basis of relative differences in available item
strength (Hinrichs, 1970; Morton, 1968; Peterson, 1967) or
attribute counts (Bower, 1972; Flexser & Bower, 1974). Be-
cause strength or the number of attributes covaries with re-
cency, a greater proportion of correct responses will occur as
the distance or separation in recency between the two probe
items is increased and this effect will be greater for more
recent later probes. Scan-related information becomes avail-
able later in retrieval, and so the contribution of item infor-
mation should diminish near asymptote.

A similar reliance on item information may have occurred
in the RT task, although in response to a different experi-
mental demand. When RT data are situated in speed-
accuracy coordinates (see Figure 7), it appears that a time
sensitivity, or weak time deadline, affects the choice of when
to respond. Item information may control the response on the
proportion of trials that are terminated before adequate order
information is retrieved. In the RT task, unlike the SAT task,
we do not have any direct evidence for the use of item in-
formation. However, given the convergence between the two
tasks—conjoint RT-accuracy points temporally align ap-
proximately with the corresponding SAT dynamics (see Fig-
ure 7)—it 1s likely that a similar strategy was operative in the
RT task. In closing, we note that similar intrusions of item
information have been documented in other related contexts.
Ratcliff and McKoon (1989) reported a reliance on item in-
formation early in the time course of recognizing relational
information from memorized sentences. Their data suggest
that responses early in retrieval stem from item information
but later in retrieval shift to relational information as it be-
comes available.

Summary

Although the pattern of mean RT and shapes of RT dis-
tributions are suggestive of a serial retrieval mechanism for
the recovery of order, it is the large shifts in SAT intercept
that rule out paraliel mechanisms and provide clear evidence
for the serial retrieval of order information. A modified form
of Hacker’s serial self-terminating model provides a good
account of mean RT and RT-accuracy data. When tested
against SAT data, it adequately predicts asymptotic perfor-
mance and the large differences in dynamics (i.e., intercept
and rate of rise) controlled by the recency of the later probe.
Its primary failings are in modeling the smailer differences
in rate of rise that are attributable to the recency of the earlier

probe. However, these differences plausibly reflect the lim-
ited use of item information when order information is not
available.

In the next section, we situate the findings concerning the
recovery of order information in a larger memory context. In
particular, we contrast the recovery of order information with
the recovery of item information.

Experiment 2: 2AFC Item Recognition

SAT examinations of the retrieval of item information
from STM (McElree & Dosher, 1989; Wickelgren et al.,
1980) have consistently found that the recency of the test
item primarily affects asymptotic memory strength. These
studies found identical dynamics (intercept & and rate 8
parameters in Equation 3) for all test items—regardless of
item recency or list length—except for the most recently
studied item. Tests involving this item were cases in which
no other item intervened between study and test, allowing
a direct, fast match of the test probe to the item active in
awareness. The lack of an effect of either serial position or
list length on retrieval dynamics is incompatible with the
class of serial (exhaustive and self-terminating) retrieval
mechanisms. Rather, item recognition is mediated by a
parallel or direct-access retrieval mechanism. This is gen-
erally in agreement with a number of recent memory mod-
els, such as MINERVA2 (Hintzman, 1984, 1988), SAM
(Gillund & Shiffrin, 1984), and TODAM (Murdock, 1982,
1983), which posit that recognition judgments are made
by computing a global familiarity or goodness-of-match
value.

Comparison of the item recognition and JOR tasks appears
to indicate that item and order information are retrieved by
different mechanisms, one direct or parallel and the other
serial. A dissociation in the retrieval of item and order in-
formation places constraints on global models of memory
and is of direct interest to models that have explicitly at-
tempted to simultaneously account for the storage and re-
trieval of both types of information (e.g., TODAM, Lewan-
dowsky & Murdock, 1989). However, the JOR task uses a
2AFC paradigm to assess the retrieval of order information,
whereas prior SAT studies of item recognition have used a
yes—no paradigm. To provide a minimal experimental con-
trast between the two types of judgments, we report an SAT
study of item recognition using a 2AFC paradigm. Subjects
study a list of sequentially presented consonants followed by
a test probe consisting of two test items. Test probes consist
of a new, nonlist item and an old item drawn from one of the
six study positions in the list.

Method

Subjects

Four subjects participated in a total of eight 60-min experimental
sessions. Two of the subjects, BM and LB, participated in Exper-
iments la and 1b and in the SAT item recognition studies reported
in McElree and Dosher (1989). All subjects except BM were paid
for their services.
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SAT Asymptotic Accuracy (d’)

1 2 3 4 5 6

Study position of the test probe

Figure 9. Average (across subjects) speed—accuracy trade-off
(SAT) asymptotic accuracy in asymmetric d’ units for the two-
alternative forced-choice item recognition task (see Experiment 2).
(The longest interruption point [3 s] was used as an empirical
estimate of asymptotic accuracy.)

Design, Stimuli, and Procedure

With a few exceptions noted below, the design, stimuli, and
procedure were the same as Experiment 1b. The test probes con-
sisted of two consonants, an old consonant from one of the study
positions and a new consonant drawn at random from the 14 con-
sonants not presented in the study set. Each session consisted of
two blocks of 210 trials that sampled each study position equally
often in each test (right-left) presentation order at each of the
seven interruption points. Across the eight sessions, this yielded
for each subject a total of 40 trials for each factorial combination

of study position, test presentation order, and interruption lag.

The sequence of events in a tria] are essentially the same as
those in Experiments la and 1b. One exception concemrns the in-
terruption points where the test probe remained on the screen for
either 0.1, 0.25, 0.4, 0.55, 0.9, 1.2 or 3 s. The rate of presentation
for items in the study list varied from 0.2 to 0.3 s/consonant
across subjects.

Results and Discussion

It is frequently suggested that 2AFC is a better or sim-
pler method than a yes—no paradigm for assessing recogni-
tion memory, under the assumption that 2AFC eliminates
issues of bias (see also Macmillan & Creelman, 1991, for a
comparison of yes—no and 2AFC tasks). However, detailed
analysis of the item recognition data—unlike the JOR
data—indicate that not only is bias not eliminated, but the
2AFC presentation induces complex effects because of
processing order of the two alternatives that would be
avoided in yes—no assessment. A listing of an individual
subject’s data (latencies, proportion correct, and asymmet-
ric d') as well as a complete analysis of these presentation
order effects are presented in McElree and Dosher (1991;
see also Hockley, 1984, for the impact of a 2AFC task on
RT distributions). Here, we focus directly on the issue of
contrasting item versus order information.

SAT Retrieval Functions

Asymptotic accuracy. Performance at the longest inter-
ruption point (3 s) gives an empirical estimate of asymptotic
performance. Figure 9 presents the average (over subjects)
asymptotic performance by study position in asymmetric
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Figure 10. Average (over subjects) d’ accuracy in the two-alternative forced-choice item recog-
nition task (see Experiment 2) as a function of processing time (i.e., lag of the interruption cue plus
latency of response to the cue). (Symbols show observed [asymmetric] d' accuracy for each study
position [sp] of the old item in the test pair. Solid lines show the best fitting exponential retrieval
functions [see Equation 3] by using the parameter values for the average data listed in Table 6.)
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d' units. Accuracy significantly varied with study position,
F(5, 15) = 3.24, p < .05, yielding a typical bowed serial
position function. As with the results reported in McElree and
Dosher (1989), asymptotic accuracy levels varied directly
with recency coupled with a small primacy effect for Serial
Position 1. McElree and Dosher (1989) found that asymp-
totic serial position functions across memory set sizes of
three to six words were aptly described by a simple strength-
forgetting model originally proposed by Wickelgren and
Norman (1966) for untimed recognition data. The data in
Figure 9 are consistent with earlier data for yes—no recog-
nition. However, because these data are derived from only
one set size, they provide few internal constraints to test
specific forgetting models.

Retrieval dynamics. Figure 10 presents average (across
subjects) full SAT functions for each study position.

Competitive fits systematically varied the three parame-
ters of the exponential retrieval equation, Equation 3. The
best fitting functions for the d' data, both in terms of the
consistency of parameter estimates across subjects and high
R? values (see Equation 1), allocated a separate asymptote
(A) for each serial position, a separate rate parameter () for
Serial Position 6, Serial Position 5, and for the set of Positions
1-4, and one intercept (8) (a 6A-33-138 fit). Table 6 lists the
parameter estimates and resulting R? for the average and
individual subject’s data. The smooth lines in Figure 10
present this best fitting exponential function for the average
d’ data.

Consistent with the observed data, the estimated asymp-
totes (As) graded directly with recency of study, with a small
primacy advantage for the first item on the list. We observe
here a large rate (8) advantage for judgments involving the
most recent item, Serial Position 6, estimated at 6.02 for the
average data. The rate parameter for Serial Position 5 was
estimated to be substantially slower than the most recent,
2.70 in the average data, but still consistently faster than the
earlier serial positions, 1.46.

The observed rate advantage for Serial Position 6 repli-
cates the fast-matching pattern seen in the yes—no item rec-
ognition studies of Wickelgren et al. (1980) and McElree and

Table 6
Exponential Fits of Two-Alternative Forced-Choice
Item Recognition Data

Subject
Variable AV BM EC HS LB

Asymptote (A)

Serial Position 1 2.35 2.08 3.42 2.12 1.98
Serial Position 2 2.12 1.58 341 1.78 1.91
Serial Position 3 2.09 1.45 3.14 2.19 1.80
Serial Position 4 2.83 1.17  4.50 2.61 3.15
Serial Position 5 2.77 1.33 3.98 3.64 2381
Serial Position 6 4.03 450 4.50 450 440
SP 1-4 rate (B) 1.47 1.27 090 1.86 1.91
SP 5 rate () 270 325 094 336 4.00

SP 6 rate (B) 6.02 5.10 1.14 10.0 3.91
Intercept (8) 216 146 129 251 .199
R? 967 951 873 920 .894

Note. SP = serial position.

Dosher (1989) and a yes-no paired-associate recognition
task of Dosher (1981). The data here depart from the pattern
reported in other studies, in that there is an apparent rate
advantage for the next-to-most recent position, Serial Posi-
tion 5, when compared with other less recent positions. Its
magnitude is much smaller than what is observed for Serial
Position 6 but nevertheless appears consistent across subjects
(see Table 6). We do not attribute this pattern to an extended
recency advantage in dynamics for items from List Position
5 but rather to suppression of dynamics for Positions 1-4
because of presentation order effects that are documented in
McElree and Dosher (1991).

Discussion

Our purpose in examining SAT functions for 2AFC item
recognition was to determine whether the forced-choice task
yields a pattern of results different from what has been ob-
served in prior yes—no item recognition tasks. Our primary
concern was that the force-choice procedure itself may in-
duce a serial mode of processing. However, the results of the
experiment were generally consistent with prior yes—no item
recognition studies. There is no suggestion from this study
that the 2AFC procedure itself is responsible for the large
dynamics (in particular, intercept) differences observed in
the JOR task.

General Discussion
Retrieval of Item and Order Information

Summary of Results

In both the JOR and item recognition tasks, asymptotic
performance reliably decreased as the relevant test item was
drawn from less recently studied positions, except for a one-
item primacy effect, which was somewhat more pronounced
in the item recognition task. Recency is the primary deter-
minant of the strength or availability of the STM represen-
tations in both JOR and item judgments.

Recency affects retrieval dynamics only when processing
order information. In the JOR task, recency induced very
large shifts in SAT intercept and rate. In contrast, in the item
recognition tasks, as reported by McElree and Dosher (1989),
Wickelgren et al. (1980), and in the current Experiment 2,
recency has little effect on dynamics.

In the JOR task, the substantial dependence of SAT dy-
namics on recency reflects a serial retrieval mechanism. SAT
intercepts for probes composed of less recent items were
delayed as much as 500 ms relative to those composed of
recent items. Delayed SAT intercepts are inconsistent with
retrieval mechanisms in which probe items are compared in
parallel with all elements in STM. The analysis of the RT
distributions also supports—but by itself does not force—
this conclusion. Models in which serial comparison pro-
cesses are ordered by the recency of test probe(s) predict that
recency should affect the leading edge of the RT distribu-
tions. This pattern was clearly demonstrated for order judg-
ments in Experiment 1b, as it was in the prior analyses of
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Muter (1979), Hacker (1980), and Hockley (1984).

In contrast to the JOR results, the observed dynamics for
item recognition rule out serial retrieval mechanisms. Serial
scanning models for item recognition, such as the serial
self-terminating stack model of Theois (1973) and the con-
veyor-belt model of Murdock (1974), predict rather strong
effects of study position on retrieval dynamics (McElree &
Dosher, 1989). In prior yes—no tasks (McElree & Dosher,
1989; Wickelgren et al., 1980) and in the 2AFC task of
Experiment 2, the dynamics for item recognition implicate
a parallel or direct-access retrieval mechanism. Common
dynamics (i.e., equal SAT intercept and rate) were observed
for all study positions except for the most recent position, a
case of immediate repetition, which exhibited very rapid
dynamics. These SAT item recognition data are consistent
with a simple parallel diffusion random walk model (Ratc-
liff, 1978) or a direct-access strength accumulator (Reed,
1976; see, McElree & Dosher, 1989).

Alternative Routes for Retrieving Order Information

Is serial processing the only means of retrieving order in-
formation? Most models of JOR prior to the work of Muter
(1979, 1980) and Hacker (1980) assumed that order was as-
sessed by a direct comparison of strength or feature counts
of both test items. Muter (1979, 1980) and Hacker (1980)
rejected these comparative processing accounts of relative
JOR because RT did not vary with the difference in recency
between the two test items. However, in Experiment 1b,
evidence for comparative processing of the probes was found
for early SAT interruption points less than 1 s. The d’ early
in retrieval was higher for pairs that differed most in study
position. This evidence weakens the conclusion of Muter and
Hacker: Under time pressure, a direct comparison of item
information (e.g., strength, attributes, or trace fragility) may
provide an alternate and relatively fast means of assessing
recency. Because access to item information is direct or in
parallel, the time course is sufficiently rapid that item in-
formation is almost always available prior to serial-derived
order information.

If, in fact, a direct comparison of item information pro-
vides an alternative and potentially faster route to assessing
order, one may question the usefulness of a slower serial
process. Consider, however, that order does not always di-
rectly covary with strength or feature counts. A direct as-
sessment of item information in many cases will lead to non-
veridical performance and a serial retrieval process may be
the only means of recovering correct order information. Even
in cases in which strength does covary with recency, a direct
comparison process may lead to lower accuracy than a slower
serial process. Our argument is based on extrapolating per-
formance from the results of the 2AFC item recognition task
and then comparing these to the observed JOR performance
of Experiment 1b.

JOR performance is far superior to what is predicted if
order judgments were based on item strength exclusively.
Figure 11 directly compares observed JOR performance and
JOR performance predicted from strength comparisons
alone. Observed performance is plotted in open symbols and
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Figure 11. A comparison of observed judgment of recency
(JOR) performance with predicted performance based on a direct-
difference item-based strength metric (see text). (Open symbols
show average [across subjects] observed d’ accuracy as a function
of processing time [i.e., lag plus latency] from the JOR task of
Experiment 1b [replotted from Figure 7]. The monotonic functions
fitted to the symbols show the best fitting exponential retrieval
functions [see Equation 3] by using the parameter values for the
average data listed in Table 3 [replotted from Figure 7]. The JOR
functions predicted from a direct assessment of item strength are
shown in the lower nonmonotonic curves in each panel. These
functions are plotted in line types that match the corresponding fits
of the observed data. See text for the method of computing pre-
dicted item-based performance. sp = study position.)

the upper curves in each panel, whereas JOR performance
predicted from item strength alone is shown in lower curves.
The strength-based predictions were calculated in the fol-
lowing way. Evidence concerning the strength or feature
counts of the test items is retrieved, and subjects choose as
the most recent the item that has the largest strength value.
In the 2AFC item recognition study of Experiment 2, old
items (A, B, ..., F) were paired at test with a new, nonlist
item (X). The 4’ values in Figure 10 provide an estimate of
the normalized distance of the old from the new distribution
(Myaxy Megx) - - - » MyFx))- Assuming equal variance Gaussian
distributions, we can estimate the difference in strength be-
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tween any pairing of old items with a subtractive method, that
is, dip =~ [2(AX) — z(BX)] + 2", This difference estimates
the accuracy of performance if a response were based on a
comparative assessment of item information alone. The full
time course functions for the estimates of JOR performance
based on item information were derived by using Equation
2 with the exponential parameters fitted to the item recog-
nition data of Experiment 2 (see Table 6).

Two features of Figure 11 deserve attention. First, across
all test pairs, estimated performance based on item infor-
mation yields vastly poorer asymptotic performance than
does the observed data. In fact, as a direct consequence of the
primacy effect in item recognition, predicted 4’ is negative
for test probes pairing the first item on the list with Study
Positions 2 and 3. Second, item-based performance, although
yielding lower asymptotic performance, shows a small ad-
vantage early in retrieval. This is a consequence of the faster
retrieval dynamics for item as compared with order infor-
mation. Of course, this cross-experiment comparison only
approximates the possible contributions of an item-based
process as compared with a serial retrieval process in a JOR
task. The encoding and representation of items in the two
situations may differ substantially. However, if subjects max-
imized the encoding and representation of item information
in the item recognition task, then the derived functions in
Figure 11 provide a reasonable estimate of item-based per-
formance.” We conclude that a judgment based strictly on
item information is a rather poor indicator of recency, even
in a situation in which item strength for the most part directly
covaries with recency.

The asymptotic performance in the JOR task reflects the
retrieval of order or position information, not just item
strength. However, the time course for the retrieval of this
more specific information is slower than item-based judg-
ments because it is based on a serial rather than parallel
comparison process. Our SAT functions primarily reflect the
slower, serial-derived order information, with some smaller
contributions of strength-based assessments early in retriev-
al. In general, however, subjects might opt to forego a slow
serial retrieval process in favor of a fast direct comparison
process in circumstances in which speed is at a higher pre-
mium than accuracy.

Implications for General Memory Models

The general conclusion of this study is that two distinct
retrieval mechanisms are used to retrieve item and order in-
formation. The strong effect of recency on retrieval dynamics
in the JOR task—especially on SAT intercept—indicate that
order information is retrieved by a serial mechanism. The
absence of an effect of recency on retrieval dynamics in item
recognition indicates that item information is retrieved by a
parallel or direct-access mechanism. The latter is consistent
with a number of general memory models that assume that
item recognition is mediated by computing a global strength
statistic (e.g., Gillund & Shiffrin, 1984; Hintzman, 1984,
1988; Murdock, 1982, 1983). In order retrieval, we have
demonstrated that the large impact of recency on the SAT
dynamics can be accounted for by a modified version of the

serial self-terminating scan model of Hacker (1980). How-
ever, similar serial accounts may be given for these data in
the context of more general, explicit memory models. In
models such as TODAM (Lewandowsky & Murdock, 1989;
Murdock, 1982, 1983) order information, unlike item infor-
mation, is not directly retrievable from the memory trace.
Rather, as developed by Lewandowsky and Murdock, order
information is a derived property that is recovered at retrieval
by a serial-chaining operation that capitalizes on pairwise
associative information encoded at study.

Unfortunately, general memory models such as TODAM,
along with other competing models such as SAM and
MINERVA2, have been developed primarily on the basis
of untimed memory performance. Quantitative application
of these models to time-course data requires substantial de-
velopment of the temporal properties of the assumed re-
trieval processes. Nevertheless, we note that in principle
models such as TODAM appear to provide an organic or
intrinsic explanation for the observed differences in re-
trieval dynamics for item and order information. That is,
differences in retrieval stem from constraints on memory
storage that can be motivated on independent grounds
(Dosher & Rosedale, 1989; Lewandowsky & Murdock,
1989; Murdock, 1982, 1983). Further theoretical and em-
pirical work is clearly needed to test the adequacies of
these more general approaches.

“ Rates of presentation were faster in the 2AFC item recognition
task than in the JOR task. This may result in slight underestimates
of item-based performance.
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Appendix

RT and SAT Predictions From Hacker’s (1980) Serial Self-Terminating Model

RT Predictions

The Hacker model assumes that recency is assessed by a
backward or recency-based, serial self-terminating scan. Er-
rors are attributed to the loss of items in the scanned memory
representation. For tests of items i and j, accuracy is modeled
by Equation Al:

= a+ .51 —a)(l - a). (Al)
The probability of a correct JOR (P;) is determined by a
memory availability parameter a; (where i denotes the later
probe in a test probe consisting of items i and j), incremented
by a guessing factor for cases in which both items are un-
available. The P,; can be converted to d' units by assuming
equal-variance Gaussian distributions and the standard
decision rule for 2AFC, d' = 2"[z(P)].
Correct RT 1s modeled by Equation A2:

i—1

1
RT,j=b+—P5— all1 +>Xa s
i -
k=1 (A2)
+.5(1 —a)(1 — a) >Sa ls+g
ki

k=1

The first parameter, b, estimates a base time for processes
constant across all comparisons, such as encoding of the
test probes, response execution, and so on. A second pro-
cessing parameter, s, gives the average expected serial
search time for each item in the scan. Search time is
weighted by the availability parameter for the later probe,
a;, and the expected number of items that must be searched
prior to reaching this item. The remaining component esti-
mates the expected duration of cases in which the search
fails to find a match yet ends in a correct guess. The pa-
rameter g estimates the duration of the guessing process.

The matches and guesses are normalized by the overall
probability of a correct response for the particular pairwise
comparison ij.

Errors occur only when the the later item is unavailable to
the scan operation. If the earlier item is also unavailable, the
subject guesses randomly. If the earlier item is available, then
error RT is controlled by its position in the scan. The formula
for incorrect RT is given in Equation A3:

1 -
=ph 4+ — — a)a. +
RT;=b T-7) (I—a)g| |1 gl a, |s
k=1

(A3)

+.5(1 — a)(1 — a) 2 aq

In fitting the equations, accuracy and RT data are not
jointly used to estimate availability parameters. Rather, the
availability parameters are first estimated from the accu-
racy data. These parameters are then substituted into Equa-
tion A2 and the three processing parameters, b, s, g, are
estimated.

SAT Predictions

SAT asymptotic accuracy is modeled by Equation Al,
which is converted to d' units. The predicted growth of ac-
curacy as a function of interruption time was computed
with the assumption that the time to compare the two test
items with an item in the memory set was exponentially
distributed with rate S, corresponding to the s in the RT
model. If all items in the study set were available in the
memory set, the probability correct as a function of re-
trieval time, #, is simply gamma distributed, with an order,
a, equal to the recency of the later probe in the test pair
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and offset by a base time, B:

S +-B ,
PT=0=0"T0 e~S'teTtdr,
° (Ad)
t>B else O

Equation A4 is for a cumulative gamma distribution of
order a. The gamma distribution represents the convolution
of a independently and identically distributed exponential
variables, each of which represents the completion time for
a single comparison. The exponential (and hence the gamma)
is not the only distribution for single stage completion times
that might be assumed, but it is a frequently used distribution
that has the advantage of tractability (e.g., see Townsend &
Ashby, 1983).

Because the model assumes that each item has a specific
probability of being available (a;) in any particular scan, the
overall expression that is needed to compute SAT functions
will not reflect a pure gamma but rather a probabilistic mix-
ture of gammas with different values of a (i.e., different

numbers of exponential comparison processes). The gammas
of particular orders, determined by the expected number of
items in the search or memory set, must be weighted by the
respective availability parameters and summed to compute
the proportion correct as a function of retrieval time. Like-
wise, the proportion of incorrect responses is computed by
weighting gammas of particular order for all possible states
in which the earlier probe is available (with probability p =
a;) and the later probe is unavailable (with probability
p = 1 - a;). Finally, proportion correct must be incremented
by guessing for cases in which (a) the interruption cue oc-
curred before the scan was complete and (b) the scan was
complete but both the later and earlier test items were un-
available. Guessing accuracy was 50%. The predicted pro-
portion correct as a function of retrieval time was converted
tod'.
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