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Serial Position and Set Size in Short-Term Memory:
The Time Course of Recognition

Brian McElree and Barbara Anne Dosher
Columbia University

Subjects viewed sequentially presented lists of 3-6 words, which were followed by a recognition
probe. Memory retrieval speed (dynamics) and strength were measured in an interruption speed~
accuracy trade-off (SAT) procedure and a collateral reaction time (RT) procedure. In SAT, item
strengths depended on serial position, but only two retrieval speeds were observed: a fast rate for
the last item in the study list (a case of immediate repetition between study and test) and a slow
rate for all other items that was independent of serial position and set size. Serial-position-
dependent strengths and set-size-dependent criterion shifts accounted for standard RT patterns
that have been taken as evidence for serial scanning in short-term memory.

Summary of Experiments

We examined retrieval in immediate memory for short
lists, using speed-accuracy trade-off (SAT) and comparable
reaction time (RT) paradigms. We replicated Monsell’s (1978)
demonstration of strong recency or serial position effects on
RT, which average to produce linear, parallel set size functions
for both positive and negative trials. In SAT, memory strength
or probability (indexed by asymptotic accuracy) and retrieval
speed (indexed by rate and intercept) were separately esti-
mated for full retrieval functions. An SAT experiment showed
that the serial position effects in RT are paralleled by analo-
gous effects on asymptotic memory strength. The dynamics
of retrieval (rate and intercept) were equal for all serial posi-
tions except the most recent and were independent of set size,
There was a large speeding in retrieval when the test item was
the same as the last list member (immediate repetition), which
is a replication of a similar finding by Wickelgren, Corbett,
and Dosher (1980) in long lists. Thus observed SAT rate
differences between set sizes when serial position data were
pooled reflected the relative proportion of immediate repeti-
tions in different set sizes. Set size per se had no effect on
retrieval speed, although different serial position mixes re-
sulted in different asymptotic accuracy. The immediate rep-
etition effect did not depend on a physical match between the
last list element and the test. All results were replicated in a
second SAT experiment, in which we presented list items in
lowercase letters and test items in uppercase letters. In that
experiment we also examined the effect of recency on negative
trials. Recent negatives (items presented in the immediately
previous memory list) yielded higher false alarms than did
distant negatives, especially early in retrieval. Serial-scanning
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models, which predict slower rate and/or longer intercepts for
items in larger memory sets, could be rejected. Random-walk
models of memory such as Ratcliff’s (1978) can accommodate
our findings when modified to decouple the search set from
the memory set. However, we found that Wickelgren and
Norman’s (1966) direct-access strength model gave a direct
and principled account of the pattern of asymptotic differ-
ences. When coupled with a simple retrieval mechanism and
immediate repetition, it adequately accounted for retrieval
from short-term lists in both positive and negative trials.

Introduction

A classic issue in memory research concerns the nature of
retrieval in immediate or short-term recognition memory.
Although important in its own right, this issue has implica-
tions for our overall understanding of human memory. For
example, a distinction between short- and long-term memory
can be motivated partly by the degree to which retrieval
processes differ for immediately and less recently presented
material. Short-term retrieval is also an important component
process in a number of more complex cognitive behaviors
such as language perception and production, reasoning, and
problem solving.

Much of our current understanding of short-term retrieval
has come from studies involving the probe recognition task,
which was introduced by Sternberg (1966). In this task, sub-
jects study a list of usually one to six items, which is followed
immediately by a test item. In Sternberg’s original work,
subjects judged the list status of the probe, either new or old,
as rapidly as possible while minimizing errors. Typically, the
measure of primary interest is reaction time (RT) as a function
of various experimental factors that serve to highlight impor-
tant features of the retrieval process.

In this set of experiments, we used the interruption or cued-
response speed-accuracy trade-off (SAT) methodology to ex-
amine response speed and accuracy across the complete time
course of short-term item recognition. This method enables
one to control total processing time by requiring subjects to
respond immediately after a response cue presented at various
times during retrieval. Measuring accuracy under a range of
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controlled processing times allows for the independent assess-
ment of retrieval speed and ultimate accuracy. We examined
the effects of two fundamental variables on retrieval, namely,
item recency and the size of the memory set. Recency refers
to the delay between test and the last occurrence of the tested
item. Average recency covaries with the size of the memory
set, and so we separately examined items in each list position.
Our primary objective was to determine the relative impact
of recency and set size on retrieval speed and overall accuracy.
Our findings place strong constraints on the proper model for
short-term item retrieval.

Extant Reaction Time Theories and Data

In a series of pioneering studies, Sternberg (1966, 1969)
first documented the effect of set size on recognition RT and
its implications for the nature of immediate memory retrieval.
RTs for positive and negative responses were both linearly
related to memory set size, with approximately equal slopes.
In contrast to the findings in other recognition paradigms
(e.g., study-test), the serial position of the positive test probes
did not appear to affect response latency. From these data,
Sternberg drew two notable inferences. The linear set size
function implied a serial comparison of the probe with ele-
ments of the memory set, whereby each new item in the
memory set added an additional comparison process and
hence a constant increment in response time. Equal slopes of
positive and negative tests suggested that the comparison stage
was exhaustive rather than self-terminating on finding a
match. In a self-terminating search, comparisons involving a
positive probe should terminate on average in half the number
of comparisons needed for negative probes, resulting in a 2:1
slope relation. Moreover, if the memory set is scanned in the
approximate order of study, then a self-terminating scan
model predicts marked effects of the serial position of the
probe.

We first briefly outline some empirical results that have
subsequently emerged and proved problematic for the ex-
haustive serial scan model. Following this is a brief discussion
of some well-known alternative proposals. Next, the interrup-
tion speed-accuracy trade-off (SAT) variant of Sternberg’s
paradigm is introduced, and predictions from broad classes
of models concerning set size and recency functions are
contrasted and subsequently tested.

Empirical Issues

In research after Sternberg’s (1966, 1969) original reports,
investigators have questioned the generality and robustness of
linear parallel set size functions (for a review, see Corballis,
1975, or Sternberg, 1975). Briggs (1974), for example, re-
viewed a number of studies and found that about 62% were
fit better by a logarithmic than by a linear set size function.
Other researchers have found different slopes for negative and
positive responses (e.g., Kristofferson, 1972). Yet, as Sternberg
(1975) pointed out, many of these discrepancies might be
attributed to potentially significant procedural variations, and
on the whole, linear parallel functions remain an accurate
generalization of the effects of set size on RT.

The plausibility of a serial exhaustive scan, however, has
been substantially weakened by examinations of the proper-
ties of RT distributions. Schneider and Shiffrin (1977) re-
ported that variance increases more for positive than for
negative responses with larger set sizes. An exhaustive scan
model predicts that RT variances, like mean RTs, should
increase at an equal rate for both responses. An analysis of
RT distributions for various set sizes was reported by Hockley
and Corballis (1982; see also Hockley, 1984). They used the
ex-Gaussian distribution advocated by Ratcliff and Murdock
(1976) to describe the shape of the RT distribution. Hockley
and Corballis found that the increase in variance with larger
set sizes primarily reflects increases in the positive skew of the
distributions, coupled with a relatively minor effect on the
leading edge or minimum reaction times; that is, whereas all
times may be slightly slowed by an increase in the memory
set, only a proportion of the longer response times are strongly
affected (Ratcliff & Murdock, 1976). A serial exhaustive scan
model predicts, to the contrary, that increasing set size should
shift the entire distribution in the direction of longer times.

Further problems for the exhaustive scan model have
emerged from a number of studies in which effects of recency
on both positive and negative responses were found. When
the test probe is drawn from the study list and rehearsal is
either minimal or constrained to preserve study order, then
recency may simply be related to the list position of the item
during study (Baddeley & Ecob, 1973; Clifton & Birenbaum,
1970; Juola & Atkinson, 1971). Contrary to early reports, an
impressive number of researchers have now reported typical
positive serial position functions (Aube & Murdock, 1974;
Clifton & Birenbaum, 1970; Corballis, 1967; Corballis, Kirby,
& Miller, 1972; Forrin & Cunningham, 1973; Monsell, 1978;
Morin, De Rosa, & Shultz, 1967; Murdock & Franklin, 1984;
Ratcliff, 1978). Except for a small primacy effect, these studies
generally showed a monotonic increase in RT with the de-
creasing recency of the positive probe. Moreover, in two
particularly well-controlled experiments, Monsell (1978) dem-
onstrated that the serial position functions for set sizes of one
to five superimpose in all positions save the primary one,
once serial position is defined in terms of recency or the
number of items intervening between study and test.

On its own, the demonstration of serial position effects in
positive RT would not be sufficient to reject the notion of a
serial exhaustive scan because such effects may be localized
to stages other than scanning. In fact, Sternberg (1975) sug-
gested that recency may simply serve to speed the encoding
of the test probe. Such a stance, however, is inconsistent with
the fact that recency of negative probes affects RT in the
opposite direction: Atkinson, Herrmann, and Westcourt
(1974) and Monsell (1978), among others, report that re-
sponse time is longer and accuracy is lower the more recently
a negative probe was presented as a member of a former study
set. If recency were a simple encoding phenomenon, then
negative responses, like positive ones, would be facilitated by
recency rather than inhibited. In fact, these results show that
the mechanism underlying recognition judgments is respon-
sive to properties of items outside the experimenter-defined
memory set—a finding that is not easily handled by simple
serial scan models (Ratcliff, 1978).
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Alternative Models

Analysis of RT distributions and strong recency effects
challenge the validity of a serial exhaustive scan model. These
results are more consistent with self-terminating scan or di-
rect-access comparison processes. Several examples are briefly
outlined in the following discussion, not with the intention of
presenting a complete survey of extant models, but rather to
illustrate broad classes of retrieval mechanisms.

With one exception, serial self-terminating mechanisms
have proved difficult to reconcile with the basic demonstra-
tion of linear parallel functions. The exception is, of course,
Theios and colleagues’ (Theios, 1973; Theios, Smith, Havi-
land, Traupman, & Moy, 1973) pushdown stack model of
short-term memory. The stack contains stimulus-response
records for each member of the stimulus ensemble. In addi-
tion to generating linear and parallel set size functions, the
model predicts an impressive range of effects, including those
of serial position, stimulus probability, and sequential re-
sponse dependencies. However, the model may be too para-
digm specific to qualify as a general model of retrieval from
immediate memory. Specifically, there appears to be no prin-
cipled and parsimonious way in which the pushdown storage
structure can be extended to cases in which typical Sternberg-
like results reliably occur when the stimulus ensemble is large
or unknown. Furthermore, self-terminating models predict
invariance of minimum RT (McNicol & Stewart, 1980; Stern-
berg, 1975), whereas minimum RT shows small shifts with
set size (e.g., Hockley & Corballis, 1982).

Direct- or parallel-access mechanisms may be less paradigm
specific. Parallel-access mechanisms account for set size and
serial position effects in one of two ways. One approach,
exemplified by Murdock (1971; but see also Townsend &
Ashby, 1983), follows the general strategy adopted by Stern-
berg (1966): The size of the memory set is assumed to directly
affect the overall speed of comparison processes. However, in
Murdock’s (1971) model, the scanning process operates in
parallel across all members of the memory set, but individual
processing rates vary with the serial position of the test probe.
For positive probes, RT is determined by the processing rate
for the test probe’s serial position. When the test probe is
negative, RT is determined by the total time taken for the
slowest serial position to be processed to a criterion. By
positing a suitable relation between serial position and proc-
essing rate, the model can generate both appropriate serial
position curves and linear parallel set size functions (see
Murdock, 1971). Presumably, the skewing of the RT distri-
bution noted by Hockley and Corballis (1982) reflects the
inclusion of items with slower processing rates for larger set
sizes.

Another class of direct-access models extends the principles
of trace-strength theory (Norman & Wickelgren, 1969; Wick-
elgren & Norman, 1966) to the probe-recognition paradigm.
The size of the memory set is not assumed to affect processing
rate directly. Rather, the strength of an item’s representation
in memory depends on set size and serial position. It is the
strength value that, in turn, determines reaction time (Ander-
son, 1973; Baddeley & Ecob, 1973; Corballis et al., 1972;
Nickerson, 1972; Ratcliff, 1978). Such an approach is gener-

ally consistent with a number of recent strength-based mem-
ory models, including the adaptive resonance model (Gross-
berg & Stone, 1986), MINERvA (Hintzman, 1984), sam (Gil-
lund & Shiffrin, 1984), and TopaM (Hockley & Murdock,
1987; Murdock, 1982). Murdock (1985) demonstrated that
fitting and deriving explicit predictions from strength-based
models entails detailed assumptions about both strength dis-
tributions and the decision mechanism that maps strength
onto latency.

One direct-access model that can produce linear parallel set
size functions and serial position effects is Ratcliff’s (1978)
random-walk theory of memory retrieval. Ratcliff assumed
that comparison processes operate in parallel across all mem-
bers of the memory set, terminating when the relatedness
value of the probe and an element in the memory set exceeds
a matching threshold or when all comparisons terminate at a
nonmatch threshold. He explicitly adopted a variable match
approach to modeling positive set size effects, assuming that
larger set sizes lower the degree of relatedness or resonance
between the positive test probe and items in the memory set.
(Although in principle a match process might reflect interac-
tive processing of the test item and a memory representation,
in practice it can be considered as a strength assumption in
the short-term memory domain.) Negative responses depend
on set size because they must wait for all comparisons to
terminate in a nonmatch and all nonmatches have equal
resonance statistics. Like Murdock’s (1971) account, this as-
sumption ensures that RT will increase with set size because
the expected duration of the slowest comparison process
increases with the number of comparisons. Taken together,
match or strength variations and set-size-dependent decision
mechanisms can produce linear set size functions and the
pattern of RT distributions noted by Hockley and Corballis
(1982). By allowing the relatedness parameter to vary for each
serial position, Ratcliff (1978) accommodated serial position
mean and distributional patterns.

As an alternative to either a pure serial or paraliel model,
we note that existing data may also be consistent with hybrid
models that postulate a mixture of judgments that are based
on a direct-access mechanism and a serial-scan mechanism.
Atkinson and Juola (1974) suggested that recognition judg-
ments are first mediated by a direct-access familiarity
(strength) mechanism. Fast positive responses or fast negative
responses result from probes with familiarity values that either
exceed an adjustable positive criterion or fall below an ad-
justable negative criterion. Intermediate familiarity values
initiate a second mechanism to search or scan the memory
set. Serial position effects reflect the sensitivity of the direct-
access mechanism to trace strength. As Hockley and Corballis
(1982) noted, the skewing of the RT distribution follows from
the fact that memory set size affects the duration of the second,
serial-scan mechanism on just the proportion of trials with
intermediate familiarity values.

Summary

According to one view of the short-term list recognition
data, the primacy/recency effects seen in serial position func-
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tions are primary; approximately linear set size functions are
a secondary consequence of averaging over different sets of
serial positions. Longer list lengths shift the recency mix of
both positive and negative tests. Serial position functions are
generally consistent with variance and distributional results.
Murdock (1985) perhaps most aggressively pursued this logic,
although Monsell’s (1978) results also support such a conclu-
sion. Under this view, those few researchers who obtained no
serial position effects (e.g., Sternberg, 1966) used longer reten-
tion intervals (= 1 s), which allowed partial rehearsal to alter
subjective recency. This view is supported by data from
controlled-rehearsal studies (Seamon & Wright, 1976). The
serial position mechanism that conspires to yield linear set
size functions is somewhat mysterious. However, adopting
the alternative view—that set size effects are primary and
serial position effects secondary (e.g., Sternberg, 1975)—does
not lessen the mystery. In either case, analyses of serial
position data can be critical in evaluating models, and we
focus on this analysis here. Serial position effects on RT may
reflect a recency-based retrieval mechanism, such as a back-
wards self-terminating scan (e.g., Murdock & Anderson,
1975). Serial position effects are also consistent with strength
effects coupled with a direct-access retrieval mechanism. A
number of these positions are nearly indistinguishable from
RT data but may be contrasted through speed-accuracy meth-
ods.

Speed-Accuracy Trade-Off (SAT) Methodology

In a typical RT version of a probe-recognition task, study
time and retention interval are usually set in a fashion that
minimizes error rates (less than 10%). Potential differences in
accuracy between conditions are difficult to observe with
typical sample sizes and, consequently, are rarely considered.
Models of short-term memory retrieval are usually contrasted
only in terms of reaction time properties. Unfortunately,
many of the theoretically distinct classes of models outlined
earlier yield, or can be made to yield, equivalent RT predic-
tions. However, as Reed (1976), Pachella (1974), and others
showed, models with similar RT predictions nevertheless may
differ substantially when the full time course of retrieval is
examined. The signal-response speed-accuracy trade-off
method (Corbett, 1977; Corbett & Wickelgren, 1978; Dosher,
1976, 1979, 1981, 1982; Reed, 1973, 1976; Wickelgren &
Corbett, 1977) provides one means of studying this time
course. The method consists of interrupting the retrieval
process at various points after the onset of the recognition
probe by presenting a tone as a cue to respond. The result is
an SAT function in which retrieval time is controlled and
response accuracy (usually d”) is the dependent measure. By
varying the time of interruption between 0.1 and 2.5 s, one
can measure the accrual of accuracy over retrieval time.

The full retrieval functions for recognition memory show a
period of chance performance, followed by a period of rapid
increases in accuracy and finally by accuracy’s reaching
asymptote as retrieval time is further increased. (Some short-
term memory retrieval functions—e.g.,, in Reed’s 1973
study-—show late decline in accuracy as information is rapidly

forgotten during the retrieval interval.) In general, three pa-
rameters suffice to describe these functions: an asymptotic
accuracy parameter that reflects memory information limi-
tations, an intercept, and a rate of rise from chance to asymp-
tote. The latter two parameters jointly summarize the dynam-
ics of retrieval. The rising portion of the SAT function may
reflect either continuous accrual of information or the distri-
bution of finishing times of a quantal process (Dosher, 1976,
1979, 1981, 1982; Meyer, Irwin, Osman, & Kounios, 1988;
Ratcliff, 1988).

Empirically, when RT and SAT paradigms have been per-
formed in comparable experiments, there are strong correla-
tions between parameters of the SAT function and RT. In
keeping with early strength models of memory (Murdock &
Dufty, 1972; Norman & Wickelgren, 1969), RT can covary
with asymptotic strength even in the absence of dynamics
differences (Dosher, 1982, 1984a, 1984b; Ratcliff, 1978;
Wickelgren, 1977). RT may also covary with dynamics pa-
rameters (Dosher, 1981). Hence RT differences may reflect
an unknown mix of dynamic and strength effects.

The predicted relation between standard RT and SAT
functions is strong under virtually all models. The degree of
direct time comparability is model dependent. (We found a
strong relation between RT and SAT results in the present
studies; consequently, we assume that subjects do not elect to
use very different strategies in the two paradigms.) In the case
of quantal models, the SAT functions and the distribution of
RTs are both assumed to depend on the distribution of
finishing times for the measured process. In the case of
continuous models, the SAT depends rather directly on the
accrual of information, whereas the distribution of RTs de-
pends on accrual of information and on the setting of response
criteria; in this case, even minimum RTs may be quite delayed
in relation to the rise of the SAT function. In addition,
interruption cues in SAT may require additional processing,
thus shifting SAT functions in relation to RT (see also Ratcliff,
1988).

In subsequent sections, the various accounts of retrieval are
contrasted in terms of their respective SAT predictions con-
cerning the effects of set size and recency.

SAT Set Size Effects

Asymptotic Accuracy

With the exception of strength-based models, most scan-
ning accounts, such as Sternberg’s (1966) and Murdock’s
(1971), assume that each study item is perfectly represented
in the memory set. However, data from an SAT study reported
by Reed (1976), reanalyzed here in Figure 1, remind us that
asymptotic accuracy levels differ reliably across set sizes of
one, two, and four items. Error rates in comparable RT data
were below 9% and generally would be ignored. What, in fact,
these data suggest is that items from different set sizes are not
equal in their overall strength values.

Reed’s (1976) data and our data here require the modifi-
cation of scanning or other models that assume equal strength
values. For scan models, each item may be probabilistically
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Figure 1. d’ as a function of lag latency for set sizes of one, two,

and four consonants reported by Reed (1976). (Open symbols are
interruption speed-accuracy trade-off data. Solid symbols represent
comparable reaction time data. Smooth curves are fits of the expo-
nential model [Equation 1] with different rates [8] and asymptotes
[A] for each set size but a common intercept [5].)

represented in the scan process with set size determining
accuracy. Or, in accordance with Treisman and Doctor’s
(1987) approach, each comparison process may have some
probability of error that depends on set size. Direct-access
models require equivalent strength assumptions. Reed (1976)
tested the predictions of asymptotic accuracy levels for a
number of models with a strength component. He considered
three capacity-sharing strength-allocation models, which dif-
fered in their allocation policy: specifically, (a) that strength
is inversely related to the set size (Baddeley & Ecob, 1973),
(b) that strength is the inverse square root of set size (Ander-
son, 1973), and (c) that strength is inversely proportional to
the 2 power of set size (Reed, 1976). These capacity models
all vastly overestimated the observed asymptotic differences.
However, strength need not and probably should not be
construed strictly as a capacity. A viable alternative, consistent
with Monsell’s (1978) and Murdock’s (1985) analysis, simply
assumes that strength varies as a function of serial position.
This implies that overall strength will decrease as set size
increases, although not necessarily as much as capacity models
suggest.

Retrieval Dynamics

Granting that modified models accommodate asymptotic
accuracy differences, the critical contrasts concern the dy-
namic portions of the SAT functions. Dynamic differences
are summarized by intercept and rate parameters.

Under most assumptions, exhaustive scanning models pre-
dict substantial differences between set sizes in the dynamics
of the SAT curve. The exact form and magnitude of these
differences, of course, depend on further assumptions con-
cerning the nature of the scan process, its relation to the cued-
response paradigm, and distributions of scan times. We inter-
pret Sternberg’s (1966) model as a quantal or uninterruptible
scan process, yielding no information until the scan is com-

plete. Thus the SAT reflects the distribution of finishing times,
coupled with either guessing or scan-controlled accuracy. (For
a further discussion, see also Meyer et al., 1988.) The SAT
intercept and rate are determined by the leading edge and
variability of the finishing-time distribution. The SAT asymp-
tote reflects limits in the accuracy of the scan process. When
two conditions differ in asymptotic accuracy but reflect the
same distribution of finishing times, the SAT functions rise
from intercept to asymptote (proportionately) in the same
time. Thus SAT curves with the same proportional relation
to asymptote reflect identical dynamics. (Deviations from
strict proportionality due to guessing are minor.) Whether set
size primarily affects rate or intercept or both depends on its
relative impact on the leading edge and variability of scan
times.

Hypothetical results of a modified exhaustive scan model
are shown in Figure 2. It is assumed that the test item is
compared exhaustively with a list representation of length »n
but that there is some chance of an error (either miss or false
alarm) in each comparison. Each list comparison had an
independent probability of producing a false alarm (.01 in
Figure 2), so that overall false alarm rate increased with list
length. Target trials had a miss rate that was also assumed to
increase with list length. Thus even when the scan is complete,
the comparison operations will have yielded an error some
fraction of the time. (This is only one possible extension of
Sternberg’s 1966 model to account for response errors.) The
distribution of scan completion times was assumed to be
exponential overall, with an increase in mean finishing time
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Figure 2. Predicted speed-accuracy trade-off (SAT) functions for
set sizes three through six from the modified exhaustive scan model.
(The finishing times for the scan process were assumed to be expo-
nentially distributed, whereby each additional item in a set increases
the mean finishing time by 50 ms. Set size was assumed to control
asymptotic accuracy levels; the probability of a miss increases by .02
and the probability of a false alarm by approximately .01 with each
additional item in a set. Responses before the completion of a scan
are random guesses with probability correct of .5. The - marks above
the 0 &’ level on the x axis correspond, from left to right, to the time
at which set sizes three, four, five, and six reach 2/3 of asymptote.
This illustrates a pure rate effect of set size on the SAT functions;
other distributional assumptions might predict intercept as well as
rate differences.)
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of 50 ms for each additional list member. Responses occurring
before scan completion are random guesses. The hit and false
alarm rates resulting from either completed scans or guessing
at any retrieval time ¢ were transformed into the equivalent
d’. The overall..exponential finishing time assumptions of
Figure 2 illustrate a pure rate effect of set size on the SAT
functions. Distributional assumptions more typical of multi-
stage models (¢.g., gamma functions; see Townsend & Ashby,
1983) exhibit apparent intercept, as well as rate, shifts with
increasing memory set size.

Treisman and Doctor (1987) modified Sternberg’s (1966)
model by assuming that multiple fast scans are strategically
performed throughout the course of retrieval. Accuracy is
jointly determined by the size of the memory set and the
number of scans performed before a response. Because the
size of the memory set determines the time needed for a single
scan, set size consequently imposes a limit on the number of
scans performed in a given interval of time. Accuracy will
grow at a rate determined by the time taken for a single scan,
producing set size functions that, like those illustrated in
Figure 2, rise disproportionally to asymptote. However, ac-
curacy accumulation is not two-state quantal. As the number
of gradations increases, it becomes more similar to a contin-
uous accumulation model.

In the parallel self-terminating model of Murdock (1971),
processing starts from a common time intercept; information
accrual is governed by rate constants associated with the serial
positions of the test elements. If each serial position is tested
equally often, the overall processing rates for various set sizes
will necessarily differ because they are determined simply by
the average of their respective rate constants. The magnitude
of the differences depends on the parameters governing the
assignment of rates to serial position.

Ratcliff’s (1978) extension of random-walk models to mem-
ory data embodies a continuous-accrual and direct-access
metaphor. The treatment of set size and serial position is very
similar to that of Murdock (1971). Predicted set size effects
for Reed’s (1976) data combined a match or resonance value
for each item (assumed to be invariant over serial position
and set size, insofar as Reed used a long retention interval)
with a decision mechanism that was based on parallel proc-
essing of a (parallel) search set defined by the memory set.
Elsewhere in Ratcliff’s article, however, serial positions for
different set sizes were each assigned a different strength in
order to account for RT differences. In either case, the deci-
sion mechanism produces slower rates and lower asymptotes
for larger set sizes. (The quantitative details vary with assumed
bias parameters, as discussed later.)

On the basis of comparisons of SAT functions for set sizes
of one, two, and four items, Reed (1976) concluded that there
were differences in the SAT dynamics as a function of set
size, although among models that he considered, only Theios
et al.’s (1973) pushdown stack model fit the functions partic-
ularly well. However, we view Reed’s conclusions with cau-
tion. Because the explicit strength models considered by Reed
vastly overpredicted the observed asymptotic differences in
set size, he ignored those differences and fit the functions with
a common asymptote. Ignoring genuine asymptotic differ-
ences distorts estimates of dynamic properties. In addition,

Reed did not examine serial position functions within set size.
We suggest that the proper interpretation of differences in the
dynamics of set size SAT functions first requires a careful
examination of the dynamics of the serial positions.

SAT Recency Effects

Asymptotic Accuracy

Wickelgren et al. (1980) reported that SAT asymptotic
accuracy depends directly on recency in the same way as
untimed forgetting functions. Thus asymptotic differences for
different set sizes could reflect the average statistics of the
serial positions of the set. Unfortunately, for our purposes,
Wickelgren et al. (1980) used superspan constant-length lists
of 18 items. Therefore, Wickelgren et al. did not measure the
dependency of asymptotic pattern on list length.

Retrieval Dynamics

Once again, the critical issue is whether serial position or
set size differences extend to the dynamic properties of SAT
functions. Differences in the SAT dynamics for various serial
positions could result directly from either serial or parallel
self-terminating scans. In the former case, if the list is scanned
in the approximate order of recency, then the expected dura-
tion of a scan will decrease as a direct function of the recency
of a probe. Accuracy under these conditions will rise at a rate
that is faster the more recently a test probe was studied.

Hypothetical functions for a backwards serial scan model
are shown in Figure 3 for serial positions in a set size of 5.
These functions were generated under the assumption that
serial position affects asymptotic accuracy. Accuracy mono-
tonically decreases for probes drawn from less recent serial
positions with a small primacy advantage for the first position
in the list. The overall distribution of scan times was assumed
to be exponential; each additional comparison process added
50 ms to the overall mean finishing time. In Figure 3, we
illustrate the fact that if the memory list is scanned from the
most recent item to the least recent item, terminating on a
match, then the rate of rise in accuracy over time covaries
with serial position. Again, other distributional assumptions
(e.g., gamma functions) may introduce intercept shifts, as well
as rate shifts. _

Similar dynamic differences are predicted by parallel self-
terminating models such as Murdock’s (1971), which explic-
itly assume that processing rate varies as a function of serial
position. Under Murdock’s model, the processing rate param-
eters directly affect dynamics. Because Ratcliff (1978) as-
sumed identical resonance or strength distributions for all
nonmatch comparisons and identical dynamics for any one
match comparison, serial positions within a set size may show
approximately identical dynamics, although they differ in
asymptotic accuracy. However, the decision rule produces set
size differences in dynamics by requiring exhaustive process-
ing of the memory set on all nonmatch comparisons.

In Wickelgren et al.’s (1980) constant-length lists, the test
probe’s serial position affected terminal accuracy levels only.



352 BRIAN McELREE AND BARBARA ANNE DOSHER

0 Backward Terminating Scan Model (SS5)

- SP-1
3.0 — SP-2

L. SP-3
SP-5
20— SP-4

d’

0.0 AAAAN

0 IR S R RS A
Lo 1o Qs 1.0 L3 20 25

Total Processing Time (sec)

Figure 3. Predicted serial position speed—accuracy trade-off (SAT)
functions (in a set size of five items [SS5]) from a backwards serial
self-terminating scan model. (Asymptotic accuracy monotonically
decreases as the probe is drawn from less recent serial positions, with
the exception of a small increment for the primary list position. The
finishing time distribution was assumed to be exponential, whereby
mean increases by 50 ms for each serial position from the end of the
list. In keeping with Monsell {1978], serial position is labeled in terms
of recency, counting backwards from the test item, denoted in posi-
tion 0, to the study position of the probe. For example, the most
recent serial position is labeled —1, the next most recent position —2,
and so on. The . marks above the 0 d’ level on the x-axis correspond,
from left to right, to the time at which the retrieval functions for
serial positions —1, =2, . . ., -5 reach 2/3 of asymptote. This illustrates
a pure rate effect of serial position on the SAT functions.)

The dynamics were identical, with the exception of the most
recently presented item. Wickelgren et al. found (see also
Dosher, 1981) that the retrieval dynamics for the most re-
cently presented item (immediate repetition) were signifi-
cantly faster than for any other position. Speeded dynamics
for immediate repetition was related to a distinction between
an item in active and passive memory states. When little or
no mental activity has intervened between the study and
testing of an item, then the item remains active in primary
memory. This state is contrasted with the more passive state
of other items displaced from active processing by intervening
mental activity. However, it is unclear whether this result will
hold in a subspan domain. In addition, Wickelgren et al. did
not examine whether the length of the list affected the dynam-
ics of retrieval in a constant way for all serial positions.

Summary

Various models of short-term memory retrieval differ in
their accounts of serial position and/or set size effects. Because
most of these models are generally consistent with extant RT
data (either as they stand or with minor modifications), it is
difficult to discriminate between them strictly within the
context of RT paradigms. However, many of these models of
item recognition yield quite different predictions concerning
the respective effects of serial position and set size on the full
time course of retrieval: most critically, in predictions of the

dynamic of retrieval measured independently of asymptotic
strength, as through the interruption SAT method.

We report two interruption SAT studies (Experiments 1
and 3) and a complementary RT study (Experiment 2) de-
signed to discriminate between these broad classes of retrieval
models. In the SAT studies we examined full time course
serial position functions within different set sizes, independ-
ently estimating the dynamics and asymptotic strength of
retrieval both within and across the memory sets. In order to
establish a strong basis on which to generalize from SAT to
standard RT studies, we report in Experiment 2 the pattern
of RT data that emerge from the experimental parameters
used in the SAT studies. In addition, in Experiments 2 and
3, we examined and report the effect of the recency of a lure
on the RT and the time course of lure rejection.

Experiment 1

In Experiment 1 we used the interruption SAT paradigm
to examine retrieval functions for all serial positions of mem-
ory set sizes of three and five words. Memory list lengths of
three and five are within the estimated “subspan” range for
words (see Burrows & Okada, 1975; Okada & Burrows, 1978)
and yet are predicted to differ in terminal accuracy and
retrieval dynamics (see Figure 2).

We used a relatively fast presentation rate (500 ms) and a
short retention interval (300 ms). These are typical of condi-
tions under which subjective and objective recency are
strongly coupled (Monsell, 1978). A pilot RT study with set
sizes of three, four, and five words and a slight longer retention
interval (400 ms) was run to confirm that standard serial
position effects (Monsell, 1978) occurred in our experimental
situation. (In the Method section, we describe the materials,
design, display, and timing; only the mode of response dif-
fered. These data were from 10 subjects, after 30 practice
trials.) In Table | we present the mean correct RT and error
rates for each serial position, for the average of positives, and
for negative probes for each set size. In Figure 4 we show the
serial position RT functions graphically. The serial position
RTs display both a strong recency and a weaker primacy
effect. In comparisons across set sizes, the serial positions are
approximately superimposed, as reported by Monsell (1978).
These RT patterns demonstrate that minor implementation
differences between our experiments and Monsell’s are un-
important. We now consider the SAT version of the serial
position and set size experiment.

Method

Subjects

Four subjects each completed eight 1-hr sessions. Subjects BM,
GR, and GM were affiliated with the laboratory and volunteered
their services. Subject GD was paid. All subjects either were experi-
enced with the cued-response SAT methodology or performed at least
a 1-hr initial training session.
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Table 1
Average Reaction Times (RT) and Proportion Errors (PE) in Pilot Study
Serial position
-5 ~4 -3 -2 -1
Set size RT PE RT PE RT PE RT PE RT PE RT PE RT PE
5 732 A1 785 .15 741 .07 699 .08 599 .04 711 09 716 .06
4 730 .09 748 .14 728 .06 604 .02 702 .08 715 06
3 649 .06 692 .05 609 .04 650 .05 692 07

Note. Y = positive probes; N = negative probes.

Design and Stimuli

We used a varied set procedure. Two lists of 50 two-syllable nouns
were constructed from Paivio, Yuille, and Madigan’s (1968) norms
to serve as stimuli. We constructed the study list for a particular trial
by drawing randomly without replacement from one of the two lists.
The lists were alternately sampled on successive trials.

Memory list lengths of three or five words were randomly mixed
within a session. Within a session and within a set size, there were
equal numbers of positive and negative trials. The recognition probe
on positive trials was randomly drawn from one of the list positions
so that each position was equally sampled across a session. The
recognition probe on negative trials was randomly drawn from the
same 50-word stimulus list as the memory set. Thus all negative
recognition probes were relatively nonrecent, inasmuch as they could
not have been seen on the previous trial. This sampling procedure
also ensures that negative probes are not repeated on adjacent trials.
Each condition was tested at each of eight interruption points, or lags,
ranging from 0.1 to 1.8 s (see the following section).

Procedure
Stimulus presentation and response collection were controlled by

an Apple Ile computer with which we used a Sanyo VM4209 monitor
along with a Superclock II timing card. The words of the study list

Reaction Time Serial Positions

800
o i
E 750 —
z .
2
- 700 —
Q
E L
5 650 — & SS5
] - O SS4
E 600 — 0 883
I T T R B
530 S 4 3 2 1
Serial Position of Probe

Figure 4. Average correct positive reaction time as a function of
serial position for set sizes (SS) three through five. (Serial position is
labeled in terms of recency, counting backwards from the test item,
position 0, to the study position of the probe, —1 for the most recent
serial position, —2 for the next, and so on.)

were presented in uppercase letters with an approximate character
size of 6 X 4 cm, viewed at a distance of approximately 40 cm.

Each of the eight sessions consisted of a total of 512 trials, divided
into four blocks. Across the eight sessions, this yielded a total of 32
trials per lag for each positive serial position probe within each set
size, 96 negative probes per lag for set size of three, and 160 negative
probes per lag for set size of five. Subjects were free to rest between
blocks, but once a block of trials started, it proceeded automatically.
The sequence of events (see Figure 5) was as follows:

1. The word “READY” appeared for 500 ms at the top in the center
of the screen.

2. The screen cleared and a series of angular brackets were pre-
sented for 500 ms. These brackets appeared in the center of the screen
and enclosed a region in which the words from the study list were
presented. The initial number of brackets on each side denoted the
set size of the trial (either three or five words).

3. The words of the study list were presented in the enclosed region
in succession for 500 ms each. The presentation of each successive
word reduced the number of brackets on each side by one. Thus the
brackets provided a running countdown of the number of study
words remaining. The appropriate number of brackets remained on
the screen at all times, spanning a 50-ms pause between successive
presentations of the study words.

4. After the presentation of the last study word, the screen cleared
and a high-contrast mask was displayed over the region used for
presentation of the study words. It remained on until the probe word
was presented.

5. Three hundred milliseconds after the presentation of the last
study word, the recognition probe was presented in uppercase letters,
approximately 8 cm below the region used for presentation of the
study list. The probe item appeared for a variable length of time,
depending on the cue to respond.

6. At 0.10, 0.20, 0.30, 0.40, 0.55, 0.9, 1.3, or 1.8 s after the onset
of the probe item, the subject was cued by a brief tone to respond.

7. The subject executed a yes-no recognition response as quickly
as possible after the onset of the cue-to-respond tone.

8. Latency feedback appeared on the screen for 300 ms to enable
the subjects to monitor their performance. Subjects were instructed
to respond within 270 ms of the tone, regardless of their accuracy
performance. They were told that responses that took longer that 270
ms were too long and that responses that took less than 150 ms were
anticipations,

Results and Discussion

The latency and proportion correct for positive and negative
trials and corresponding d’s are presented in Table 2, averaged
over subjects. (Individual subject data is available from us.)
These measures were presented for the two set size conditions
and for the serial positions within each set size.
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Figure 5. A sample trial sequence and timing,.

Interruption (Lag) Latency Analysis

Latency to respond depended on interruption point in both
the set size, F(7, 21) =9.742, p = .0000, and the serial position
functions, F(7, 21) = 9.904, p = .0000 (for the comparison of
serial positions within set size three), and F(7, 21) = 7.640,
p = .0001 (for the comparison of serial positions within set
size five). Latency did not, however, directly vary as a function
of any of the stimulus conditions: Neither the set size, F(1,
3) < 1, ns, nor the serial position of the probe—F(2, 6) < 1,
ns, for serial positions within set size three and F(4, 12) < 1,
ns, for serial positions within set size five—significantly af-
fected latency. Although latency was slightly faster for set size
three across the 0.10- to 0.55-s lags, the interaction between
lag and set size proved nonsignificant, F(7, 21) < 1. Within
set size, however, the interaction of serial position and lag was
significant for set size five, F(28, 84) = 1.989, p = .0086. This
interaction reflects the faster latency for the most recent serial
position throughout the early interruption points (0.10 to 0.55
s). The same interaction in set size three data was nonsignifi-
cant, F(14, 42) = 1.399.

In general, latency varies with time of interruption but not
with experimental condition (Dosher, 1981, 1982, 1984a,
1984b). In that case, including latency in total retrieval time
affects absolute time estimates but does not contribute to
condition differences in SATs. However, latency does occa-
sionally vary with experimental condition, usually in response
to some obvious stimulus property (Dosher, 1981). Here,
latency was somewhat faster when the probe matched the last
list item (the case of immediate repetition). This speeding is
also seen in other properties of the SAT function for this serial
position (to be discussed). This effect on latency resulted in
an apparent difference in set sizes that is based in differential
contributions of immediate recency to the average. Reed
(1976) also found small set size differences in latency. In the

analyses to be presented, we followed the standard convention
of plotting SAT functions as accuracy against total processing
time (lag time plus latency). Excluding the latency difference
would underestimate the effect of immediate recency in SATs.

Speed-Accuracy Trade-Off (SAT) Functions

Empirical set size and serial position SAT functions (total
processing time and d’ at each lag) are listed in Table 2. (The
d’ statistic for some individual subjects included a minimum-
error correction for those few conditions in which hit proba-
bility was 1 or false alarm probability was 0. Technical con-
siderations involving this correction process and potential
interactions with subsequent model fits will be extensively
treated in a separate discussion section.) As with previous
SAT studies (e.g., Dosher, 1976, 1981, 1982, 1984a; Reed,
1976; Wickelgren et al., 1980), these functions can be closely
approximated by an exponential approach to a limit:

d'(t) = M1 — &™), > 5, else 0. (1)

Alternatively, these empirical functions can be fit by a re-
trieval function that explicitly assumes a time-bounded dif-
fusion (continuous random-walk) process (Ratcliff, 1978):

e A
d(t)_——————m,t>6, else 0. )

In both functions, d’(¢) is the predicted 4’ at time ¢, A controls
the asymptotic accuracy level, and 4 is the intercept or time
before which accuracy is at chance level. In Equation 1, 8 is
an exponential rate parameter that indexes how rapidly ac-
curacy rises from chance to asymptotic level. In Equation 2,
»* is a combined diffusion variance term that functions in the
same way as 3. Both 8 and »* have the approximately propor-
tional character required by quantal retrieval models and by
many continuous retrieval models. (See the preceding discus-
sion of Figure 2.)

We fit models with both functional forms to all our data.
Both equations are used here in a purely descriptive fashion.
Whereas the diffusion model has internal consistency con-
straints on parameters when fitting certain kinds of RT de-
signs, there are no such checks in the SAT domain. Also,
Equation 2 is for a uniprocess diffusion model. All statements
about rate differences reflect a translation into that uniprocess
form, Usually, Equations 1 and 2 are virtually interchangeable
empirically. Prior analyses of associative recognition data,
which had slower dynamics than the single-item recognition
data studied here, have consistently shown small but negligible
preference for the exponential form. However, in the item-
recognition domain, the diffusion function with slower »*
parameters generally reaches asymptote more slowly than do
the data. This is illustrated in Ratcliff’s (1978) fits of Reed’s
(1976) data in which the diffusion model shows a delayed
intercept estimate that underestimates the first lag data in
order to allow a faster rate parameter. This technical difficulty
introduces a bias to capture condition differences in intercept
rather than in rate. It is possible that introducing noise in the
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Table 2
Experiment 1: Average Latency (in s), Proportion Correct, and d’
Lag
Item 1 2 3 4 5 6 7 8 .
Set size 3
Positive trials
Latency 0.266 0.223 0.217 0.211 0.201 0.189 0.193 0.204°
Proportion correct 0.573 0.733 0.835 0.945 0.960 0.990 0.983 0.995
Negative trials
- Latency 0.276 0233 0.217 0.202 0.201 0.197 0.197 0.191
Proportion correct 0.660 0.842 0.895 0.922 0.982 0.990 0.995 0.995
Positive vs. negative
trials: d’ 0.639 1.709 2.268 3.065 3.830 4.210 4.338 4.517
Serial position ~3 )
Latency 0.272 0.233 0214 0.208 0.200 0.194 0.198 0.192
Proportion correct 0.660 0.630 0.808 0915 0.970 0.990 1.000 1.000
d’ 0.694 1.410 2.168 2.872 3.974 4.203 4.586 4.586
Serial position ~2 .
Latency 0.273 0.234 0.209 0.203 0.202 0.197 0.194 0.189
Proportion correct 0.428 0.658 0.775 0.938 0.923 0.990 0.962 0.990
d’ 0.366 1.488 2.060 2.998 3.507 4.203 4.085 4.442
Serial position —1
Latency 0.267 0.219 0.215 0.207 0.203 0.194 0.196 0.211
Proportion correct 0.770 0.910 . 0.925 0.990 1.000 1.000 1.000 1.000
a’ 1.393 2.517 2.864 3.616 4.406 4.347 4.586 4.586
Set size 5
Positive trials
Latency 0.281 0.237 0.224 0.217 0.208 0.193 0.194 0.195
Proportion correct 0.483 0.550 0.725 0.858 0.880 0.920 0.925 0.910
Negative trials
Latency 0.275 0.237 0.219 0.209 0.202 0.195 0.195 0.190
Proportion correct 0.650 0.782 0.847 0.907 0.972 0.972 0.977 0.980
Positive vs. negative
trials: d’ 0.457 0.943 1.670 2.424 3.201 3438 3.514 3.460
Serial position ~5
Latency 0.277 0.238 0.222 0.213 0.203 0.192 0.194 0.192
Proportion correct 0.387 0.407 0.660 0.793 0.855 0.880 0.915 0.895
d’ 0.353 0.549 1.468 2.174 3.123 3.350 3.456 3.448
Serial position —4
Latency 0.279 0.232 0.226 0.215 0.205 0.193 0.200 0.188
Proportion correct 0.373 0.395 0.560 0.702 0.720 0.860 0.842 0.853
a’ 0.369 0.527 1.203 1.880 2.616 3.176 3.113 3.191
Serial position ~3
Latency 0.275 0.246 0.221 0.210 0.200 0.194 0.194 0.194
Proportion correct 0.385 0.545 0.695 0.892 0.913 0.925 0.952 0.880
d 0.336 0.928 1.629 2.643 3.437 3.541 3.729 3.406
Serial position —~2
Latency 0.278 0.233 0.222 0.212 0.202 0.196 0.195 0.195
Proportion correct 0.522 0.525 0.798 0.935 0915 0.940 0.915 0.938
d’ 0.568 0.889 1.935 3.072 3.401 3.703 3435 3.619
Serial position ~1
Latency 0.274 0.224 0.214 0.210 0.211 0.194 0.195 0.191
Proportion correct 0.748 0.868 0.897 0.967 0.998 0.998 0.998 0.988
d’ 1.296 2.132 2.486 3.266 4.349 4.325 4,374 4.237

intercept of the diffusion model would eliminate this difficulty An iterative hill-climbing algorithm (Reed, 1976), similar
(R. Ratcliff, personal communication, November 1987). to Stepit, was used to fit systems of retrieval equations to the

However, no analytic form is available for this case. We show  data. The quality of the fit was assessed by the statistic
fitted functions for the exponential because they involve fewer

systematic misfits to the data and more stable parameter i @ - dy/in -k
estimates. However, because the diffusion model is of greater R:=1- %! 3)
immediate theoretical interest, we also report the comparable T (d - APf(n—-1) ’

=1

diffusion fits.
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wherein d; are the observed d” values, the d; are the predicted
values, d is the mean, n is the number of data points, and k
is the number of free parameters. This statistic represents the
goodness of fit adjusted for the number of free parameters.
All conclusions to be reported are based on analyses of
individual subject data. The effects were sufficiently consistent
over subjects that they can be summarized by analyses per-
formed on the average data.

Serial Position Functions

In Figure 6 we plot &’, averaged over subjects and the last
four interruption points, for each serial position. This is an
empirical measure of asymptotic differences in the recognition
performance. Within both set sizes, the serial position of the
probe significantly affected asymptotic accuracy—F(2, 6) =
9.42, p = .014, for serial positions within set size three and
F(4, 12) = 12.06, p = .0004, for serial positions within set size
five—producing typical bowed functions. However, accuracy
levels differed for nominally identical serial positions from
different set sizes (see Figure 6). The overlapping RT serial
position functions of Monsell (1978) represented performance
only on positive trials. Our d’ measure scaled each positive
trial type against negative trials for the appropriate set size.
Although the hit rates (for positives alone) did not overlap
perfectly in our data, set-size-dependent changes in criterion
cannot be ruled out in either the RT or the SAT paradigm,
especially as the set size is saliently cued at the beginning of
each list presentation.

In fitting both retrieval equations, we allotted a separate
asymptotic parameter (A) for each serial position within set
size. When asymptotic differences were ignored, the resulting
fits showed systematic deviations for all subjects and relatively
poor fit, with an average R? value of .811 for the exponential
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Figure 6. Observed average asymptotic d’ values for serial positions
within set sizes (SS) three and five. (Serial position is labeled in terms
of recency, counting backwards from the test item, position 0, to the
study position of the probe, —1 for the most recent serial position,
~2 for the next, and so on.)

model and an average R? of .778 for the diffusion model. (R?
values in the .800 range often result from capturing the
generally increasing character of the SAT functions. Serious
models must capture the additional condition-specific differ-
ences.) Allowing A to vary with serial position improved the
quality of the fit for all subjects, on average increasing the R?
values to .933 for the exponential model and .899 for the
diffusion model.

Of critical interest are dynamics differences (reflected in
intercept and rate) for serial position and set size. In total, 12
different models were fit to the data for each of the retrieval
equations. There was a minor discrepancy in how the expo-
nential and diffusion equations best treated the dynamic
properties of the SAT functions. The exponential equation
produced marginally better fits when the rate (8) parameter,
as opposed to the intercept (6) parameter, was varied. Con-
versely, the diffusion equation produced better fits when
intercept (6) rather than rate (»*) was allowed to vary. This is
related to the technical difficulties of the diffusion model
described earlier. The patterns of condition effects were iden-
tical; it was simply a question of which dynamics parameter
captured the differences. Forcing an effect into the rate param-
eter of the diffusion equation distorted asymptotic estimates.
Rather than directly constraining the two equations to fit the
data with the same type of dynamic parameter, and thereby
introducing artificial parameter trade-offs, we allowed each to
fit dynamic differences with its preferred dynamic parameter.
Consequently, when using the exponential equation, we first
systematically varied the rate parameter as a function of serial
position, found the best fit and then examined whether addi-
tional intercept variation improved this fit. When using the
diffusion equation, we first varied the intercept and then
examined whether variation in rate further improved the fit.
From this point, the results are fully reported for the less
problematic exponential form. However, the analogous dif-
fusion fits are included in all the tables. The few cases with
small discrepancies from the exponential are explicitly men-
tioned.

Allowing separate rate parameters for the two set sizes did
not reliably improve the goodness of fit over the model that
assumed common dynamics (with different asymptotic
strength values for both models). The average R? was .933 for
an exponential model with separate 8s for each set size, which
is comparable with an average R? of .933 for the common
dynamics model. (The average R? was .894 for a diffusion
model with separate s for each set size, in comparison with
.899 for the equal dynamics model.) The major shortcoming
of this and related models was the tendency to underestimate
d’ at the early interruption points for the most recent serial
positions. Simply allotting one rate to probes drawn from the
most recent study position, irrespective of set size, and another
rate to probes drawn from every other serial position, an 8\-
28-18 exponential model, improved the goodness of fit for all
subjects and the average, yielding an average R* of .956.
(Equivalently, an 8\-1»2-24 diffusion model improved the fit
for all subjects, raising the average R? t0 .942.) The parameter
values and the goodness of fit resulting from the best expo-
nential and diffusion models are shown in Table 3 for the
average data and for each individual subject. In Figure 7 we
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Table 3
Experiment 1: Serial Position Parameter Estimates and
Goodness of Fit

Subjects
Parameters  Average “BM GD GM GR
Exponential equation
Set size 3 As . i
SP -1 4.54 445 474 4.56 4.49
SP -2 4.38 4.18  4.59 403 4.73
SP -3 4.63 4.60 4.77 4.62 4.50
Set size 5 As
SP ~1 4.26 398 4.64 4.36 421
Sp -2 3.86 3.60 422 4.00 3.66
SP -3 3.74 3.69 3.81 342 4.04
SP -4 3.12 3.03 3.49 2.66 3.29
SP -5 3.46 3.04 3.66 3.03 4.15.
Recency g 6.69 10.0 4.64 5.49 7.84
Other 8 372 393 3.28 3.99 3.79
Common & 333 .303 321 330 379
R? 956 927 919 912 925
Diffusion equation
Set size 3 As
SP —1 5.27 5.08 5.04 4.79 5.49
SP -2 4.86 443 4.91 4.29 5.39
SP -3 5.12 4.88 5.14 4.92 5.12
Set size 5 As
SP —1 494 4.53 491 4.56 5.21
SP -2 4.28 3.84 4.55 4.28 4.14
SP -3 4.14 3.94 4,16 3.67 4.58
SP -4 3.47 322 3.79 2.86 372
SP -5 385 3.26 4.00 3.25 4.67
Common »? 319 216 228 170 412
Recency 8 345 .303 372 374 374
Other § 419 .403 477 467 435
R? 942 930 .888 .897 .898

Note. SP = serial position.

present the average observed d’ values for serial positions
within each set size, along with the descriptive functions
generated by the exponential model in Table 3.

The retrieval advantage for probes of the most recent serial
position, the case of immediate repetition, translates on av-
erage into a 44% faster rate parameter in the exponential
model (see Table 3). This retrieval advantage was consistent
and substantial for all 4 subjects, ranging from 30% to 62%
faster rates. (The same pattern is observed in the & parameter
of the diffusion model: The average intercept for the most
recent serial position was estimated at 345 ms, in comparison
with 419 ms for all other serial positions. The intercept
advantage was consistent over the 4 subjects and ranged from
61 to 105 ms.)

We report the results of two additional fits in order to
reinforce the adequacy of the model presented in Table 3.
First, we examined a model in which each serial position
{within set size) was allowed a separate rate, This is a way to
test whether there is a more general advantage for recency
that extends past the most recent item. For the exponential,

the 8 estimates were, on average, 6.57, 3.54, and 3.49 for set
size three and 6.68, 4.94, 4.16, 3.10, and 3.44 for set size five,
in order of the most recent to most distant serial positions.
Despite some small tendency to decline with serial position,
the differences in § as a function of serial position beyond the
most recent position were relatively minor when compared
with the sharp discontinuity between the most recent position -
and all others, and the added parameters do not improve R’s.
(The diffusion & estimates showed an exactly comparable -
pattern.) Moreover, the slight tendency beyond the most
recent item was clearly conditioned on trade-offs with esti-
mates of asymptote, in some cases producing systematic
asymptotic misfits.

We also examined whether there were any consistent resid-
ual differences in rate for the two set sizes once the most
recent serial position was factored out. To do so, we allotted
independent rates to the most recent serial position, irrespec-
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Figure 7. Observed average d’ values as a function of total process-
ing time for serial positions with set sizes three (SS3; top panel) and
five (SS5; bottom panel). (Smooth functions are derived from the
estimated parameters of the exponential model fits presented Table
3)
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tive of set size, and to the remaining serial positions within
each set size separately, namely, with an 8\-38~14 exponen-
tial model (or an 8\-1,>-33 diffusion model), wherein the
second and third Bs (or 3s) represented separate dynamics for
set sizes three and five minus the most recent serial position.
These fits did not improve on those shown in Table 3, and
estimated rate differences between set sizes three and five were
small and inconsistent across subjects. ‘

The serial position data are therefore relatively easy to
summarize. The serial position of a probe appears primarily
to affect the asymptotic accuracy of recognition performance.
Serial position may affect the strength of an item’s memorial
representation in a manner that follows rather directly from
strength theories of recognition memory (Norman & Wick-
elgren, 1969; Wickelgren & Norman, 1966). Differences in
retrieval dynamics as a function of serial position appear to
be restricted to probes drawn from the most recent serial
position—the case of immediate repetition between study and
test. This later finding replicated, in a subspan list domain,
the results with superspan lists reported by Wickelgren et al.
(1980). It thereby reinforces the distinction drawn between an
active memory for the last item or thought and a passive
memory for preceding items or thoughts.

One might assume that the immediate-repetition retrieval
advantage is solely a consequence of a perceptual or physical
match mediating responses to probes drawn from the most
recent serial position. Such a view is plausible, given that the
retention interval in this study (300 ms) was well within the
range that could be extrapolated from studies such as that of
Posner, Boies, Eichelman, and Taylor (1969). In Experiments
2 and 3 we directly examined this possibility by altering the
type case between study and test.
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Figure 8. Observed average d’ values as a function of total process-
ing time for set sizes (SS) three and five. (Smooth functions are
derived from the estimated parameters of the exponential model fits
presented in Table 4.)

Set Size Functions

Asymptotic performance varied as a function of set size
(collapsed across serial position; see Figure 8). This difference
in asymptotic accuracy (measured as the average of the longest
four lags as before) was significant, F{1, 3) = 136.9, p = .0013.
A 1x—18~18 exponential model fit, which does not account
for this significant difference, was poor for all subjects, with
average R* = .895 (R? = .854 for the diffusion model). The
parameter estimates and the resulting R? values for a model
that allows different asymptotes for the two set sizes but
assumes identical dynamics (2\-18-14 exponential model or
2A~1v7-16 diffusion model) are shown in Table 4. In Figure
8 we present the average observed d’ values for the two set
sizes, along with the descriptive functions for the exponential
model in Table 4.

However, on the basis of the results of the serial position
analysis, we expected a small dynamic difference favoring set
size three. This is because the speeded case of immediate
repetition represents one third of the average data for set size
three, but only one fifth of the average data for set size five;
that is, set size differences were expected on the basis of an
averaging artifact. Whether the difference is large enough to
detect in this experiment depends on the size of the immedi-
ate-repetition benefit. When the two set sizes were allowed
independent rates, there was a modest but consistent differ-
ence, although R? improved for only 2 of the 4 subjects (BM
and GR). For the exponential model, the rate for set size three
was on average 13% faster than for set size five, and 3 of the
4 subjects showed a difference. (According to the diffusion
equation, all 4 subjects showed faster intercept for set size
three than for set size five, with the average difference of 50
ms.) An analysis of set size data from which we excluded the
most recent serial position generally supported the averaging
explanation, in that there were essentially no residual set size
effects.

Summary

Set size and serial position have strong and systematic
effects on asymptotic levels of accuracy. In both serial position
and set size analyses, there was essentially no evidence to
support the assertion that the size of the memory set affects
retrieval dynamics. Retrieval does appear to be speeded for
the most recent position, a finding that extends the related
carlier observation of Wickelgren et al. (1980). There is no
evidence in our data, nor was there evidence in the prior data
of Wickelgren et al., to suggest an effect of recency on items
in serial position —2 and earlier. Strictly speaking, we can
conclude only that any such effect is quite small in compari-
son with the immediate repetition advantage. We argue that
any effect of set size on retrieval dynamics is best attributed
to differential weighting of the most recent serial position in
the overall set size function. These results have obvious neg-
ative consequences for a number of models of memory re-
trieval. We postpone detailed descriptions of the consequences
for memory modelis until after we describe results for different
font and recent-negative manipulations contained in Experi-
ments 2 and 3.
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Table 4
Experiment 1. Set Size Parameter Estimates
and Goodness of Fit

Subjects
Average BM GD GM GR
Exponential equation

Set size 3 A 4.47 4.37 4.68 4.29 4.57
Set size 5 A 3.52 3.32 3.79 3.27 3.72

Common g 4.28 4.76 3.66 5.04 4.06
Common & 339 315 328 .360 .361

R? 984 .980 .945 977 939
Diffusion equation

Set size 3 A 5.40 4.84 5.49 4.86 5.33

Set size 5 A 4.24 3.69 4.46 3.69 4.32

Common »* .540 .264 492 317 .429
Common & 367 .381 .389 399 421

R? .954 923 911 .959 946

Parameters

Possible d’ Correction Artifacts

However, before proceeding to those experiments, we raise
and argue against various concerns about nearly perfect per-
formance levels and the interaction with model estimation.
For some subjects, accuracy levels, especially for serial posi-
tion —1 in set size three at asymptote, required a correction
factor to yield measurable d’s. In order to estimate d’s, a very
small proportion of error was assumed when observed per-
formance was in fact perfect. The small error probability was
approximately half of what would have resulted from a single
error. Functionally, this set a maximum on calculated 4’s. If
atrue 4’ (had it been measurable in an extremely large sample
size) were actually higher than the maximum allowed, then
the maximum would have artifactually lowered asymptotic
estimates for that condition and hence would have artifac-
tually inflated dynamics estimates. It was precisely because of
these concerns that we used set sizes of three and larger in
our studies. There are two facts to notice about this possible
artifact. First, the possible artifact would, if anything, have
artificially introduced a dynamic preference for set size three,
with its generally higher asymptotic levels; that is, the artifact
would have worked against our finding.

Second, it is quite possible that this artifactual effect did
inflate our estimates of the size of dynamic benefit for the
most recent serial position. If we assume that the entire benefit
for the most recent serial position was in asymptote and that
the dynamics were identical to other set members, then the
asymptotic levels for the most recent serial position would
have had to be d’ of 6 or more in comparison with the d’s
for other serial positions of set size five in the 3.4-3.8 range.
Our best guess is that the dynamic benefit for immediate
repetition is perhaps only slightly overestimated by our model
fits. This belief is based in Reed’s (1976) set size data and
Wickelgren et al.’s (1980) serial position data. Reed’s memory
list experiments differed from ours primarily in selection of
shorter list lengths, longer retention intervals, and the use of

a small confusable stimulus set (similar consonants). Because
of the small confusable stimulus set, he rarely observed im-
measurable d’s. We assert that the dependence of dynamics
on set size in Reed’s data is, as in our data, the consequence
of averaging, which includes the (subjectively) most recent
item (the case of his set size of one, of course, included only
the most recent item, assuming that subjects rehearsed only
members of the current list). Hence his data probably reflect
true dynamics benefits for the most recent item with meas-
urable asymptotic levels. The same pattern emerged in Wick-
elgren et al.’s (1980) data when more complex d’ calculations
were used to estimate high 4’s. In that study, the most recent
item differed in dynamics when d’s at asymptote were not
artificially truncated.

We specifically did not use a consonant set like Reed’s
(1976) because it does not allow adequate control over the
recency of negatives. In a small set, all possible items are
relatively recent. We did try to lower the asymptotic levels for
one subject (BM) by drawing each word set from the same
category list. Although the words were in some sense similar,
this, in fact, did little to affect the asymptotic levels. However,
this experiment did replicate the findings of Experiment 1.

Experiment 2

The notable lack of a clear set size effect on retrieval
dynamics and the coexistence of significant serial position
effects argue against a serial exhaustive scan, as well as against
some parallel scan models. A number of studies have dem-
onstrated the coexistence of serial position effects and parallel
set size functions that are normally associated with exhaustive
serial scanning (e.g., Burrows & Okada, 1971; Monsell, 1978).
However, it is sometimes suggested (Sternberg, 1975) that
conditions that maximize serial position effects (fast presen-
tation rates and short retention intervals) minimize the use of
that exhaustive scanning. In the following RT experiment, we
verified the coexistence of strong serial position effects with
average data that are superficially compatible with an exhaus-
tive scan explanation, in the same circumstances as our SAT
experiment, in which the results excluded an exhaustive scan
mechanism.

In addition, in this experiment and its complementary SAT
version (Experiment 3), we examined two issues concerning
the effects of recency. First, they eliminate the possibility that
the retrieval advantage for probes drawn from from the most
recent serial position is based on a direct perceptual or physical
match between study and test form. In both experiments the
case was altered between study list and test. Second, the
recency of negatives was manipulated. A number of research-
ers report that negative probes that are either repeated nega-
tives or members of a recently presented study set take longer
and are less accurately rejected than other relatively nonrecent
negatives (Atkinson et al., 1974; Monsell, 1978). Thus the
retrieval mechanism must be responsive to items other than
those in the immediate memory set. This suggests that item
strength or familiarity is a salient factor in the decision
process. In this experiment we replicated the “recent negative”
effect in the RT domain, whereas in the subsequent SAT
study, we examined the full time course of such effects.
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Method

Subjects

Eighteen subjects participated in the study. All subjects participated
in order to fulfill a introductory psychology course requirement.

Design and Stimuli

The stimuli were words drawn from the same two lists of 50 words
as in the previous experiment. Set sizes of 3, 4, 5, and 6 words were
presented in a varied set procedure. Positive probes tested each serial
position within a set size equally often. In order to equate sampling
from the respective serial positions, the number of trials with each
set size varied directly with the number of serial positions. The
number of negative probes equaled the number of positives for each
set size. Negative probes were either recent or distant. Recent nega-
tives (RNs) were drawn from the most recent three serial positions of
the immediately previous trial but not the previous probe. Distant
negatives (DNs) had last occurred at least three trials back.

In order to disallow a straightforward perceptual match between a
positive probe and the most recently presented item, all study words
were presented in lowercase letters. The test probes were presented in
the uppercase format used in Experiment 1.

Procedure

With the exception of changing the case between study and test,
all aspects of stimulus presentation were the same as described in
Experiment 1. However, in this experiment, subjects were not inter-
rupted with a cue to respond but rather were instructed to respond
as quickly and as accurately as possible.

For each subject there was a total of 576 experimental trials,
presented in four blocks of 144 trials each. This yielded a total of 16
positive trials for each serial position within the four set sizes. All
subjects were given an initial practice session, consisting of [0 trials,
to become acquainted with the procedure.

Results and Discussion

A trial was excluded if latency fell outside +2.5 standard

deviations of the subject’s average positive or negative re-

sponse time. Fewer than 2.3% of trials were excluded accord-
ing to this criterion.

Serial Position Effects

The average correct RT and proportion of error for each
serial position are presented in Table 5; RTs are plotted in
Figure 9. Within each set size separately, the serial position
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Figure 9. Average correct positive reaction time as a function of
serial position for set sizes (SS) three through six. (Serial position is
labeled in terms of recency, counting backwards from the test item,
position 0, to the study position of the probe, —1 for the most recent
serial position, —2 for the next, and so on.)

of the probes significantly affected RT—F(2, 34) = 14.53,
p = .0000, for set size three; F(3, 51) = 26.9, p = .0000, for
set size four; F(4, 68) = 21.4, p = .0000, for set size five; and
F(5, 85) = 23.3, p = .0000, for set size six—and the accuracy
of responding, F(2, 34) = 1.8, p = .18, for set size three; F(3,
51) = 4.86, p = .0048, for set size four; F(4,68)= 11.32,p=
.0000, for set size five; and F(5, 85) = 13.9, p = .0000, for set
size six. The serial position functions in Figure 9 were almost
superimposed, although not as cleanly as those reported by
Monsell (1978). All set sizes showed a dramatic recency
component; mean RTs for serial position —1 differed at most
by 7 ms. The primacy effect is somewhat less consistent.

Set Size Functions

In Table 6 we present the average correct RT and propor-
tion of error for each set size by probe type. In Figure 10 we
present these RTs along with the fitted regression lines. Not
surprisingly, RT significantly increased with larger set sizes,
F(3,51)=17.2, p=.0000. Trial type also significantly affected
RT, F(2, 34) = 31.7, p = .0000; positive responses were faster
than distant and recent negatives. With a regression model,
the estimated intercept for positive responses was 599 ms, in
comparison with 671 ms for distant negatives and 689 ms for

Table §
Experiment 2: Average Reaction Times (RT) and Proportion Errors (PE)
Serial position
-6 -5 —4 -3 -2 it |
Setsize RT PE RT PE RT PE RT PE RT PE RT PE
6 744 35 764 .30 750 .28 721 13 678 A0 596 .05
5 733 23 734 26 689 .14 667 .08 599 .06
4 677 .13 711 A5 670 08 596 .06
3 684 09 673 06 592 .05
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Table 6
Experiment 2: Average Reaction Times (RT) and Proportion
Errors (PE)

Set size
3 4 5 6
Probe type RT PE RT PE RT PE RT PE
Positive 649 06 662 .10 680 .15 699 .21

Distant negative 703 .05 739 .06 734 .06 750 .02
Recent negative 750 .09 777 .15 808 .26 814 .26

recent negatives. However, the regression lines in Figure 10
illustrate that the size of the memory set had equal impacts
on all three types of trials, F(6, 102) = 1.53, ns, resulting in
approximately equal slope estimates: specifically, 16 ms/item
for positive responses, 13 ms/item for distant negatives, and
22 ‘ms/item for recent negatives. This similarity of slopes
further corroborates the reports of Burrows and Okada (1971)
and Monsell (1978) that strong serial position effects are not
incompatible with linear parallel set size functions.

The recency of the negative probe significantly increased
rejection time, F(1, 17) = 41.4, p = .0000, and false alarms,
K1, 17) = 43.1, p = .0000. On average, recent negatives
(members of the previous memory set) increased latencies by
50 ms and false alarm rates by 13% in comparison with
distant negatives (studied at least three trials back). This less
detailed replication of Monsell’s (1978) finding demonstrates
linear parallel RT as a function of set size coexistent with the
influence of factors not easily explained within a strict serial
exhaustive scan model.

Experiment 3

In this experiment, the time course of responses to recent
and distant negatives were compared. Monsell (1978), and
others, demonstrated that recent exposure to a negative probe
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Figure 10. Average correct positive and negative reaction time as a
function of set size (three through six). (Smooth functions represent
the best fitting linear regression lines.)

substantially impairs the speed and accuracy of rejection.
Rejection of recent negatives may be hindered by residual
strength or familiarity stemming from prior study. Do recent
negatives function in the same way as low-strength positives
throughout the full time course of retrieval, or are false
positives corrected by more specific list information? Investi-
gating the time course of processing for recent negatives was
the primary focus of this SAT experiment. In addition, the
SAT set size and serial position functions in this experiment
were directly compatible with those of the previous RT ex-
periment. Hence this is a replication of Experiment 1 but with
recent and distant negatives and for set sizes four and six.

Method

Subjects

Four subjects each completed eight 1i4-hr sessions. Of these sub-
jects, 3 (BM, GM, and GR) had participated in Experiment t. The
4th (LB), a new subject, was given an initial 1-hr training session in
the SAT methodology.

Design and Stimuli

With two exceptions, the design and stimuli were the same as in
Experiment 1. First, set sizes of four and six words were tested.
Second, negative probes within each set size were either recent (RN)
or distant (DN) negatives. Recent negatives were drawn from the
most recent four serial positions of the previous trial but were not the
previous recognition probe. On average, recent negatives occurred
7.5 items back for set size four and 9.5 items back for set size six.
Distant negatives last occurred at least three trials back.

Procedure

The procedure was the same as in Experiment 1 with two excep-
tions. First, as in Experiment 2, all study words were presented in
lowercase letters, whereas test probes were presented in an uppercase
format. Second, the lag of the cue to respond was adjusted slightly:
Subjects were cued to respond at 0.1, 0.25, 0.35, 0.45, 0.60, 0.90, 1.3,
or 1.8 s after the onset of the test probe.

Each of the eight sessions consisted of 640 trials divided into four
blocks. Across the eight sessions, this yielded a total of 32 trials per
lag for each serial position within set size. In total, there were 64 trials
per lag for each of the two types of negative trials associated with set
size four and 96 trials per lag for those associated with set size six.

Results and Discussion

The latency and proportion correct for positive and negative
trials and the associated d’s are presented in Table 7 for the
average over subjects. These measures are presented for the
two set size conditions (four and six) and for each serial
position within set size.

Interruption (Lag) Latency Analysis

As with Experiment 1, latency was longer for earlier inter-
ruption points for both the set size, F(7, 21) = 26.1, p = .0000,
and serial position functions, F(7, 21) = 31.35, p = .0000, for



Table 7
Experiment 3: Average Latency (in s}, Proportion Correct, and d’'

Lag
Item 1 2 3 4 5 6 7 8
Set size 4

Positive

Latency 0.260 0.211 0.191 0.187 0.184 0.179 0.173 0.177

Proportion correct 0.598 0.772 0.840 0.887 0.933 0.962 0.970 0.960
Distant Negative (DN)

Latency 0.269 0.231 0.205 0.186 0.182 0.181 0.180 0.166

Proportion correct 0.575 0.762 0.895 0.965 0.978 0.970 0.967 0.985
Recent negative (RN)

Latency 0.268 0.233 0.212 0.197 0.187 0.184 0.177 0.168

Proportion correct 0477 0.735 0.760 0.865 0.892 0.920 0.940 0.942
Positive vs. DN: d’ 0.469 1.510 2.311 3.100 3.541 3.729 3.788 4.007
Positive vs. RN: d’ 0.204 1.401 1,732 2.388 2.793 3.349 3.455 3.522
DN vs. RN: d’ 0.266 0.108 0.579 0.711 0.748 0.380 0.333 0.484
Serial position —4

Latency 0.268 0.230 0.199 0.188 0.183 0.180 0.175 0.168

Proportion correct 0.502 0.707 0.803 0.832 0918 0.940 0.962 0.923

da’ 0.213 1.299 2.361 2.845 3.570 3.601 3.728 3.615
Serial position ~3

Latency 0.267 0.225 0.201 0.189 0.183 0.180 0.177 0.172

Proportion correct 0.490 0.630 0.702 0.860 0.860 0.940 0.940 0.940

d’ 0.220 1.099 1.830 3.026 3.109 3.565 3,572 3.793
Serial position -2

Latency 0.267 0.213 0.199 0.187 0.183 0.184 0.174 0.182

Proportion correct 0.555 0.798 0.900 0.870 0.957 0.980 0.983 0.973

d’ 0.361 1.625 2.589 3.033 3.873 3.934 4016 4.093
Serial position —1

Latency 0.260 0.211 0.193 0.183 0.182 0.178 0.177 0.175

Proportion correct 0.853 0.955 0.950 1.000 1.000 0.990 1.000 1.000

d’ 1.323 2.527 3.147 4.202 4.347 4,078 4.229 4.449

Set size 6

Positive .

Latency 0.263 0.220 0.200 0.191 0.189 0.184 0.179 0.173

Proportion correct 0.567 0.640 0.735 0.800 0.835 0.842 0.863 0.882
Distant negative (DN)

Latency 0.266 0.231 0.205 0.191 0.188 0.184 0.178 0.180

Proportion correct 0.502 0.760 0.873 0.923 0.930 0.945 0.960 0.950
Recent negative (RN)

Latency 0.266 0.234 0.215 0.201 0.192 0.186 0.178 0.176

Proportion correct 0.460 0.635 0.728 0.803 0.808 0.842 0.840 0.850
Positive vs. DN: 4’ 0.183 1.082 1.819 2.301 2,498 2.670 2.981 2977
Positive vs. RN: d’ 0.083 0.720 1.278 1.743 1.914 2.052 2.168 2.352
DN vs RN: d’ 0.166 0.248 0.539 0.614 0.645 0.611 0.714 0.543
Serial position —6

Latency 0.265 0.227 0.209 0.192 0.187 0.185 0.175 0.175

Proportion correct 0.490 0.472 0.618 0.723 0.750 0.760 0.790 0.805

d’ 0.097 0.646 1.476 2.037 2.199 2.405 2.699 2.724
Serial position —5

Latency 0.264 0.233 0.210 0.198 0.193 0.184 0.183 0.173

Proportion correct 0.472 0.517 0.533 0.635 0.715 0.683 0.712 0.695

da’ 0.231 0.762 1.294 1.867 2.088 2.130 2.455 2.162
Serial position —4

Latency 0.267 0.227 0.207 0.194 0.190 0.185 0.173 0.178

Proportion correct 0472 0.600 0.623 0.705 0.743 0.762 0.817 0.865

da’ 0.221 0.982 1.489 1.987 2.211 2.388 2.870 2.980
Serial position —3

Latency 0.266 0.228 0.204 0.190 0.189 0.186 0.179 0.178

Proportion correct 0.582 0.570 0.752 0.817 0.848 0.930 0.910 0.935

d’ 0.217 0.893 1.906 2.352 2.551 3.165 3.372 3.456
Serial position —2

Latency 0.263 0.227 0.199 0.187 0.186 0.183 0.178 0.177

Proportion correct 0.595 0.712 0.892 0.942 0.970 0.923 0.957 1.000

d 0.254 1.311 2.452 3.193 3.378 3.096 3.668 4.031
Serial position —1

Latency 0.261 0.214 0.191 0.186 0.184 0.180 0.176 0.182

Proportion correct 0.785 0.945 1.000 1.000 1.000 0.990 0.990 1.000

d’ 0.835 2,328 3.491 3.755 3.810 3.832 3.997 4.031

362
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set size four and F(7, 21) = 23.2, p = .0000, for set size six.
No other latency differences were apparent in the set size
data. Within each set size, however, latency varied with serial
position, F(3, 9) = 3.81, p = .052, for set size four and F(S5,
15) = 7.62, p = .001, for set size six. The effect of serial
position interacted with interruption point, F(21, 63) = 2.29,
p = 006, for set size four and F(35, 105) = 1.74, p = .017,
for set size six. This interaction is primarily due to the most
recent serial positions’ producing shorter latencies at the early
interruption points. Once again, these small differences are
included in dynamics by the indexing of accuracy as a func-
tion of total processing time.

Serial Position Functions

In Figure 11 we plot &, averaged across subjects and the
last four interruption points, as an empirical measure of
asymptotic accyracy for each serial position. Serial position
of the probe significantly affected asymptotic recognition
accuracy for both set sizes, F(3, 9) = 13.1, p = .0012, for set
size four and F(5, 15) = 24.4, p = .0000, for set size six.
Asymptotic levels for identical serial positions, shown in
Figure 11, did not overlap for the two set size functions. As
in Experiment 1, each serial position within the two set sizes
required a separate asymptote estimate (\; average R? = .929
for the exponential model, and average R*> = .915 for the
diffusion model). Fits that did not account for asymptotic
differences were poor (average R? = .690 for the exponential
model, and average R? = .673 for the diffusion model).

Models assuming various dynamic differences were tested.
As in Experiment 1, allotting a separate dynamic parameter
to probes drawn from the most recent serial position, irre-
spective of set size, and a single dynamic parameter to all of
the remaining serial positions (a 10A~28—18 exponential
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Figure 11. Observed average asymptotic 4’ values for serial posi-
tions within set sizes (SS) four and six. (Serial position is labeled in
terms of recency, counting backwards from the test item, position 0,
to the study position of the probe, ~1 for the most recent serial
position, -2 for the next, and 50 on.)

model or, alternatively, a 10A-1»2-28 diffusion model) pro-
duced the best overall fit. The parameter values and R for
the best exponential and diffusion models are shown in Table
8 for the average data and each individual subject. In Figure
12 we show the average 4’ values for each serial position
within set size. Smooth functions are generated by the expo-
nential model in Table 8.

In the exponential model, the average rate parameter for
the most recent serial position (immediate repetition) was
52% faster than for other positions. All 4 subjects showed this
pattern; differences ranged from 45% to 55%. (In the diffusion
model this pattern appeared in the fitted intercept. The inter-
cept of the most recent serial positions was 103 ms earlier
than for other probes in the average data. All subjects showed
this pattern; differences ranged from 102 to 116 ms.)

Retrieval dynamics did not appear to differ for serial posi-
tions beyond the most recent. When each serial position was
allowed an independent rate parameter, we observed a marked
discontinuity between the most recent serial position and all
other positions and little difference between other serial po-
sitions. This was a replication of the pattern of Experiment 1.
The average exponential rate parameters (8s) were estimated
at 7.95, 4.50, 3.57, and 4.25 for set size four and 8.95, 4.75,
3.27, 3.33, 4.01, and 3.44 for set size six, in order of most
recent to most distant. (For the diffusion model, the intercept
parameters showed the equivalent pattern.) As in Experiment
1, the dynamics for serial positions from different set sizes
(excluding the most recent) differed little if at all when fit with
either model.

The most parsimonious model is the one applied to the
data in Experiment 1 with estimates for this experiment
shown in Table 8. Altering case between study and test did
little to attenuate either the differences in asymptotic accuracy
levels for different serial positions or the faster rate (or inter-
cept) for probes from the most recent serial position. A
physical or perceptual match apparently contributes little to
the effect of immediate recency.

Set Size Functions

In Figure 13 we plot the average d’ versus total processing
time pooled over serial position for each set size. These
functions base &’ on distant negatives only. Asymptotic ac-
curacy of set sizes four and six were significantly different,
F(1, 3) = 47.59, p = .006, when performance on the last four
lags was used as the measure of asymptote, When asymptote
differences were ignored, model fits were relatively poor (av-
erage R? = 843 for the exponential model, and average R* =
.840 for the diffusion model). The exponential model that
allows asymptotic differences (2A~18-18) and the related dif-
fusion model (2\~1»>~18) are shown in Table 9. These models
fit the data of all the subjects quite well (average data R? =
.983 for the exponential model, and average R?2 = 978 for
the diffusion model).

In Experiment 1, there was an effect of set size on retrieval
dynamics that we attributed to averaging the retrieval advan-
tage for the most recent serial position into the overall set size
functions. In this experiment, allowing separate rates (or
intercepts) for each set size neither improved R? nor yielded
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Table 8
Experiment 3: Serial Position Parameter Estimates and
Goodness of Fit

Subjects
Parameters  Average BM GM GR LB
Exponential equation
Set size 4 As
SP -1 4.29 4.39 4.63 4.28 397
SP -2 4.20 4.21 4.52 4.42 3.80
SP -3 3.66 381 361 4.8 3.21
SP -4 3.85 4.28 3.86 4.02 3.18
Set size 6 \s
SP -1 398 3.56 4.21 4.30 4.02
SP-2 3.86 3.69 3.58 4.41 3.74
SP -3 3.29 3.26 2.81 3.63 347
SP —4 2.75 3.08 2.42 3.04 241
SpP -5 2.34 2.72 2.07 245 2.09
SP —6 2.63 2.89 2.39 3.05 2.18
Recency B 8.34 10.0 10.0 1.75 6.54
Other g 3.96 4.46 5.52 4,05 3.13
Common & 339 303 377 378 333
R? 961 .889 937 .869 926
Diffusion equation
Set size 4 s
SP -1 4.82 4.75 5.02 4.73 4.64
SP -2 - 4.55 4.35 4.86 4.72 4.16
SP -3 397 395 390 4.51 3.52
SP —4 4.12 4.44 4,16 4.35 3.47
Set size 6 As
SP -1 4.47 385 4.57 4.73 4.68
Sp -2 4.13 3.85 387 4.76 4.09
SP-3 3.52 3.40 3.03 3.90 3.79
SP —4 2.94 3.21 2.61 3.26 2.63
SP -5 249 2.83 2.23 261 2.28
SP -6 2.82 3.01 2.58 3.28 2.38
Common »* 207 128 173 .203 317
Recency & 348 314 344 387 .346
Other & 452 431 446 493 456
R? 964 .895 950 852 .930

Note. SP = serial position.

a reliable pattern of parameter values. This minor discrepancy
between SAT studies is plausibly related to the expected size
of the averaging difference. With the larger set sizes in this
experiment (four and six), the differential contribution of the
most recent serial position was expected to be smaller and
apparently was not sufficient to yield as clear a dynamic
difference as did the smaller set sizes (three and five) of
Experiment 1. In this experiment, there was no support for
overall set size effects on retrieval dynamics. Only terminal
accuracy levels of the two set sizes appeared to differ.

Recent and Distant Negatives

We indexed the differences between recent and distant
negatives by two methods of both computing 4’ measures
and fitting the empirical SAT functions. We computed two
sets of conventional d’s, one that entailed using false alarms
from recent negatives and one that entailed using false alarms

from distant negatives (those quoted earlier) within set size.
The hit rates in both cases pooled over the serial position of
positive probes within set size. These yield the positive versus
recent negative (P vs. RN) and positive versus distant negative
(P vs. DN) SAT functions shown in Figure 14. In Figure 14a
we show set size four, and in 14b we show set size six. The
d's based on recent negatives vielded significantly lower
asymptotic performance, F(1, 3) = 29.6, p = .012, for set size
four and F(1, 3) = 208, p = .0007, for set size six, when the
last four lags were used as a measure of asymptote. The best
simple exponential model of the two upper curves of both
panels varied asymptote for all four conditions and rate with
the kind of negative (4\, 28, and 14). In addition to lower
asymptotes, recent negative rate parameters were on average
20% slower than for distant negatives (average R? = .986).
Recent negatives slowed rate for all subjects, with estimated
decrements of 15%-25%. (Fits for which we used the diffusion
equation yielded a similar, though slightly larger, decrement
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Figure 12. Observed average d’ values as a function of total proc-
essing time for serial positions within set size four (SS4; top panel)
and set size six (SS6; bottom panel). (Smooth functions are derived
from the estimated parameters of the exponential model fits presented
in Table 8.)
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in the rate associated with recent negatives, averaging 38%
and ranging from 25% to 47% across subjects.)

The asymptotic difference between recent and distant neg-
atives reflected higher false alarm rates for recent negatives.
This was the SAT equivalent to the RT results of Experiment
2. The difference in the rate parameters reflected differences
in false alarms to recent and distant negatives that are not
constant over the time course of retrieval. To directly examine
the differences in false alarms for recent and distant negatives
as a function of lag, a pseudo-d’ was computed from zgqzn
— Zruony Increased “yes” responses to recent negatives, in
comparison with distant negatives, yielded a positive d’.
Larger pseudo-d’ values represented poorer performance;
however, this scaling is consistent with increased strength of
recent negatives. The RN versus DN d’s form the lower curves
in the two panels of Figure 14.

The RN versus DN functions both tended to be nonmon-
otonic, although this trend was more apparent for set size
four than six. The functions showed a rise to an early, rela-
tively high level of false alarms (300-900 ms), followed by a
decrease and/or eventual leveling off of the false alarm rate
(900-2,000 ms). The rate differences in the P versus DN and
P versus RN functions, which we formed by scaling positives
against either recent or distant negatives, were a consequence
of the early tendency for false alarm followed by later correc-
tion. These results suggest that information accrual in recent
negative probes shifted in midretrieval from a fairly high
strength value to a corrected strength value. The terminal
accuracy difference between recent and distant negatives rep-
resents an imperfect correction process.

In the diffusion model, a two-phase or two-process notion
assumes that the resonance driving information accrual is
altered at some point t* > 6. The shift represents the availa-
bility of new information. Before ¢*, the simple diffusion
Equation 4a holds. After ¢*, Equation 4b holds (Ratcliff,
1980):
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Figure 13. Observed average d’ as a function of total processing
time for set sizes (SS) four and six. (Smooth functions are derived
from the estimated parameters of the exponential model fits presented
Table 9.)

Table 9
Experiment 3: Set Size Parameter Estimates
and Goodness of Fit

Subjects
Average BM GM GR LB
Exponential equation

Set size 4 A 3.95 4.15 4.08 422 3.35
Set size 6 A 293 3.13 2.73 322 2.64

Common 8 4.49 4.93 4.69 4.44 4.05
Common & .349 311 .348 .387 351

R? 983 955 .969 .907 976
Diffusion equation

Set size 4 A 4.24 4.46 4.32 4.54 3.65
Set size 6 A 3.15 3.37 2.89 3.47 2.89

Parameters

Common »? .188 175 161 .196 .240

Common & 452 412 448 .489 456

R? 977 931 986 904 969
Al

7 S ———ere *.
d'(t) N T, for 6 <t < r* (42)

A+ (A = ) - 8/ — 8)
V1 + 03/t - 3)

a@) = , for ¢ = r*. (4b)
Here, A, is the asymptotic level being approached by the first
phase or process, and A, is the asymptotic level of the second
process. Exponential analogues to these equations are shown
in Equations 5a and 5b:

d'(t) = M(1 — eP9), for 6 < t < 1*; (5a)

d'(t) = [ + (N = X )(t* = 8)/(¢ — 9)]
X (1 —e®) ¢t>5fort=r* (5b)

Although they yielded reasonable R?s for average and individ-
ual subject data, single-process models systematically under-
estimated performance at the early lags (500-800 ms) and, to
a lesser extent, overestimated performance at subsequent lags.
Two-process models yielded slightly better goodness of fit for
the average data and for each subject individually (average
R? = 988 for the exponential form and average R?> = .984
for the diffusion form, in comparison with .983 and .976 for
single-process forms). The average A;s were 0.90 and 0.83 for
set sizes four and six, and the respective average A,s were 0.30
and 0.59. For all subjects, estimated A; exceeded X, by 0.50
to 1.66 d’ units for set size four and by 0.13 to 0.93 &’ units
for set size six. (For the diffusion model, the average \;s were
1.05 and 0.99 for set sizes four and six and the respective
average A;s were 0.22 and 0.59; A\, > X\, by 0.672 to 1.62 &’
units for set size four and by 0.22 to 1.35 4’ units for set size
six.) The different A\, and X, values accommodated the tem-
poral pattern of the data seen in Figure 14. Set sizes four and
six may have differed in the degree of correction, but more
data would be required to substantiate this claim.
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Figure 14. Observed average d’ values for positives versus recent
negatives (PvsRN), positives versus distant negatives (PvsDN), and
recent versus distant negatives (RNvsDN) for set sizes (SS) four (top
panel) and six (bottom panel). (Smooth functions are derived from
the estimated parameters of the dual-process exponential model fits.)

Summary

In this experiment we replicated (with set sizes four and six
and font mismatch) the findings of Experiment 1 (with set
sizes three and five and font match) concerning retrieval
dynamics of set size and serial position. Again, we found that
retrieval dynamics for the most recent serial position, or
immediate repetition between last list element and test, were
speeded in relation to other serial positions. No additional set
size effect was found. In addition, recent negatives were more
difficult to reject throughout retrieval and especially so early
in retrieval. This pattern was captured by a two-process model
for recent negatives with relatively high initial strength fol-
Jowed by incomplete correction. The two-process equations
assume that the correction occurs quantally at r*, but a
continuous correction variant would likely fit our data equaily
well. Correction must be a consequence of more specific

features or information accruing relatively late in retrieval.
Two-process models do not place strong constraints on what
information may serve to correct a residual strength impres-
sion. The form is consistent with any plausible candidate,
such as the accrual of contextual information, temporal tags,

or list tags.
General Discussion
Asymptotic Accuracy

Overall error rates at asymptote were less than 10%, the
level of performance often assumed to minimize differences
in retention. Nonetheless, asymptotic accuracy of SAT func-
tions varied with serial position, producing typical bowed
functions. Asymptotic accuracy levels were also lower for
larger set sizes, The coexistence of serial position and set size
effects suggests that the latter are perhaps derived from the
former (Monsell, 1978; Murdock, 1971, 1985).

There is an apparent difference between our asymptotic
accuracy results, in which serial positions were not superim-
posed, and the RT data, in which they were approximately
superimposed (save the primacy position). In keeping with
early strength models of memory (Murdock & Dufty, 1972;
Norman & Wickelgren, 1969), RT may reflect asymptotic
strength differences alone. In Dosher’s (1982) study, RT was
strongly correlated (within each subject) with differences in
asymptotic strength of SAT functions when dynamics differ-
ences were small. Some studies in the RT domain, like ours,
have shown patterns of serial position overlap; others have
not (i.e., Murdock & Franklin, 1984). However, small devia-
tions from superimposition in our RT data were in the same
direction as the asymptotic accuracy difference in SAT. More-
over, the RT data represent a subset of data contributing to
SAT accuracy. RT serial position functions represent per-
formance on correct positive trials in isolation. The asymp-
totic accuracy measures represent performance on all positive
and negative trials. In the SAT data, performance on com-
parable positives is very similar but favors small set sizes by
1%-3% in hits; negative trials for small set sizes also show
1%-5% fewer false alarms in relation to larger set sizes. This
may entirely reflect differences between either positives or
negatives alone, partly compensated by set-size-dependent
criterion shifts. In either event, the large differences in RT or
asymptote between set sizes reflect differences in noncompar-
able serial positions (primacy positions and positions not
represented in shorter set sizes). The major effects in both
paradigms reflect primacy and recency, for which the analo-
gous serial position patterns bear striking similarity.

Murdock (1985) accounted for RT data entirely within a
trace-strength framework. Serial position functions were mod-
eled by two strength parameters, one representing a recency
component and the other a primacy component. By judicious
selection, recency and primacy in turn generated overall set
size effects. Although the comparable serial positions in our
data contributed slightly to the overall set size difference in
SAT asymptote (i.e., were slightly nonoverlapping), the dif-
ference largely reflects the performance in noncomparable
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serial positions. Nonetheless, a simple, two-parameter pri-
macy and recency model is unlikely to handle the entire
pattern of asymptotic accuracies. The size of the memory set
was correlated with small residual differences in the asymp-
totic accuracy levels of comparable serial positions. We out-
line, as follows, an alternative strength model proposed by
Wickelgren and Norman (1966) that adequately accommo-
dates our observed asymptotic patterns.

Retrieval Dynamics

Though not predicted, differences in asymptotic perform-
ance certainly can be accommodated by pure serial exhaustive
scan models such as Sternberg’s (1966, 1969) or parallel self-
terminating models such as Murdock’s (1971). Each compar-
ison may have some probability of error that is contingent on
set size and/or serial position (see¢ Treisman & Doctor, 1987),
or items may be probabilistically represented in the scan.
More critical for the assessment of these models is the evi-
dence that retrieval dynamics do not vary with either set size
or serial position, except for the most recent position. Rather
dramatic dynamic differences in the empirical SAT functions,
over and above any asymptotic differences, are the predicted
signatures of exhaustive or self-terminating scan models. In
fits with both the diffusion and the exponential retrieval
equations, we consistently found essentially equal dynamics
for different overall set size functions and all serial positions
save the most recent. This dynamic invariance strongly argues
against scanning explanations of retrieval from short-term list
memory in our SAT experiments and by extension, in similar
RT experiments.

Invariance of retrieval dynamics coupled with the observed
systematic asymptotic effects strongly support a simple
strength (or probability) mechanism coupled with a simple
retrieval mechanism. We describe a modified variant of a
diffusion model (Ratcliff, 1978) as follows. However, the
results are compatible with any direct-access or comparison
retrieval model in which the explicit memory set does not
strongly control performance.

However, neither Ratcliff’s (1978) account nor any other
current account of Sternberg’s (1966) paradigm predicts the
rather dramatic retrieval advantage for probes drawn from
the most recent serial position that emerged in both SAT
experiments. This finding replicated, in a subspan domain,
Wickelgren et al.’s (1980) result in superspan lists. Probes
drawn from the most recent serial position are in effect cases
of immediate repetition between study and test. Wickelgren
et al. suggested that the last study item remains in an active
or primed state unless interfering mental activity intervenes
between study and test. Recognition of an item in an active
state may be tantamount to a matching procedure if normal
retrieval operations are circumvented. (It may be possible to
alter models to accommodate this finding: For example, in
Ratcliff's 1978 diffusion model, one might assume a different
variance for cases of immediate repetition.)

The results of Experiment 3 suggest that the immediate
match benefit can be mediated by a relatively abstract level
of representation, at least to the degree that it is not case
sensitive (cf. Posner et al., 1969). The immediate match

benefit in our experiments survived the font-mismatch ma-
nipulation. Our best guess is that the speeding of retrieval for
the last list element is of approximately the same magnitude
with and without font match. An examination of the data for
the 3 subjects who served in both Experiments 1 and 3 showed
remarkable similarity in estimated dynamic parameters.
When both sets of data were fit at the same time for those
subjects, the immediate-repetition parameters were essentially
the same. Without doubt, it would be possible to construct a
display situation in which font-based matches were important.
In our experiments, however, the lexical identity of the last
list element appears to be the critical factor.

The retention interval in our experiments was quite short
(300 ms). However, an immediate repetition retrieval advan-
tage appeared to persist for a substantially longer period of
time. Wickelgren et al. (1980) observed it with retention
intervals of 700 ms. Moreover, Dosher (1981) observed a
similar advantage in paired-associate recognition that sur-
vived 3 s of counting backwards but not 3 s of interpolated
learning. This latter result, if applicable to item recognition,
suggests that the critical determinant of this advantage is not
so much time or decay of activation per se but rather the
nature and similarity of the interpolated mental activity.
Sternberg (1966, 1969) reported no serial position effects with
a retention interval of more than 1's and explicit instructions
to rehearse the members of the study list. Hence we must
suppose that covert rehearsal behaves in somewhat the same
way as overt presentation with respect to serial position effects,
decoupling external and internal recency.

Last, we attribute observed dynamics differences in set size
data that include the most recent serial position to the differ-
ent proportions of immediate repetition cases included in the
pooling. Reed’s (1976) larger pooled differences among set
sizes one, two, and four, in comparison with our contrasts of
three with five and four with six, are expected under the
proportional pooling argument. One in one versus one in two
trials yields a larger difference than one in three versus one in
five or one in four versus one in six. The estimated benefit
for the last list element in Reed’s confusable consonant lists
is not inconsistent with the estimated benefit in our word lists.

Recent Negatives

Ratcliff (1978) and Monsell (1978), among others, pointed
out that recent negative effects are compelling evidence
against a pure scan or search account of immediate item
recognition. The presence of such effects indicates that rec-
ognition procedures are responsive to items outside the ex-
perimenter-defined memory set. Our experiments provide
further corroborating evidence for this claim, showing that
subjects reject significantly more slowly (Experiment 2) and
are more likely to give false alarm responses to (Experiment
3) a recently presented negative probe.

Subsequent analysis of the time course for these responses
demonstrated a biphasic false alarm rate. During an initial
retrieval period (100-900 ms), recent negatives elicited a high
false alarm rate that was compatible with susceptibility to
residual trace strength. Later in retrieval (more than 900 ms),
the false alarm rate was modestly attenuated, which indicates
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the late impact of more list-specific information. We treated
this pattern as a shift from uncorrected to corrected strength
late in retrieval. Two-phase information accrual may be re-
garded by some as evidence for two distinct types of retrieval
operations—for example, a mixture of judgments based on
direct access and a slow serial scan of the list (Atkinson &
Juola, 1974). However, if serial scanning was the source of
late correction in recent negatives, then the same mechanism
should produce concomitant effects in positive responses. We
found no evidence that retrieval dynamics varied according
to the pattern predicted by standard versions of serial scans.
Consequently, a theoretically consistent treatment of both
ncgatlve and positive response patterns requires a more neu-
tral view of the late correction mechanism.

Random Walk With Search Set

Our findings render most scanning models of short-term
memory retrieval extremely unlikely and place strong con-
straints on other models. In this section, we consider the
direct-access accumulation model of Ratcliff (1978) in some
detail, as one possible short-term memory mechanism. Ac-
cording to the diffusion model, memory retrieval is a set of
independent, direct-access comparison operations. A positive
response follows when any comparison (in the search set)
yields a match, and a negative response follows when all
comparisons. (in the search set) yield a mismatch. Reaction
time is affected by the resonance (strength) of the dominating
comparisons and by their number. In SAT, asymptote is
determined by the mean and variance of the resonance
{strength) distributions, and rate is controlled by item variance
and intrinsic drift noise. Intercept is a free parameter in
accounting for either RT or SAT data. This model is com-
patible with pure strength control of RT or with a more
complex set of factors controlling RT.

As outlined previously, Ratcliff (1978) demonstrated that
simple changes in a resonance parameter (the diffusion mod-
el’s equivalent of a strength parameter), coupled with implicit
set size variations, are sufficient to accommodate either set
size or serial position RT effects. (Ratchff, 1978, did not
model both effects simultaneously as suggested by Murdock,
1971, 1985. Instead, he estimated patterns of the relatedness
parameter for each effect separately, without attempting to
derive positive set size functions from serial position effects.)
Consider Ratcliff’s (1978) treatment of Reed’s (1976) SAT
data. In this treatment he estimated an intercept, a rate, and
an asymptote from set size one data, which yielded predicted
d’ data at various processing times. The search set was as-
sumed to equal the explicit memory set. Some set of hit and
false alarm rates that might have produced the set size one
d's were selected. Ratcliff assumed that all match comparisons
for all serial positions and all set sizes yield identical hit rates
(have identical resonance processes). All mismatch compari-
sons of either the negative probe or the positive probes to an
inappropriate serial position were assumed to yield identical
false alarm rates (have identical resonance properties). (Be-
cause hit and false alarm data were not available for Reed’s
data, and because Reed used a long retention interval, this is
a reasonable set of simplifying assumptions.) Given these

assumptions, the probability of hit and false alarm rates for
larger set sizes could simply be multiplied through. (Probabil-
ity of a hit for set size n is the probability that at least one of
the match and n — 1 mismatch comparisons yield a positive
response. Probability of a false alarm for set size » is the
probability that at least one of the mxsmatch comparisons
yields a positive response.)

Ratcliff's (1978) computation, for most selections of hit
and false alarm rates, predicted slower rates for larger set sizes.

- All of the dynamic differences arise as a consequence of the

size of the search set, and the mismatch processes. The
existence and size of predicted dynamic set size effects de-
pends on the bias factor assumed in the initial selection of hit
and false alarm rates for set size one. It would be possible, in
principle, to select a pattern of hit and false alarm rates that
would eliminate the prediction of unequal dynamics for dif-
ferent set sizes. ({The assumption of a constant false alarm rate
across retrieval time within a set size, and very unequal false
alarms between set sizes, is one such pattern.) However, for

- the pattern of false alarms that we observed {changing over

time and similar between set sizes), a substantial set size effect
on rate is predicted.

Ratcliff’s (1978) account of set size effects in SAT data was
based on at least two important assumptions: (a) that all
positive probes both within and between memory set size are
equal and (b) that the search set equals the memory set. These
assumptions were necessary, given the unavailability of serial
position information and in order to make model estimation
tractable. In our studies, however, serial position effects at
asymptote were incompatible with Assumption (a), and recent
negative effects are apparently incompatible with Assumption
{b). A number of possible changes might allow the model to
accommodate our data. One possibility is to eliminate a set
size effect by decoupling the memory set from the implicit
search set by assuming that the search set is very large, large
enough to include the recent negatives. Another is to weaken
the impact of a memory-set determined search set by intro-
ducing large interitem differences in both match and mis-
match processes. In this case, negatives intrude themselves
into the search set by direct access matching.

One can accommodate equivalent dynamics for different
serial positions within a set size by simply allowing separate
mean resonance values for each position. However, slower
dynamics for larger memory sets result from early increased
false alarms because of more processes in negatives. Because
set size does not appear to affect dynamics, and because recent
negatives differ from distant negatives, it is tempting to as-
sume that the effective search set is large and includes many
comparisons for items not in the memory set. Ratcliff (1978)
presented evidence that the search set may be considered
arbitrarily large without affecting resulis very much, so long
as the additional comparisons are so low in resonance that
they always terminate in a mismatch very quickly in relation
to the few likely contenders, Small residual set-size-based
differences in asymptotic accuracy levels would be accounted
for by differential study patterns. In this scenario, the search
set is eliminated as a definition of to-be-remembered items.
Items are basically evaluated on a strength dimension. As
such, it is not clear that this scenario is preferable to a simpler
single-comparison strength evaluation.
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An alternative is to retain the notion of an implicit search
set equal to the memory set but 1o assume that performance
in al} cases is dominated by some small number of most
relevant item representations. Comparisons for serial posi-
tions leading to lower resonance values for positive trials
might also lead to higher resonance values on negative trials.
This outcome is counter to Ratcliff’s (1978) assumptions, but
it might be reasonable if the memory representations that best
code a particular positive are also-least confusable with other
items. In this scheme, the memory set does not strongly affect
dynamics because a few comparisons dominate performance,
regardless of the size of the search set for both positive and
negative probes. Recent negative performance would have to
reflect direct-access contact of the probe with its own fairly
recent memory representation. Similar contact for distant
negatives would reflect less strength.

Either version of the diffusion model outlined earlier re-
quires post hoc modifications to account for the retrieval
benefit for the final list member and for the correction process
for recent negatives. Both modifications represent weak or
nonexistent set size mechanisms, which instantiate the ob-
served dynamic equivalence of retrieval from memory lists of
different lengths. ‘

Other Models

We propose variants of the diffusion model to account for
asymptotic and dynamic properties of retrieval from short-
term memory lists. However, more generic direct-access
models combined with a model of asymptotic strength differ-
ences may be equally plausible. Monsel (1978) argued against
direct-access models, largely on the basis of interactions of set
size and recent negatives. He explicitly manipulated recency
of distractors across different list lengths by a cued forgetting
paradigm. In that paradigm, a large list was presented on each
trial, in which some list items appeared before a forget cue
and some after. Items after the forget cue constituted the
memory list, and items before it formed a pool for recent
negatives. On some trials, unpredictably, the first list segment
was tested, and so subjects could not ignore that early list
portion until the forget cue actually occurred. Items were
labeled according to their position from the end of the mem-
ory list (i.e., -1, -2, . . .). Monsell found that recent negatives
in the same list positions (i.e., —8) yielded different RTs and
error rates, depending on the length of the memory list, with
only small recency effects. He argued that direct-access
strength models could not simultaneously allow nearly over-
lapping serial position functions for positives and list-length
effects on recent negatives (his Proposition IIb). His formu-
lation assumed a monotonically decreasing transfer function
between the difference of a sampled strength from the crite-
rion and reaction time. He reasoned that set-size-dependent
criterion shifts would account for set size effects on negatives
but would introduce differences between positives. However,
our SAT data show changes in strength for the same recency
positions in different list lengths. The list-length, serial posi-
tion factors are outlined as follows.

SAT asymptotic accuracy for the various set sizes and serial
positions bears striking similarity to the untimed accuracy
data of Wickelgren and Norman (1966). They varied the list

length and examined serial positions separately for short-term
memory for three-digit numbers. A short-term memory ac-
quisition-primacy model accounted well for their data. This
model assumed a constant, item-dependent forgetting rate for
items in all serial positions, but it assumed serial-position-
dependent initial acquisition parameters. In other words,
d(k,L) = ofk)¢™*, where L is the list length; & is the serial
position counting from the beginning of the list; d(k, L) is the
untimed recognition accuracy for position k of list length L;
alk) is a serial-position-dependent initial acquisition value; ¢
is a constant per-item decay parameter; and L — k represents
the number of list items following the specified item. This
model predicts linear forgetting functions on semilog axes,
with equal slopes but possibly unequal initial acquisition
intercepts for all serial positions. An analysis of our asymptotic
accuracy data does not yield a strong test of linearity on
semilog axes (each serial position occurred only twice in each
experiment). However, the slopes were remarkably consistent,
and the pattern of initial acquisition parameters and decay
estimate was remarkably similar to that of Wickelgren and
Norman (1966). The average asymptote data for the two
experiments were fit together with this model, without regard
to the differences in subjects, font, level of practice, and so
on. The model fit accounted for .946 of the variance in
asymptotic levels. Like Wickelgren and Norman, we found
that the first element on a list had substantially higher acqui-
sition strength; the strength of each successive position was
slightly lower, a(l) = 6.3, a(2) = 4.9, af3) = 4.7, of4) = 4.4,
af5) = 4.3, and o6) = 4.1 in 4’ units, Our fitted decay rate
was .82, whereas theirs ranged from .60 to .80. (Wickelgren,
1970, later showed that the decay rate depended not just on
subsequent items but on presentation rate. Also, it is possible
to accommodate variance differences in the strength distri-
bution. However, the approximation just given is adequate
for our purposes.)

Predicted asymptotic strengths for various list lengths are
shown in the four panels of Figure 15. These values are based
on the estimated as and ¢ listed earlier. Also shown are
arbitrarily selected criterion values that nearly equate the
distance of each comparable serial position from its respective
criterion. The absolute distances of each of the distribution
means from the relevant criterion are shown in Figure 16.
Last, in Figure 17, the mean RT from Experiment 2 (a
different set of subjects and practice levels) is plotted as a
function of the distance from the criterion of each condition
of Figure 16. The relation between the hypothetical control-
ling values and Experiment 2 RT is strong. As did Murdock
(1985), we assume a monotonic and negatively accelerated
“transfer function” between this distance and mean RT,
shown as the smooth line in Figure 17. The data from serial
position —1 (immediate repetition) fell below the transfer
function, but this is consistent with the dynamic benefit that
applies to immediate repetition conditions. In other words,
an immediate repetition resulted in a substantial speeding in
retrieval over and above the effects of asymptotic strength;
hence this pure strength analysis does not incorporate the
expected dynamic speeding for ~1 serial positions. The trans-
fer function accounts for about 89% of the variance for all
conditions, excluding serial position —1. (A linear formulation
including serial position —1 systematically underfits data in
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Figure 15. Predicted strength distributions for positive serial posi-
tions, recent negatives (RN), and distant negatives (DN) derived from
empirical estimates of the acquisition («) and decay (¢) parameters

the midrange, but it accounts for a comparable amount of
the variance.) '

Figure 17 slightly oversimplifies the relation between ob-
served RT, the transfer function, and distance from the cri-
terion. In fact, the transfer function would need to be con-
volved with the item distributions in the four panels of Figure
15, and error trials would have to be removed in order to do
a careful fit of RT data. Also, the criterion values and transfer
function were not systematically optimized. Nonetheless, the
ability of the strength model for asymptotic accuracy to
account for RT data is impressive. Qualitatively, this account
predicts approximately superimposed positive serial position
functions in RT. (The shape of the serial position functions
is slightly different from that shown in Figure 16, because
different serial positions fell on different portions of the curved
transfer function. Also, serial position —1 received an added
dynamic benefit.) Small set size effects on SAT accuracy are
built into the d’ strength values. Criteria are lower for longer
set sizes, hence predicting the effect of set size on negative
RT. Some interaction of recent and distant negatives with set
size (Monsell, 1978) is possible, dépending on the shape of
the transfer function. Recent negatives are shifted overall
toward smaller average distances to the criterion and hence
may occupy a higher slope region of the transfer function.

One possible mechanistic account of the retrieval process
that would be qualitatively consistent with the RT transfer
function of Figure 17 is the diffusion model discussed earlier.
This is a continuous accrual mechanism in which the drift
rate is determined by an item’s resonance or match value
(strength). Another possible mechanism is Hockley and Mur-
dock’s (1987) noise-sampling model. In this model, a single
memory strength sample is obscured by independent added
noise samples in a series of sampling epochs. A decision is
made whenever the sample plus noise exceeds a high criterion
for “yes” responses or falls below a low criterion for “no”
responses. Unlike the diffusion model, this model does not
cumulate information over retrieval time; instead, the criteria
are moved closer together over time. This model is generally
consistent with the RT transfer function of Figure 17; how-
ever, the model requires post hoc modifications in order to
account for the full trade-off from chance to asymptotic
accuracy of SAT curves. A number of other mechanistic
accounts might also be compatible with the RT transfer
function.

In summary, Monsell (1978) apparently assumed that list
length would not affect the strength estimates for items with
a given recency, and hence he excluded a strength model.
However, as shown here, fairly simple strength models of
retrieval accommodate both the RT pattern and the SAT
data. Furthermore, the strength model is the same as that
shown previously (Wickelgren & Norman, 1966) to apply to
untimed accuracy in short-term lists.

in the “acquisition-primacy” model of Wickelgren and Norman
(1966). (The four panels show set sizes [SS] three to six, respectively.
Items in the primacy position are denoted by the heavy lines; the
remaining serial positions, from the most recent to the most remote,
vield a consistent ordering from right to left on the strength axis.)
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RT and SAT Paradigms

As described in the Introduction, one possible concern is
that the SAT paradigm alters the retrieval strategies of the
subject, resulting in differences in processing between SAT
and RT paradigms. For example, subjects might be induced
to use a terminating variant of a scan process in order to
prepare for interruption in SAT. To the contrary, we believe
that SAT performance and RT performance in our short-
term memory retrieval experiments reflect the same set of
basic memory processes. Consider the position that subjects
use (as we found) a direct-access retrieval mechanism—cou-
pled with classic forgetting mechanisms—in the SAT para-
digm, but that they use an exhaustive scan mechanism in the
RT paradigm. One must then separately account for the
strong relation between the SAT results and the RT results
illustrated in Figure 17. We argue that the systematic variance
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Figure 17. A monotonic, negatively accelerated transfer function
mapping distance from the criterion into mean reaction time (RT).
(The points that lie below the function are the respective positive
probes from the most recent serial position and may reflect speeded
dynamics.)

in the RT results follows directly from some aspect of SAT
retrieval parameters: either from properties of strength distri-
butions (asymptotic levels) or, in the case of immediate rep-
etition, from the additional sharp increase in rate of retrieval.
Thus we propose a single mechanism that can generally
account for the SAT performance, for the relation of RT to
that performance, and for the main properties of the RT
results themselves. Not only is there no evidence that compels
us to propose a different mechanism (either exhaustive or self-
terminating scan) to account for RT data, but such a proposal
would also require an explanation of why SAT parameters
and RT data correlate so highly and, more generally, why
subjects would elect to use a mechanism in which interme-
diate information is not available in RT, when a direct-access
mechanism is available for use in SAT.

This strong relation between parameters of the SAT func-
tions and RT results is not unusual (i.e., Dosher, 1982, 1984a;
Dosher & Rosedale, 1989), although there may be some
domains in which strong paradigm-specific strategic differ-
ences would occur. Furthermore, this discussion should not
be taken to imply that RT data can be predicted without
additional estimated parameters from the SAT data. At a
minimum, some temporal offsets that estimate the time de-
voted to detection and processing of the interruption cue are
required. (For a related discussion of partial information
dynamics in decomposition methods, see Ratcliff, 1988.)
Nonetheless, we assert that our model conclusions likely
generalize to other paradigms such as RT.

Conclusions

There is no evidence in our data for an impact of set size
on the time course of recognition from short-term memory.
Furthermore, asymptotic accuracy differences between set size
can, in fact, be well accounted for by a simple acquisition-
primacy model in which apparent set size effects are merely
a by-product. The primacy-acquisition model, coupled with
some simple direct-access retrieval model and a match benefit
for immediate repetition, accommodates both SAT and com-
parable RT data quite well. Nonetheless, it might be possible
to argue that the retrieval process in circumstances like ours,
with short retention intervals, emphasizes serial position dif-
ferences that might be less apparent under typical “scan”
circumstances with rehearsal and a longer retention interval
(Sternberg, 1975).
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