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What do we want a foundation to do? 
 

Comparing set-theoretic, category-theoretic, and univalent approaches 
 
 
 
 

 
 Mainstream orthodoxy holds that set theory provides a foundation 

for contemporary pure mathematics.  Critics of this view argue that 

category theory, or more recently univalent foundations, is better 

suited to this role.  Some observers of this controversy suggest that 

it might be resolved by a better understanding of what a foundation 

is.  Despite considerable sympathy to this line of thought, I’m 

skeptical of the unspoken assumption that there’s an underlying 

concept of a ‘foundation’ up for analysis, that this analysis would 

properly guide our assessment of the various candidates.  In contrast, 

it seems to me that the considerations the combatants offer against 

opponents and for their preferred candidates, as well as the roles 

each candidate actually or potentially succeeds in playing, reveal 

quite a number of different jobs that mathematicians want done.  What 

matters is these jobs we want our theories to do and how well they do 

them.  Whether any or all of them, jobs or theories, deserves to be 

called ‘foundational’ is really beside the point.  
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 The forces behind the rise of set-theoretic foundations (in the 

late 19th and early 20th centuries) and its subsequent accomplishments 

(as of the early 21st) are explored and assessed in §1.  §2 turns to 

the criticisms lodged against set-theoretic foundations as category 

theory developed (in the 1940s) and the subsequent case for category-

theoretic foundations (beginning in the 1960s).  The current proposal 

for univalent foundations is examined in the concluding §3. 

 

§1.  Set-theoretic foundations1 

 It’s commonplace to note that all standard mathematical objects 

and structures can be modeled as sets and all standard mathematical 

theorems proved from the axioms of set theory2 -- indeed, familiarity 

may well have dulled our sense of just how remarkable this fact is.  

For our purposes, though, let me draw attention to another 

commonplace:  when called upon to characterize the foundational role 

of set theory, many observers are content merely to remind us that 

mathematics can be embedded in set theory in this way.  But simply 

repeating that this is so leaves our present questions untouched:  

what’s the point of this embedding?, what need does it serve?, what 

foundational job does it do? 

                       
1  Many themes of this section are explored in more detail, with sources, in 
§I of [2017]. 

2  Items like the category of all groups or the category of all categories are 
exceptions.  There is no set of all groups or set of all categories for the 
same reason that there’s no set of all sets:  sets are formed in a 
transfinite series of stages, and there’s no stage at which all of them (or 
all of them that are groups or all of them that are categories) are available 
to be collected.  The category-theoretic cases are explored in the next 
section. 
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 To answer these questions, we should look back at the conditions 

under which set theory arose in the first place.  Over the course of 

the 19th century, mathematics had expanded dramatically in an 

extraordinary variety of directions.  This great torrent of new 

mathematics brought with it a pair of epistemological losses, as the 

subject outstripped available thinking on what ultimately justifies 

mathematical claims.  Early efforts to make good on those losses 

eventually needed support of their own, and it was at this point that 

set theory entered the picture.  A quick sketch of these developments 

should help explain what jobs set theory was at least partly designed 

to do. 

 Consider first the case of geometry.  From the diagrams of 

Euclidean times to Kant’s late 18th century theory of spatial 

intuition, geometry was generally understood as grounded in some 

variety of visualization or intuition.  That changed in the 19th 

century with the introduction of ‘points at infinity’ (where parallel 

lines meet) and ‘imaginary points’ (with complex numbers as 

coordinates).  There was no denying the fruitfulness of regarding 

geometry from this new perspective, but the imaginary points at which 

two disjoint circles ‘intersect’ can hardly be visualized or intuited!  

So this is the first epistemic loss:  visualization and intuition were 

no longer adequate measures of correctness for the brave new geometry.  

What justification, then, could be given for admitting these new, 

invisible points, what guarantee that they wouldn’t severely 

compromise the whole subject?  Geometers were understandably queasy 

about this expansion of the proper domain of their inquiry.  
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 The second epistemic loss came with the rise of pure mathematics 

during this same period.3  Up through the 18th century, there was no 

distinction between pure and applied; mathematics was considered the 

study of the mathematical structure literally present in the physical 

world.  Galileo, Newton, Euler, Fourier, and others took the goal of 

natural science to be the isolation of purely mathematical laws 

governing the behavior of observable phenomena (e.g., planetary 

motions or the distribution of heat in a body) without appeal to 

hidden causes (e.g., Cartesian vortices or caloric fluids).  This 

strategy was a tremendously successful at the time, encouraging 

precise mathematization and eschewing dubious mechanical explanations.  

The ongoing clash between mathematization of observable behavior and 

causal explanation re-emerged in the late 19th century in the study of 

thermodynamics:  descendants of the purely descriptive, mathematical 

tradition, proposed the experientially exception-less second law, that 

entropy can only increase, while descendants of the causal, 

explanatory tradition developed the kinetic theory, according to which 

a decrease in entropy is just highly unlikely.  In the early years of 

the 20th century, the tables of history turned:  kinetic theory with 

its atoms and molecules in random motion was experimentally confirmed.  

This meant that the laws of classical thermodynamics were revealed to 

be merely probable, and more generally, that the many hard-won 

differential equations of the 18th and 19th centuries were highly 

                       
3  For more on this development, see [2008] or chapter 1 of [2011]. 
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effective approximations, smoothed-out versions of a more complex, 

discrete microstructure.   

 By the end of the 19th and beginning of the 20th centuries, as 

pure mathematics proliferated and applied mathematics lost its claim 

to literal truth, it became clear that mathematics isn’t actually in 

the business of discerning the precise formal structure of the 

physical world.  Rather, it provides an array of abstract models for 

the scientist to choose from for any particular descriptive job.  Most 

of these mathematical descriptions involve explicit idealizations and 

approximations, and applied mathematicians expend considerable effort 

on explaining how and why these non-literal representations are 

nonetheless effective, often within a limited range of cases.  Some 

such descriptions are effective despite our inability to explain 

exactly what worldly features they’re tracking (e.g., in quantum 

mechanics).  These are crucial morals for the philosophy of science, 

but our concern here is the epistemic loss suffered by mathematics 

itself:  in the new, pure mathematics, there was no place for physical 

interpretation or physical insight to guide developments.  In Euler’s 

day, a scientist’s feel for the physical situation could help shape 

the mathematics, could constrain it to effective paths even when rigor 

was in short supply.  Now that mathematicians had declared their 

independence -- their freedom to pursue whatever paths caught their 

purely mathematical interest -- physical results and physical 

intuition could no longer serve to support or justify mathematical 

work.  Without this guidance, how were mathematicians to tell which 
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among the proliferation of new, purely mathematical abstract 

structures under were trustworthy, legitimate, worthwhile?   

 In the face of these epistemic set-backs, two types of remedies 

were offered.  The first, in response to queasiness about the new, un-

intuitable geometric points, came in the mid-19th century, when Karl 

von Staudt managed to build surrogates for the suspicious entities out 

of straightforwardly acceptable materials.  So, for example, a point 

at infinity where two given parallel lines meet can be identified with 

the collection (‘pencil’) of all lines parallel to those two, and this 

point at infinity taken to be on a given line if the line is in that 

collection.4  In this way, a previously suspicious mathematical 

development is domesticated by building it up from previously 

justified mathematics.  This method was widely used, but eventually a 

new question has to be faced:  which means of building new from old 

are trustworthy, and why? 

 The second remedy, in response to the proliferation of abstract 

structures, came later in the 19th century, with Hilbert’s axiomatic 

method:  each proposed structure should be rigorously axiomatized; if 

that axiomatization is coherent, the structure is legitimate.  Though 

careful isolation of appropriate axioms might reveal unnoticed 

incoherence in some cases, for most others a new worry is immediate:  

how do we tell which axiomatizations are coherent?5  A second concern 

                       
4  Readers of Frege [1884] will recognize this as ‘the direction of a line’ 
and recall how it serves as Frege’s model for identifying a natural number 
with a collection of equinumerous collections.   
 
5  This was before the development of formal languages and deductive systems, 
before a clear understanding of consistency, satisfiability, and of course, 
before Gödel’s completeness and incompleteness theorems. 
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is less obvious, but also serious.  Suppose I’ve devised an axiom 

system for the natural numbers, another for the real numbers, another 

for analysis, another for point-set topology, another for computable 

functions, and so on -- and I prove theorems in each of these.  Can I 

use the theorems I’ve proved in one area to prove theorems in another?  

John Burgess illustrates how centrally modern mathematics replies on 

the ability to move easily between its branches:   

There is the interconnectedness of the different branches of 
mathematics, a phenomenon evident since the seventeenth century 
in the use of coordinate methods, but vastly expanded in the 
nineteenth century.  With the group concept, an idea originating 
in algebra is applied to geometry.  With ‘functional analysis’, 
ideas originating in geometry or topology are applied to 
analysis, as functions come to be considered ‘points’ in an 
auxiliary space, and operations like differentiation and 
integration come to be considered ‘transformations’ of that 
space.  (Footnote:  One reason one needs to allow in pathological 
functions like the Riemann-Weierstrass examples is in order to 
achieve a certain ‘completeness’, analogous to the completeness 
of the real number-line, in the ‘space’ of functions.)  And so on 
across the whole of mathematics.   
 
Interconnectedness implies that it will no longer be sufficient 
to put each individual branch of mathematics separately on a 
rigorous basis.  (Burgess [2015], pp. 59-60, emphasis in the 
original) 
 

Today it’s hard to see how Wiles could have proved Fermat’s Last 

Theorem if he’d been confined to one or another of the individual 

axiom systems! 

 The epistemic and methodological questions raised by these 19th-

century losses and their partial remedies permeated the climate in 

which set theory first arose.  Though much of the initial motivation 

for introducing sets was purely mathematical -- Cantor, for example, 

was just trying to generalize his theorem on the uniqueness of 
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trigonometric representations -- it soon became clear that the various 

building methods of von Staudt and the rest were all essentially set-

theoretic in character, all derivable from a few elementary set-

theoretic operations (like taking subsets, intersections and unions, 

cross-products, and power sets).  Indeed it turned out that all the 

various items previously axiomatized in separate systems (natural 

numbers, real numbers,6 analysis, etc.) could be constructed set-

theoretically -- the beginnings, in other words, of the famous 

embedding of mathematics in set theory. 

In this way, set theory made progress on our first two questions:  

the trustworthy building methods are those of set theory; the coherent 

axiom systems are those that can be modeled by sets.  Of course this 

is cold comfort unless we know that set theory itself is reliable -- a 

particularly dubious proposition at the time, given both the paradoxes 

and wide-spread debates over fundamentals (the well-ordering 

principle, the axiom of choice, the continuum hypothesis, etc.).  

Working in the Hilbertian tradition, Zermelo set out to axiomatize the 

subject, successfully isolating the basic assumptions underlying the 

                       
6  It’s worth noting that Dedekind’s set-theoretic construction of the reals 
was different in character from von Staudt’s construction of imaginary 
points.  Von Staudt was faced with a practice in good working order, but with 
questionable posits.  Dedekind was faced with a defective practice (basic 
theorems of the calculus couldn’t be proved).  So von Staudt’s challenge was 
to remove queasiness about the posits by domesticating them, while Dedekind’s 
was to produce a more precise replacement that would both conform to previous 
practice and extend it (proving those basic theorems).  Thus Dedekind’s 
construction had a different, plausibly ‘foundational’ function (called 
Elucidation in [2017]).  As both category-theoretic and univalent foundations 
are content to relegate Elucidation to ETCS, a weak category-theoretic theory 
of collections (see [2017], §II, and UFP [2013], p. 8, respectively), it 
won’t figure in the comparative analysis here. 
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informal practice while forestalling the known routes to paradox.  

Though he hoped to include a consistency proof in his original 

presentation, Hilbert encouraged him to publish the axioms first and 

follow with the consistency proof when it was ready.  Years later it 

became clear what good advice this was, when Gödel showed that only an 

stronger system could prove the consistency of Zermelo’s axioms 

(assuming they are consistent).   

 So, much as we might like to have an iron-clad guarantee of the 

consistency of set theory, and thus of the trustworthiness of the 

methods embedded therein, this is a forlorn hope; all we get is the 

assurance that the embedded methods are no more dangerous than 

Zermelo’s set theory.  Most estimates of that danger have decreased 

substantially over the intervening century, with the development of a 

compelling intuitive picture of the universe of sets (the iterative 

conception), a finely-articulated model within set theory (the 

constructible universe), and a vast, intricate and far-reaching 

mathematical theory with no sign of contradiction.  Meanwhile, various 

levels of consistency strength have been delineated and explored -- 

from relatively weak subsystems of second-order arithmetic to ever-

larger large cardinal axioms -- yielding a hierarchy that’s now 

routinely used to calibrate the level of danger a proposed theory 

presents.  Presumably the ability to assess these risks is something 

mathematicians value.  Insofar as we’re inclined to regard Risk 

Assessment as a ‘foundational’ virtue, this is one foundational job 

that contemporary set theory does quite well. 
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 Finally, the other question raised by the axiomatic response to 

the loss of older forms of justification (intuition/visualization, 

physical interpretation/insight) concerned the interrelations between 

the various branches of pure mathematics:  if each branch is 

characterized by its own separate list of axioms, how can work in one 

branch be brought to bear in another?   

To guarantee that rigor is not compromised in the process of 
transferring material from one branch of mathematics to another, 
it is essential that the starting points of the branches being 
connected should … be compatible.  … The only obvious way to 
ensure compatibility of the starting points … is ultimately to 
derive all branches from a common, unified starting point.  
(Burgess [2015], pp. 61-62) 
 

This ‘common, unified starting point’ emerges when the various 

branches are all embedded in a single theory of sets, when all 

theorems are treated as theorems in the same system.  In this way, set 

theory provides a Generous Arena where all of modern mathematics takes 

place side-by-side and a Shared Standard of what counts as a 

legitimate construction or proof.  These are the striking achievements 

of the well-known embedding of mathematics in set theory.  Insofar as 

they fairly count as ‘foundational’, set theory is playing two more 

crucial foundational roles. 

 Let’s pause a moment to notice that everything claimed so far on 

set theory’s behalf has been at the level of straightforward 

mathematical benefits:  the embedding of mathematics in set theory 

allows us to assess the risk of our theories, to bring results and 

techniques one branch of mathematics to bear on concepts and problems 

in another, and to agree on standards of construction and proof.  Some 

observers, especially philosophers, have been tempted to draw -- in 
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addition -- strong metaphysical or epistemological morals:  we’ve 

discovered that all mathematical entities were really sets all along, 

or that our knowledge of mathematics is reducible to our knowledge of 

sets.7  These further claims might rightly be called ‘foundational’, 

too, but they’re also controversial, to say the least.  For 

mathematical purposes, the metaphysical claim is beside the point:  it 

doesn’t matter whether we say the von Neumann ordinals are the numbers 

or the von Neumann ordinals can serve as fully effective mathematical 

surrogates for the numbers.  As for the epistemological claim, it’s 

just false:  however it is that we know the things we know in the 

various, far-flung branches of mathematics, it isn’t by deriving them 

from the axioms of set theory.  Most of the time, it’s our conviction 

that the mathematics is correct that makes us think there must be a 

formal proof from those axioms! 

 While dubious philosophical claims like these are unlikely to 

affect practice, other intrusions of irrelevant ontological thinking 

might come uncomfortably close.  Quite generally, if we take the claim 

that set theory determines the ontology of mathematics too seriously, 

we might be tempted to think of it as ‘the final court of appeal’, 

charged with passing stern judgement on new mathematical avenues.  In 

fact, I think this gets the situation backwards:  casting set theory 

as the Generous Arena isn’t intended to limit mathematics; rather it 

places a heavy responsibility on set theory to be as generous as 

                       
7  These are the spurious foundational virtues called Metaphysical Insight and 
Epistemic Source in [2017]. 
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possible in the types of structure whose existence it implies.8   This 

admonition to maximize is one of the most fundamental and powerful 

methodological principles guiding the development of set theory.  If 

we imagine, in our overly philosophical mood, that set theory has some 

kind of special access to the metaphysical facts about what abstracta 

exist, then we might be tempted to put the onus on mathematical 

practice to conform to the dictates of set theory, to raise that 

special access above informed judgements of mathematical advantage.  I 

trust we can all agree that this would be a grave mistake. 

A more subtle danger in the same general direction arises from 

the fact that our embedding of mathematics in set theory is more like 

von Staudt’s approach than Hilbert’s:  a surrogate for the 

mathematical item in question is constructed by set-theoretic means, 

as an item in V, the set-theoretic universe; it’s not enough, as the 

Hilbertian would have it, that there’s a model somewhere in V that 

thinks there is such an item.  A simple example would be a proof of 

1=0 from the axioms of (first-order) Peano Arithmetic:  PA + not-

Con(PA) is consistent (assuming PA is), so it has a model that thinks 

there’s a proof of 1=0 from PA; but viewed set-theoretically, that 

model is benighted, the thing it takes for a proof of 1=0 has non-

standard length, isn’t really a proof.  For a more interesting 

example, consider a definable9 well-ordering of the real numbers.  

                       
8  The underlying methodological maxim here is to prefer non-restrictive, 
maximizing theories.  [1997] concludes with an early attempt to formalize 
this notion.  Various developments of this idea and alternatives to it have 
been suggested, but the problem remains open. 
 
9  That is, projectively definable. 
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There is such an ordering in Gödel’s inner model, the constructible 

universe L, but if we add large cardinal axioms to our list, as many 

set theorists these days do, then that model is benighted:  the thing 

it takes for a well-ordering of the reals only orders the reals 

present in L; in fact, there is no definable well-ordering of all the 

reals.   

Speaking loosely, we might express this by saying that the 

inconsistency proof and the well-ordering exist on the Hilbertian 

standard, while on the von Staudtian set-theoretic standard, they 

don't.  This way of talking is expressive and largely benign, but it 

can lead us astray if we forget that it's figurative, if we fall into 

taking it too literally.  We need to bear in mind that the cash value 

of 'these things exist in V' is just 'the existence of (surrogates 

for) these things can be proved from the axioms of set theory' -- a 

straightforward manifestation of set theory's role as Shared Standard 

of proof.  To say that 'the universe of sets is the ontology of 

mathematics' amounts to claiming that the axioms of set theory imply 

the existence of (surrogates for) all the entities of classical 

mathematics -- a simple affirmation of set theory’s role as Generous 

Arena.   

 The danger in taking figurative ontological talk too seriously is 

that it can lead to a sort of rigidity in practice.  Consider that 

definable well-ordering of the reals.  Suppose a pure mathematician 

has a clever and fruitful approach to a certain problem, or an applied 

mathematician has a way to effectively model some physical situation, 

by means of such an ordering.  If we believe that set theory is the 
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'ontology' of mathematics, ‘the final court of ontological appeal’, 

we’ll be tempted to say 'tough luck, it might be nice if there were 

such a thing, but there isn't’.  But this seems wrong.  Both 

mathematicians’ activities can be carried out inside L -- by which we 

mean, in set theory with V=L as an additional axiom.  Since that 

theory includes the standard axioms, it provides a fairly Generous 

Arena all by itself:  the usual constructions and techniques are ready 

to hand; to speak in the figurative idiom, L is a pretty good place to 

do mathematics.  The disadvantage is that results proved using V=L 

can’t automatically be exported to other areas of mathematics, and 

results from other areas that depend on large cardinals can't 

automatically be imported.  But as long as these import/export 

restrictions are observed, as long as the use of axioms beyond the 

standard ones is carefully flagged, there's no reason to rule out 

these developments.  The pure mathematician’s work on her problem is 

simply part of the investigation of L, a particularly important part 

of V; the applied mathematician has determined that it’s most 

effective to model his physical situation in L rather than V.   

 This leaves us with a tempered version of the von Staudian ‘final 

court of ontological appeal’:  the axioms for our Generous Arena, 

which constitute our Shared Standard of proof, include the usual 

axioms -- plus some others, beginning with large cardinals, that add 

to their generosity -- but these can be temporarily adjusted for 

mathematical or scientific purposes with suitable import/export 

restrictions.  Once we reject the idea that the choice of a 

fundamental theory to do these foundational jobs is a matter of 
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determining the ‘true mathematical ontology’, once we focus instead on 

the literal mathematical content of our decisions, we come to see that 

we can and should allow some wiggle room for both pure and applied 

mathematicians to work in well-motivated variants of the fundamental 

theory.  I won’t attempt to explicate what counts as ‘well-motivated’ 

-- this requires the sound judgment of insightful practitioners -- but 

one clear qualifier is the existence of an attractive, well-understood 

model inside V,10 as in the case of L and V=L.11  Though this marks a  

slight adjustment to strict von-Staudism, it’s still very far from 

full Hilbertism, where any consistent theory as good as any other -- 

precious few such theories can deliver a pure mathematical theorem 

worth proving or an applied mathematical model amenable to actual 

use.12 

One last point.  Returning once more to the historical 

development of set theory, Zermelo’s axioms were soon supplemented 

with replacement and foundation, and his imprecise notion of ‘definite 

property’ was sharpened to ‘formula in the first-order language of set 

theory’.  This generated what we now know as the formal theory ZFC.  

At that point, the embedding of mathematics in set theory came to 

serve yet another purpose:  once mathematics was successfully encoded 

                       
10  This is, the existence of such a model can be proved from the fundamental 
axioms. 
 
11  Another well-known example is the theory ZF + V=L(R) + AD.  Again, 
separating the ‘mathematically worthy’ from the unworthy no doubt requires 
keen mathematical discernment and well-informed good judgement. 
 
12  For successful application, it’s not enough that our theory prove the 
existence of a suitable structure; it must exist in a context with enough 
mathematical tools to study and manipulate that structure.  See [2011], pp. 
90-96, for a related discussion. 
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in a list of formal sentences, meta-mathematical tools could be 

brought to bear to prove theorems about its general features.  Among 

the greatest of these results were those of Gödel -- classical 

mathematics, if consistent, can’t prove its own consistency or the 

negation of the Continuum Hypothesis -- and Cohen -- or the Continuum 

Hypothesis itself.  Here set theory provides a Meta-mathematical 

Corral, tracing the vast reaches of mathematics to a set of axioms so 

simple that they can then be studied formally with remarkable success.  

Perhaps this accomplishment, too, has some claim to the honorific 

‘foundational’.   

 So my suggestion is that we replace the claim that set theory is 

a (or ‘the’) foundation for mathematics with a handful of more precise 

observations:  set theory provides Risk Assessment for mathematical 

theories, a Generous Arena where the branches of mathematics can be 

pursued in a unified setting with a Shared Standard of proof, and a 

Meta-mathematical Corral so that formal techniques can be applied to 

all of mathematics at once.  I haven’t offered any argument that these 

accomplishments must be understood to be ‘foundational’, but it seems 

to me consistent with the ordinary use of the term to so apply it.  I 

take it for granted that these accomplishments are of obvious 

mathematical value, whatever we decide about the proper use of the 

term ‘foundational’.   

Let’s now turn to two of set theory’s purported rivals:  first 

category-theoretic foundations, then univalent foundations. 
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§2.  Category-theoretic foundations13 

 By the end of the 1930s, ZFC had been codified in its first-order 

form and its role as Generous Arena, Shared Standard, Meta-

mathematical Corral, and in Risk Assessment were widely accepted.  

Soon thereafter, mathematical pressures in abstract algebra gave rise 

to category theory, and category theorists began to criticize set 

theory as a ‘foundation’.  By the 1960s, category theory was being 

proposed as alternative to set theory that could overcome these 

weaknesses.  A look at the objections raised and the solutions offered 

should help us determine what jobs the critics thought a ‘foundation’ 

was supposed to do.   

 So, what was wrong with set-theoretic foundations?  The first 

objection is that category theory deals with unlimited categories, 

like the category of all groups or the category of all categories or 

the category of all mathematical X’s, but nothing like this can be 

found in the universe of sets.14  Grothendieck overcame this problem by 

positing an ever-increasing sequence of ‘local universes’ and noting 

that any category-theoretic activity can be carried out in a large 

enough one of these.  In set-theoretic terms, this is to add 

inaccessible cardinals, the smallest of the large cardinals beyond 

ZFC.  In other words, the risk of Grothendieck’s category theory is no 

greater than that of ZFC + Inaccessibles.  If Risk Assessment is the 

                       
13  For more on many themes of this section, with sources, see §II of [2017]. 
 
14  Because new groups or categories or mathematical X’s keep being formed at 
higher and higher ranks in the iterative hierarchy of sets, there’s never a 
rank at which they all be collected together.  Recall footnote 2. 
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foundational goal in question, set theory is still doing fine.  

Likewise, surrogates for the categories are available in set theory’s 

Generous Arena, so Shared Standard, and Meta-mathematical Corral also 

seem to be in order. 

 Given that the foundational goals of set theory were still being 

met, it’s difficult to see what the category theorists took to be 

missing.  The objection seems to be that in any particular category-

theoretic context, the item serving as a set-theoretic surrogate for 

the category of all X’s doesn’t include all the set-theoretic X’s:   

Categorical algebra … uses notions such as that of the category G 
of all groups. … To realize the intent of this construction it is 
vital that this collection G contain all groups; however, if 
‘collection’ is to mean ‘set’ … this intent cannot be realized.  
(Mac Lane [1971], p. 231)   
 

This is true, but it doesn’t keep set theory from meeting any of the 

identified foundational goals.  Of course it doesn’t tell us what the 

category of X’s really is, any more than the use of the von Neumann 

ordinals as surrogates for the natural numbers tells us what they 

really are, but this dubious metaphysical goal has easily been seen to 

be mathematically irrelevant.15   

I’m not entirely confident that this is what left the category 

theorists dissatisfied with the Grothendieck-style move, but 

fortunately, subsequent developments reveal that this isn’t a point 

that needs to be settled.  In hope of overcoming this purported 

shortcoming of set-theoretic foundations, it was proposed that 

category theory itself could provide a proper ‘foundation’ for 

                       
15  Recall footnote 7 and surrounding text. 
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unlimited categories -- where this was taken to mean a fundamental 

theory in which the category of all X’s can be formed for any 

mathematical notion X, and the usual operations and constructions of 

category theory can be carried out.  Progress toward this goal was 

incremental until just recently:  Ernst [2014] shows that any such 

theory is actually inconsistent.16  This means that set theory is not 

to blame for its inability to form categories of all X’s -- no 

consistent theory, including category theory itself, can do that.  So 

whatever the problem was supposed to be, it’s a problem that can’t be 

solved by any ‘foundation’. 

The second early criticism lodged by category theorists against 

set-theoretic foundations concerns the nature of the embedding.  

Though surrogates for various mathematical items can be found in the 

universe of sets, that universe as a whole is vast, its construction 

techniques wildly indiscriminate, so it includes hordes of useless 

structures and -- this is the important point -- no way of telling the 

mathematically promising structures from the rest.  Furthermore, the 

set-theoretic surrogates have lots of extraneous structure, artifacts 

of the way they’re constructed.  Here the hope was to find a 

foundation that would guide mathematicians toward the important 

structures and characterize them strictly in terms of their 

mathematically essential features.  Such a foundation would actually 

be useful to mainstream mathematicians in their day-to-day work, not 

remote, largely irrelevant, like set theory; it would provide 

                       
16  Ernst shows, in particular, that a contradiction arises from the 
assumption that such a theory can form the category of all graphs.   
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Essential Guidance.  Proponents held that this is precisely what 

category theory had done for algebraic geometry and algebraic 

topology. 

Now it could be that some over-zealous partisan of set-theoretic 

foundations at one time or another claimed that mathematics would be 

better off if all mathematicians thought like set theorists, but as 

far as I can tell, this was never one of the foundational jobs that 

set theory was seriously proposed to do.  No reasonable observer would 

suggest that an algebraic geometer or algebraic topologist would do 

better to think in set-theoretic rather than category-theoretic terms.  

But it seems equally unreasonable to suggest that an analyst, or for 

that matter a set theorist, would do better to think in category-

theoretic terms.17  What’s intriguing here is that proponents of 

category-theoretic ‘foundations’ would apparently agree.  Mac Lane, 

for example, writes:  

Categories and functors are everywhere in topology and in parts 
of algebra, but they do not yet relate very well to most of 
analysis.   
 
We conclude that there is as yet no simple and adequate way of 
conceptually organizing all of Mathematics.  (Mac Lane [1986], p. 
407) 
 

If a ‘foundation’ is to reveal the underlying essence, the conceptual 

core, omit all irrelevancies, and guide productive research, then it’s 

unlikely that it can encompass all areas of mathematics.  Faced with 

this tension between Essential Guidance and Generous Arena, Mac Lane 

                       
17  See, e.g., the work of Mathias discussed in [2017]. 
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seems willing to forego Generous Arena, and with it presumably Shared 

Standard and Meta-Mathematical Corral.  

This preference is more-or-less explicit in the theory of 

categories that’s proposed as our fundamental foundation.  The 

‘Category of Categories as a Foundation’ (CCAF) was introduced by 

Lawvere in the 1960s and subsequently improved by McLarty in the 

1990s.  CCAF is a actually a minimal background theory which is then 

supplemented as needed to guarantee the existence of particular 

categories for this or that area of mathematics.  One such special 

category is ‘The Elementary Theory of the Category of Sets’ (ETCS), 

which codifies a relatively weak theory of collections (ZC with 

bounded separation).  Collections in this sense are understood in a 

natural way in terms of their arrows rather than their elements, but 

to gain a category-theoretic set theory with sufficient strength for, 

say, Risk Assessment, more characteristically set-theoretic notions 

have to be translated in from outside.18  A category for synthetic 

differential geometry is another example that could be added with a 

suitable axiom.  As might be expected from the Hilbertian flavor of 

this approach, it isn’t conducive to Generous Arena. 

So despite the rhetoric -- pitting category theory against set 

theory, proposing to replace set-theoretic foundations with category-

theoretic foundations -- the two schools are aimed at quite different 

goals.  Set theory provides Risk Assessment, Generous Arena, Shared 

                       
18  Of course set theory also translates notions from outside when locating 
their surrogates, but set theory isn’t claiming to provide Essential 
Guidance.   
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Standard, and Meta-mathematical Corral, and it apparently continues to 

do these jobs even in the context of category-theoretic foundations.  

What category theory offers is Essential Guidance, but only for those 

branches of mathematics of roughly algebraic character.  I have no 

objection to calling this a ‘foundational’ achievement, so long as it 

isn’t taken to supersede the other foundational goals explored here.  

What category theory has accomplished -- however this achievement is 

labeled -- is a way of thinking about a large part of mathematics, of 

organizing and understanding it, that’s been immensely fruitful in 

practice.  Proponents of set-theoretic foundations should have nothing 

but admiration for this achievement.  It raises deep and important  

methodological questions about which ‘ways of thinking’ are effective  

for which areas of mathematics, about how they differ, about what 

makes them so effective where they are and ineffective where they 

aren’t, and so on.   

So, should we regard set theory’s range of accomplishments for 

mathematics in general as more ‘foundational’ than category-theory’s 

conceptual achievements across several important areas of the subject, 

or vice versa?  I confess that this doesn’t strike me as a productive 

debate.  In contrast, a concerted study of the methodological 

questions raised by category theory’s focus on providing a fruitful 

‘way of thinking’ would almost certainly increase our fundamental 

understanding of mathematics itself.  I vote for that. 
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§3.  Univalent Foundations 

 With these 19th and 20th century developments in the background, 

the turn of the 21st brought a new critique of set-theoretic 

foundations and a new proposal for its replacement.  Like set theory 

and category theory, this more recent effort also arose out of ongoing 

mathematical practice.  The mathematics involved this time is homotopy 

theory, which, like category theory, has its roots in abstract 

algebra; proponents of the subject describe it as ‘an outgrowth of 

algebraic topology and homological algebra, with relationships to 

higher category theory’ (UFP [2013], p. 1).  The program of univalent 

foundations involves using homotopy theory to interpret Martin-Löf’s 

type theory, then adding the so-called ‘Univalence Axiom’ -- which has 

the effect, understood roughly, of identifying isomorphic structures.19  

The result is declared to be ‘incompatible with conventional 

[presumably, set-theoretic and category-theoretic] foundations’ 

(Awodey [2014], p. 1) and to provide ‘a completely new foundation’ 

(Voevodsky [2014], p. 9).  

 We’ve seen that set-theoretic foundations arose in response to 

the serious practical questions in the wake of the profound shift from 

mathematics as a theory of the world to mathematics as a pure subject 

in its own right.  In contrast, category-theoretic practice was 

functioning well enough with Grothendieck’s understanding; the impetus 

this time came from the hope for truly unlimited categories 

(misconstrued at the time as a shortcoming of set-theoretic 

                       
19  See Awodey [2014], p. 1. 
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foundations) and the promise that category theory could do a new and 

different foundational job (Essential Guidance).  Univalent 

foundations takes a page from each book:  there was a real practical 

problem to be addressed, and addressing it introduced a new 

foundational goal.  Let me explain. 

 Grothendieck’s work in category theory was already so complex 

that ‘the intellectual faculties are being strained to their uttermost 

limit’ (Burgess [2015], p. 176), and as younger mathematicians pushed 

these ideas further, there was some evidence those limits had been 

breached.  Vladimir Voevodsky, one of the leaders in this development 

and the originator of univalent foundations, describes how the 

troubles began: 

The groundbreaking 1986 paper ‘Algebraic Cycles and Higher K-
theory’ by Spencer Bloch was soon after publication found by 
Andrei Suslin to contain a mistake in the proof of Lemma 1.1.  
The proof could not be fixed, and almost all the claims of the 
paper were left unsubstantiated. 
 
The new proof, which replaced one paragraph from the original 
paper by thirty pages of complex arguments, was not made public 
until 1993, and it took many more years for it to be accepted as 
correct.  (Voevodsky [2014], p. 8). 
 

Soon, a similar problem hit closer to home.  In 1999-2000, Voevodsky 

lectured at Princeton’s Institute for Advanced Study on an approach to 

motivic cohomology that he, Suslin, and Eric Friedlander had 

developed, an approach based on earlier work of Voevodsky.  That 

earlier work was written while the jury was still out on Bloch’s 

lemma, so necessarily did without it.  As the lectures progressed, the 

details were carefully scrutinized. 

Only then did I discover that the proof of a key lemma in my 
[earlier] paper contained a mistake and that the lemma, as 
stated, could not be salvaged.  Fortunately, I was able to prove 
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a weaker and more complicated lemma, which turned out to be 
sufficient for all applications.  A corrected sequence of 
arguments was published in 2006.  (ibid.) 
 

Perhaps even worse, in 1998 a counterexample was reported to a 1989 

paper of Michael Kaparonov and Voevodsky, but because of the 

complexities involved, Voevodsky reports that he didn’t believe it 

himself until 2013! 

 It’s easy to sympathize with the cumulative effect of these 

mishaps on Voevodsky:  ‘This … got me scared’ (ibid.).  It became hard 

to ignore the fact that proofs in this area were so complex as to be 

prone to hidden glitches, a worry exacerbated by the further fact that 

correcting these glitches made the proofs even more complex.  To top 

off the anxiety, at this point Voevodsky was hoping to push even 

further, into something new he called ‘2-theories’.   

But to do the work at the level of rigor and precision I felt 
necessary would take an enormous amount of effort and would 
produce a text that would be very hard to read.  And who would 
ensure that I did not forget something and did not make a 
mistake, if even the mistakes in much more simple [‼] arguments 
take years to uncover?  (Voevodsky [2014], p. 8) 
 

This, then, is the pressing new problem faced by mathematical 

practioners in this field:  how can we be confident that our proofs 

are correct?  To this point, various sociological checks had been 

enough -- proofs were carefully examined by the community; 

mathematicians of high reputation were generally reliable; and so on -

- but those checks had apparently been outstripped. 

 The need to address this problem gives rise to a new goal -- a 

systematic method for Proof Checking -- and it seems reasonable to 

classify this goal, too, as ‘foundational’.  As we’ve seen, set-

theoretic foundations originated in the embedding of standard 
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mathematics in set theory.  For this purpose, as Voevodsky puts it, 

all we need is to 

… learn how to translate propositions about a few basic 
mathematical concepts into formulates of ZFC, and then learn to 
believe, through examples, that the rest of mathematics can be 
reduced to these few basic concepts.  (Voevodsky [2014], p. 9) 
 

Here we have the embedding expressed in formal terms.  Despite its 

meta-mathematical virtues, this formal system isn’t one in which any 

mathematician would actually want to prove anything; in fact (as noted 

earlier), our confidence that there is a formal proof is usually based 

on our confidence in the informal proof, combined with our informed 

belief that all informal proofs can be formalized in this way.  The 

demands of Proof Checking are quite different:  we need a system that 

can represent actual proofs, ‘a tool that can be employed in everyday 

mathematical work’ (Voevodsky [2014], p. 8).20 

 Now there are actually several proof checking technologies on 

offer these days, some even based on set theory.  In his contribution 

                       
20  Awodey traces the roots of univalent foundations in traditional 
foundational work to Frege rather than Zermelo:  ‘this new kind of … 
formalization could become a practical tool for the working mathematician -- 
just as originally envisaged by Frege, who compared the invention of his 
Begriffsschrift with that of the microscope, (Awodey [2016], p. 8, see also 
Awodey and Coquand [2013], p. 6).  While Frege does make this comparison, it 
involves a contrast between the microscope and the eye:  ‘because of the 
range of its possible uses and the versatility with which it can adapt to the 
most diverse circumstances, the eye is far superior to the microscope’ (Frege 
[1879], p. 6).  Frege’s formal system ‘is a device invented for certain 
scientific purposes, and one must not condemn it because it is not suited to 
others’ (ibid.).  The ‘scientific purpose’ in question is to determine 
whether arithmetic can be derived by pure logic; the Begriffsschrift was 
needed ‘to prevent anything intuitive from penetrating here unnoticed … to 
keep the chain of inferences free of gaps’ (ibid., p. 5).   It seems to me 
likely that Awodey’s ‘practical tool for the working mathematician’ would be 
analogous to the eye, not the microscope, that serving as such a practical 
tool is one of those purposes for which the microscope and Frege’s formal 
system are ‘not suited’.   
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to this volume, Paulson touches on a range of options and remarks that 

‘every formal calculus … will do some things well, other things badly 

and many other things not at all’ (Paulson [2018], p. ??).  The 

proponents of univalent foundations have their own preferred system, 

combining ideas from Martin-Löf’s type theory with insights from the 

study of computer languages -- a system called ‘the calculus of 

inductive constructions’ (CIC).  The project is to express ordinary 

mathematical reasoning in these terms -- a process that might ‘become 

as natural as typesetting … papers in TeX’ (UFP [2013], p. 10) -- and 

to apply the associated proof assistant (Coq) to mechanically check 

the validity of those arguments.   

Obviously this is a heady undertaking, still in its early 

stages,21 but the ambitions of these theorists go beyond the original 

goal of testing the complex arguments of homotopy theory:  Voevodsky 

holds that univalent foundations, ‘like ZFC-based foundations and 

unlike category theory, is a complete foundational system’ (Voevodsky 

[2014], p. 9).22  By this he means that both set-theoretic and 

univalent foundations aim to provide three things: 

(1)  a formal language and rules of deduction:  first-order logic 
with the axioms of set theory, on the one hand; the 
aforementioned deductive system CIC, on the other.   
 
(2)  an intuitive interpretation of this deductive system:  the 
iterative hierarchy, on the one hand; homotopy types, on the 
other.23   

                       
21 Cf. UFP [2013], p. 2:  ‘univalent foundations is very much a work in 
progress’.  
 
22  I don’t know what Voevodsky finds lacking in category-theoretic 
foundations -- perhaps that it fails to provide a Generous Arena?  
 
23  Interestingly, Voevodsky [2014] observes that ‘our intuition about types 
of higher levels comes mostly from their connection with multidimensional 
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(3)  a method for encoding mathematics:  the well-known embedding 
of mathematics in set theory, on the one hand; an encoding in 
homotopy types on the other. 
 

The presence of (3) indicates that Generous Arena and Shared Standard 

are goals of univalent foundations, though Voevodsky admits that ‘this 

is … the least understood part of the story’ (Voevodsky [2014], p. 9).  

 The question that needs answering is whether this encoding in 

homotopy types is like set theory’s proof that there is a set-

theoretic surrogate or like category theory’s postulation of a 

category with the desired features -- recalling von Staudt vs. Hilbert 

– as only the former serves to unite the encodings in a single 

Generous Arena.  There’s probably an easy answer to this question, but 

if so, it’s unknown to me.  Voevodsky’s strong analogy between set-

theoretic and univalent foundations, summarized above, suggests the 

former; while some of Awodey’s remarks appear to lean toward to 

latter.  The move to univalent foundations, Awodey writes, 

… has the practical effect of simplifying and shortening many 
proofs by taking advantage of a more axiomatic approach, as 
opposed to more laborious analytic [e.g., set-theoretic] 
constructions.  (Awodey [2016a], p. 3) 
 

In a footnote, Awodey alludes to Russell’s famous remark about ‘the 

advantages of theft over honest toil’ (ibid.). 

In broad outline, it appears that the foundational theory into 

which mathematics is to be embedded begins by postulating a countable 

hierarchy of ‘universes’ (UFP [2013], p. 549) that obey a series of 

'rules' (ibid., pp. 549-552).  To this ‘type theory’, we add three 

                       
shapes, which was studied by ZFC-based mathematics for several decades’ (p. 
9). 
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axioms of homotopy theory:  function extensionality, univalence, and 

higher inductive types (ibid., §A.3).  Set theory, for example, is 

encoded as the category of all the 0-types in one or another of these 

universes, together with the maps between them (ibid., pp. 398, 

438).  So far, this looks more like honest toil than like theft.  But 

to get even to ETCS, we have to add the axiom of choice, which 

incidentally brings with it the law of excluded middle (ibid., 

§10.1.5).  If we simply assert that there is such a category, our 

procedure begins to look more like the axiomatic method of category-

theoretic foundations -- start with CCAF and add axioms as needed, 

asserting the existence of individual categories with the desired 

features for the various areas of mathematics -- and we’ve seen that 

this sort of approach doesn’t even aim for a Generous Arena.  I’m in 

no position to assess how far univalent foundations extends in this 

direction -- whether these are minor variations that can be handled 

with careful import/export restrictions or something more Hilbert-like 

-- so I leave this as a question to its proponents:  is your theory 

intended to provide a Generous Arena for all branches of mathematics 

and a Shared Standard of proof -- and if so, how? 

Whatever the answer to this question may be, further doubts on 

the viability of univalent foundations for Generous Arena and Shared 

Standard arise when we consider Essential Guidance, the key new 

foundational goal of category-theoretic foundations.  Following the 

category theorists, Voevodsky seems to endorse this goal:  he holds 

that ‘the main organizational ideas of mathematics of the second half 

of the 20th century were based on category theory’ (Voevodsky [2014], 
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p. 9); seeks ‘a tool that can be employed in everyday mathematical 

work’ (ibid., p. 8); and counts set theory’s failure in these areas 

against its suitability as a foundation.24  So, for example, it isn’t 

enough that we find a way to embed set theory in the theory of 

homotopy types; we need to find a way that reveals the true nature of 

the subject, unlike ZFC: 

The notion of set … is fundamental for mathematics. … However, 
the theory of sets [has] never been successfully formalized.  … 
The formal theory ZFC … is not an adequate formalization of the 
set theory which is used in mathematics.  (Voevodsky [2014a], 
lecture 2, slides 21-22)25 
 

Voevodsky takes this to be accomplished in the new foundation: 

As part of Univalent Foundations we now have a formalization of 
set theory in the form of the theory of types of h-level 2 in 
MLTT [i.e., Martin-Löf type theory].26  I believe that this is the 
first adequate formalization of the set theory that is used in 
pure mathematics.  (Ibid, lecture 3, slide 11)27 
 

Set theorists would most likely dispute this claim,28 but for our 

purposes, what matters is that the goal of Essential Guidance is more 

or less explicit.  And as we’ve seen, it seems unlikely that any one 

                       
24  Similarly, Awodey bemoans the ‘serious mismatch between the everyday 
practice of mathematics and the official foundations of mathematics in ZFC’ 
(Awodey [2016], p. 2) and connects univalent foundations with structuralist 
tendencies in the philosophy of mathematics that frown on the extraneous 
features of set-theoretic surrogates.   
 
25  Cf. Awodey and Coquand [2013], p. 6:  ‘the fundamental notion of a set … 
in univalent foundations turns out to be definable in more primitive terms’.   
 
26  Colin Mclarty was kind enough to explain to me that ‘types of h-level 2’ 
is just a different terminology for the ‘0-types in one or another of these 
universes’ in the previous paragraph.   
 
27  Cf. UFP [2013], p. 9. 
 
28  I’m not sure what these thinkers take to be wrong with ZFC, but it could 
be something akin to the category-theorist’s conviction that a neutral notion 
of ‘collection’ is better understood in top-down function-based terms (as in 
ETCS) rather than bottom-up element-based terms (as in ZFC).   
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way of thinking is best for all areas of mathematics, so aiming for 

Essential Guidance tends to undercut Generous Arena and Shared 

Standard. 

 So, given that Generous Arena and Shared Standard are once again 

threatened by Essential Guidance, likely to return to the province of 

set theory, what of the other foundational goals?  Speaking of the new 

formal system, Voevodsky remarks 

Currently we are developing new type theories more complicated 
than the standard Martin-Löf type theory and at the same time 
more convenient for practical formalization of complex 
mathematics.  Such type theories may easily have over a hundred 
derivation rules.  (Voevodsky [2013], slide 18) 
 

Notice again the contrast with formalized ZFC.  The first-order logic 

used there is designed to be a simple as possible, with as few 

formation and inference rules as possible, facilitating meta-

mathematical study of theories expressed therein.  Because the system 

of univalent foundations is designed to be as natural as possible a 

format for actual mathematical reasoning, it ends up being 

considerably more complex, so the goal of Metamathematical Corral 

presumably also remains with set theory.  Furthermore, the complexity 

of univalent foundations leaves the question of consistency unsettled, 

much as in the early days of pure mathematics, and the solution is the 

same: 

Thus a careful and formalizable approach is needed to show that 
the newly constructed type theory is at least as consistent as 
ZFC with a given structure of universes [that is, with 
inaccessibles].  (Voevodsky, ibid.) 
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In other words, the role of ‘a foundational system … as a standard of 

consistency’ (Voevodsky [2014], p. 8) -- Risk Assessment – also falls 

to set theory.29 

 To sum up, then, Risk Assessment, Metamathematical Corral, 

Generous Arena, and Shared Standard all appear to continue as the 

province of set-theoretic foundations.  We’re left with Proof 

Checking, the new goal introduced by univalent foundations.  The 

promise is that ordinary mathematical reasoning will be easily and 

directly expressed in CIC and the validity of proofs then checked 

automatically in COQ, and thus that homotopy type theory will provide 

a framework for reliable Proof Checking: 

I now do my mathematics with a proof assistant.  I have lots of 
wishes in terms of getting this proof assistant to work better, 
but at least I don’t have to go home and worry about having made 
a mistake in my work.  I know that if I did something, I did it, 
and I don’t have to come back to it nor do I have to worry about 
my arguments being too complicated or about how to convince 
others that my arguments are correct.  I can just trust the 
computer.  (Voevodsky [2014], p. 9) 
 

I think we can all agreed that this is a very attractive picture, even 

if it would only apply to areas of mathematics amenable to this sort 

of conceptualization.    

 

Conclusion 

 The upshot of all this, I submit, is that there wasn’t and still 

isn’t any need to replace set theory with a new ‘foundation’.  There 

isn’t a unified concept of ‘foundation’; there are only mathematical 

jobs reasonably classified as ‘foundational’.  Since its early days, 

                       
29  See also UFP [2013], p. 15. 
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set theory has performed a number of these important mathematical 

roles -- Risk Assessment, Generous Arena, Shared Standard, Meta-

mathematical Corral -- and it continues to do so.  Demands for 

replacement of set theory by category theory were driven by the doomed 

hope of founding unlimited categories and the desire for a foundation 

that would provide Essential Guidance.  Unfortunately, Essential 

Guidance is in serious tension with Generous Arena and Shared 

Standard; long experience suggests that ways of thinking beneficial in 

one area of mathematics are unlikely to be beneficial in all areas of 

mathematics.  Still, the isolation of Essential Guidance as a 

desideratum, also reasonably regarded as ‘foundational’, points the 

way to the methodological project of characterizing what ways of 

thinking work best where, and why.   

More recent calls for a foundational revolution from the 

perspective of homotopy type theory are of interest, not because 

univalent foundations would replace set theory in any of its important 

foundational roles, but because it promises something new:  Proof 

Checking.  If it can deliver on that promise -- even if only for some, 

not all, areas of mathematics -- that would be an important 

achievement.  Time will tell.  But the salient moral is that there’s 

no conflict between set theory continuing to do its traditional 

foundational jobs while these newer theories explore the possibility 

of doing others.30 

                       
30  Many thanks to Colin McLarty, Lawrence Paulson, and an anonymous referee 
for very helpful explanations, discussions, and comments. 
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