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What	does	it	mean	to	model	something?

So	you	want	to	model	language	acquisition



What	does	it	mean	to	model	something?

So	you	want	to	model	language	acquisition

It’s	a	scienNfic	technique,	like	running	an	experiment.	
So	saying	“I	want	to	model	$thing”	is	just	like	saying	“I	
want	to	run	an	experiment	about	$thing.”	Basically,	it’s	
a	fine	plan,	but	the	important	quesNon	is	why	you’re	
doing	it.	That	is,	what	quesNon	are	you	trying	to	
answer?			

Once	you	know	what	quesNon	you’re	trying	to	answer,	
you	can	design	the	right	test	of	it	—	whether	that’s	an	
experiment	or	a	model	or	something	else	enNrely.

“Computational	modeling	can	be	used	to	examine	a	variety	
of	questions	about	the	language	acquisition	process,	
because	a	model	is	meant	to	be	a	simulation	of	the	relevant	
parts	of	a	child’s	acquisition	mechanism.	In	a	model,	we	can	
precisely	manipulate	some	part	of	the	mechanism	and	see	
the	results	on	acquisition….Importantly,	some	
manipulations	we	can	do	within	a	model	are	difficult	to	do	
with	children…modeling	data	are	thus	particularly	useful	
because	of	the	difficulty	of	getting	those	same	data	through	
experimental	means.”		-	Pearl	2010	

So	you	want	to	model	language	acquisition

Okay,	so	what	kind	of	quesNons	do	we	use	models	to	answer?

Model-y	questions

I	typically	see	models	used	in	language	acquisiNon	
to	answer	the	ques/on	of	how.	How	exactly	does	
the	acquisi/on	process	work	for	a	parNcular	thing	
(like	syntacNc	categorizaNon,	word	learning,	
syntacNc	islands,	etc.)?		

Some	specific	quesNons	of	how:	
• How	can	children	learn	certain	representaNons?	
What	representaNons	are	easy	to	learn	vs.	hard	
to	learn?		

• How	much	impact	do	different	types	of	input	
data	have	on	the	eventual	representaNon	
learned?	What	about	different	expectaNons	
about	what’s	salient	or	relevant	in	the	data?	

Okay,	so	what	kind	of	quesNons	do	we	use	models	to	answer?

Model-y	questions

A	model	that	answers	these	kinds	of	“how”	
quesNons	is	likely	to	be	an	informaNve	model	—	it	
tells	us	something	we	didn’t	know	before	and	
didn’t	necessarily	have	another	way	to	find	out.	



How	do	we	make	sure	our	model	is	informaNve?

Informative	models

An	informaNve	model	tells	us	something	about	
how	humans	do	language	acquisiNon.	So,	we	
beier	have	some	concrete	ideas	about	the	
different	pieces	of	the	language	acquisiNon	
process.	That	way,	we	can	make	sure	our	model	
captures	these	important	pieces	in	a	realisNc	way.

One	idea	about	how	acquisition	works

Lidz	&	Gagliardi	2015

An	informaNve	model	captures	these	
important	pieces	in	a	realisNc	way.	In	
parNcular,	it	tries	to	empirically	ground	
these	pieces	by	drawing	on	available	data	
from	formal,	experimental,	and	
computaNonal	research.

One	idea	about	how	acquisition	works

Lidz	&	Gagliardi	2015

This	allows	us,	as	computaNonal	modelers,	
to	define	the	acquisiNon	task	precisely	
enough	to	come	up	with	ways	children	
might	solve	it.	The	learning	strategies	we	
come	up	with	can	also	be	characterized	in	
terms	of	these	acquisiNon	task	pieces.

Characterizing	the	acquisition	task

Initial	state:	What	does	the	child	start	with?	What	knowledge,	abiliNes,	and	learning	
biases	does	the	child	already	have?	



Characterizing	the	acquisition	task

Initial	state:	

Lidz	&	Gagliardi	2015

What	does	the	child	start	with?	What	knowledge,	abiliNes,	and	learning	
biases	does	the	child	already	have?	

	 ex:	syntactic	categories	exist	and	can	be	identified	
	 ex:	phrase	structure	exists	and	can	be	identified		
						ex:	participant	roles	can	be	identified

N,	V,	Adj,	P,	…

Agent,	Patient,	Goal,	…

Initial	knowledge	

Characterizing	the	acquisition	task

Initial	state:	

Lidz	&	Gagliardi	2015

ex:	frequency	information	can	be	tracked	
ex:	distributional	information	can	be	leveraged			

Initial	abilities	&	biases	

x

h1

h2

start-IP-VP IP-VP-CP VP-NP-CPthat

What	does	the	child	start	with?	What	knowledge,	abiliNes,	and	learning	
biases	does	the	child	already	have?	

Characterizing	the	acquisition	task

Initial	state:	

Lidz	&	Gagliardi	2015

						This	is	typically	where	a	major	part	of	a	learning	strategy	would	be	concretely	
realized	with	the	model.	

							Ex:	A	strategy	that	depends	on	the	frequency	of	certain	syntactic	structures	would	
need	the	child	to	know	about	that	syntactic	structure	via	the	developing	grammar	
and/or	Universal	Grammar,	recognize	it	in	the	input	via	the	developing	language	
processing	abilities,	and	be	able	to	track	the	frequency	of	that	structure.

What	does	the	child	start	with?	What	knowledge,	abiliNes,	and	learning	
biases	does	the	child	already	have?	

Characterizing	the	acquisition	task

Data	intake:	

Initial	state:	

How	does	the	modeled	child	perceive	the	input	(=perceptual	intake)?	
What	part	of	the	perceived	data	is	used	for	acquisiNon(=acquisiNonal	
intake)?	This	is	the	relevant	data	for	acquisiNon.

Lidz	&	Gagliardi	2015

What	does	the	child	start	with?



Characterizing	the	acquisition	task

Data	intake:	

Initial	state:	

How	does	the	modeled	child	perceive	the	input	(=perceptual	intake)?	
What	part	of	the	perceived	data	is	used	for	acquisiNon(=acquisiNonal	
intake)?	This	is	the	relevant	data	for	acquisiNon.

Lidz	&	Gagliardi	2015

What	does	the	child	start	with?

							ex:	all	wh-utterances	for	learning	about	wh-dependencies	
							ex:	all	pronoun	data	when	learning	about	anaphoric	one	
	 ex:	syntactic	and	conceptual	data	for	learning	syntactic	knowledge	that	links	with	conceptual	

knowledge	
	 	
						[defined	by	knowledge	&	biases/capabilities	in	the	initial	state]

Characterizing	the	acquisition	task

Data	intake:	

Initial	state:	

The	relevant	data	for	acquisiNon.

What	does	the	child	start	with?

Learning	period:	

Lidz	&	Gagliardi	2015

How	long	does	the	child	have	to	learn?

Characterizing	the	acquisition	task

Data	intake:	

Initial	state:	

The	relevant	data	for	acquisiNon.

What	does	the	child	start	with?

Learning	period:	

Lidz	&	Gagliardi	2015

How	long	does	the	child	have	to	learn?

	 how	long	children	have	to	reach	the	
target	knowledge	state		

	 ex:	3	years,	~1,000,000	data	points	
	 ex:	4	months,	~36,500	data	points

Characterizing	the	acquisition	task

Data	intake:	

Initial	state:	

The	relevant	data	for	acquisiNon.

What	does	the	child	start	with?

Learning	period:	

Lidz	&	Gagliardi	2015

How	long	does	the	child	have	to	learn?

						This	is	when	inference	happens,	i.e.,	when	
updates	are	made	to	the	developing	grammar.



Characterizing	the	acquisition	task

Data	intake:	

Initial	state:	

The	relevant	data	for	acquisiNon.

What	does	the	child	start	with?

Learning	period:	

Lidz	&	Gagliardi	2015

How	long	does	the	child	have	to	learn?

						This	is	also	when	iteration	happens,	i.e.,	when	
the	developing	grammar	affects	subsequent	
data	encoding.

Characterizing	the	acquisition	task

Data	intake:	

Initial	state:	

The	relevant	data	for	acquisiNon.

What	does	the	child	start	with?

Learning	period:	How	long	does	the	child	have	to	learn?

Lidz	&	Gagliardi	2015

Target	state:	What	does	successful	acquisiNon	look	like?	What	knowledge	is	the	child	
trying	to	aiain	(ooen	assessed	in	terms	of	observable	behavior)?

Characterizing	the	acquisition	task

Data	intake:	

Initial	state:	

The	relevant	data	for	acquisiNon.

What	does	the	child	start	with?

Learning	period:	How	long	does	the	child	have	to	learn?

Lidz	&	Gagliardi	2015

ex:	*Where	did	Jack	think	the	necklace	from	__	was	too	expensive?	
ex:	Where	did	Jack	buy	a	necklace	from	__	for	Lily	for	her	birthday?	

Knowledge	

Target	state:	What	does	successful	acquisiNon	look	like?	What	knowledge	is	the	child	
trying	to	aiain	(ooen	assessed	in	terms	of	observable	behavior)?

Characterizing	the	acquisition	task

Data	intake:	

Initial	state:	

The	relevant	data	for	acquisiNon.

What	does	the	child	start	with?

Learning	period:	How	long	does	the	child	have	to	learn?

Target	state:	What	does	successful	acquisiNon	look	like?	What	knowledge	is	the	child	
trying	to	aiain	(ooen	assessed	in	terms	of	observable	behavior)?

Lidz	&	Gagliardi	2015

Behavior	

z-score	ratinglooking	time	preferences



Characterizing	the	acquisition	task

Data	intake:	

Initial	state:	

The	relevant	data	for	acquisiNon.

What	does	the	child	start	with?

Learning	period:	How	long	does	the	child	have	to	learn?

Target	state:	What	does	successful	acquisiNon	look	like?

Once	we	have	all	these	pieces	specified,	we	
should	be	able	to	implement	an	informative	
model	of	the	learning	process.

Lidz	&	Gagliardi	2015

Characterizing	the	acquisition	task

Data	intake:	

Initial	state:	

The	relevant	data	for	acquisiNon.

What	does	the	child	start	with?

Learning	period:	How	long	does	the	child	have	to	learn?

Target	state:	What	does	successful	acquisiNon	look	like?

When	we	identify	a	successful	learning	
strategy	via	modeling,	this	is	an	existence	
proof	that	children	could	solve	that	acquisition	
problem	using	the	learning	biases,	knowledge,	
and	capabilities	comprising	that	strategy.

Lidz	&	Gagliardi	2015

This	is	something	we	didn’t	know	before!	
Therefore,	it’s	informative.

So	if	your	quesNon	is	a	quesNon	about	how	the	language	acquisiNon	process	
works,	a	computaNonal	model	might	be	the	right	tool	to	use.

Back	to	the	process	of	modeling

Let’s	say	you	have	a	learning	strategy	you	want	to	test	
out.	There’s	sNll	another	important	decision	to	make.

What	level	of	model	do	you	want	to	build?

Levels	of	representation  
(Marr	1982)



On	explaining	(Marr	1982)  

“But	the	important	point	is	that	if	the	notion	of	different	types	of	
understanding	is	taken	very	seriously,	it	allows	the	study	of	the	
information-processing	basis	of	perception	to	be	made	rigorous.		It	
becomes	possible,	by	separating	explanations	into	different	levels,	
to	make	explicit	statements	about	what	is	being	computed	and	
why…”

On	explaining	(Marr	1982)  

“But	the	important	point	is	that	if	the	notion	of	different	types	of	
understanding	is	taken	very	seriously,	it	allows	the	study	of	the	
information-processing	basis	of	perception	to	be	made	rigorous.		It	
becomes	possible,	by	separating	explanations	into	different	levels,	
to	make	explicit	statements	about	what	is	being	computed	and	
why…”

Our	goal:	Substitute	“language	acquisition”	for	“perception”

The	three	levels

Computational	
			What	is	the	goal	of	the	computation?		

Algorithmic	
What	is	the	representation	for	the	input	and	output,	and	
what	is	the	algorithm	for	the	transformation?

Implementational	
How	can	the	representation	and	algorithm	be	realized	physically?

The	three	levels:	 
An	example	with	the	cash	register

Computational	
			What	does	this	device	do?	
											Arithmetic	(ex:	addition).	
Addition:	Mapping	a	pair	of	numbers	to	another	
number.	
		
(3,4)								7			 [often	written	(3+4=7)]	
Properties:		
	 (3+4)	=	(4+3)	[commutative]	
	 (3+4)+5	=	3+(4+5)	[associative]	
	 (3+0)	=	3	[identity	element]	
	 (3+	-3)	=	0	[inverse	element]	

True	no	matter	how	numbers	
are	represented:	this	is	what	is	
being	computed



The	three	levels:	 
An	example	with	the	cash	register

Computational	
			What	does	this	device	do?	
											Arithmetic	(ex:	addition).	
Addition:	Mapping	a	pair	of	numbers	to	another	
number.

Algorithmic	
		What	is	the	input,	output,	and	method	of	transformation?	
	 Input:	arabic	numerals	(0,1,2,3,4…)	
	 Output:	arabic	numerals	(0,1,2,3,4…)	
	 Method	of	transformation:	rules	of	addition,	where	least	significant	digits	
are	added	first	and	sums	over	9	have	their	next	digit	carried	over	to	the	next	
column	

	 	 	 	 			99	
	 	 	 		 +			5	
	

The	three	levels:	 
An	example	with	the	cash	register

Computational	
			What	does	this	device	do?	
											Arithmetic	(ex:	addition).	
Addition:	Mapping	a	pair	of	numbers	to	another	
number.

Algorithmic	
		What	is	the	input,	output,	and	method	of	transformation?	
	 Input:	arabic	numerals	(0,1,2,3,4…)	
	 Output:	arabic	numerals	(0,1,2,3,4…)	
	 Method	of	transformation:	rules	of	addition,	where	least	significant	digits	
are	added	first	and	sums	over	9	have	their	next	digit	carried	over	to	the	next	
column	

	 	 	 	 			99	
	 	 	 		 +			5	
	 	 	 	 			14	

The	three	levels:	 
An	example	with	the	cash	register

Computational	
			What	does	this	device	do?	
											Arithmetic	(ex:	addition).	
Addition:	Mapping	a	pair	of	numbers	to	another	
number.

Algorithmic	
		What	is	the	input,	output,	and	method	of	transformation?	
	 Input:	arabic	numerals	(0,1,2,3,4…)	
	 Output:	arabic	numerals	(0,1,2,3,4…)	
	 Method	of	transformation:	rules	of	addition,	where	least	significant	digits	
are	added	first	and	sums	over	9	have	their	next	digit	carried	over	to	the	next	
column	
	 	 	 	 					1	

	 	 	 	 			99	
	 	 	 		 +			5	
	 	 	 	 					4	

The	three	levels:	 
An	example	with	the	cash	register

Computational	
			What	does	this	device	do?	
											Arithmetic	(ex:	addition).	
Addition:	Mapping	a	pair	of	numbers	to	another	
number.

Algorithmic	
		What	is	the	input,	output,	and	method	of	transformation?	
	 Input:	arabic	numerals	(0,1,2,3,4…)	
	 Output:	arabic	numerals	(0,1,2,3,4…)	
	 Method	of	transformation:	rules	of	addition,	where	least	significant	digits	
are	added	first	and	sums	over	9	have	their	next	digit	carried	over	to	the	next	
column	
	 	 	 	 					1	

	 	 	 	 			99	
	 	 	 		 +			5	
	 	 	 	 	104	



The	three	levels:	 
An	example	with	the	cash	register

Computational	
			What	does	this	device	do?	
											Arithmetic	(ex:	addition).	
Addition:	Mapping	a	pair	of	numbers	to	another	
number.

Algorithmic	
		What	is	the	input,	output,	and	method	of	transformation?	
	 Input:	arabic	numerals	(0,1,2,3,4…)	
	 Output:	arabic	numerals	(0,1,2,3,4…)	
	 Method	of	transformation:	rules	of	addition

Implementational	
How	can	the	representation	and	algorithm	be	realized	physically?	
	 A	series	of	electrical	and	mechanical	components	inside	the	cash	register.	

The	three	levels:	 
An	example	with	a	sandwich

Algorithmic	
		What	is	the	input,	output,	and	method	of	transformation?	
	 Input:	arabic	numerals	(0,1,2,3,4…)	
	 Output:	arabic	numerals	(0,1,2,3,4…)	
	 Method	of	transformation:	rules	of	addition

Implementational	
		How	can	the	representation	and	algorithm	be	realized	physically?	
	 A	series	of	electrical	and	mechanical	components	inside	the	cash	register.	

Computational	
			What	is	the	goal?	

Make	a	peanutbutter	and	jelly	sandwich.	

Properties:	
	 -	slices	of	bread	containing	both	peanutbutter	and	jelly	
	 -	number	of	bread	slices:	2	
	 -	sandwich	is	sliced	in	half	
	 -	crusts	are	left	on	
	 -	jelly	type:	grape	
	 -	peanutbutter	type:	crunchy	
	 etc.

The	three	levels:	 
An	example	with	a	sandwich

Implementational	
		How	can	the	representation	and	algorithm	be	realized	physically?	
	 A	series	of	electrical	and	mechanical	components	inside	the	cash	register.	

Computational	
			What	is	the	goal?	

Make	a	peanutbutter	and	jelly	sandwich.

Algorithmic	
		What	is	the	input,	output,	and	method	of	transformation?	
	 Input:	ingredients	(peanutbutter,	jelly,	bread	slices),	tools	(knife,	spoon)	
	 Output:	completed,	edible	sandwich	with	the	required	properties	
	 Method:	Use	the	spoon	to	put	jelly	on	one	slice	&	spread	it	with	the	
knife.		Use	the	spoon	to	put	peanutbutter	on	the	other	slice	&	spread	it	with	the	
knife.		Put	the	two	slices	of	bread	together,	with	the	spread	sides	facing	each	
other.		Cut	the	joined	slices	in	half	with	the	knife.

The	three	levels:	 
An	example	with	a	sandwich

Implementational	
How	can	the	representation	and	algorithm	be	realized	
physically?	
Directing	your	younger	sibling	to	follow	the	steps	above	to	make	
you	a	sandwich.	

Computational	
			What	is	the	goal?	

Make	a	peanutbutter	and	jelly	sandwich.

Algorithmic	
		What	is	the	input,	output,	and	method	of	transformation?	
	 Input:	ingredients	(peanutbutter,	jelly,	bread	slices),	tools	(knife,	spoon)	
	 Output:	completed,	edible	sandwich	with	the	required	properties	
	 Method:	PBJ-making	steps.



Mapping	the	framework

Computational	Problem:	Divide	sounds	into	contrastive	categories
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Goal:	Understanding	the	“how”	of	language	acquisition	

First,	we	need	a	computational-level	description	of	the	learning	problem.

Computational	Problem:	Divide	spoken	speech	into	words

who‘s		afraid						of		the		big			bad						wolf

Mapping	the	framework

Goal:	Understanding	the	“how”	of	language	acquisition	

First,	we	need	a	computational-level	description	of	the	learning	problem.

Computational	Problem:	Map	word	forms	to	speaker-invariant	forms

fwiends

friends

friends
“friends”

Mapping	the	framework

Goal:	Understanding	the	“how”	of	language	acquisition	

First,	we	need	a	computational-level	description	of	the	learning	problem.

Computational	Problem:	Identify	the	concept	a	word	is	associated	with	
(Word-meaning	mapping)

“I	love	my	daxes.”

Dax	=	that	specific	toy,	teddy	bear,	stuffed	animal,	toy,	object,	…?	

Mapping	the	framework

Goal:	Understanding	the	“how”	of	language	acquisition	

First,	we	need	a	computational-level	description	of	the	learning	problem.



Computational	Problem:	Identify	what	a	speaker	means	by	using	a	specific	
expression.

“I	love	some	of	my	daxes.”

Does	the	speaker	not	love	all	of	them?

Mapping	the	framework

Goal:	Understanding	the	“how”	of	language	acquisition	

First,	we	need	a	computational-level	description	of	the	learning	problem.

Computational	Problem:	Identify	syntactic	categories

“This	is	a	DAX.”

DAX	=	noun

Mapping	the	framework

Goal:	Understanding	the	“how”	of	language	acquisition	

First,	we	need	a	computational-level	description	of	the	learning	problem.

Computational	Problem:	Identify	the	rules	of	word	order	for	sentences.	
(Syntax)

Subject			Verb			Object

Subject			Verb			Object

Subject			Verb			tSubject				Object		tVerb

English
GermanKannada

Subject				tObject		Verb		Object

Jareth			juggles			crystals

Mapping	the	framework

Goal:	Understanding	the	“how”	of	language	acquisition	

First,	we	need	a	computational-level	description	of	the	learning	problem.

Mapping	the	framework

Goal:	Understanding	the	“how”	of	language	acquisition	

First,	we	need	a	computational-level	description	of	the	learning	problem.

Lidz	&	Gagliardi	2015

A	very	basic	quesNon	for	an	acquisiNon	model:	Is	it	
possible	for	the	child	with	a	specific	iniNal	state	to	
use	the	acquisiNonal	intake	to	achieve	the	target	
knowledge/behavior?	

Is	this	the	right	conceptualiza/on	of	the	acquisi/on	
task?



Mapping	the	framework

Goal:	Understanding	the	“how”	of	language	acquisition	

First,	we	need	a	computational-level	description	of	the	learning	problem.
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A	very	basic	quesNon	for	an	acquisiNon	model:	Is	it	
possible	for	the	child	with	a	specific	iniNal	state	to	
use	the	acquisiNonal	intake	to	achieve	the	target	
knowledge/behavior?	

Is	this	the	right	conceptualiza/on	of	the	acquisi/on	
task?

This	is	the	goal	of	learnability	approaches	(ooen	
posed	at	the	computaNonal-level	of	analysis):	Frank	et	
al.	2009,	Goldwater	et	al.	2009,	Pearl	et	al.	2010,	Pearl	2011,	Legate	
&	Yang	2012,	Dillon	et	al.	2013,	Doyle	&	Levy	2013,	Feldman	et	al.	
2013,	Orita	et	al.	2013,	Pearl	&	Sprouse	in	progress

Mapping	the	framework

Goal:	Understanding	the	“how”	of	language	acquisition	

First,	we	need	a	computational-level	description	of	the	learning	problem.
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This	kind	of	analysis	is	very	helpful	for	
determining	if	this	implementaNon	of	the	
acquisiNon	task	is	the	right	one.	In	parNcular,	
if	children	are	sensiNve	to	this	informaNon	in	
the	perceptual	intake,	is	that	enough	to	yield	
the	target	knowledge/behavior?	Are	these	
useful	learning	assumpNons	for	children	to	
have	to	create	the	acquisiNonal	intake?	Are	
these	useful	representaNons?

Mapping	the	framework

Goal:	Understanding	the	“how”	of	language	acquisition	

First,	we	need	a	computational-level	description	of	the	learning	problem.
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This	is	typically	implemented	
as	an	ideal	learner	model,	
which	isn’t	concerned	with	
the	cogniNve	limitaNons	and	
incremental	learning	
restricNons	children	have.	

(That	is,	useful	for	children	is	
different	from	useable	by	
children	in	real	life.)

Mapping	the	framework

Goal:	Understanding	the	“how”	of	language	acquisition	

First,	we	need	a	computational-level	description	of	the	learning	problem.
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PracNcal	note:	Doing	a	
computaNonal	analysis	is	
ooen	a	really	good	idea	to	
make	sure	we’ve	got	the	
right	conceptualizaNon	of	
the	acquisiNon	task	(see	
Pearl	2011	for	the	trouble	
you	can	get	into	when	you	
don’t	do	this	first).



Mapping	the	framework

Goal:	Understanding	the	“how”	of	language	acquisition	

First,	we	need	a	computational-level	description	of	the	learning	problem.
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Why	do	none	of	
these	learning	
strategies	work?

(What	happened	in	
a	nutshell)

Because	they’re	
solving	the	wrong	
acquisi/on	task…oops.

Input/Intake	=		sounds,	syllables,	words,	phrases,	…	
Output	=	sound	categories,	word	forms,	words	with	meanings,	words	with	affixes,	

syntactic	categories,	phrases,	sentences,	interpretations…	
Method	=	strategies	based	on	the	information	in	the	initial	state	…

Mapping	the	framework

Goal:	Understanding	the	“how”	of	language	acquisition	

Second,	we	need	to	identify	the	algorithmic-level	description:
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Algorithmic	Level:	
	 Input/intake:	Theoretical	linguistics,	experimental	studies,	and	corpus	analysis	

can	tell	us	what	the	input	is	likely	to	be	for	a	given	task	and	what	the	intake	is	
likely	to	be	for	children	at	that	stage	of	development.

who‘s				afraid						of					the			big			bad							wolf

Example	problem:	speech	segmentation
intake

Mapping	the	framework

Algorithmic	Level:	
	 Output:	Theoretical	linguistics	and	experimental	studies	can	tell	us	what	the	

output	should	look	like	by	observing	adult	and	child	knowledge	of	various	
linguistic	phenomena,	as	indicated	by	their	behavior.

output

who‘s				afraid						of					the			big			bad							wolf

Example	problem:	speech	segmentation
intake

looking	time	preferences

Mapping	the	framework



Algorithmic	Level:	
	 Method:	Learning	theories	and	experimental	studies	can	tell	us	what	are	the	

components	in	psychologically	plausible	learning	strategies.

output

who‘s				afraid						of					the			big			bad							wolf

Example	problem:	speech	segmentation
intake

looking	time	preferences

Mapping	the	framework

Method

Mapping	the	framework

Goal:	Understanding	the	“how”	of	language	acquisition	(algorithmic-level)	
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Another	basic	quesNon	for	an	acquisiNon	
model:	Is	it	possible	for	the	child	to	use	
the	acquisiNonal	intake	to	achieve	the	
target	knowledge/behavior	in	the	amount	
of	Nme	children	typically	get	to	do	it,	given	
the	incremental	nature	of	learning	and	
children’s	cogniNve	constraints?	What	
algorithm	will	work	in	pracNce?	

Mapping	the	framework

Goal:	Understanding	the	“how”	of	language	acquisition	(algorithmic-level)	
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Another	basic	quesNon	for	an	acquisiNon	
model:	Is	it	possible	for	the	child	to	use	
the	acquisiNonal	intake	to	achieve	the	
target	knowledge/behavior	in	the	amount	
of	Nme	children	typically	get	to	do	it,	given	
the	incremental	nature	of	learning	and	
children’s	cogniNve	constraints?	What	
algorithm	will	work	in	pracNce?	

Is	it	possible	for	children	to	use	this	strategy?	
That	is,	once	we	know	it’s	useful	for	children,	
it’s	important	to	make	sure	it’s	also	useable	
by	children.

Mapping	the	framework

Goal:	Understanding	the	“how”	of	language	acquisition	(implementation-level)	
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Another	important	(not	so	basic)	quesNon	for	an	
acquisiNon	model:	If	we	have	an	algorithm	that	
seems	useable	by	children	to	usefully	solve	an	
acquisiNon	task,	how	is	it	implemented	in	the	brain?	

(Not	something	we	can	easily	model	yet)



So	if	your	quesNon	is	a	quesNon	about	how	the	language	acquisiNon	process	
works,	a	computaNonal	model	might	be	the	right	tool	to	use.

Back	to	the	process	of	modeling

Let’s	say	you	have	a	learning	strategy	you	want	to	test	
out.	There’s	sNll	another	important	decision	to	make.

What	level	of	model	do	you	want	to	build?

So	if	your	quesNon	is	a	quesNon	about	how	the	language	acquisiNon	process	
works,	a	computaNonal	model	might	be	the	right	tool	to	use.

Back	to	the	process	of	modeling

Let’s	say	you	have	a	learning	strategy	you	want	to	test	
out.	There’s	sNll	another	important	decision	to	make.

What	level	of	model	do	you	want	to	build?

ComputaNonal:	Is	it	possible	for	the	child	with	a	specific	iniNal	state	to	use	the	
acquisiNonal	intake	to	achieve	the	target	knowledge/behavior?

So	if	your	quesNon	is	a	quesNon	about	how	the	language	acquisiNon	process	
works,	a	computaNonal	model	might	be	the	right	tool	to	use.

Back	to	the	process	of	modeling

Let’s	say	you	have	a	learning	strategy	you	want	to	test	
out.	There’s	sNll	another	important	decision	to	make.

What	level	of	model	do	you	want	to	build?

Algorithmic:	Is	it	possible	for	the	child	for	the	child	with	a	specific	iniNal	state		to	
use	the	acquisiNonal	intake	to	achieve	the	target	knowledge/behavior	in	the	
amount	of	Nme	children	typically	get	to	do	it,	given	the	incremental	nature	of	
learning	and	children’s	cogniNve	constraints?

ComputaNonal:	Is	it	possible	for	the	child	with	a	specific	iniNal	state	to	use	the	
acquisiNonal	intake	to	achieve	the	target	knowledge/behavior?

So	let’s	say	you’ve	figured	out	what	level	of	
model	is	appropriate	to	build	in	order	to	test	
the	learning	strategy	you	have	in	mind.

Back	to	the	process	of	modeling

Now	what?



So	let’s	say	you’ve	figured	out	what	level	of	
model	is	appropriate	to	build	in	order	to	test	
the	learning	strategy	you	have	in	mind.

Back	to	the	process	of	modeling

Now	what?

Time	to	actually	build	it!

General	modeling	process

(1) Decide	what	kind	of	learner	the	model	represents		
(ex:	normally	developing	6-	to	8-month-old	child	learning	first	language)

General	modeling	process

(1) Decide	what	kind	of	learner	the	model	represents		
(ex:	normally	developing	6-	to	8-month-old	child	learning	first	language)

(2)	Decide	what	data	the	child	learns	from	(ex:	Pearl-Brent	corpus	from	CHILDES)		
…

Empirically	grounding	the	input

	 The	CHILDES	database	has	a	wealth	of	child-directed	speech	transcripts	and	
videos	from	a	number	of	different	languages.		This	can	help	us	figure	out	
what	children’s	input	looks	like.

						Video/audio	recordings	of	
spontaneous	speech	samples,	along	
with	transcriptions	and	some	
structural	annotation.	Extremely	
valuable	resource	to	the	language	
acquisition	community.

http://childes.psy.cmu.edu



Empirically	grounding	the	input
http://childes.psy.cmu.edu

	 “In	terms	of	its	impact	on	the	field	of	language	development,	CHILDES	is	a	
game-changer.	It	allows	researchers	with	limited	resources	to	test	hypotheses	
using	an	extremely	rich	data	set.	It	allows	for	comparison	across	many	
different	languages,	which	makes	it	possible	to	look	for	universal	cross-
linguistic	patterns	in	language	development….because	the	transcripts	also	
include	language	by	the	adults	that	the	children	are	interacting	with,	it	also	
allows	researchers	to	test	detailed	quantitative	predictions	about	the	
relationships	between	a	child’s	input	and	her	language	production.”	—	Sedivy	
2014,	p.224

General	modeling	process

(1) Decide	what	kind	of	learner	the	model	represents		
(ex:	normally	developing	6-	to	8-month-old	child	learning	first	language)

(2)	Decide	what	data	the	child	learns	from	(ex:	Pearl-Brent	corpus	from	CHILDES)	
and	how	the	child	perceives	that	data	(ex:	divide	speech	stream	into	syllables)

General	modeling	process

(1) Decide	what	kind	of	learner	the	model	represents		
(ex:	normally	developing	6-	to	8-month-old	child	learning	first	language)

(2)	Decide	what	data	the	child	learns	from	(ex:	Pearl-Brent	corpus	from	CHILDES)	
and	how	the	child	perceives	that	data	(ex:	divide	speech	stream	into	syllables)
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General	modeling	process

(1) Decide	what	kind	of	learner	the	model	represents		
(ex:	normally	developing	6-	to	8-month-old	child	learning	first	language)

(2)	Decide	what	data	the	child	learns	from	(ex:	Pearl-Brent	corpus	from	CHILDES)	
and	how	the	child	perceives	that	data	(ex:	divide	speech	stream	into	syllables)

(3)	Decide	what	hypotheses	the	child	has	(ex:	what	the	words	are)	and	what	
information	is	being	tracked	in	the	input	(ex:	transitional	probability	between	
syllables,	stress	on	syllables)



General	modeling	process

(1) Decide	what	kind	of	learner	the	model	represents		
(ex:	normally	developing	6-	to	8-month-old	child	learning	first	language)

(2)	Decide	what	data	the	child	learns	from	(ex:	Pearl-Brent	corpus	from	CHILDES)	
and	how	the	child	perceives	that	data	(ex:	divide	speech	stream	into	syllables)

(3)	Decide	what	hypotheses	the	child	has	(ex:	what	the	words	are)	and	what	
information	is	being	tracked	in	the	input	(ex:	transitional	probability	between	
syllables,	stress	on	syllables)
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General	modeling	process

(1) Decide	what	kind	of	learner	the	model	represents		
(ex:	normally	developing	6-	to	8-month-old	child	learning	first	language)

(2)	Decide	what	data	the	child	learns	from	(ex:	Pearl-Brent	corpus	from	CHILDES)	
and	how	the	child	perceives	that	data	(ex:	divide	speech	stream	into	syllables)

(3)	Decide	what	hypotheses	the	child	has	(ex:	what	the	words	are)	and	what	
information	is	being	tracked	in	the	input	(ex:	transitional	probability	between	
syllables,	stress	on	syllables)

(4)	Decide	how	belief	in	different	
hypotheses	is	updated	(ex:	based	on	
transitional	probability	between	syllables)
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Cognitively	plausible	perception	&	inference
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	 Many	models	will	try	to	make	cognitively	plausible	assumptions	about	
how	the	child	is	representing	and	processing	input	data:	
• Processing	data	points	as	they	are	encountered	
• Assuming	children	have	memory	limitations	(ex:	memory	of	data	

points	may	decay	over	time)

This	makes	the	model	match	what	we	
know	about	children	better	—	
therefore,	the	model	is	more	likely	to	
tell	us	something	real	about	children.

General	modeling	process

(5)	Decide	what	the	measure	of	success	is	

ex:	developing	knowledge	
• Proto-lexicon	of	word	forms	

ex:	behavior	indicating	developed	knowledge	
• Recognizing	useful	units	(such	as	words)	in	a	

fluent	speech	stream,	as	indicated	by	looking	
time	behavior

Lidz	&	Gagliardi	2015



General	modeling	process
(6)	Implement	the	model	in	a	programming	language	of	choice

										This	includes	figuring	out	how	the	input	needs	to	be	
represented	for	the	code,	how	the	steps	will	be	
implemented,	what	data	structures	will	be	used,	what	
kind	of	output	will	be	generated,	and	what	kind	of	
format	that	output	will	be	in.

General	modeling	process
(7)	See	how	well	the	model	did,	wr.t.	the	measure	of	success	

ex:	developing	knowledge	
• Proto-lexicon	of	word	forms	

ex:	behavior	indicating	developed	knowledge	
• Recognizing	useful	units	(such	as	words)	in	a	

fluent	speech	stream,	as	indicated	by	looking	
time	behavior

???

???

							From	this,	we	can	determine	how	well	the	model	
did	—	and	more	importantly,	how	well	the	strategy	
implemented	concretely	in	the	model	did.

General	modeling	process
(8)	Interpret	the	results	for	other	people	who	aren’t	you	

						“The	modeled	child	has	the	same	developing	
knowledge	as	we	think	8-month-olds	do.	This	
strategy	can	work!”

						“The	modeled	child	can	reproduce	the	behavior	
we	see	in	8-month-olds.	This	strategy	could	be	
what	they’re	using	to	generate	that	behavior!”	

										This	is	incredibly	important	—	
otherwise,	no	one	knows	what	to	
make	of	your	results	(and	whether	or	
not	they	should	care).

Let’s	take	a	break	for	a	few	minutes



I.		So	you	want	to	model	language	acquisiNon

Today’s	Plan

II.		Modeling	case	study:		
Defining	the	pieces

III.		Modeling	case	study:		
ImplementaNon	&	InterpretaNon

Wh					…						[CN1		…		[CN2	…	 [CN3	…	[CN4	…		[CN5	…	 	

A	property	of	language:	Long-distance	dependencies

Dependencies	can	exist	between	two	non-adjacent	items,	and	these	do	
not	appear	to	be	constrained	by	length	(Chomsky	1965,	Ross	1967).	

What	does	Jack	think	__?	
What	does	Jack	think	that	Lily	said	__?		
What	does	Jack	think	that	Lily	said	that	Sarah	heard	__?	
What	does	Jack	think	that	Lily	said	that	Sarah	heard	that	Jareth	stole	__?

Syntactic	islands:	Dependencies	that	aren’t	okay

Syntactic	islands:	Dependencies	that	aren’t	okay

If	the	gap	position	appears	inside	certain	structures	(called	“syntactic	
islands”	by	Ross	(1967)),	the	dependency	seems	to	be	ungrammatical.

	 *What	did	you	make	[the	claim	that	Jack	bought	__]?	 	
		 *What	do	you	think	[the	joke	about	__]	offended	Jack?	 	
	 *What	do	you	wonder	[whether	Jack	bought	__]?		 	 	
	 *What	do	you	worry	[if	Jack	buys	__]?	 	 	 	
	 *What	did	you	meet	[the	scientist	who	invented	__]?	 	
	 *What	did	[that	Jack	wrote	__]	offend	the	editor?		 	
	 *What	did	Jack	buy	[a	book	and	__]?	 	 	 	 	
	 *Which	did	Jack	borrow	[__	book]?	

Syntactic	islands:	Dependencies	that	aren’t	okay

If	the	gap	position	appears	inside	certain	structures	(called	“syntactic	
islands”	by	Ross	(1967)),	the	dependency	seems	to	be	ungrammatical.

	 *What	did	you	make	[the	claim	that	Jack	bought	__]?	 	
		 *What	do	you	think	[the	joke	about	__]	offended	Jack?	 	
	 *What	do	you	wonder	[whether	Jack	bought	__]?		 	 	
	 *What	do	you	worry	[if	Jack	buys	__]?	 	 	 	
	 *What	did	you	meet	[the	scientist	who	invented	__]?	 	
	 *What	did	[that	Jack	wrote	__]	offend	the	editor?		 	
	 *What	did	Jack	buy	[a	book	and	__]?	 	 	 	 	
	 *Which	did	Jack	borrow	[__	book]?	

wh	syntactic	island



Children’s	knowledge	of	wh-island	constraints

De	Villiers	1995:	comprehension	task	with	3-	to	6-year-olds	
	 “Once	there	was	a	boy	who	loved	climbing	trees	in	the	forest.		

One	afternoon	he	slipped	and	fell	to	the	ground.		He	picked	
himself	up	and	went	home.		That	night	when	he	had	a	bath,	he	
saw	a	big	bruise	on	his	arm.		He	said	to	his	Dad,	‘I	must	have	hurt	
myself	when	I	fell	this	afternoon.’”

When	did	the	boy	say	he	fell?

Children’s	knowledge	of	wh-island	constraints

De	Villiers	1995:	comprehension	task	with	3-	to	6-year-olds	
	 “Once	there	was	a	boy	who	loved	climbing	trees	in	the	forest.		

One	afternoon	he	slipped	and	fell	to	the	ground.		He	picked	
himself	up	and	went	home.		That	night	when	he	had	a	bath,	he	
saw	a	big	bruise	on	his	arm.		He	said	to	his	Dad,	‘I	must	have	hurt	
myself	when	I	fell	this	afternoon.’”

When	did	the	boy	say	he	fell?	
—>	When	did	the	boy	say	__	he	fell?	
—>	When	did	the	boy	say	he	fell	__?	

Children’s	knowledge	of	wh-island	constraints

De	Villiers	1995:	comprehension	task	with	3-	to	6-year-olds	
	 “Once	there	was	a	boy	who	loved	climbing	trees	in	the	forest.		

One	afternoon	he	slipped	and	fell	to	the	ground.		He	picked	
himself	up	and	went	home.		That	night	when	he	had	a	bath,	he	
saw	a	big	bruise	on	his	arm.		He	said	to	his	Dad,	‘I	must	have	hurt	
myself	when	I	fell	this	afternoon.’”

No	island:	Two	interpretations	possible
When	did	the	saying	happen?

When	did	the	falling	happen?

When	did	the	boy	say	he	fell?	
—>	When	did	the	boy	say	__	he	fell?	
—>	When	did	the	boy	say	he	fell	__?	

Children’s	knowledge	of	wh-island	constraints

De	Villiers	1995:	comprehension	task	with	3-	to	6-year-olds	
	 “Once	there	was	a	boy	who	loved	climbing	trees	in	the	forest.		

One	afternoon	he	slipped	and	fell	to	the	ground.		He	picked	
himself	up	and	went	home.		That	night	when	he	had	a	bath,	he	
saw	a	big	bruise	on	his	arm.		He	said	to	his	Dad,	‘I	must	have	hurt	
myself	when	I	fell	this	afternoon.’”

That	night

This	afternoon

No	island:	Two	interpretations	possible

Children	allow	both	these	structures	(and	their	interpretations),	too.



When	did	the	boy	say	how	he	fell?

Children’s	knowledge	of	wh-island	constraints

De	Villiers	1995:	comprehension	task	with	3-	to	6-year-olds	
	 “Once	there	was	a	boy	who	loved	climbing	trees	in	the	forest.		

One	afternoon	he	slipped	and	fell	to	the	ground.		He	picked	
himself	up	and	went	home.		That	night	when	he	had	a	bath,	he	
saw	a	big	bruise	on	his	arm.		He	said	to	his	Dad,	‘I	must	have	hurt	
myself	when	I	fell	this	afternoon.’”

When	did	the	boy	say	[how	he	fell	]?	
—>	When	did	the	boy	say	__	[how	he	fell]?	
X	 		When	did	the	boy	say	[how	he	fell	__]?	

Children’s	knowledge	of	wh-island	constraints

De	Villiers	1995:	comprehension	task	with	3-	to	6-year-olds	
	 “Once	there	was	a	boy	who	loved	climbing	trees	in	the	forest.		

One	afternoon	he	slipped	and	fell	to	the	ground.		He	picked	
himself	up	and	went	home.		That	night	when	he	had	a	bath,	he	
saw	a	big	bruise	on	his	arm.		He	said	to	his	Dad,	‘I	must	have	hurt	
myself	when	I	fell	this	afternoon.’”

wh-island:	Only	one	interpretation
When	did	the	saying	happen?
When	did	the	falling	happen?

When	did	the	boy	say	[how	he	fell	]?	
—>	When	did	the	boy	say	__	[how	he	fell]?	
X	 		When	did	the	boy	say	[how	he	fell	__]?	

Children’s	knowledge	of	wh-island	constraints

De	Villiers	1995:	comprehension	task	with	3-	to	6-year-olds	
	 “Once	there	was	a	boy	who	loved	climbing	trees	in	the	forest.		

One	afternoon	he	slipped	and	fell	to	the	ground.		He	picked	
himself	up	and	went	home.		That	night	when	he	had	a	bath,	he	
saw	a	big	bruise	on	his	arm.		He	said	to	his	Dad,	‘I	must	have	hurt	
myself	when	I	fell	this	afternoon.’”

wh-island:	Only	one	interpretation
At	night
In	the	afternoon

Children	allow	only	the	top	structure	(and	its	interpretation),	too.

How	could	children	learn	this		
and	other	syntactic	islands?

	 *What	did	you	make	[the	claim	that	Jack	bought	__]?	 	
		 *What	do	you	think	[the	joke	about	__]	offended	Jack?	 	
	 *What	do	you	wonder	[whether	Jack	bought	__]?		 	 	
	 *What	do	you	worry	[if	Jack	buys	__]?	 	 	 	
	 *What	did	you	meet	[the	scientist	who	invented	__]?	 	
	 *What	did	[that	Jack	wrote	__]	offend	the	editor?		 	
	 *What	did	Jack	buy	[a	book	and	__]?	 	 	 	 	
	 *Which	did	Jack	borrow	[__	book]?	



To	model?

We	want	to	understand	how	the	acquisiNon	of	constraints	on	dependencies	could	
work.		This	concerns	the	mechanism	of	acquisiNon,	which	will	involve	a	parNcular	
strategy.	

The	strategy	is	something	that	can	be	modeled.	

Let’s	build	an	algorithmic	model,	which	will	model	the	process	unfolding	in	Nme.	

Lidz	&	Gagliardi	2015

Okay,	so	what	empirical	data	are	there?

Remember:	We	want	to	empirically	ground	our	modeled	child	as	much	as	
possible,	so	it’ll	end	up	(hopefully)	being	informaNve	about	how	real	children	
learn	syntacNc	islands.

Lidz	&	Gagliardi	2015

One	point:	Children’s	input	doesn’t	look	so	helpful

Pearl	&	Sprouse	2013:	Analysis	of	child-directed	speech	(Brown-Adam,	
Brown-Eve,	Suppes,	Valian)	from	CHILDES:

76.7%		 	 What	did	you	see	__?

12.8%		 	 What	__	happened?

		5.6%		 	 What	did	she	want	to	do	__?

		2.5%		 	 What	did	she	read	from	__?

		1.1%		 	 What	did	she	think	he	said	__?

…	 	

Most	of	it	is	fairly	simple	
dependencies	—	and	
importantly,	dependencies	
that	are	grammatical.	How	
could	children	form	the	
appropriate	generalizations	
about	what	isn’t	allowed?

Items	
Encountered

Items	in	English Items	not	in	
English

Wh-questions	in	input	
	 What	did	you	see?	
	 What	happened?	
	 …

Syntactic	islands:	How	to	generalize?



Items	
Encountered

Items	in	English Items	not	in	
English

Grammatical	wh-questions	
	 What	did	you	see?	 	 	 	
	 What	happened?	
	 Who	did	Jack	think	that	Lily	saw?	
	 What	did	Jack	think	happened	to	Lily	in	the	park?

Syntactic	islands:	How	to	generalize?

Items	
Encountered

Items	in	English Items	not	in	
English

Ungrammatical	wh-questions:	Syntactic	islands	
	 *What	did	you	make	[the	claim	that	Jack	bought	__]?	 	
		 *What	do	you	think	[the	joke	about	__]	offended	Jack?	 	
	 *What	do	you	wonder	[whether	Jack	bought	__]?		 	
	 *What	do	you	worry	[if	Jack	buys	__]?	

Syntactic	islands:	How	to	generalize?

Another	point:	Adult	behavior

Empirical	data:	Adult	knowledge	as	measured	
by	acceptability	judgment	behavior	for	some	
islands	from	Sprouse	et	al.	(2012).	This	is	the	
eventual	target	of	acquisition.

Complex	NP	island:	
	 *What	did	you	make	[the	claim	that	Jack	bought	__]?	
Subject	island:	 	
		 *What	do	you	think	[the	joke	about	__]	offended	Jack?
Whether	island:	 	
	 *What	do	you	wonder	[whether	Jack	bought	__]?	
Adjunct	island:	 	 	
	 *What	do	you	worry	[if	Jack	buys	__]?	 	 	 	

What	does	Jack	think	__?	

What	does	Jack	think	that	Lily	said	that	Sarah	heard	that	Jareth	believed	__?

Pearl	&	Sprouse	2013a,	2013b,	2015

Lidz	&	Gagliardi	2015

Adult	behavior:	acquisition	target

Adult	knowledge	as	measured	by	acceptability	judgment	behavior

Pearl	&	Sprouse	2013a,	2013b,	2015

Sprouse	et	al.	(2012)	collected	magnitude	
estimation	judgments	for	four	different	islands,	
using	a	factorial	definition	that	controlled	for	two	
salient	properties	of	island-crossing	dependencies:	
- length	of	dependency		
(matrix	vs.	embedded)	
- presence	of	an	island	structure		
(non-island	vs.	island)

Lidz	&	Gagliardi	2015



Adult	knowledge	as	measured	by	acceptability	judgment	behavior

Sprouse	et	al.	(2012)	collected	magnitude	
estimation	judgments	for	four	different	islands,	
using	a	factorial	definition	that	controlled	for	two	
salient	properties	of	island-crossing	dependencies:	
- length	of	dependency		
(matrix	vs.	embedded)	
- presence	of	an	island	structure		
(non-island	vs.	island)

		Who	__	claimed	that	Lily	forgot	the	necklace?	 	 	 	 		matrix	|	non-island	
		What	did	the	teacher	claim	that	Lily	forgot	__?	 	 	 		embedded	|	non-island	
		Who	__	made	the	claim	that	Lily	forgot	the	necklace?	 			 		matrix	|	island		
*What	did	the	teacher	make	the	claim	that	Lily	forgot	__?	 		embedded	|	island	

Pearl	&	Sprouse	2013a,	2013b,	2015

Complex	NP	islands

Adult	behavior:	acquisition	target

Lidz	&	Gagliardi	2015

Adult	knowledge	as	measured	by	acceptability	judgment	behavior

Sprouse	et	al.	(2012)	collected	magnitude	
estimation	judgments	for	four	different	islands,	
using	a	factorial	definition	that	controlled	for	two	
salient	properties	of	island-crossing	dependencies:	
- length	of	dependency		
(matrix	vs.	embedded)	
- presence	of	an	island	structure		
(non-island	vs.	island)

		Who	__	thinks	the	necklace	is	expensive?	 	 	 	 										matrix	|	non-island	
		What	does	Jack	think	__	is	expensive?	 	 	 	 	 		embedded	|	non-island	
		Who	__	thinks	the	necklace	for	Lily	is	expensive?	 	 										matrix	|	island		
*Who	does	Jack	think	the	necklace	for	__	is	expensive?	 		embedded	|	island

Pearl	&	Sprouse	2013a,	2013b,	2015

Subject	islands

Adult	behavior:	acquisition	target

Lidz	&	Gagliardi	2015

Adult	knowledge	as	measured	by	acceptability	judgment	behavior

Sprouse	et	al.	(2012)	collected	magnitude	
estimation	judgments	for	four	different	islands,	
using	a	factorial	definition	that	controlled	for	two	
salient	properties	of	island-crossing	dependencies:	
- length	of	dependency		
(matrix	vs.	embedded)	
- presence	of	an	island	structure		
(non-island	vs.	island)

		Who	__	thinks	that	Jack	stole	the	necklace?		 	 	 										matrix	|	non-island	
		What	does	the	teacher	think	that	Jack	stole	__	?		 	 		embedded	|	non-island	
		Who	__	wonders	whether	Jack	stole	the	necklace?		 	 		 		matrix	|	island		
*What	does	the	teacher	wonder	whether	Jack	stole	__	?		 		embedded	|	island

Pearl	&	Sprouse	2013a,	2013b,	2015

Whether	islands

Adult	behavior:	acquisition	target

Lidz	&	Gagliardi	2015

Adult	knowledge	as	measured	by	acceptability	judgment	behavior

Sprouse	et	al.	(2012)	collected	magnitude	
estimation	judgments	for	four	different	islands,	
using	a	factorial	definition	that	controlled	for	two	
salient	properties	of	island-crossing	dependencies:	
- length	of	dependency		
(matrix	vs.	embedded)	
- presence	of	an	island	structure		
(non-island	vs.	island)

		Who	__	thinks	that	Lily	forgot	the	necklace?		 	 	 										matrix	|	non-island	
		What	does	the	teacher	think	that	Lily	forgot	__	?		 	 		embedded	|	non-island	
		Who	__	worries	if	Lily	forgot	the	necklace?		 	 	 	 										matrix	|	island		
*What	does	the	teacher	worry	if	Lily	forgot	__	?	 	 	 		embedded	|	island

Pearl	&	Sprouse	2013a,	2013b,	2015

Adjunct	islands

Adult	behavior:	acquisition	target

Lidz	&	Gagliardi	2015



Adult	knowledge	as	measured	by	acceptability	judgment	behavior

Syntactic	island	=	superadditive	interaction	of	
the	two	factors	(additional	unacceptability	that	
arises	when	the	two	factors	are	combined,	
above	and	beyond	the	independent	
contribution	of	each	factor).	

Lidz	&	Gagliardi	2015

Pearl	&	Sprouse	2013a,	2013b,	2015
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Adult	behavior:	acquisition	target

Pearl	&	Sprouse	2013a,	2013b,	2015

Sprouse	et	al.	(2012):	acceptability	judgments	from	173	adult	subjects

Lidz	&	Gagliardi	2015

Superadditivity	present	for	all	islands	
tested	=	Knowledge	that	dependencies	
cannot	cross	these	island	structures	is	
part	of	adult	knowledge	about	syntactic	
islands.

Importance	for	acquisition:	This	is	one	
kind	of	target	behavior	that	we’d	like	a	
modeled	child	to	produce.

Adult	behavior:	acquisition	target

Syntactic	islands:		
Specific	islands	we’ll	focus	on

	 *What	did	you	make	[the	claim	that	Jack	bought	__]?	 	
		 *What	do	you	think	[the	joke	about	__]	offended	Jack?	 	
	 *What	do	you	wonder	[whether	Jack	bought	__]?		 	 	
	 *What	do	you	worry	[if	Jack	buys	__]?	 	 	 	
	 *What	did	you	meet	[the	scientist	who	invented	__]?	 	
	 *What	did	[that	Jack	wrote	__]	offend	the	editor?		 	
	 *What	did	Jack	buy	[a	book	and	__]?	 	 	 	 	
	 *Which	did	Jack	borrow	[__	book]?	

Complex	NP
Subject
Whether
Adjunct

Question:	If	we’re	focusing	on	these	wh-
dependencies	and	that	specific	target	state,	
what	does	children’s	input	look	like?

Data	from	five	corpora	of	child-directed	speech	(Brown-Adam,	Brown-Eve,	
Brown-Sarah,	Suppes,	Valian)	from	CHILDES	(MacWhinney	2000):	speech	to	25	
children	between	the	ages	of	one	and	five	years	old.			
	 Total	words:	813,036	
	 Utterances	containing	a	wh-dependency:	31,247		

ungrammatical

Pearl	&	Sprouse	submitted

MATRIX	+		
NON-ISLAND

EMBEDDED	+	
NON-ISLAND

MATRIX	+	
ISLAND

EMBEDDED	+		
ISLAND

Complex	NP 7 295 0 0

Subject 7 29 0 0

Whether 7 295 0 0

Adjunct 7 295 15 0

Sprouse	et	al.	(2012)	stimuli	types:

Children’s	input	really	doesn’t	look	so	helpful



These	kinds	of	utterances	are	fairly	rare	in	general	-	the	most	frequent	
appears	about	0.9%	of	the	time	(295	of	31,247.)

Pearl	&	Sprouse	submitted

ungrammaticalSprouse	et	al.	(2012)	stimuli	types	(out	of	31,247):

Children’s	input	really	doesn’t	look	so	helpful

MATRIX	+		
NON-ISLAND

EMBEDDED	+	
NON-ISLAND

MATRIX	+	
ISLAND

EMBEDDED	+		
ISLAND

Complex	NP 7 295 0 0

Subject 7 29 0 0

Whether 7 295 0 0

Adjunct 7 295 15 0

Being	grammatical	doesn’t	necessarily	mean	an	utterance	will	appear	in	the	
input	at	all.

Pearl	&	Sprouse	submitted

ungrammaticalSprouse	et	al.	(2012)	stimuli	types	(out	of	31,247):

Children’s	input	really	doesn’t	look	so	helpful

MATRIX	+		
NON-ISLAND

EMBEDDED	+	
NON-ISLAND

MATRIX	+	
ISLAND

EMBEDDED	+		
ISLAND

Complex	NP 7 295 0 0

Subject 7 29 0 0

Whether 7 295 0 0

Adjunct 7 295 15 0

Unless	the	child	is	sensitive	to	very	small	frequencies,	it’s	difficult	to	tell	the	
difference	between	grammatical	and	ungrammatical	dependencies	
sometimes…

Pearl	&	Sprouse	submitted

ungrammaticalSprouse	et	al.	(2012)	stimuli	types	(out	of	31,247):

Children’s	input	really	doesn’t	look	so	helpful

MATRIX	+		
NON-ISLAND

EMBEDDED	+	
NON-ISLAND

MATRIX	+	
ISLAND

EMBEDDED	+		
ISLAND

Complex	NP 7 295 0 0

Subject 7 29 0 0

Whether 7 295 0 0

Adjunct 7 295 15 0

…and	impossible	to	tell	no	matter	what	the	rest	of	the	time.		This	looks	like	
an	induction	problem	for	the	language	learner	if	we’re	looking	for	direct	
evidence	in	the	input.

Pearl	&	Sprouse	submitted

ungrammaticalSprouse	et	al.	(2012)	stimuli	types	(out	of	31,247):

Children’s	input	really	doesn’t	look	so	helpful

MATRIX	+		
NON-ISLAND

EMBEDDED	+	
NON-ISLAND

MATRIX	+	
ISLAND

EMBEDDED	+		
ISLAND

Complex	NP 7 295 0 0

Subject 7 29 0 0

Whether 7 295 0 0

Adjunct 7 295 15 0



Syntactic	islands:		
Specific	islands	we’ll	focus	on

	 *What	did	you	make	[the	claim	that	Jack	bought	__]?	 	
		 *What	do	you	think	[the	joke	about	__]	offended	Jack?	 	
	 *What	do	you	wonder	[whether	Jack	bought	__]?		 	 	
	 *What	do	you	worry	[if	Jack	buys	__]?	 	 	 	
	 *What	did	you	meet	[the	scientist	who	invented	__]?	 	
	 *What	did	[that	Jack	wrote	__]	offend	the	editor?		 	
	 *What	did	Jack	buy	[a	book	and	__]?	 	 	 	 	
	 *Which	did	Jack	borrow	[__	book]?	

Complex	NP
Subject
Whether
Adjunct

Great	—	this	seems	to	be	a	hard	(and	therefore	
interesting)	problem.	So	what	kind	of	learning	
strategy	should	we	try?	Are	there	existing	theories	
of	linguistic	representations	and	learning	
strategies	based	on	those	representations?

Syntactic	islands:	Representations

Wh					…						[BN1	 …		 [BN2	…	 	 __]]																		

Subjacency	(Chomsky	1973,	Huang	1982,	Lasnik	&	Saito	1984)	

(1)	A	dependency	cannot	cross	two	or	more	bounding	nodes.	

Bounding	nodes	are	language-specific		
(CP,	IP,	and/or	NP	–	must	learn	which	ones	are	relevant	for	language)

{CP,	IP,	NP}?

Pearl	&	Sprouse	2013a,	2013b,	2015

Syntactic	islands:	Representations

Subjacency	(Chomsky	1973,	Huang	1982,	Lasnik	&	Saito	1984)	

(1)	A	dependency	cannot	cross	two	or	more	bounding	nodes.	

Subjacency-ish	(Pearl	&	Sprouse	2013a,	2013b,	2015)	
(2)	A	dependency	cannot	cross	a	very	low	probability	region	of	structure	
(represented	as	a	sequence	of	container	nodes).	

Wh					…						[CN1		…		[CN2	…	 [CN3	…	[CN4	…		[CN5	…	 	 __]]																		

Container	node:	phrase	structure	node	that	contains	dependency

Wh					…						[BN1	 …		 [BN2	…	 	 __]]																		

[CP	What					do						[IP	you		[VP	like	__	[PP	in	this	picture?]]]]																		

Pearl	&	Sprouse	2013a,	2013b,	2015

Container	nodes	sequences

How	to	describe	this	dependency:	
What	phrases	is	the	gap	inside	but	the	wh-word	
isn’t	inside?

IP



How	to	describe	this	dependency:	
What	phrases	is	the	gap	inside	but	the	wh-word	
isn’t	inside?

What	did	you	see	__?		
=	What	did	[IP	you	[VP	see	__]]?		
=	IP-VP

Container	nodes	sequences

IP

What	did	you	see	__?		
=	What	did	[IP	you	[VP	see	__]]?		
=	IP-VP

What	__	happened?		
=	What		[IP	__	happened]?		
=	IP

IP

Container	nodes	sequences

What	did	she	want	to	do	__	?		
=	What	did	[IP	she	[VP	want	[IP	to	[VP	do	__]]]]?		
=	IP-VP-IP-VP

What	did	you	see	__?		
=	What	did	[IP	you	[VP	see	__]]?		
=	IP-VP

What	__	happened?		
=	What		[IP	__	happened]?		
=	IP

IP

IP

Container	nodes	sequences

What	did	she	read	from	__	?		
=	What	did	[IP	she	[VP	read	[PP	from		__]]]]?		
=	IP-VP-PP

Container	nodes	sequences

What	did	she	want	to	do	__	?		
=	What	did	[IP	she	[VP	want	[IP	to	[VP	do	__]]]]?		
=	IP-VP-IP-VP

What	did	you	see	__?		
=	What	did	[IP	you	[VP	see	__]]?		
=	IP-VP

What	__	happened?		
=	What		[IP	__	happened]?		
=	IP

IP



Syntactic	islands:	Representations

Subjacency	(Chomsky	1973,	Huang	1982,	Lasnik	&	Saito	1984)	

(1)	A	dependency	cannot	cross	two	or	more	bounding	nodes.	

Subjacency-ish	(Pearl	&	Sprouse	2013a,	2013b,	2015)	
(2)	A	dependency	cannot	cross	a	very	low	probability	region	of	structure	
(represented	as	a	sequence	of	container	nodes).	

Wh					…						[CN1		…		[CN2	…	 [CN3	…	[CN4	…		[CN5	…	 	 __]]																		

Low	probability	regions	are	language-specific		
(defined	by	sequences	of	container	nodes	that	must	be	learned)

low	probability?

Wh					…						[BN1	 …		 [BN2	…	 	 __]]																		

Pearl	&	Sprouse	2013a,	2013b,	2015

Syntactic	islands:	Representations

Subjacency	(Chomsky	1973,	Huang	1982,	Lasnik	&	Saito	1984)	

(1)	A	dependency	cannot	cross	two	or	more	bounding	nodes.	

Subjacency-ish	(Pearl	&	Sprouse	2013a,	2013b,	2015)	
(2)	A	dependency	cannot	cross	a	very	low	probability	region	of	structure	
(represented	as	a	sequence	of	container	nodes).	

Wh					…						[CN1		…		[CN2	…	 [CN3	…	[CN4	…		[CN5	…	 	 __]]																		

Wh					…						[BN1	 …		 [BN2	…	 	 __]]																		

In	common:	Both	rely	on	local	structure	anomalies	(at	some	level)		

Pearl	&	Sprouse	2013a,	2013b,	2015

Syntactic	islands:	Representations

Subjacency	(Chomsky	1973,	Huang	1982,	Lasnik	&	Saito	1984)	

(1)	A	dependency	cannot	cross	two	or	more	bounding	nodes.	

Subjacency-ish	(Pearl	&	Sprouse	2013a,	2013b,	2015)	
(2)	A	dependency	cannot	cross	a	very	low	probability	region	of	structure	
(represented	as	a	sequence	of	container	nodes).	

Wh					…						[CN1		…		[CN2	…	 [CN3	…	[CN4	…		[CN5	…	 	 __]]																		

Wh					…						[BN1	 …		 [BN2	…	 	 __]]																		

Different:	Amount	of	language-specific	knowledge	built	in	just	for	islands

(i)	Dependencies	defined	over	
bounding	nodes	—	track	those	
(ii)	Bounding	node		=	?	
(iii)	2+	bounding	nodes	=	

(i)	Dependencies	defined	over	container	
node	structure	—	track	that	already	
(ii)	Container	node	=	?	
(iii)	low	probability	=		

Pearl	&	Sprouse	2013a,	2013b,	2015

Syntactic	islands:	Representations

Subjacency	(Chomsky	1973,	Huang	1982,	Lasnik	&	Saito	1984)	

(1)	A	dependency	cannot	cross	two	or	more	bounding	nodes.	

Subjacency-ish	(Pearl	&	Sprouse	2013a,	2013b,	2015)	
(2)	A	dependency	cannot	cross	a	very	low	probability	region	of	structure	
(represented	as	a	sequence	of	container	nodes).	

Wh					…						[CN1		…		[CN2	…	 [CN3	…	[CN4	…		[CN5	…	 	 __]]																		

Wh					…						[BN1	 …		 [BN2	…	 	 __]]																		

Pearl	&	Sprouse:	Focused	on	evaluating	this	one

Pearl	&	Sprouse	2013a,	2013b,	2015



One	strategy	for	some	of	the	islands

	 *What	did	you	make	[the	claim	that	Jack	bought	__]?	 	
		 *What	do	you	think	[the	joke	about	__]	offended	Jack?	 	
	 *What	do	you	wonder	[whether	Jack	bought	__]?		 	 	
	 *What	do	you	worry	[if	Jack	buys	__]?	 	 	 	
	 *What	did	you	meet	[the	scientist	who	invented	__]?	 	
	 *What	did	[that	Jack	wrote	__]	offend	the	editor?		 	
	 *What	did	Jack	buy	[a	book	and	__]?	 	 	 	 	
	 *Which	did	Jack	borrow	[__	book]?	

Pearl	&	Sprouse	(2013)	strategy	using	the	Subjacency-ish	representation:	Learn	
what	you	can	from	the	dependencies	you	do	actually	observe	in	the	data	(=	
container	node	sequence	probabilities).	Apply	that	knowledge	to	make	a	judgment	
about	the	dependencies	you	haven’t	seen	before,	like	these	syntactic	islands.

What	did	you	see?	 	
What	happened?	
What	did	she	want	to	do?	
What	did	she	read	from?	
What	did	she	think	he	said?

Complex	NP
Subject
Whether
Adjunct

*What	did	you	make	the	
claim	that	Jack	bought?	
*What	do	you	think	the	joke	
about	offended	Jack?

Subjacency-ish	strategy	in	more	detail

Strategy:	
(1)	Pay	attention	to	the	structure	of	dependencies.	

What	did	she	want	to	do	__	?		
=	What	did	[IP	she	[VP	want	[IP	to	[VP	do	__]]]]?		
=	IP-VP-IP-VP

IP

IP

(2)	Break	these	dependency	structures	into	smaller	pieces	made	up	of	three	units	
(trigrams)	that	you	can	track	the	frequency	of	in	the	input	you	encounter.

IP-VP	=		
begin-IP-VP	
	 			IP-VP-end

IP	=		
begin-IP-end

IP-VP-IP-VP		
=	begin-IP-VP	
														IP-VP-IP	
	 	 		VP-IP-VP	
	 	 	 IP-VP-end

IP-VP-PP		
=	begin-IP-VP	
	 							IP-VP-PP	
	 	 			VP-PP-end

Subjacency-ish	strategy	in	more	detail

Strategy:	
(1)	Pay	attention	to	the	structure	of	dependencies.	

(2)	Break	these	dependency	structures	into	smaller	pieces	made	up	of	three	units	
(trigrams)	that	you	can	track	the	frequency	of	in	the	input	you	encounter.

IP-VP	=		
begin-IP-VP	
	 			IP-VP-end

IP	=		
begin-IP-end

IP-VP-IP-VP		
=	begin-IP-VP	
														IP-VP-IP	
	 	 		VP-IP-VP	
	 	 	 IP-VP-end

IP-VP-PP		
=	begin-IP-VP	
	 							IP-VP-PP	
	 	 			VP-PP-end

Subjacency-ish	strategy	in	more	detail

begin-IP-VP	=	86/225	
IP-VP-end	=	83/225	
begin-IP-end	=	13/225		
IP-VP-IP	=	6/225	
VP-IP-VP	=	6/225	
IP-VP-PP	=	3/225	
VP-PP-end	=	3/225	
…

Note	that	some	of	these	trigrams	already	
appear	in	multiple	dependencies	that	
commonly	occur	in	children’s	input.

Strategy:	
(1)	Pay	attention	to	the	structure	of	dependencies.	



(2)	Break	these	dependency	structures	into	smaller	pieces	made	up	of	three	units	
(trigrams)	that	you	can	track	the	frequency	of	in	the	input	you	encounter.

Subjacency-ish	strategy	in	more	detail

(3)	Use	trigram	frequency	to	calculate	the	probability	of	that	trigram	occurring	in	a	
dependency.

begin-IP-VP	=	86/225	 	 p(begin-IP-VP)	=	0.38	
IP-VP-end	=	83/225	 	 p(IP-VP-end)	=	0.37	
begin-IP-end	=	13/225		 p(begin-IP-end)	=	0.06	
IP-VP-IP	=	6/225	 	 	 p(IP-VP-IP)	=	0.03	
VP-IP-VP	=	6/225	 	 	 p(VP-IP-VP)	=	0.03	
IP-VP-PP	=	3/225	 	 	 p(IP-VP-PP)	=	0.01	
VP-PP-end	=	3/225	 	 p(VP-PP-end)	=	0.01	
…

Strategy:	
(1)	Pay	attention	to	the	structure	of	dependencies.	

(2)	Break	these	dependency	structures	into	smaller	pieces	made	up	of	three	units	
(trigrams)	that	you	can	track	the	frequency	of	in	the	input	you	encounter.

Subjacency-ish	strategy	in	more	detail

(3)	Use	trigram	frequency	to	calculate	the	probability	of	that	trigram	occurring	in	a	
dependency.

(4)	When	you	see	a	new	dependency,	break	it	down	into	its	trigrams	and	then	calculate	
its	probability,	based	on	the	trigram	probabilities.

What	does	Jack	want	__?	
=	What	does	[IP	Jack	[VP	want	__]]?	
=	IP-VP	
=	begin-IP-VP	
	 					IP-VP-end

p(IP-VP)	=	p(begin-IP-VP)*p(IP-VP-end)	
	 						=	0.38	*	0.37	=	0.14

Strategy:	
(1)	Pay	attention	to	the	structure	of	dependencies.	

(2)	Break	these	dependency	structures	into	smaller	pieces	made	up	of	three	units	
(trigrams)	that	you	can	track	the	frequency	of	in	the	input	you	encounter.

Subjacency-ish	strategy	in	more	detail

(3)	Use	trigram	frequency	to	calculate	the	probability	of	that	trigram	occurring	in	a	
dependency.

(4)	When	you	see	a	new	dependency,	break	it	down	into	its	trigrams	and	then	calculate	
its	probability,	based	on	the	trigram	probabilities.

What	does	Jack	want	to	do	that	for	__?	
=	What	does	[IP	Jack	[VP	want	[IP	to	[VP	do	that	[PP	for	__]]?	
=	IP-VP-IP-VP-PP	
=	begin-IP-VP	
	 					IP-VP-IP	
	 									VP-IP-VP	
	 	 						IP-VP-PP	
	 							 	 VP-PP-end

p(IP-VP-IP-VP-PP)	=	p(begin-IP-VP)*p(IP-VP-IP)*p(VP-IP-
VP)*p(IP-VP-PP)*p(VP-PP-end)	
	 						=	0.38*0.03*0.03*0.01*0.01	=	0.000000034

Strategy:	
(1)	Pay	attention	to	the	structure	of	dependencies.	

(2)	Break	these	dependency	structures	into	smaller	pieces	made	up	of	three	units	
(trigrams)	that	you	can	track	the	frequency	of	in	the	input	you	encounter.

Subjacency-ish	strategy	in	more	detail

(3)	Use	trigram	frequency	to	calculate	the	probability	of	that	trigram	occurring	in	a	
dependency.

(4)	When	you	see	a	new	dependency,	break	it	down	into	its	trigrams	and	then	calculate	
its	probability,	based	on	the	trigram	probabilities.

What	do	you	think	that	the	joke	about	__	offended	Jack?	
=	What	do	[IP	you	[VP	think	[CP	that	[IP	[NP	the	joke	[PP	about	__]]]]]]	offended	Jack?	
=	IP-VP-CP-NP-PP	
=	begin-IP-VP	
	 					IP-VP-CP	
	 									VP-CP-IP	
	 	 						CP-IP-NP	
	 	 	 			IP-NP-PP	
	 							 	 						NP-PP-end

p(IP-VP-CP-IP-NP-PP)	=	p(begin-IP-VP)*p(IP-VP-CP)*p(VP-CP-
S)*p(CP-IP-NP)*p(IP-NP-PP)*p(NP-PP-end)	
	 						=	0.86*0.01*0.001*0.00*0.00*0.02	=	0.00

Subject	island

Strategy:	
(1)	Pay	attention	to	the	structure	of	dependencies.	



(2)	Break	these	dependency	structures	into	smaller	pieces	made	up	of	three	units	
(trigrams)	that	you	can	track	the	frequency	of	in	the	input	you	encounter.

Subjacency-ish	strategy	in	more	detail

(3)	Use	trigram	frequency	to	calculate	the	probability	of	that	trigram	occurring	in	a	
dependency.

(4)	When	you	see	a	new	dependency,	break	it	down	into	its	trigrams	and	then	calculate	
its	probability,	based	on	the	trigram	probabilities.

(5)	Use	calculated	dependency	probabilities	as	the	basis	for	grammaticality	judgments.	
Lower	probability	dependencies	are	dispreferred,	compared	to	higher	probability	
dependencies.

p(IP-VP)	=	0.14

p(IP-VP-IP-VP-PP)	=	0.000000034

p(IP-VP-CP-IP-NP-PP)	=	0.00

Strategy:	
(1)	Pay	attention	to	the	structure	of	dependencies.	

Let’s	model!

Let’s	try	to	pin	down	all	the	pieces	we	need	for	this	strategy	based	on	the	
Subjacency-ish	representaNon:	iniNal	state,	data	intake,	learning	period,	and	
target	state.	

Lidz	&	Gagliardi	2015

The	Subjacency-ish	strategy:	Initial	state

Pearl	&	Sprouse	2013a,	2013b,	2015

Lidz	&	Gagliardi	2015

Subjacency-ish	representation:	
A	dependency	cannot	cross	a	very	low	
probability	region	of	structure	(represented	
as	a	sequence	of	container	nodes).

Wh					…						[CN1		…		[CN2	…	 [CN3	…	[CN4	…		[CN5	…	 	 __]]																		

Initial	state:	 (i) Dependencies	defined	over	container	
node	structure	

(ii) Container	nodes	recognized	
(iii)	Track	probability	of	short	container	
node	sequences	(trigrams)

Perceive	wh-dependencies	as	sequences	of	container	nodes,	identifying	container	node	
trigrams.

Pearl	&	Sprouse	2013a,	2013b,	2015

The	Subjacency-ish	strategy:	Initial	state

Who	did	she	think	that	the	gift	was	from?

	[CP	Who	did	[IP	she	[VP	think	[CP	that	[IP	[NP	the	gift]		[VP	was	[PP	from	__]]]]]]]]?	
	 	 						IP								VP	 				CP									IP	 	 						VP									PP	



Perceive	wh-dependencies	as	sequences	of	container	nodes,	identifying	container	node	
trigrams.

	 	 begin-IP-VP-CP-IP-VP-PP-end	=

	 	 begin-IP-VP-CP-IP-VP-PP-end	
	 				 start-		IP-VP-CP-IP-VP-PP-end	

start-IP-								VP-CP-IP-VP-PP-end	
start-IP-VP-								CP-IP-VP-PP-end	
start-IP-VP-CP-											IP-VP-PP-end	
start-IP-VP-CP-IP-											VP-PP-end

Pearl	&	Sprouse	2013a,	2013b,	2015

The	Subjacency-ish	strategy:	Initial	state

	[CP	Who	did	[IP	she	[VP	think	[CP	that	[IP	[NP	the	gift]		[VP	was	[PP	from	__]]]]]]]]?	
	 	 						IP								VP	 				CP									IP	 	 						VP									PP	

Who	did	she	think	that	the	gift	was	from?
A	child	learns	about	the	frequency	of	container	node	trigrams…

+1begin-IP-VP
+1IP-VP-CP

…

Subjacency-ish:	Developing	knowledge

Pearl	&	Sprouse	2013a,	2013b,	2015

	[CP	Who	did	[IP	she	[VP	think	[CP	that	[IP	[NP	the	gift]		[VP	was	[PP	from	__]]]]]]]]?	
	 	 						IP								VP	 				CP									IP	 	 						VP									PP	

	 	 begin-IP-VP-CP-IP-VP-PP-end	=

	 	 begin-IP-VP-CP-IP-VP-PP-end	
	 				 start-		IP-VP-CP-IP-VP-PP-end	

start-IP-								VP-CP-IP-VP-PP-end	
start-IP-VP-								CP-IP-VP-PP-end	
start-IP-VP-CP-											IP-VP-PP-end	
start-IP-VP-CP-IP-											VP-PP-end

…and	at	the	end	of	the	learning	period	has	a	
sense	of	the	probability	of	any	given	
container	node	trigram,	based	on	its	relative	
frequency.

begin-IP-VP
IP-VP-CP

begin-IP-end

IP-NP-PP

Subjacency-ish:	Developing	knowledge

Lidz	&	Gagliardi	2015

Pearl	&	Sprouse	2013a,	2013b,	2015

Any	wh-dependency	can	then	have	a	
probability,	based	on	the	product	of	the	
smoothed	probabilities	of	its	trigrams.

	 	 begin-IP-VP-CP-IP-VP-PP-end
Probability(begin-IP-VP-CP-IP-VP-PP-end)		 	
=

p(trigram)

Who	did	she	think	the	gift	was	from	__?

Subjacency-ish:	Developing	knowledge

Lidz	&	Gagliardi	2015

	 	 p(begin-IP-VP)-CP-IP-VP-PP-end	
	 				 start-		p(IP-VP-CP)-IP-VP-PP-end	

start-IP-								p(VP-CP-IP)-VP-PP-end	
start-IP-VP-								p(CP-IP-VP)-PP-end	
start-IP-VP-CP-											p(IP-VP-PP)-end	
start-IP-VP-CP-IP-											p(VP-PP-end)

Pearl	&	Sprouse	2013a,	2013b,	2015



This	allows	the	modeled	learner	to	generate	
judgments	about	the	grammaticality	of	any	
dependency.		

Higher	probability	dependencies	are	more	
grammatical	while	lower	probability	
dependencies	are	less	grammatical. 	 	 begin-IP-VP-CP-IP-VP-PP-end	=

	 	 begin-IP-VP-CP-IP-VP-end	=

Subjacency-ish:	Developing	knowledge

Lidz	&	Gagliardi	2015

Pearl	&	Sprouse	2013a,	2013b,	2015 Pearl	&	Sprouse	2013a,	2013b,	2015

Lidz	&	Gagliardi	2015

Subjacency-ish	input	&	intake:	
A	dependency	cannot	cross	a	very	low	
probability	region	of	structure	(represented	
as	a	sequence	of	container	nodes).

Wh					…						[CN1		…		[CN2	…	 [CN3	…	[CN4	…		[CN5	…	 	 __]]																		

Data	intake:	 defined	by	initial	state	=	
all	wh-dependencies	in	child-directed	speech,	as	characterized	by	container	nodes

But	which	wh-dependencies?	Just	the	ones	being	evaluated	in	the	target	state?

		Who	__	claimed	that	Lily	forgot	the	necklace?	 	 	 										matrix	|	non-island	
		What	did	the	teacher	claim	that	Lily	forgot	__?	 	 	 		embedded	|	non-island	
		Who	__	made	the	claim	that	Lily	forgot	the	necklace?	 			 										matrix	|	island		
*What	did	the	teacher	make	the	claim	that	Lily	forgot	__?	 		embedded	|	island

The	Subjacency-ish	strategy:	Data	intake

Pearl	&	Sprouse	2013a,	2013b,	2015

Lidz	&	Gagliardi	2015

Subjacency-ish	input	&	intake:	
A	dependency	cannot	cross	a	very	low	
probability	region	of	structure	(represented	
as	a	sequence	of	container	nodes).

Wh					…						[CN1		…		[CN2	…	 [CN3	…	[CN4	…		[CN5	…	 	 __]]																		

Data	intake:	 defined	by	initial	state	=	

all	wh-dependencies	in	child-directed	speech,	as	characterized	by	container	nodes

But	which	wh-dependencies?	Just	the	ones	being	evaluated	in	the	target	state?

No!	Any	wh-dependency	has	relevant	information	
about	container	node	trigrams	used	to	determine	
the	grammaticality	of	wh-dependencies	in	general.

+1IP-VP-CP
…

+1begin-IP-VP

The	Subjacency-ish	strategy:	Data	intake

Pearl	&	Sprouse	2013a,	2013b,	2015

Lidz	&	Gagliardi	2015

Subjacency-ish	input	&	intake:	
A	dependency	cannot	cross	a	very	low	
probability	region	of	structure	(represented	
as	a	sequence	of	container	nodes).

Wh					…						[CN1		…		[CN2	…	 [CN3	…	[CN4	…		[CN5	…	 	 __]]																		

Data	intake:	

all	wh-dependencies	in	child-directed	speech,	as	characterized	by	container	nodes

(Brown-Adam,	Brown-Eve,	Suppes,	Valian)	from	CHILDES:	
101,838	utterances	containing	20,923	wh-dependencies

76.7%		 What	did	you	see	__?

12.8%		 What	__	happened?

		5.6%		 What	did	she	want	to	do	__?
		2.5%		 What	did	she	read	from	__?

		1.1%		 What	did	she	think	he	said	__?
…	 	

defined	by	initial	state	=	

The	Subjacency-ish	strategy:	Data	intake



Pearl	&	Sprouse	2013a,	2013b,	2015

Lidz	&	Gagliardi	2015

Subjacency-ish	input	&	intake:	
A	dependency	cannot	cross	a	very	low	
probability	region	of	structure	(represented	
as	a	sequence	of	container	nodes).

Wh					…						[CN1		…		[CN2	…	 [CN3	…	[CN4	…		[CN5	…	 	 __]]																		

Data	intake:	

all	wh-dependencies	in	child-directed	speech,	as	characterized	by	container	nodes

The	CHILDES	Treebank	can	be	very	helpful,	since	it	
annotates	phrase	structure	and	dependencies.	

defined	by	initial	state	=	

The	Subjacency-ish	strategy:	Data	intake

hip://www.socsci.uci.edu/~lpearl/CoLaLab/CHILDESTreebank/childestreebank.html

Pearl	&	Sprouse	2013a,	2013b,	2015

CHILDES	Treebank

hip://www.socsci.uci.edu/~lpearl/CoLaLab/CHILDESTreebank/childestreebank.html

Pearl	&	Sprouse	2013a,	2013b,	2015

CHILDES	Treebank

From	valian.parsed

hip://www.socsci.uci.edu/~lpearl/CoLaLab/CHILDESTreebank/childestreebank.html

“What’s	it	got	__	on	it?”

Pearl	&	Sprouse	2013a,	2013b,	2015

CHILDES	Treebank

Using	the	Tregex	visualiza/on	&	query	tool		
available	at	hgp://nlp.stanford.edu/sohware/tregex.shtml

hip://www.socsci.uci.edu/~lpearl/CoLaLab/CHILDESTreebank/childestreebank.html

“What’s	it	got	__	on	it?”



Pearl	&	Sprouse	2013a,	2013b,	2015

CHILDES	Treebank

Using	the	Tregex	visualiza/on	&	query	tool		
available	at	hgp://nlp.stanford.edu/sohware/tregex.shtml

hip://www.socsci.uci.edu/~lpearl/CoLaLab/CHILDESTreebank/childestreebank.html

Note	that	while	this	can	be	helpful	for	extracting	container	
node	sequences,	the	labels	still	may	not	be	exactly	right.	
Some	post-processing	is	necessary	here.	But	it	sure	helps	as	
a	basis,	instead	of	having	to	search	text	alone	and	annotate	
container	node	sequences	by	hand.

“What’s	it	got	__	on	it?” =	IP	VP Pearl	&	Sprouse	2013a,	2013b,	2015

Lidz	&	Gagliardi	2015

Subjacency-ish	input	&	intake:	
A	dependency	cannot	cross	a	very	low	
probability	region	of	structure	(represented	
as	a	sequence	of	container	nodes).

Wh					…						[CN1		…		[CN2	…	 [CN3	…	[CN4	…		[CN5	…	 	 __]]																		

Learning	period:	

The	Subjacency-ish	strategy:	Learning	period

Hart	and	Risley	(1995)	determined	that	American	children	in	their	
samples	were	exposed	to	approximately	one	million	uierances	between	birth	
and	three	years	old.		

Let’s	assume,	based	on	available	experimental	studies,	that	intuiNons	about	
syntacNc	islands	are	acquired	in	a	three	year	period,	such	as	between	the	
ages	of	two	and	five.	

So,	our	modeled	learner	will	get	1,000,000	uierances	distributed	similarly	to	
the	dependencies	in	the	child-directed	speech	input	samples	from	CHILDES.

Pearl	&	Sprouse	2013a,	2013b,	2015

Lidz	&	Gagliardi	2015

Subjacency-ish	input	&	intake:	
A	dependency	cannot	cross	a	very	low	
probability	region	of	structure	(represented	
as	a	sequence	of	container	nodes).

Wh					…						[CN1		…		[CN2	…	 [CN3	…	[CN4	…		[CN5	…	 	 __]]																		

Learning	period:	

The	Subjacency-ish	strategy:	Learning	period

76.7%		 What	did	you	see	__?

12.8%		 What	__	happened?

		5.6%		 What	did	she	want	to	do	__?
		2.5%		 What	did	she	read	from	__?
		1.1%		 What	did	she	think	he	said	__?
…	 	

20%	of	the	utterances	in	the	child-directed	speech	sample	were	
wh-dependencies,	distributed	this	way	(26	types	total):

Pearl	&	Sprouse	2013a,	2013b,	2015

Lidz	&	Gagliardi	2015

Subjacency-ish	input	&	intake:	
A	dependency	cannot	cross	a	very	low	
probability	region	of	structure	(represented	
as	a	sequence	of	container	nodes).

Wh					…						[CN1		…		[CN2	…	 [CN3	…	[CN4	…		[CN5	…	 	 __]]																		

Learning	period:	

The	Subjacency-ish	strategy:	Learning	period

76.7%		 IP-VP

12.8%		 IP

		5.6%		 IP-VP-IP-VP
		2.5%		 IP-VP-PP
		1.1%		 IP-VP-CP-IP-VP
…	 	

Therefore,	the	modeled	learner	heard	200,000	wh-dependencies	
distributed	this	way,	encoded	as	container	node	sequences:



Pearl	&	Sprouse	2013a,	2013b,	2015

Lidz	&	Gagliardi	2015

Subjacency-ish	input	&	intake:	
A	dependency	cannot	cross	a	very	low	
probability	region	of	structure	(represented	
as	a	sequence	of	container	nodes).

Wh					…						[CN1		…		[CN2	…	 [CN3	…	[CN4	…		[CN5	…	 	 __]]																		

Target	state:	Behavioral	evidence	of	syntactic	islands	knowledge	
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Non-parallel	lines	indicate	superadditivity,	which	indicates	
knowledge	of	islands.	

But	how	do	we	get	acceptability	judgment	equivalents?

matrix

The	Subjacency-ish	strategy:	Target	state

Pearl	&	Sprouse	2013a,	2013b,	2015

Lidz	&	Gagliardi	2015

Subjacency-ish	input	&	intake:	
A	dependency	cannot	cross	a	very	low	
probability	region	of	structure	(represented	
as	a	sequence	of	container	nodes).

Wh					…						[CN1		…		[CN2	…	 [CN3	…	[CN4	…		[CN5	…	 	 __]]																		

Target	state:	Behavioral	evidence	of	syntactic	islands	knowledge	
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For	each	set	of	island	stimuli	from	Sprouse	et	al.	
(2012),	we	generate	grammaticality	preferences	for	
the	modeled	learner	based	on	the	dependency’s	
perceived	probability	and	use	this	as	a	stand-in	for	
acceptability.	

matrix

The	Subjacency-ish	strategy:	Target	state

Pearl	&	Sprouse	2013a,	2013b,	2015

Lidz	&	Gagliardi	2015

Subjacency-ish	input	&	intake:	
A	dependency	cannot	cross	a	very	low	
probability	region	of	structure	(represented	
as	a	sequence	of	container	nodes).

Wh					…						[CN1		…		[CN2	…	 [CN3	…	[CN4	…		[CN5	…	 	 __]]																		

Target	state:	Behavioral	evidence	of	syntactic	islands	knowledge	
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Who	__	claimed	that	Lily	
forgot	the	necklace?	

What	did	the	teacher	claim	
that	Lily	forgot	__?

Who	__	made	the	claim	that	
Lily	forgot	the	necklace?	

*What	did	the	teacher	make	
the	claim	that	Lily	forgot	__?	

matrix embedded
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matrix

The	Subjacency-ish	strategy:	Target	state Let’s	take	a	break	for	a	few	minutes



I.		So	you	want	to	model	language	acquisiNon

Today’s	Plan

II.		Modeling	case	study:		
Defining	the	pieces

III.		Modeling	case	study:		
ImplementaNon	&	InterpretaNon

Wh					…						[CN1		…		[CN2	…	 [CN3	…	[CN4	…		[CN5	…	 	

Details:	What	counts	as	a	container	node	and	why

Encoding	a	dependency	as	a	sequence	of	container	nodes.
Who	did	she	think	that	the	gift	was	from?

	[CP	Who	did	[IP	she	[VP	think	[CP	that	[IP	[NP	the	gift]		[VP	was	[PP	from	__]]]]]]]]?	
	 	 						IP								VP	 				CP									IP	 	 						VP									PP	

What	phrase	structure	nodes	
should	children	pay	attention	to?	
This	is	only	one	option.

Details:	What	counts	as	a	container	node	and	why

Encoding	a	dependency	as	a	sequence	of	container	nodes.
Who	did	she	think	that	the	gift	was	from?

	[CP	Who	did	[IP	she	[VP	think	[CP	that	[IP	[NP	the	gift]		[VP	was	[PP	from	__]]]]]]]]?	
	 	 						IP								VP	 				CP									IP	 	 						VP									PP	

Pearl	&	Sprouse:	Maybe	we	should	
start	with	“basic”	phrase	structure	
nodes	(typically	associated	with	a	
lexical	head:	CP,	IP,	VP,	AdjP,	PP,	etc.).

Details:	What	counts	as	a	container	node	and	why
Sanity	check:	What	happens	when	we	look	at	the	dependencies	the	modeled	
child	will	have	to	make	judgments	about	at	the	end	of	learning	if	we	use	this	
version	of	container	nodes?

Important:	Can	the	grammatical	dependencies	be	
distinguished	from	the	ungrammatical	
dependencies	with	this	representation?	



Can	the	grammatical	dependencies	be	distinguished	from	the	ungrammatical	ones?

Sprouse	et	al.	(2012)	stimuli:	

Complex	NP	islands	 	 	 	 	 	 	 	 	 Subject	islands		
	 	
*begin-IP-end	 	 	 	 													matrix	|	non-island	*			begin-IP-end	
*begin-IP-VP-CP-IP-VP-end													embedded	|	non-island		*		begin-IP-VP-CP-IP-end	
*begin-IP-end	 	 	 	 													matrix	|	island																begin-IP-end	
*begin-IP-VP-NP-CP-IP-VP-end							embedded	|	island	 											*begin-IP-VP-CP-IP-NP-PP-end		

All	the	ungrammatical	dependencies	are	distinct	from	
all	the	grammatical	dependencies	for	these	syntactic	
islands.

Details:	What	counts	as	a	container	node	and	why
Can	the	grammatical	dependencies	be	distinguished	from	the	ungrammatical	ones?

Sprouse	et	al.	(2012)	stimuli:	

Whether	islands	 	 	 	 	 	 	 	 	 	 Adjunct	islands		
	 	 	
*begin-IP-end	 	 	 	 													matrix	|	non-island	*			begin-IP-end	
*begin-IP-VP-CP-IP-VP-end													embedded	|	non-island		*		begin-IP-VP-CP-IP-VP-end	
*begin-IP-end	 	 	 	 													matrix	|	island																begin-IP-end	
*begin-IP-VP-CP-IP-VP-end													embedded	|	island	 											*begin-IP-VP-CP-IP-VP-end		

Uh	oh	-	the	ungrammatical	dependencies	look	identical	
to	some	of	the	grammatical	dependencies	for	these	
syntactic	islands.

Details:	What	counts	as	a	container	node	and	why

Can	the	grammatical	dependencies	be	distinguished	from	the	ungrammatical	ones?

Sprouse	et	al.	(2012)	stimuli:	

Whether	islands	 	 	 	 	 	 	 	 	 	 Adjunct	islands		
	 	 	
*begin-IP-end	 	 	 	 													matrix	|	non-island	*			begin-IP-end	
*begin-IP-VP-CP-IP-VP-end													embedded	|	non-island		*		begin-IP-VP-CP-IP-VP-end	
*begin-IP-end	 	 	 	 													matrix	|	island																begin-IP-end	
*begin-IP-VP-CP-IP-VP-end													embedded	|	island	 											*begin-IP-VP-CP-IP-VP-end		

This	means	there’s	no	possible	way	to	get	these	
judgments	right	using	this	representation.	Uh	oh!

Details:	What	counts	as	a	container	node	and	why

One	solution:		
Have	CP	container	nodes	be	more	specified	for	the	learner:	
Use	the	lexical	head	to	subcategorize	the	CP	container	node.	

CPnull,	CPthat,	CPwhether,	CPif,	etc.	

The	learner	can	then	distinguish	between	these	structures:	

IP-VP-CPnull/that-IP-VP	
IP-VP-CPwhether/if-IP-VP		

	

Details:	What	counts	as	a	container	node	and	why



Can	the	grammatical	dependencies	be	distinguished	from	the	ungrammatical	ones?

Sprouse	et	al.	(2012)	stimuli:	

Complex	NP	islands	 	 	 	 	 	 	 	 	 Subject	islands		
	 	
*begin-IP-end	 	 	 	 															matrix	|	non-island			begin-IP-end	
*begin-IP-VP-CPthat-IP-VP-end											embedded	|	non-island			begin-IP-VP-CPnull-IP-end	
*begin-IP-end	 	 	 	 															matrix	|	island		 				begin-IP-end	
*begin-IP-VP-NP-CPthat-IP-VP-end					embedded	|	island	 		*begin-IP-VP-CPnull-IP-NP-PP-end		

All	the	ungrammatical	dependencies	are	still	
distinct	from	all	the	grammatical	dependencies	for	
these	syntactic	islands.

Details:	What	counts	as	a	container	node	and	why
Can	the	grammatical	dependencies	be	distinguished	from	the	ungrammatical	ones?

Sprouse	et	al.	(2012)	stimuli:	

Whether	islands	 	 	 	 	 	 	 	 	 	 Adjunct	islands		
	 	 	
*begin-IP-end	 	 	 	 												matrix	|	non-island						begin-IP-end	
*begin-IP-VP-CPthat-IP-VP-end								embedded	|	non-island						begin-IP-VP-CPthat-IP-VP-end	
*begin-IP-end	 	 	 	 												matrix	|	island															begin-IP-end	
*begin-IP-VP-CPwhether-IP-VP-end			embedded	|	island	 										*begin-IP-VP-CPif-IP-VP-end		

Now	the	ungrammatical	dependencies	are	distinct	
from	all	the	grammatical	dependencies	for	these	
syntactic	islands,	too.

Details:	What	counts	as	a	container	node	and	why

Details:	What	counts	as	a	container	node	and	why

Encoding	a	dependency	as	a	sequence	of	container	nodes.
Who	did	she	think	that	the	gift	was	from?

	[CP	Who	did	[IP	she	[VP	think	[CP	that	[IP	[NP	the	gift]		[VP	was	[PP	from	__]]]]]]]]?	
	 	 						IP								VP	 				CPthat				IP	 	 						VP									PP	

Pearl	&	Sprouse	update:	Maybe	we	
should	start	with	“basic”	phrase	structure	
nodes	for	everything	except	CP	which	we	
have	lexical	detail	about.

(2)	Break	these	dependency	structures	into	smaller	pieces	made	up	of	three	units	
(trigrams)	that	you	can	track	the	frequency	of	in	the	input	you	encounter.

(3)	Use	trigram	frequency	to	calculate	the	probability	of	that	trigram	occurring	in	a	
dependency.

begin-IP-VP	=	86/225	 	 p(begin-IP-VP)	=	0.38	
IP-VP-end	=	83/225	 	 p(IP-VP-end)	=	0.37	
begin-IP-end	=	13/225		 p(begin-IP-end)	=	0.06	
IP-VP-IP	=	6/225	 	 	 p(IP-VP-IP)	=	0.03	
VP-IP-VP	=	6/225	 	 	 p(VP-IP-VP)	=	0.03	
IP-VP-PP	=	3/225	 	 	 p(IP-VP-PP)	=	0.01	
VP-PP-end	=	3/225	 	 p(VP-PP-end)	=	0.01	
…	
IP-NP-PP	=	0/225																		p(IP-NP-PP)	=	0.00

Details:	Subjacency-ish	strategy	in	more	detail

Strategy:	
(1)	Pay	attention	to	the	structure	of	dependencies.	



(2)	Break	these	dependency	structures	into	smaller	pieces	made	up	of	three	units	
(trigrams)	that	you	can	track	the	frequency	of	in	the	input	you	encounter.

(3)	Use	trigram	frequency	to	calculate	the	probability	of	that	trigram	occurring	in	a	
dependency.

Details:	Subjacency-ish	strategy	in	more	detail

A	small	problem:	Trigrams	we	
never	observe	have	a	
frequency	of	0.	This	then	yields	
a	probability	of	0.		In	general,	
we	prefer	not	to	assign	0	
probabiliNes	—	what	if	
whatever	it	is	is	simply	very	
rare?	It’s	beier	to	allow	a	very	
small	probability	for	things	not	
yet	observed.

begin-IP-VP	=	86/225	 	 p(begin-IP-VP)	=	0.38	
IP-VP-end	=	83/225	 	 p(IP-VP-end)	=	0.37	
begin-IP-end	=	13/225		 p(begin-IP-end)	=	0.06	
IP-VP-IP	=	6/225	 	 	 p(IP-VP-IP)	=	0.03	
VP-IP-VP	=	6/225	 	 	 p(VP-IP-VP)	=	0.03	
IP-VP-PP	=	3/225	 	 	 p(IP-VP-PP)	=	0.01	
VP-PP-end	=	3/225	 	 p(VP-PP-end)	=	0.01	
…	
IP-NP-PP	=	0/225																		p(IP-NP-PP)	=	0.00

Strategy:	
(1)	Pay	attention	to	the	structure	of	dependencies.	

(2)	Break	these	dependency	structures	into	smaller	pieces	made	up	of	three	units	
(trigrams)	that	you	can	track	the	frequency	of	in	the	input	you	encounter.

(3)	Use	trigram	frequency	to	calculate	the	probability	of	that	trigram	occurring	in	a	
dependency.

Details:	Subjacency-ish	strategy	in	more	detail

Allowing	a	very	small	default	
probability	is	known	as	
“smoothing”.

begin-IP-VP	=	86/225	 	 p(begin-IP-VP)	=	0.38	
IP-VP-end	=	83/225	 	 p(IP-VP-end)	=	0.37	
begin-IP-end	=	13/225		 p(begin-IP-end)	=	0.06	
IP-VP-IP	=	6/225	 	 	 p(IP-VP-IP)	=	0.03	
VP-IP-VP	=	6/225	 	 	 p(VP-IP-VP)	=	0.03	
IP-VP-PP	=	3/225	 	 	 p(IP-VP-PP)	=	0.01	
VP-PP-end	=	3/225	 	 p(VP-PP-end)	=	0.01	
…	
IP-NP-PP	=	0/225																		p(IP-NP-PP)	=	0.00

Strategy:	
(1)	Pay	attention	to	the	structure	of	dependencies.	

(2)	Break	these	dependency	structures	into	smaller	pieces	made	up	of	three	units	
(trigrams)	that	you	can	track	the	frequency	of	in	the	input	you	encounter.

(3)	Use	trigram	frequency	to	calculate	the	probability	of	that	trigram	occurring	in	a	
dependency.

Details:	Subjacency-ish	strategy	in	more	detail

Allowing	a	very	small	default	
probability	is	known	as	
“smoothing”.

One	way	to	do	smoothing:	Lidstone’s	Law

Strategy:	
(1)	Pay	attention	to	the	structure	of	dependencies.	

(2)	Break	these	dependency	structures	into	smaller	pieces	made	up	of	three	units	
(trigrams)	that	you	can	track	the	frequency	of	in	the	input	you	encounter.

(3)	Use	trigram	frequency	to	calculate	the	probability	of	that	trigram	occurring	in	a	
dependency.

Details:	Subjacency-ish	strategy	in	more	detail

Allowing	a	very	small	default	
probability	is	known	as	
“smoothing”.

One	way	to	do	smoothing:	Lidstone’s	Law

A	number	less	than	1	(ex:	α	=	0.5)	is	added	to	all	counts.	This	means	all	N	
trigrams	have	α	added	to	them	(that’s	why	Nα	is	in	the	denominator).	This	is	true	
no	matter	how	frequently	each	trigram	was	observed	(so	some	may	have	
appeared	83	times	while	others	appeared	only	once).	

Strategy:	
(1)	Pay	attention	to	the	structure	of	dependencies.	



(2)	Break	these	dependency	structures	into	smaller	pieces	made	up	of	three	units	
(trigrams)	that	you	can	track	the	frequency	of	in	the	input	you	encounter.

(3)	Use	trigram	frequency	to	calculate	the	probability	of	that	trigram	occurring	in	a	
dependency.

Details:	Subjacency-ish	strategy	in	more	detail

Allowing	a	very	small	default	
probability	is	known	as	
“smoothing”.

begin-IP-VP	=	86/225	 	 		p(begin-IP-VP)	=	0.38	
IP-VP-end	=	83/225	 	 		p(IP-VP-end)	=	0.37	
begin-IP-end	=	13/225		 		p(begin-IP-end)	=	0.06	
IP-VP-IP	=	6/225	 	 	 		p(IP-VP-IP)	=	0.03	
VP-IP-VP	=	6/225	 	 	 		p(VP-IP-VP)	=	0.03	
IP-VP-PP	=	3/225	 	 	 		p(IP-VP-PP)	=	0.01	
VP-PP-end	=	3/225	 	 		p(VP-PP-end)	=	0.01	
…	
IP-NP-PP	=	0/225																				p(IP-NP-PP)	=	0.00

(ex:	α	=	0.5)

Strategy:	
(1)	Pay	attention	to	the	structure	of	dependencies.	

(2)	Break	these	dependency	structures	into	smaller	pieces	made	up	of	three	units	
(trigrams)	that	you	can	track	the	frequency	of	in	the	input	you	encounter.

(3)	Use	trigram	frequency	to	calculate	the	probability	of	that	trigram	occurring	in	a	
dependency.

Details:	Subjacency-ish	strategy	in	more	detail

Allowing	a	very	small	default	
probability	is	known	as	
“smoothing”.

begin-IP-VP	=	(86+α)/(225+100α)	 		p(begin-IP-VP)	=	0.31	
IP-VP-end	=	(83+α)/(225+100α)	 		p(IP-VP-end)	=	0.30	
begin-IP-end	=	(13+α)/(225+100α)			p(begin-IP-end)	=	0.05	
IP-VP-IP	=	(6+α)/(225+100α)	 										p(IP-VP-IP)	=	0.02	
VP-IP-VP	=	(6+α)/(225+100α)		 		p(VP-IP-VP)	=	0.02	
IP-VP-PP	=	(3+α)/(225+100α)	 	 		p(IP-VP-PP)	=	0.01	
VP-PP-end	=	(3+α)/(225+100α)	 		p(VP-PP-end)	=	0.01	
…	
IP-NP-PP	=	(0+α)/(225+100α)											p(IP-NP-PP)	=	0.002

(ex:	α	=	0.5)if	we	
had	
100	
trigram	
types	
total

Strategy:	
(1)	Pay	attention	to	the	structure	of	dependencies.	

(2)	Break	these	dependency	structures	into	smaller	pieces	made	up	of	three	units	
(trigrams)	that	you	can	track	the	frequency	of	in	the	input	you	encounter.

(3)	Use	trigram	frequency	to	calculate	the	probability	of	that	trigram	occurring	in	a	
dependency.

(4)	When	you	see	a	new	dependency,	break	it	down	into	its	trigrams	and	then	calculate	
its	probability,	based	on	the	trigram	probabilities.

(5)	Use	calculated	dependency	probabilities	as	the	basis	for	grammaticality	judgments.	
Lower	probability	dependencies	are	dispreferred,	compared	to	higher	probability	
dependencies.

p(IP-VP)	=	0.14

p(IP-VP-IP-VP-PP)	=	0.000000034

p(IP-VP-CP-IP-NP-PP)	=	0.00000000001

Details:	Subjacency-ish	strategy	in	more	detail

How	does	this	part	work?

Strategy:	
(1)	Pay	attention	to	the	structure	of	dependencies.	

(5)	Use	calculated	dependency	probabilities	as	the	basis	for	grammaticality	judgments.	
Lower	probability	dependencies	are	dispreferred,	compared	to	higher	probability	
dependencies.

p(IP-VP)	=	0.14

p(IP-VP-IP-VP-PP)	=	0.000000034

p(IP-VP-CP-IP-NP-PP)	=	0.00000000001

Details:	Subjacency-ish	strategy	in	more	detail

How	does	this	part	work?
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Who	__	claimed	that	Lily	
forgot	the	necklace?	

What	did	the	teacher	claim	
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Lily	forgot	the	necklace?	
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matrix embedded
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We	want	to	get	numbers	
we	can	plot	on	an	
interaction	plot.



(5)	Use	calculated	dependency	probabilities	as	the	basis	for	grammaticality	judgments.	
Lower	probability	dependencies	are	dispreferred,	compared	to	higher	probability	
dependencies.

p(IP-VP)	=	0.14

p(IP-VP-IP-VP-PP)	=	0.000000034

p(IP-VP-CP-IP-NP-PP)	=	0.00000000001

Details:	Subjacency-ish	strategy	in	more	detail

How	does	this	part	work?
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Let’s	use	log	probabilities:		
(1)	They’re	easier	to	compare	visually,	
especially	when	the	probabilities	are	very,	
very	small	numbers.

(5)	Use	calculated	dependency	probabilities	as	the	basis	for	grammaticality	judgments.	
Lower	probability	dependencies	are	dispreferred,	compared	to	higher	probability	
dependencies.

p(IP-VP)	=	0.14

p(IP-VP-IP-VP-PP)	=	0.000000034

p(IP-VP-CP-IP-NP-PP)	=	0.00000000001

Details:	Subjacency-ish	strategy	in	more	detail

How	does	this	part	work?
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Let’s	use	log	probabilities:		
(1)	They’re	easier	to	compare	visually,	
especially	when	the	probabilities	are	very,	
very	small	numbers.

log10(0.000000034)	=	-7.46
log10(0.14)	=	-0.85

log10(0.00000000001)	=	-11.0

(5)	Use	calculated	dependency	probabilities	as	the	basis	for	grammaticality	judgments.	
Lower	probability	dependencies	are	dispreferred,	compared	to	higher	probability	
dependencies.

p(IP-VP)	=	0.14

p(IP-VP-IP-VP-PP)	=	0.000000034

p(IP-VP-CP-IP-NP-PP)	=	0.00000000001

Details:	Subjacency-ish	strategy	in	more	detail

How	does	this	part	work?
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Let’s	use	log	probabilities:		

(2)	The	integer	lets	us	quickly	compare	the	
order	of	magnitude	in	difference.

log10(0.000000034)	=	-7.46
log10(0.14)	=	-0.85

log10(0.00000000001)	=	-11.0
This	one	is	4	times	
(104)	smaller	than	
the	one	above	it.

(5)	Use	calculated	dependency	probabilities	as	the	basis	for	grammaticality	judgments.	
Lower	probability	dependencies	are	dispreferred,	compared	to	higher	probability	
dependencies.

p(IP-VP)	=	0.14

p(IP-VP-IP-VP-PP)	=	0.000000034

p(IP-VP-CP-IP-NP-PP)	=	0.00000000001

Details:	Subjacency-ish	strategy	in	more	detail

How	does	this	part	work?
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Let’s	use	log	probabilities:		
(3)	Multiplication	is	addition	in	log	space.	
This	is	handy	when	working	with	lots	of	
trigrams	with	small	probabilities.

log10(0.000000034)	+		log10(0.00000000001)

-7.46	+	-11.0	=	-18.46

log10(0.000000034*0.00000000001)	=



(5)	Use	calculated	dependency	probabilities	as	the	basis	for	grammaticality	judgments.	
Lower	probability	dependencies	are	dispreferred,	compared	to	higher	probability	
dependencies.

p(IP-VP)	=	0.14

p(IP-VP-IP-VP-PP)	=	0.000000034

p(IP-VP-CP-IP-NP-PP)	=	0.00000000001

Details:	Subjacency-ish	strategy	in	more	detail

How	does	this	part	work?
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Let’s	use	log	probabilities:		
Interpretation:	Since	all	log	probabilities	are	
negative,	what	matters	is	less	negative	
(closer	to	0)	vs.	more	negative.	This	is	what	
we	plot	on	the	interaction	plots.	

Less	negative	=	more	probable		
=	more	grammatical.

0

-25

(2)	Break	these	dependency	structures	into	smaller	pieces	made	up	of	three	units	
(trigrams)	that	you	can	track	the	frequency	of	in	the	input	you	encounter.

Implementation:	Subjacency-ish	strategy

(3)	Use	trigram	frequency	to	calculate	the	probability	of	that	trigram	occurring	in	a	
dependency.

(4)	When	you	see	a	new	dependency,	break	it	down	into	its	trigrams	and	then	calculate	
its	probability,	based	on	the	trigram	probabilities.

(5)	Use	calculated	dependency	probabilities	as	the	basis	for	grammaticality	judgments.	
Lower	probability	dependencies	are	dispreferred,	compared	to	higher	probability	
dependencies.

So	this	is	what	we	want	to	implement	in	a	
computer	program.	What	decisions	remain?

Strategy:	
(1)	Pay	attention	to	the	structure	of	dependencies.	

Things	to	consider	when	implementing	a	model

What	programming	language	should	you	use?

This	depends	a	lot	on		

(a)what	things	you	need	to	be	able	to	do,	and		

(b)what’s	handy	(either	because	you’re	already	familiar	with	it	or	because	you	have	
easy	access	to	it)
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This	depends	a	lot	on		

(a)what	things	you	need	to	be	able	to	do,	and		

(b)what’s	handy	(either	because	you’re	already	familiar	with	it	or	because	you	have	
easy	access	to	it)

Some	languages	are	excellent	at	quick	text	processing	(ex:	perl),	some	are	fantastic	for	
visualization	(ex:	R,	matlab),	some	are	wonderful	at	fast	math	operations	(ex:	numpy	
libraries	of	python,	matlab,	C++),	some	are	great	for	generative	models	(ex:	Church,	
WebPPL),	some	are	brilliant	for	portability	(ex:	java,	python),	…	
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visualization	(ex:	R,	matlab),	some	are	wonderful	at	fast	math	operations	(ex:	numpy	
libraries	of	python,	matlab,	C++),	some	are	great	for	generative	models	(ex:	Church,	
WebPPL),	some	are	brilliant	for	portability	(ex:	java,	python),	…	

If	you	know	what	you	need	to	do	(because	
you’ve	mapped	out	your	learning	strategy	
implementation	in	glorious	detail),	it’s	easier	to	
choose.

Things	to	consider	when	implementing	a	model

Wait,	what	do	I	need	to	be	able	to	do?

This	includes	things	like:	

(i) how	the	input	needs	to	be	represented	for	the	code		
(ii)what	data	structures	will	be	used	
(iii)	what	kind	of	output	will	be	generated	&	what	format	that	output	will	be	in
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(ii)what	data	structures	will	be	used	
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Which	dependencies	to	generate	probabilities	for

Dependency	frequency	in	the	input
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This	includes	things	like:	

(i) how	the	input	needs	to	be	represented	for	the	code		
(ii)what	data	structures	will	be	used	
(iii)	what	kind	of	output	will	be	generated	&	what	format	that	output	will	be	in

Information	useful	for	analysis

Probabilities	over	time

Things	to	consider	when	implementing	a	model

Now	back	to	what	programming	language	you	should	use…

This	depends	a	lot	on		

(a)what	things	you	need	to	be	able	to	do,	and		

(b)what’s	handy	(either	because	you’re	already	familiar	with	it	or	because	you	have	
easy	access	to	it)

Things	to	consider	when	implementing	a	model

This	depends	a	lot	on		

(a)what	things	you	need	to	be	able	to	do,	and		

(b)what’s	handy	(either	because	you’re	already	familiar	with	it	or	because	you	have	
easy	access	to	it)

For	the	Pearl	&	Sprouse	learning	strategy	for	syntactic	islands,	I	used	perl	for	the	model	
implementation	and	R	for	the	interaction	plots	because	I	knew	perl	already	and	Jon	
Sprouse	had	previously	made	interaction	plot	graphs	in	R.

Now	back	to	what	programming	language	you	should	use…

Things	to	consider	when	implementing	a	model

This	depends	a	lot	on		

(a)what	things	you	need	to	be	able	to	do,	and		

(b)what’s	handy	(either	because	you’re	already	familiar	with	it	or	because	you	have	
easy	access	to	it)

For	the	Pearl	&	Sprouse	learning	strategy	for	syntactic	islands,	I	used	perl	for	the	model	
implementation	and	R	for	the	interaction	plots	because	I	knew	perl	already	and	Jon	
Sprouse	had	previously	made	interaction	plot	graphs	in	R.

Useful	skill:	Being	able	to	adapt	someone	else’s	
freely	available	code	to	what	you	need	to	do.	This	
is	why	it	can	be	handy	to	know	a	little	about	a	
variety	of	programming	languages.

Now	back	to	what	programming	language	you	should	use…



Model	results	&	interpretation

Now	what?

Once	we	run	this	model,	we	get	some	numbers	for	a	variety	of	
dependencies	we	specified	that	we	cared	about.

Model	results	&	interpretation

Now	we	need	to	link	them	back	to	the	target	state	we’re	
interested	a	little	more	precisely.	This	way,	other	people	can	
understand	what	our	results	mean.

Probabilities	at	the	end	of	learning	are	
what’s	useful	for	generating	the	numbers	
needed	for	the	interaction	plots.		
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Model	results	&	interpretation

Who	__	claimed	that	Lily	
forgot	the	necklace?	

What	did	the	teacher	claim	
that	Lily	forgot	__?

Who	__	made	the	claim	that	
Lily	forgot	the	necklace?	

*What	did	the	teacher	make	
the	claim	that	Lily	forgot	__?	

matrix embedded

non-island

			island

Each	island	type	had	four	stimuli	
dependencies	in	Sprouse	et	al.	(2012).
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Complex	NP	islands

Model	results	&	interpretation

IP IP-VP-CPthat-IP-VP

IP *IP-VP-NP-CPthat-IP-VP

matrix embedded

non-island

			island

Each	of	those	is	characterized	by	
a	sequence	of	container	nodes.	
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Complex	NP	islands



Model	results	&	interpretation

We	can	get	the	log	probability	of	
all	these	dependencies	and	then	
plot	them	on	interaction	plots.
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When	we	compare	this	against	the	
desired	target	behavior…

Complex	NP Subject

AdjunctWhether

matrix embedded matrix embedded

matrix embeddedmatrix embedded

Pearl	&	Sprouse	2013a,	2013b,	2015

Model	results	&	interpretation

●

●

●

●

−1

−0.5

0

0.5

1

1.5

2

z−
sc

or
e 

ra
tin

g

matrix embedded

island structure
non−island structure

island effect

●

●

●

●

−1

−0.5

0

0.5

1

1.5

2

z−
sc

or
e 

ra
tin

g

matrix embedded

island structure
non−island structure

no island effect

embed mat embed

Superadditivity	observed	for	all	four	
islands	—	the	qualitative	behavior	
suggests	that	this	learner	has	
knowledge	of	these	syntactic	islands.

Complex	NP Subject

AdjunctWhether

matrix embedded matrix embedded

matrix embeddedmatrix embedded

The	Subjacency-ish	representation	
that	relies	on	container	node	
trigram	probabilities	can	solve	this	
learning	problem	using	this	learning	
strategy.

Pearl	&	Sprouse	2013a,	2013b,	2015

Model	results	&	interpretation

Note:	We’re	careful	to	say	
“qualitative”	behavior	fit	because	
there	are	lots	of	other	factors	that	
impact	acceptability	judgment	
behavior,	and	we’ve	only	modeled	
one	(presumably)	large	part	of	them,	
which	is	the	grammaticality	of	the	
dependency.

Complex	NP Subject

AdjunctWhether

matrix embedded matrix embedded

matrix embeddedmatrix embedded

Pearl	&	Sprouse	2013a,	2013b,	2015

Model	results	&	interpretation



But	is	this	all	we	can	say?	

No!	One	useful	aspect	of	models	is	
that	we	can	look	inside	the	modeled	
child	to	see	why	it’s	behaving	the	way	
that	it	is.	(This	is	something	that’s	
harder	to	do	with	real	children	—	that	
is,	opening	up	their	minds	and	seeing	
how	they	work.)

Complex	NP Subject

AdjunctWhether

matrix embedded matrix embedded

matrix embeddedmatrix embedded

Pearl	&	Sprouse	2013a,	2013b,	2015

Model	results	&	interpretation

What’s	going	on?		
Why	are	the	island-spanning	
dependencies	so	much	worse	than	
the	grammatical	ones?
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the	grammatical	ones?

Model	results	&	interpretation

Let’s	look	inside	them	and	see!

It	turns	out	that	each	island-spanning	dependency	contains	at	least	one	very	low	probability	
container	node	trigram.	So	these	are	the	relevant	“island”	representations.
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Let’s	look	inside	them	and	see!

It	turns	out	that	each	island-spanning	dependency	contains	at	least	one	very	low	probability	
container	node	trigram.	So	these	are	the	relevant	“island”	representations.

What’s	going	on?		
Why	are	the	island-spanning	
dependencies	so	much	worse	than	
the	grammatical	ones?

Model	results	&	interpretation

Big	picture
Representation	validation:	Rather	than	needing	to	know	about	specific	island	constraints,	
humans	could	simply	be	sensitive	to	the	local	pieces	of	structure	captured	by	container	node	
trigrams.		

Lidz	&	Gagliardi	2015

Wh					…						[CN1		…		[CN2	…	 [CN3	…	[CN4	…		[CN5	…	 	 __]]																		

What’s	going	on?		
Why	are	the	island-spanning	
dependencies	so	much	worse	than	
the	grammatical	ones?

Model	results	&	interpretation

Big	picture
Acquisition:	To	learn	using	this	representation,	children	need	to	be	able	to	parse	utterances	into	
container	node	trigrams	and	leverage	their	statistical	learning	abilities	to	calculate	probabilities	
of	trigram	pieces	and	entire	dependencies.

Wh					…						[CN1		…		[CN2	…	 [CN3	…	[CN4	…		[CN5	…	 	 __]]																		



Big	picture	debate:	What’s	in	UG?

Wh					…						[CN1		…		[CN2	…	 [CN3	…	[CN4	…		[CN5	…	 	 __]]																		

Innate Derived Domain-
specific

Domain-
general

Attend	to	bounding	nodes	(BNs) * *

Dependencies	crossing	2+	BNs	are	not	allowed * *

Innate Derived Domain-
specific

Domain-
general

Attend	to	container	nodes	of	a	particular	kind ? ? *

Low	probability	items	are	dispreferred * *

UG	=	innate	+	domain-specific

Wh					…						[BN1	 …		 [BN2	…	 	 __]]																		

Fewer	pieces	of	knowledge	
necessarily	in	UG	+		
empirically-motivated	alternative	
proposal	for	one	component.

Subjacency-ish

Subjacency

Pearl	&	Sprouse	2013a,	2013b,	2015

Big	picture:	Syntactic	islands

Informing	theories	of	representation	&	acquisition

						(1)	Broadening	the	set	of	relevant	data	in	the	acquisitional	intake	to	include	all	wh-dependencies	
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Informing	theories	of	representation	&	acquisition

						(1)	Broadening	the	set	of	relevant	data	in	the	acquisitional	intake	to	include	all	wh-dependencies	
						(2)	Evaluating	output	by	how	useful	it	is	for	generating	acceptability	judgment	behavior	
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Big	picture:	Syntactic	islands

Informing	theories	of	representation	&	acquisition

						(1)	Broadening	the	set	of	relevant	data	in	the	acquisitional	intake	to	include	all	wh-dependencies	
						(2)	Evaluating	output	by	how	useful	it	is	for	generating	acceptability	judgment	behavior	

						(3)	Not	necessarily	needing	the	prior	knowledge	we	thought	we	did	in	UG:	container	nodes	
rather	than	bounding	nodes,	no	domain-specific	constraint	on	length	

Pearl	&	Sprouse	2013a,	2013b,	2015

Lidz	&	Gagliardi	2015



Computational	acquisition	modeling:	
Big	picture

This	technique	is	a	useful	tool	—	so	let’s	use	it	to	inform	
our	theories	of	representation	and	acquisition!

Thank	you!
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