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this spatiotemporal transformation is to delay or lag neural responses. This paper reviews our recent
modeling work testing the sufficiency of delayed responses in the nervous system in two different
behavioral tasks: (1) Categorizing spatiotemporal tactile cues with thalamic “lag” cells and downstream
coincidence detectors, and (2) Predictive motor control was achieved by the cerebellum through a
delayed eligibility trace rule at cerebellar synapses. Since the timing of these neural signals must closely
match real-world dynamics, we tested these ideas using the brain based device (BBD) approach in which
a simulated nervous system is embodied in a robotic device. In both tasks, biologically inspired neural
simulations with delayed neural responses were critical for successful behavior by the device.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In order to respond to real world stimuli at the appropriate
time, the nervous system must transform stimuli in space and time
or hold a signal for a time period before responding behaviorally.
For example, consider a rodent that sweeps its whiskers along
an object to determine its shape. How are the sensory impulses
combined across time and across multiple whiskers to categorize
the object? In another instance, when a rabbit receives a puff
of air in the eye, which is paired with a stimulus predicting the
occurrence of the air puff, it learns over time to close its eyelid
precisely in time to protect the eye from the noxious stimulus.
After the noxious stimulus arrives, how is the predictive stimulus
maintained long enough to allow associative learning to take
place?

Nervous systems integrate signals over durations ranging from
microseconds (e.g. delay lines in the owl auditory system, (Carr &
Konishi, 1990)) to seconds (e.g. persistent firing during working
memory tasks, (Funahashi, Bruce, & Goldman-Rakic, 1989; Fuster &
Alexander, 1971)). Amechanism for integrating signals over time is
provided by lag cells, found in the visual thalamus of the cat, which
respond to a visual stimulus with a characteristic delay that varies
from cell to cell (Saul & Humphrey, 1992). This type of cell can
function in a similar manner to delay lines, and has been proposed
to provide a mechanism for direction selectivity in simple cells in
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the visual cortex of the cat (Jagadeesh, Wheat, Kontsevich, Tyler, &
Ferseter, 1997).

Additional mechanisms for maintaining a signal over time have
been found at the synapse. For example, long term depression of
parallel fiber synapses onto Purkinje cells is maximal when parallel
fibers are stimulated within a time window from 125 to 250 ms
prior to climbing fiber activation (Chen & Thompson, 1995). A
candidate “eligibility trace” mechanism is embodied in a nonlinear
calcium response in these synapses which is maximal when the
parallel fiber input precedes climbing fiber activation from 50 to
200 ms (Wang, Denk, & Hausser, 2000).

To test models of delayed neural responses, we used an
approach employing brain based devices (BBDs), in which a
simulated nervous system is embodied in a robotic device, to
test mechanisms of delayed neuronal responses during behavior
(Almassy, Edelman, & Sporns, 1998; Edelman et al., 1992; Krichmar
& Edelman, 2002, 2005; Krichmar, Nitz, Gally, & Edelman, 2005;
Seth, McKinstry, Edelman, & Krichmar, 2004a, 2004b). The BBD
approach forces the modeler to consider how the timescale of
neural mechanisms matches the timescale of behavior. Physical
embodiment is critical for understanding issues of timing in
the real world. Virtual sensory input and simulated motor
output are designed by the modeler and can inadvertently
bias a neural simulation. However, when embedding a nervous
system simulation in a behaving device, the device’s behavioral
response must match its sensorimotor signals. Moreover, physical
embodiment in such a device emphasizes many of the challenging
aspects of discrimination in the real world: noisy sensors,
movement variation, and complexity of a real-world environment.
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Fig. 1. A. Darwin IX with its left and right whisker arrays. The arrangement of a whisker array is shown in the inset. Each array has 7 whiskers arranged in a row of 5 and
a column of 3. Whiskers used for wall following are marked in white (FT, MD, BK). Whiskers that provide input to the neural simulation are marked in black. Note that one
whisker (white/black) is used for both purposes. B. Detail of a whisker array: The top (T), middle (M), and bottom (B) whiskers in the column are labeled; these whiskers
provide input to the neural simulation. C. Schematic of textures T1 and T2. Each texture consists of pegs embedded in a wall; pegs are aligned in rows corresponding to the
whiskers in a column. Pegs in the top row deflect the top whisker (T), and similarly for pegs in the middle row (M) and the bottom row (B).

By using a real-world environment, not only is the risk of biases
reduced, but the experimenter is also freed from the burden of
constructing a highly complex simulated environment.

This paper describes recent work testing biologically inspired
mechanisms of delayed neural responses that facilitate categoriza-
tion of spatiotemporal tactile cues and predictive cerebellar mo-
tor control using the BBD approach. We find that a population
of lag-cell-like neuronal units that respond to artificial whisker
deflections in a moving device is sufficient to support texture
discrimination of whisker-barrel responses lasting approximately
one second. In a task where the device’s own movement causes vi-
sual optic flow, we show that a delayed eligibility trace mechanism
at simulated Purkinje cell and deep cerebellar nuclei cell synapses
allows for an association in which the visual cue predicts a future
collision.

2. Spatiotemporal pattern discrimination in Darwin IX

Haptic sensory information provided by muystacial vibrissae
(whiskers) of the rat allows the animal to discriminate among
different textures in its environment (Harvey, Bermejo, & Zeigler,
2001; Prigg, Goldreich, Carvell, & Simons, 2002). This requires
the integration of sensory input from the whiskers across time
and space, providing an excellent model system for exploring
spatiotemporal pattern categorization. To explore how haptic data
may be integrated into perceptual categories, we equipped a BBD,
Darwin IX, with artificial whiskers and a simulated nervous system
based on the neuroanatomy of the rat somatosensory system.

In our experiments with Darwin IX, the device autonomously
explored a walled environment containing two distinct textures
each consisting of various patterns of pegs embedded in the
walls. It became conditioned to avoid one of the textures by
association of this texture with an innately aversive stimulus (i.e. a
change in reflectivity of the environment’s flooring). This aversive
stimulus was used in an experimental paradigm analogous to
fear-conditioning with a ‘foot-shock’ at particular locations in
the environment. Similar to a rodent in such a conditioning

paradigm, Darwin IX demonstrated its aversive behavior by
stopping (“freezing”) and then moving away from noxious stimuli.

We tested the idea that a diverse population of neuronal units
with varying sensory response delays could bridge the temporal
gaps brought about by moving a tactile sensor across a spatial
pattern. Such a scheme has been found in the visual system of
the cat (Saul & Humphrey, 1992) and may be a mechanism for
direction selectivity in the primary visual cortex (Jagadeesh et al.,
1997). Delayed neuronal responses, which have been found in the
perirhinal cortex of the rat, can be as long as four seconds from
stimulus onset (Beggs, Moyer, McGann, & Brown, 2000).

2.1. Darwin IX: Construction and experimental paradigm

Darwin IX is based on a mobile robotic platform (Nomadic
Technologies) augmented by a whisker array on each side (Fig. 1A).
Each array consists of seven whiskers arranged in a single column
of three and single row of five where one of the whiskers was
both the row and column (see Fig. 1A, inset). The whisker column
supplied input to the simulated nervous system, while whisker
row supported innate avoidance and wall-following behaviors. The
whiskers are made of two polyamide strips, placed back to back,
that emit a signal proportional to the bending of the strip (Abrams,
Gentile Entertainment).

Darwin IX's default behavior was to move forward in a straight
line at a speed of ~8 cm/s. Darwin IX also had an innate wall-
following capability based on signals from the first, third, and
fifth whiskers in the whisker row. The innate wall-following
behavior was programmed with a simple feedback controller that
maintained these three whiskers within a desired range (see Seth
et al. (2004b) for details).

Darwin IX had an innate freezing/avoidance response which
was triggered upon detection of a simulated foot-shock by a
downward pointing infra-red sensor that measured changes in
reflectivity of floor surface. Construction paper, which was the
same color as the floor but more reflective, was placed upon
the floor in locations to trigger an innate aversive response. This
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Fig. 2. Neuroanatomy of Darwin IX. The simulated nervous system contains 17
neuronal areas, 1161 neuronal units, and ~8400 synaptic connections. Aversive
avoidance responses are evoked by activity in area Mgve. Areas ThLr/y/p and
ThRrp/p receive input from the corresponding whiskers in the whisker columns
on the appropriate side. These areas contain ‘lag cells’ with temporal response
properties. The operation of two idealized lag cells (A and B) is shown in the inset.
The poststimulus internal state of cell A(s)") rises quickly (gray dashed line), at a

rate determined by ¢,4. The internal state of B (s};“) rises more slowly (black dashed

line, pp). When the internal state of each cell reaches a threshold (ofirey, output is
generated (solid lines) which decays at a rate determined by w.

response consisted of stopping for ~4 s followed by a turn away
from the noxious stimuli. The signal from the infra-red sensor
activated Darwin IX’s value system resulting in a neuromodulatory
alteration of synaptic strength in the simulated nervous system
(see below).

Darwin IX’s simulated nervous system contained 17 neural
areas, 1101 neuronal units, and ~8400 synaptic connections
(see Fig. 2). A mean-firing rate model was used to simulate
neuronal units in Darwin IX where the activity of a neuronal unit
represents the average activity of ~100 neurons over ~100 ms.
Each simulation cycle, that is, the time to update every neuronal
unit and plastic synapse, took roughly 100 ms of real time. Darwin
IX contained areas analogous to the somatosensory pathway in
the rat brain, specifically the ventromedial nuclei of the thalamus,
and primary and secondary somatosensory areas (in our model,
Th — S1 — S2). Areas S1 and Th were subdivided into left (L)
and right (R) regions and further into ‘top’ (T), ‘middle’ (M) and
‘bottom’ (B) ‘barrel’ regions, such that each barrel received input
from a single whisker in the column on the corresponding side
(see Fig. 2). This one-to-one mapping between ‘barrel’ regions and
whiskers is analogous to the whisker barrel formations observed
in rat thalamus and S1 (Jensen & Killackey, 1987; Woolsey & Van
der Loos, 1970).

Neuronal units in the Th barrels projected topographically to
corresponding barrels of S1. Each barrel of S1 had local inhibitory
connections which served to increase the activity contrast among
neuronal units. All barrels in S1 projected to area S2 such that each
neuronal unit in S2 took input from 3 neuronal units, each of which
was in a different barrel of either the left sub-area or the right
sub-area of S1. This arrangement ensured that synaptic input to a
neuronal unit in S2 was sparse and balanced. By this arrangement,
a deflection of a particular sequence of Darwin IX’s whiskers led to
a spatiotemporal pattern of activity in S2. Such a dynamic sequence
was comparable to that observed in the rat brain (Ghazanfar &
Nicolelis, 1999).

Darwin IX’s nervous system also contained areas supporting
conditioning. The neural area FS was activated by detection of a
simulated ‘foot-shock’ and projected to areas S, Amy, and Mge.
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Fig. 3. Experimental setup for Darwin IX. Darwin IX explored a walled enclosure
(2.41 m x 2.95 m) with textures T1 and T2 on the walls. Instances of each
texture were regularly spaced along the walls at intervals of ~30 cm. Located
on the floor adjacent to T1 patterns were ‘foot-shock’ pads made of reflective
construction paper. Training and testing was repeated for each Darwin IX subject
after exchanging the positions of T1 and T2.

Area Amy is analogous to the amygdala, a neural area which
has been widely implicated in the acquisition of conditioned fear
(LeDoux, 1995; Maren & Fanselow, 1996). Area M,,. is analogous to
a motor cortical area, in which activity elicited an innate aversive
freezing/avoidance response. Synaptic plasticity in Darwin IX
between neuronal units in areas S2 and Amy (see Fig. 2) was
carried out using a modified Hebbian rule. This process is ‘value
dependent’, i.e. the degree of change is modulated by activity in the
simulated value system (area S). Connections were strengthened
when the value system activity was above the baseline, and
weakened when below the baseline. For details, see Seth et al.
(2004Db).

Each barrel in area Th contained 20 ‘lag’ cells; neuronal units
which have varying, time-lagged response properties similar to
those found in the lateral geniculate nucleus of the cat (Saul &
Humphrey, 1992; Wolfe & Palmer, 1998). Each lag cell neuronal
unit responded to a whisker deflection with a specific delay,
ranging from 1 to 20 simulation cycles. Details of the lag cell model
can be found in the Appendix A and are illustrated in the inset in
Fig. 2. The three whiskers aligned in a column provided input to the
corresponding simulated whisker barrels in area Th.

Darwin IX’s environment was a rectangular arena with black
flooring and textures along the walls of its environment (see Fig. 3).
One texture (T1) consisted of a vertically aligned column of pegs,
the other (T2) consisted of a vertically staggered column of pegs
with offsets between pegs of ~6 cm. Two adjacent walls contained
T1, the other two contained T2; either T1 or T2 was associated
with a simulated aversive foot-shock. The aversive response was
triggered by Darwin IX’s downward-facing IR sensor when it
detected the reflective construction paper placed on the floor of
the arena near the aversive texture.

Experiments were divided into training and testing stages.
During training, one of the two textures was paired with the
simulated foot-shock (the other texture was neutral). Darwin IX
autonomously explored its enclosure for 25,000 simulation cycles,
corresponding to ~48 encounters with each wall and ~24 aversive
responses to the simulated foot-shock. During testing, the foot-
shock pads were removed and Darwin IX was allowed to explore its
enclosure for ~15,000 simulation cycles. Training and testing were
repeated using three different Darwin IX “subjects” initialized with
different random seeds, pairing both T1 and T2 with foot-shock (six
training/testing episodes in total). During training and testing of
each subject, responses of all neuronal units were recorded and
saved for analysis. The position of Darwin IX was continuously
recorded by an overhead camera that detected an array of LEDs
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positioned on the top surface of the device, the images from which
were time stamped for analysis.

2.2. Texture discrimination and spatiotemporal categorization

After training, texture discrimination by Darwin IX subjects
was assessed by removing the reflective construction paper and
measuring the number of conditioned responses to the texture
associated with the simulated foot-shock locations. During testing,
Darwin IX subjects which were trained to avoid T1 made aversive
responses on 96.6% (S.E. = 0.18%) of encounters with T1. When
trained to avoid T2, these subjects made aversive responses on
97.9% (S.E. = 0.14%) of encounters with T2. Only 3.2% of all
aversive responses to both textures occurred inappropriately, i.e. in
response to whisker deflections by walls or by the texture not
associated with foot-shock. This behavioral assay demonstrated
that Darwin IX was able to discriminate between the two
spatiotemporal texture patterns of whisker deflection.

Darwin IX's ability to categorize textural stimuli is supported
by spatiotemporal patterns of neural activity in S2. Each texture
deflected the array of whiskers in a column in a specific
temporal order. The lag cells in area Th and neural units
downstream in S1 presented a pattern of activity with both a
spatial component (i.e. the particular whisker) and a temporal
component (i.e. the time since deflection). S2 neuronal units acted
as coincidence detectors responding to particular combinations of
this spatiotemporal activity in S1.

The population response of S2 to a texture was specific and
repeatable, and was supported by quantitative measures of pattern
similarity for all possible pairs of texture responses. The similarity
metric was the dot product between the neuronal unit activity
vectors (normalized to length 1) for each neuron. There was high
similarity between activity patterns representing the same texture
(mean similarity was 0.72, S.E. = 0.20), but not between activity
patterns representing different textures (mean similarity was 0.34,
S.E.=0.12).

Perceptual categorization by Darwin IX involved multiple
spatiotemporal transformations. First, a spatially defined stimulus,
such as a texture, was transformed into temporally arranged
sensory input as a result of whisker deflections during movement.
Second, this input was reformed into spatial patterns of activity in
area S2, corresponding to perceptual categories, as a result of the
response properties of the “lag” cells in the barrel regions Th —
S1 — S2.The response properties of units in S2 were similar to the
complex spatiotemporal receptive fields that have been found in
rat somatosensory cortex (Ghazanfar & Nicolelis, 1999).

Observations of Darwin IX showed that time-lagged neuronal
responses to somatosensory input provide a plausible mechanism
for spatiotemporal pattern recognition. The rodent brain may use
multiple pathways in order to achieve ecologically significant
discriminations, and it is worth noting that the present model
is not incompatible with alternatives such as the phase locked
loop model of whisker processing (Ahissar & Arieli, 2001). The
significance of Darwin IX’s performance for the present discussion
rests not so much in a particular solution to the problem of texture
discrimination but in the illustration of a neural mechanism
that is able to integrate information across space and across
time. The key insight is that a population of neurons with
variable response latencies constitutes a repertoire that provides a
mapping between temporal interval patterns and spatial response
patterns. The proposed ‘lag’ cells that mediate this mapping
provide a modality-specific ‘memory’ of stimulus events over short
timescales, which in Darwin IX permits texture discrimination and
selective conditioning to textures.

In the next section we discuss how a similar emphasis on
temporal processing using delays can support prediction in the
context of motor control.

3. Predictive motor control in a BBD

Recent theories of motor control suggest that the cerebellum
learns to replace primitive reflexes with a predictive motor
signal. The idea is that the reflexive motor commands provide
an error signal for a predictive controller, which then learns to
produce a correct motor control signal prior to the less adaptive
reflex response (Kawato & Gomi, 1992; Kettner et al., 1997,
Medina, Carey, & Lisberger, 2005; Wolpert, Miall, & Kawato,
1998; Worgotter & Porr, 2005). Synaptic eligibility traces in the
cerebellum have been proposed as a mechanism to bridge the
temporal gap between predictive signals and subsequent reflexive
motor responses (Kettner et al., 1997). In this idea, suprathreshold
presynaptic activity causes a synapse to be eligible for plasticity,
and the amount of potential synaptic change decays over time until
an error signal arrives at the synapse resulting in synaptic strength
modification. We tested an alteration of this idea by introducing a
delayed eligibility trace learning rule, in which synapses become
eligible for plasticity only after a fixed delay from the onset of
suprathreshold presynaptic activity. In our model, these synapses
were from neuronal units that responded to visuomotor stimuli
onto Purkinje cells or onto cells in the deep cerebellar nucleus.

We tested the generality of this proposed aspect of cerebellar
function in a BBD with separate reflexes for turning and for braking.
The BBD’s task was to traverse a curved course outlined by traffic
cones, without collisions. Initially, collisions or near collisions with
the cones generated a reflexive movement away from the obstacle
and areflexive braking response. These reflex commands were also
used as error signals to the cerebellar model via simulated climbing
fiber inputs. Success in this task required the BBD’s cerebellum to
associate predictive visual motion cues, which came from optic
flow generated by self-movement, with the correct movements to
avoid collisions with the cone boundaries.

3.1. Predictive motor control:
paradigm

Construction and experimental

The BBD used for the motor control experiments was built
on the Segway Robotic Mobility Platform (RMP), a commercially
available robotic version of the Segway Human Transporter scooter
(Fig. 4A). The device received sensory input from a color camera
and banks of short range IR proximity sensors that are mounted
low around the device to detect nearby objects (Fleischer et al.,
in press). An aluminum chassis on the commercial base contained a
cluster of six compact Pentium IV PCs and enough battery capacity
to operate for approximately 45 min.

The device moved forward in a straight line at a maximum of
1.25 m per second unless a cone was detected directly in front
of the device by the IR detectors, a wall was detected, or activity
of the neural simulation caused the device to slow down and/or
turn. An array of IR proximity detectors signaled the presence
of cones within 6 inches of the device. These signals drove the
turning and braking reflexes, causing the device to slow down and
move away from the obstacle, and sent an error signal via the
simulated inferior olive to the cerebellum (see I0-Turn and I0-Velo
in Fig. 5). The RMP turn rate was set based upon the population
activity in the Motor-Turn neural area; activity on the left resulted
in a turn to the right and vice versa (see Fig. 5). The speed of
the robot was controlled based on the activity of the Motor-Velo
neural area (see Fig. 5). The Motor-Velo area slowed down the RMP
based on the number of IR detectors signaling an obstacle; the
more the IR detectors that were activated, the lower the velocity.
These primitive reflexes were sufficient to drive the BBD down the
course, but not without collisions.

Fig. 5 shows a high-level diagram of the simulated nervous
system including the various neural areas and the arrangement
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Fig. 4. The Segway BBD and its environment. A. The BBD is built on the Segway
Robotic Mobility Platform. The device navigated a path dictated by the traffic cones
that were spaced apart by a few inches. B. The diagram shows the layout of the
different courses. The lane dictated by the cones was five feet wide and roughly 25
feet long. The device itself was approximately two feet in diameter.
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Fig. 5. Schematic of the regional and functional neuroanatomy of the BBD.
Gray ellipses denote different neural areas, black ellipses denote sensory input
areas, and white ellipses denote motor areas. Arrows denote synaptic projections
from one area to another. Black arrows ending in open arrowheads denote
excitatory connections, black arrows ending in a circular endpoint denote inhibitory
connections, and gray arrows ending in filled arrowheads with dotted lines denote
plastic connections. Visual input from a camera on the BBD projected to cortical
area MT. The simulated cerebellar region consisted of a precerebellar nuclei (PN),
Purkinje cells (PC-Turn and PC-Velo), deep cerebellar nuclei (DCN-Turn and DCN-
Velo), and input from the inferior olive (I0-Turn and I0-Velo) where “Velo” refers
to velocity. Neuronal units in the inferior olive were driven by the IR proximity
detectors, which in turn drove motor neurons for turning (Motor-Turn) and braking
(Motor-Velo). Motor neurons were also driven by DCN.

of synaptic connections. Similar to Darwin IX, each area contains
neuronal units that can be either excitatory or inhibitory, each of
which represents a local population of neurons (Edelman, 1987),

A delayed
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input
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|_ delay —I t
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— 1

Fig.6. The delayed eligibility trace learning rule creates a temporal window during
which predictive inputs may arrive in order to be linked to motor commands.
A. Predictive input arrives within the time window for synaptic change. B. Input
arrives too late to effect synaptic change. C. Input arrives too early to effect synaptic
change.

in which the mean-firing rate variable of each unit corresponds to
the average activity of a group of roughly 100 real neurons during
a time period of approximately 40 ms. The network contained
28 neural areas, 27,688 neuronal units, and 1.6 million synapses,
and was updated in real time. For complete details, see McKinstry,
Edelman, and Krichmar (2006).

The simulated cerebellum had precerebellar nuclei (PN) that
received input from cortical areas that responded to visual motion
(MT — PNin Fig.5) and output to the cerebellum (PN — PC, PN —
DCN in Fig. 5). A simulated cerebellar cortex contained Purkinje
cells that inhibited deep cerebellar nuclei affecting turning and
velocity (PC — DCN in Fig. 5), and an inferior olive that simulated
climbing fiber input to the cerebellum (I0 — PC, [0 — DCN
in Fig. 5). The deep cerebellar nuclei area projected to the motor
neural area resulting in RMP motor commands (DCN — Motor in
Fig. 5).

In order to turn a reflex into a predictive motor response,
or “preflex”, a mechanism was necessary to maintain predictive
information until an error signal arrived. A simple mechanism
would be to maintain a decaying trace of activity at each synapse
(Sutton & Barto, 1998). However, such a mechanism strengthens
the synapses with prior input in proportion to their temporal
proximity to the arrival time of the error signal. This heuristic
may be inadequate in many situations where temporally distant
sensory-motor signals predict the error signal.

As a modification to the eligibility trace, we implemented a
delayed eligibility trace, which created a window of time during
which predictive input could occur in order to be associated
with a motor response. Fig. 6 demonstrates schematically how
such a delayed eligibility trace learning rule works. When a
suprathreshold input arrives in the precerebellar nucleus, an
eligibility trace is triggered after a certain delay, which was varied
parametrically in our experiments. Fig. 6A illustrates how an input
arriving at the proper time before an error signal arrives will trigger
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Fig. 7. Training and testing the device on different curved courses. The mean motor error from five subjects is shown in the plots. A. Learning curves during training on the
gradual turn, sharp turn, and middle turn courses. B-D. Motor errors were significantly lower in the test group, which had access to only visual cues, than in the control or
“no learning” groups on the Gradual course (B), Middle course (C), and Sharp course (D). « denotes p < 0.01 Wilcoxon Rank Sum test.

learning. This happens when the delayed trace, shown in green,
is above zero. When the signal arrives too early or too late as in
Fig. 6B and C, synaptic change is diminished. For specific details on
synaptic strength modification with the delayed eligibility trace,
see Appendix B.

3.2. Predictive motor control through delayed synaptic eligibility

After learning, the BBD’s visual responses predicted future
collisions and resulted in smooth movement down the middle of
the pathways marked by the cones. Successful performance across
the three different courses with varying turns (see Fig. 4b) required
a combination of braking and turning of the proper magnitude at
the proper time. A4 s delay incorporated into the delayed eligibility
trace learning rule was sufficient for successful navigation on all
three courses (Fig. 7). Significantly longer or shorter delays were
not predictive in this particular task. Subjects learned to slow down
prior to and during turns, and they learned to turn in the proper
direction at the proper time. Subjects on the sharp course, which
contained roughly 90° turns, had slightly worse performance than
on the other courses. Nevertheless, in the testing phase, subjects
with cerebellar learning performed significantly better on all three
courses than did subjects without learning (Fig. 7B-D).

Subjects adapted their behaviors to the particulars of each
course. For example, subjects were faster on the gradual course
than on the sharp course. Success on the sharp course required
slower speed and more frequent turning to the left or the right.
Subjects on the gradual course typically proceeded at maximum
velocity on the straightaway, and simultaneously slowed and
turned slightly on the curves. Learning on one course generalized
to others. For example, subjects trained on the sharp course were
tested on the gradual course and vice versa. In both cases, initially
trained subjects showed significantly better performance on the
early training laps (e.g. laps 1-6) than naive subjects (p < 0.005

one-tailed t-test). Adapting from the gradual to the sharp course,
however, required additional training to reach peak performance.

The delayed eligibility trace allowed the BBD’s behavior to
move from reflexive control to predictive control and bridge
the temporal gap between predictive signals and the arrival of
a subsequent error signal. Evidence for such a mechanism has
been found in the cerebellum (Chen & Thompson, 1995; Wang
et al,, 2000), and Kettner et al. (1997) have used a similar rule
in computer simulations of the vestibular-occular reflex. We
tested the sufficiency of this mechanism in the real world where
successful performance required adaptation of turning and braking
commands. Due to the delayed eligibility trace, experience resulted
in a forward shift in time in neuronal responses triggering a
conditioned response: initially, collision error signals drove the
motor neurons via reflex pathways. After learning, visual input
drove motor neurons prior to any error signal, similarly to the
well-known eye-blink conditioning paradigm (Medina & Mauk,
2000). The BBD’s ability to traverse curved courses was attributed
to the delayed eligibility trace with the appropriate delay and the
system was also able to generalize its learning from one course
to another. Our findings provide additional support for the theory
that the cerebellum can learn to replace an arbitrary reflexive
neural control system with an adaptive, predictive controller or
“preflex”.

4. Discussion

Biological systems cannot afford to store all signals indefinitely.
Thus a recurring theme in neuroscience is how the nervous
system maintains and integrates relevant signals across different
timescales.

In this paper we have described two models that respond to
real-world signals by maintaining those signals across temporal
delays using two different mechanisms found in the nervous
system. One strategy is through delays in neuronal responses such
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that spatiotemporal stimuli can be transformed into categorical
patterns of activity (Beggs et al., 2000; Saul & Humphrey, 1992;
Wolfe & Palmer, 1998). This strategy was effective in converting
artificial whisker signals into patterns of activity that facilitate
texture discrimination. Another strategy is to delay the eligibility
of synaptic plasticity such that an environmental cue is associated
with a prior signal (Kawato & Gomi, 1992; Kettner et al., 1997;
Medina et al., 2005; Wolpert et al., 1998; Worgotter & Porr, 2005).
This mechanism allowed a visuomotor stimulus to predict a future
collision and resulted in a preemptive motor action. In both cases,
neural signals with lags or delays bridged temporal gaps and
allowed the BBD to adapt its behavior appropriately.

Lagged responses in the somatosensory system. Spatiotemporal
transformations are fundamental to neural operations underlying
adaptive behavior. Nowhere is this more evident than in the
somatosensory system of the rat in which spatiotemporal signals
arise due to self-movement, the texture pattern, and the dynamics
of the tactile sensor. Darwin IX illustrates a neural mechanism,
based on the rat somatosensory system, which is capable of
orchestrating spatiotemporal transformations of whisker signals
to allow texture discrimination, and selective conditioning to
textures, in a real world environment.

Perceptual categorization by Darwin IX involved multiple
spatiotemporal transformations. First, a spatially defined stimulus
(a texture) is transformed into temporally arranged sensory input
as a result of whisker deflections during movement. Second, this
input is reformed into spatial patterns of activity in the simulated
somatosensory area S2, corresponding to perceptual categories,
as a result of the response properties of the ‘lag’ cells in the
barrel regions of simulated ventromedial thalamus (Th) and the
connectivity in the pathway Th — S1 — S2. As a result,
neuronal units in S2 respond to specific combinations of whisker
deflections with particular poststimulus delays. Analysis of neural
activity in S2 revealed the formation of spatiotemporal activity
patterns corresponding to specific haptic perceptual categories.
The response properties of these units are analogous to cells with
complex spatiotemporal receptive fields that have been found in
rat somatosensory cortex (Ghazanfar & Nicolelis, 1999) as well as
in cat visual cortex (DeAngelis, Ohzawa, & Freeman, 1995).

Delayed synaptic change in the cerebellum. Building a device
that can move with the grace and dexterity of an animal
requires smooth movements that preempt the awkward reflexive
movements that arise from collisions or errors. The idea that a
simple, feedback controller can be used for these reflexes, and
eventually replaced, through experience, by a predictive controller,
was experimentally confirmed in a BBD for two arbitrary reflexes,
turning and braking. Predictive cerebellar activity resulted in
smooth motor responses that precluded awkward reflex responses
and collisions, supporting a recent theory of cerebellar function
(Wolpert et al., 1998).

An important issue is the mechanism by which the predictive
signal is associated with the motor response. Since the predictive
signal disappears before the arrival of the reflexive error signal
in our path following task, we assumed an eligibility trace at
each synapse which maintained predictive signals for a certain
time window long enough to bridge the temporal gap between
predictive signals and error signals. In our experiments, delaying
the onset of the eligibility trace was critical, preventing the
unwanted association between signals occurring at the time of the
reflex (which were too late), and the motor response. Behavioral
support for a delay exists in the eye-blink conditioning literature.
Pairing a tone with an unconditioned stimulus is ineffective if the
tone occurs less than 80 ms prior to the unconditioned stimulus
(Medina & Mauk, 2000).

As with Darwin IX, it was necessary to adjust the neural
timescale of the cerebellar model to match the behavioral

timescale which was on the order of seconds. Although the optimal
eligibility trace delay found for our system was 4 s, it is likely that
different optimal delays would be found depending on the reflex
and the environmental conditions. Since the reflex involved visual
feedback for a slow-moving device, longer eligibility trace delays
were necessary. Indeed, we have recently used the same delayed
eligibility trace in a much faster robot during a sense and avoid
task, and found that the optimal eligibility trace delay was only
one second (unpublished data). In both cases, the cerebellar system
formed an association between a motor response and sensory
signals such that the device avoided potential collisions.

An alternative to the notion that the cerebellum has fixed delays
of varying durations to handle multiple timescales is the proposal
that the cerebellum always uses the same 80 ms delay due to the
use of discrete, pulsatile control signals occurring at a frequency of
8-12 Hz (Lang, Sugihara, & Llinas, 2006; Vallbo & Wessberg, 1993).
A delay of 80 ms would be roughly accurate if the cerebellum had
to predict the next motor response given the prior motor command
and other predictive inputs.

Summary. Both the whisker and the cerebellar model take into
account delays between input stimuli and motor output. Another
method for bridging this gap is reinforcement learning which is
often used in the robotics community (Schaal, 2002; Sutton &
Barto, 1998) and has a neurobiological correlate (Schultz, Dayan,
& Montague, 1997). In reinforcement learning, a value function
mapping the state of the motor plant and world to value is
learned. This function can then be used to derive an optimal control
policy mapping the current state to motor control signals. The
method of temporal differences along with an eligibility trace is
often employed to overcome the delay between the reinforcement
(such as a collision) and the commands which lead to it. Our
model of the cerebellum as a predictive controller differs from
reinforcement learning in several ways. First, the eligibility trace
has a delay before onset which we found to be necessary for
improved performance in our task. Second, rather than learning a
separate value function, the system learned a mapping from the
state of the environment directly to a motor control signal. This
was possible since each reflex generated the correct command,
and all that was necessary was to elicit the command earlier
in the form of a “preflex”. This general approach may explain
why so many learned reflexes in animals are dependent upon
the cerebellum. The model of the whisker system used in Darwin
IX used “lag cells” to maintain a record of stimuli long enough
for spatiotemporal categorization. However, the task requires an
immediate motor response (freezing) once the spatiotemporal
pattern was categorized, therefore a simple error correction rule
was sufficient to form the correct association between the stimulus
and the response.

Arguably, the BBD methodology provides the ideal test
for integrating the dynamic signals from the environment
into coherent percepts since the device interacts with a real
environment in real time thus forcing the critical issue of bridging
the temporal gap between unfolding events. We have used this
approach to provide stringent tests of two of these mechanisms, lag
cells and delayed eligibility traces. The two types of memory tested
in our experiments represent two classes of mechanisms. Lag cells
represent the class of mechanisms that maintain neuronal output
across time, while the delayed eligibility trace rule is an example
of a mechanism for preserving synaptic input over time.
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Appendix A. Thalamic lag cells

Each lag cell is characterized by an internal state (si"), an output
(si), and a cell-specific lag parameter set to be y; = %,i €
{1,2,...,20}for cell i in each barrel. When triggered by a whisker
deflection, the internal si" state of cell i in the corresponding barrel
increases at a rate determined by ;. When this internal state
reaches a threshold, the cell begins to emit an output signal and
sin is reset to zero. Due to differences in ¥; among lag cells, each
whisker deflection evokes a wave of activity in the corresponding
barrel, with some cells firing shortly after deflection and the
remainder firing with gradually increasing delays (see Fig. 2; inset).

Specifically, the internal state of each lag cell i, in the barrel
corresponding to whisker k, is updated according to:

0.2; si"(t) < 0.2, diff(t) > 3.0
st(t+1)=10; si(t) > o (M
(1+¥)(s(e);  otherwise
where diff,(t) is the difference between successive whisker
readings averaged over the last four samples (a value exceeding
3.0 signifies a whisker deflection), and of™ is a firing threshold set

to 0.3.
The output sy; is calculated using:

tanh (10 (@i(s(6))): s (t) < off®
s (£+1) = { tanh (10 (@i(su(t) + (1 - @)s(©))) (2)
otherwise

where w; = 0.8 determines the persistence of unit activity. This
value is fed as input into neuronal units in the corresponding
barrels of S1.

Appendix B. Delayed eligibility trace

More specifically, synaptic strengths were subject to modifica-
tion according to a synaptic rule that depends on the presynaptic,
postsynaptic, and inferior olive activities.

Synaptic changes are given by:

Aci (t+ 1) = ns; (t) - traceeiigibitity (£) - (10; (t) — 0.02) ; (3)
where c; is the connection strength from unit j to unit i, s;(t) is the
activity of the postsynaptic unit, I0;(t) is the activity of the inferior
olive unit corresponding to unit i, n is a fixed learning rate, and
traceeigivitity (t) is the eligibility trace of synapse j. The eligibility
trace (see below) determines the amount of efficacy change at
a specific synapse for a given time. This learning rule supports
both potentiation and depression at PC and DCN synapses (Hansel,
Linden, & D’Angelo, 2001). When n was negative (e.g. in PN — PC
synapses), the learning rule induced depression when the 10 was
active above a baseline firing rate, and potentiation when IO was
below the baseline (Ohyama, Medina, Nores, & Mauk, 2002). Note
that this learning rule supported extinction of learned responses
when the error from the IO was absent (Mauk, Medina, Nores, &
Ohyama, 2000; Seth et al., 2004b).

In the model, the change in synaptic efficacy was based on the
delayed eligibility trace rule, according to which an eligibility trace
(traceeligibiity) determined the amount of synaptic change at that
synapse when eligible:

0 ift < delay,
traceeligibimy(t + 1) = {s(t — delay) ifs(t —delay) > o, ¢, (4)
0.90 - traceeiigibiity (t)  otherwise

where s(t) is the presynaptic input to the synapse at time t, o =
0.15, and delay is a time offset from the previous simulation cycle.
(Note that once s(t — delay) > o was used to trigger synaptic
eligibility, further input was ignored until traceeiigipitity (t + A) <
0.1 where A is the time offset after delay). When presynaptic
input exceeds a threshold, the synapse becomes eligible for
modification after a set delay, at which time, the eligibility declines
exponentially.
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