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The Neuromodulatory System: A Framework for 

Survival and Adaptive Behavior in a Challenging 

World

Jeffrey L. Krichmar
Department of Cognitive Sciences, University of California, Irvine, USA

Biological organisms have the ability to respond quickly to an ever-changing world. Because this

adaptability is so critical for survival, all vertebrates have sub-cortical structures, which comprise the
neuromodulatory systems, to regulate fundamental behavior and drive decision making in response to

environmental events. In the vertebrate, there are separate neuromodulators that respond to threats,

reward anticipation, novelty, and attentional effort. However, each of these neuromodulatory systems
has a similar effect, that is, to cause an organism to be decisive when environmental conditions call for

such actions, and allow the organism to be more exploratory when there are no pressing events. In this

article, it is proposed that principles of the neuromodulatory system could provide a framework for con-
trolling artificial agents that may improve current artificial agent behavior. These agents would operate

autonomously, effectively explore their environment, and be decisive when environmental conditions

call for action.

Keywords autonomous systems · decision making · exploration/exploitation · neuromodulation ·

neurorobotics

1 Introduction

Vertebrates have sub-cortical structures, known as
neuromodulatory systems, which regulate fundamen-
tal behavior, set the organism’s internal states, and are
critical for an organism’s survival. When an important
environmental event occurs, it is the neuromodulatory
system that triggers the organism to respond quickly
and accurately to that event. There are separate neuro-
modulators that alter responses to risks, rewards, nov-
elty, and effort. Moreover, the neuromodulatory systems
provide the foundation for cognitive function in higher
organisms. Attention, emotion, goal-directed behavior,
and decision making all derive from the interaction

between the neuromodulatory systems and areas such
as the amygdala, frontal cortex, and hippocampus.
Therefore, understanding neuromodulatory function
may provide a basis for the construction of cognitive
machines and the control of autonomous systems.

Although there have been great advances in auto-
nomous systems (Cho, 2007; Gibbs, 2004; Squyres,
2005; Yenne, 2004), the controllers of these machines
are still very much tailored to specific missions and do
not have the behavioral repertoire we normally associ-
ate with that of biological organisms. Behavior-based
robotics (Jones & Roth, 2003) do not learn from expe-
rience and cannot adapt to environmental change.
Probabilistic robot controllers (Thrun, Burgarde, &
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Fox, 2005) need an accurate model of their sensors
and actuators. Robots controlled by reinforcement
learning (Sutton & Barto, 1998) adapt their behavior
through a reward prediction error (Doya & Uchibe,
2005; Guenter, Hersch, Calinon, & Billard, 2007; Iida,
Kuwayama, Kanoh, Kato, & Itoh, 2004; Kondo & Ito,
2004; Nakamura, Mori, Sato, & Ishii, 2007; Stone, Sut-
ton, & Kuhlmann, 2005). Some of these reinforce-
ment learning robot controllers are neurally inspired
by reward expectation signals found in the dopaminer-
gic system of the brain (Alexander & Sporns, 2002;
Arleo, Smeraldi, & Gerstner, 2004; Krichmar & Edel-
man, 2002; Sporns & Alexander, 2002). However,
these models and robots do not address other aspects
of adaptive behavior, such as attention, novelty, and
threat assessment.

In this article, I present a framework for designing
autonomous systems that is based on principles of the
vertebrate neuromodulatory system (see Figure 1).
Ascending neuromodulatory systems include noradren-
ergic, serotonergic, dopaminergic, and cholinergic pro-
jections from the brainstem and basal forebrain regions
to broad areas of the of the central nervous system, the

thalamus, and hypothalamus (Briand, Gritton, Howe,
Young, & Sarter, 2007). Each of these neuromodula-
tory systems consists of small pools of neurons (on the
order of thousands in the rodent and tens of thousands
in the human) located in the brainstem, pontine nucleus,
and basal forebrain.

Despite the different origins and chemical signatures
of neuromodulatory systems, there are several com-
monalities among them:

1. The origination of these systems is sub-cortical.
2. Each of these neuromodulatory systems is the

locus of a particular chemical transmitter that is
projected to broad areas of the brainstem, thala-
mus, and cortex.

3. All of these neuromodulatory systems are recipro-
cally connected with the frontal cortex and parts
of the limbic system.

4. The effect of these neuromodulatory systems on
downstream targets is similar.

From the evidence, it appears that the common
effect of the neuromodulatory system is to increase the

Figure 1 Architecture of the neuromodulatory systems. The raphe nucleus is the source of serotonin (5-HT), the basal
forebrain is the source of acetylcholine (ACh), the locus coeruleus is the source of norepinephrine (NE), and the sub-
stantia nigra and ventral tegmental area are the sources of dopamine (DA). The prefrontal cortex (PFC), anterior cingu-
late cortex (ACC), neocortex, striatum, hippocampus, and amygdala are reciprocally connected with the neurmodulatory
systems. Arrows projecting back to the neuromodulatory systems depict glutamatergic connections. 5-HT, shown in red,
is thought to signal threat assessment. ACh, shown in green, is thought to signal attentional effort. NE, shown in light or-
ange, is thought to signal vigilance and arousal. DA, shown in blue, is thought to signal reward prediction and wanting.
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signal-to-noise ratio of downstream neuronal targets
such that the organism can make quick and decisive
choices. Indeed, the major targets of the neuromodula-
tors shown in Figure 1 are areas noted for driving
behavior (K. C. Berridge, 2004), conditioning responses
(McGaugh, 2004), attention (Sarter, Gehring, & Kozak,
2006), and making decisions (Schall, 2001; Smith &
Ratcliff, 2004). In general, the effect of activation of
the neuromodulatory system on post-synaptic targets is
to increase responses to stimuli and suppress responses
to noise (Aston-Jones & Cohen, 2005).

Furthermore, it will be argued that the main differ-
ences between neuromodulatory systems are the envi-
ronmental stimuli that activate them. For example, the
serotonergic (5-HT) system appears to be driven by
stress or threats (Millan, 2003), the cholinergic (ACh)
system by attentional effort (Baxter & Chiba, 1999),
the dopaminergic (DA) system by reward anticipation
(Schultz, Dayan, & Montague, 1997) and “wanting”
(K. C. Berridge, 2004), and the noradrenergic (NE)
system by novelty and saliency (C. W. Berridge &
Waterhouse, 2003; Yu & Dayan, 2005).

The main purpose of this article is to review the
vertebrate neuromodulatory system with the goal of
showing how principles of neuromodulation could be
used as inspiration for the control of autonomous sys-
tems. In the remainder of this article, each neuromod-
ulatory system will be described separately in more
detail. This will be followed by an illustrative demon-
stration of how the action of neuromodulation could
affect downstream neuronal targets, which in turn
affect behavior. Finally, I will present a computational
framework based on the neuromodulatory system, and
briefly describe how such a framework might be
applied to the control of an artificial agent.

2 Neuromodulatory Systems

The neuromodulators 5-HT, ACh, DA, and NE all
originate in the brainstem and basal forebrain (see
Figure 1). All of these neuromodulators appear to be
important for arousal, but in different ways that are
highly specific to cognitive functions (Briand et al.,
2007; Robbins et al., 1998). Moreover, because these
neuromodulatory systems have reciprocal projections
to the amygdala and forebrain structures, neuromodu-
lators can influence “cognitive” networks, and in turn
be influenced by “cognitive” areas (see Figure 1).

2.1 Threat Assessment: Raphe Nucleus and 
Serotonin

Serotonergic projections, which originate in the raphe
nuclei of the brainstem, extend to almost all fore-
brain areas (Barnes & Sharp, 1999). The expression of
5-HT occurs throughout the cortex, ventral striatum,
hippocampus, and amygdala (Harvey, 2003; Meneses
& Perez-Garcia, 2007). The raphe receives connec-
tions from the prefrontal cortex and the anterior cingu-
late cortex (Briand et al., 2007). The 5-HT receptors
are found on both excitatory pyramidal cells and
inhibitory interneurons. 5-HT receptors are also found
on ACh and glutamatergic (Glu) axon terminals where
an increase of ACh and Glu could enhance learning,
acquisition, and consolidation (Meneses & Perez-Gar-
cia, 2007).

Release of 5-HT appears to be related to cognitive
control of stress. The structures that are innervated by
5-HT and their connecting circuits modulate the behav-
ioral response to threats and risks—behaviors that are
typically thought to reflect the anxiety state of the
organism (Millan, 2003). Recent work by Amat and
colleagues has provided support for the role of the
prefrontal–raphe feedback projection in the cognitive
control of stress (Amat, Paul, Zarza, Watkins, & Maier,
2006).

2.2 Attentional Effort: Basal Forebrain and 
Acetylcholine

Acetylcholine (ACh) originates from the basal fore-
brain and projects to the cortex, amygdala, and hip-
pocampus. Basal forebrain projections are distinct
bands that could be area, modality, and task specific.
At the cortical level, the medial prefrontal and orbitof-
rontal cortices, which receive projections from the
basal forebrain, share reciprocal connections with the
basal forebrain. These feedback loops to the basal fore-
brain have been hypothesized to be a component of the
neuronal mechanisms that serve to enhance input
processing and the allocation of attentional resources
to behaviorally significant stimuli under challenging
conditions (Sarter et al., 2006).

Basal forebrain cholinergic neurons appear to
modulate attention and optimize information process-
ing (Baxter & Chiba, 1999). Removal of cholinergic
projections to the parietal and frontal cortex impairs
the ability to increase attentional effort (Bucci, Hol-
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land, & Gallagher, 1998). Another interpretation is
that ACh release is related to the expected uncer-
tainty—the known unreliability of predictive relation-
ships in the environment (Yu & Dayan, 2005). It
appears that the basal forebrain increments attentional
processing when prediction accuracy is reduced, but
not when predictive value is held constant (Chiba,
Bucci, Holland, & Gallagher, 1995). It has also been
shown that the central nucleus of the amygdala has a
direct projection to the basal forebrain that mediates
increased attention as a consequence of expectancy
violation (Han, Holland, & Gallagher, 1999).

2.3 Reward Prediction and Wanting: Ventral 
Tegmental Area and Dopamine

Dopamine (DA) is produced by two groups of cell
bodies in the mesencephalon: the substantia nigra
(SN) and the ventral tegmental area (VTA). The VTA
projects to the nucleus accumbens (NAc) and is the
pathway implicated in mediating reward related
behaviors (Hyman, Malenka, & Nestler, 2006). The
SN is the source of dopamine in the basal ganglia.
Both the SN and VTA project to the hippocampus
(Scatton, Simon, Le Moal, & Bischoff, 1980). The
VTA also projects to the frontal cortex and predomi-
nantly innervates the medial prefrontal cortex (Fluxe
et al., 1974). Similar to the other neuromodulatory
systems, the VTA receives input from the prefrontal
cortex (Sesack & Pickel, 1992).

Current theories posit that dopamine is important
for facilitating learning through the influence of pre-
diction (Schultz, 1997; Schultz et al., 1997), and for
incentive salience or “wanting” (K. C. Berridge, 2004).
“Wanting” refers to the motivation process in acquir-
ing an object, which differs from “liking” where the
pleasure is derived from the object itself (K. C. Ber-
ridge, 2004). A recent proposal ties the prediction
error to wanting by suggesting that incentive salience
is the expected future reward that maps actions to
rewards (McClure, Daw, & Montague, 2003). Alter-
natively, it has been proposed that DA is involved
with the discovery of new actions and it influences
action–outcome contingencies (Redgrave & Gurney,
2006). In all of these variants, it appears that DA is an
important signal for the acquisition of salient, value-
laden objects.

2.4 Novelty and Saliency: Locus Coeruleus 
and Norepinephrine

Norepinephrine (NE) in the central nervous system is
produced by the locus coeruleus, which projects to
virtually all brain regions with the exception of basal
ganglia (C. W. Berridge & Waterhouse, 2003). Similar
to other neuromodulatory systems, the prefrontal cortex
activates the locus coeruleus (C. W. Berridge & Water-
house, 2003). In particular, the orbitofrontal cortex,
which is related to the evaluation of reward, and the
anterior cingulate cortex, which is related to the evalu-
ation of cost, project to the locus coeruleus and drive
phasic responses (Aston-Jones & Cohen, 2005). There
is a feedback loop where the amygdala affects stress
hormones, which then act on the nucleus of the soli-
tary tract, which then acts on the locus coeruleus,
which then releases NE in the amygdala. Norepine-
phrine activation in amygdala helps to consolidate and
modulate memory in other brain regions (McGaugh,
2004).

Norepinephrine and the locus coeruleus are sensi-
tive to novel and salient objects in the environment
and task relevant stimuli that cannot be fully predicted
(e.g., recognizing a conditioned stimulus, or an odd-
ball stimulus). In other words, NE release is related to
unexpected uncertainty—gross changes in the envi-
ronment that violate top-down expectations (Yu &
Dayan, 2005). However, it is not related to anticipa-
tion and is independent of valence (C. W. Berridge &
Waterhouse, 2003). Norepinephrine appears to be
important for accuracy of an action and a trade-off
between distractibility and vigilance (Robbins et al.,
1998). At low tonic levels of locus coeruleus activity
subjects are inattentive and at high tonic levels sub-
jects are distracted (Aston-Jones & Cohen, 2005).
However, at moderate levels subjects are engaged in a
task, respond to task relevant stimuli and perform
well.

3 Neuromodulatory Effect on Cortical 
Networks

A major premise of this article is that although each
neuromodulatory system is triggered by different envi-
ronmental stimuli, the effect of the neuromodulatory
systems on the nervous system is the same: it results
in decisive responses when necessary and arbitrary
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responses when desirable. All neuromodulatory sys-
tems appear to have both tonic and phasic activity
responses (Briand et al., 2007). In tonic mode, the
baseline activity of a neuromodulatory system is ele-
vated but not bursting. In phasic mode, the neuromod-
ulatory system exhibits short bursts of activity. When
the neuromodulatory systems have low tonic activity,
the signal-to-noise ratio is low and the organism’s
behavior is distracted. However, such distracted behav-
ior may be favorable by allowing the organism to
explore new actions and break out of local minima.
When the neuromodulatory systems have phasic activ-
ity, the signal-to-noise ratio increases and the system is
in an exploitive mode. In this mode, the organism is
more decisive and is not bothered by distractions.

3.1 Tonic Versus Phasic Modes of 
Neuromodulatory Activity

All neuromodulatory systems appear to have both a
tonic mode, where activity ranges between 1 and 6 Hz,
and a phasic mode where there is a transient burst of
activity (Briand et al., 2007). Phasic signals have a cog-
nitive function for increasing signal detection and driv-
ing decision-making processes (Aston-Jones & Cohen,
2005). In the tonic mode, neuromodulatory activity is
correlated with distractibility and poor performance. In
the tonic mode, the animal is more likely to consider
distracters. In the phasic mode, the animal is more
attentive and decisive (Aston-Jones & Cohen, 2005).

Although Aston-Jones was describing the locus
coeruleus system, this description of the tonic and
phasic modes can be extended to the raphe nucleus,
basal forebrain, and the ventral tegmental areas effect
on downstream targets. For example, VTA DA neu-
rons discharge in both tonic and phasic fashions and
these firing patterns result in tonic and phasic release
of DA in the prefrontal cortex (Lapish, Kroener, Durste-
witz, Lavin, & Seamans, 2007). It appears that the DA
phasic signal makes the prefrontal cortex more respon-
sive to behaviorally relevant stimuli. Emerging evi-
dence has also identified tonic and phasic modes of
cholinergic activity (Briand et al., 2007).

3.2 Phasic Mode: Suppress Distracters and 
Increase Signal-to-Noise Ratio

The effect of phasic activity on downstream targets is
to increase the signal-to-noise ratio (SNR) in neural

circuits such that the organism increases the discrimi-
nation between optimal and nonoptimal stimuli. Neu-
romodulators may achieve this increase in the SNR by
amplifying thalamocortical inputs, increasing inhibi-
tory currents, and suppressing associational inputs (Gu,
2002; Hasselmo & McGaughy, 2004; Kobayashi et al.,
2000; Lapish et al., 2007). The effect of an increased
SNR due to neuromodulation is to change cortical
sensory maps such that processing of behaviorally rel-
evant stimuli is enhanced (Sarter, Hasselmo, Bruno, &
Givens, 2005). For example, it has been shown that
receptive fields of pyramidal cells sharpen with the
application of 5-HT and DA (Williams & Goldman-
Rakic, 1995; Williams, Rao, & Goldman-Rakic, 2002).
Figure 2 shows how altering the excitatory and inhibi-
tory currents through phasic neuromodulation could
cause a winner-take-all (WTA) network response.

3.3 Decision Making and the Trade-Off 
Between Exploring and Exploiting the 
Environment

A simple network model was constructed to illustrate
how the neuromodulatory systems can potentially
drive behavior to exploit previously successful actions,

Figure 2 Effect of neuromodulators on network proper-
ties. (a) In the tonic mode, the neuromodulator, NM, is
tonically active, both extrinsic and associative (E1←→E2)
connections drive excitatory pyramidal cells (E1, E2) and
inhibitory interneurons (I1, I2). There is only a slight bias
toward E2 over E1. (b) In the phasic mode, NM is phasi-
cally active, extrinsic connections are enhanced, and as-
sociative connections are suppressed. The phasic activity
drives the network toward a winner-take-all situation and
there is a strong bias of E2 over E1.
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or explore novel and potentially favorable actions.
Although the model is simple, it does demonstrate a neu-
robiologically plausible mechanism, as well as a possi-
ble behavioral outcome of switching between tonic
and phasic neuromodulation. During phasic neuro-
modulation, inhibitory inputs and extrinsic inputs from
the thalamus are amplified relative to the intrinsic or
associational inputs, whereas during tonic neuromodu-
lation, the intrinsic synaptic connections have a stronger
effect (Gu, 2002; Hasselmo & McGaughy, 2004; Koba-
yashi et al., 2000; Lapish et al., 2007).

The model’s architecture followed the connectiv-
ity in Figure 2. The activation function for the two
excitatory neurons, E1 and E2 are:

(1)

where Ext1 and Ext2 are inputs from extrinsic neurons,
wext is the extrinsic connection weight, wint is the intrin-
sic connection weight, winh is the inhibitory weight, and
rnd returns a random number between negative one
and positive one.

To simulate the effect of phasic neuromodulation,
the extrinsic and inhibitory synaptic weights were
amplified at the mid-point of the simulation. During
the first 50 simulation cycles, the synaptic weights,
wext, wint, and winh were all set to be equal (i.e., 0.10).
During the last 50 simulation cycles, the extrinsic and
inhibitory synaptic weights were increased. Figure 3
shows a representative example in which the network
behavior was prone to random fluctuations in the tonic
mode, but shifted to strongly biased in the phasic
mode. In the example shown in Figure 3, Ext1 was set
to 0.50 and Ext2 was set to 0.60. At time step 50, the
inhibitory and extrinsic synaptic weights were set to
2.5 to simulate phasic neuromodulation.

To further explore the effect of phasic neuromod-
ulation, simulations were run over a range of input
values and synaptic weights (see Figure 4). Each sim-
ulation was run 100 times with a given set of parame-
ter values. Figure 4a shows how robust the effect of
phasic neuromodulation is over a wide range of val-
ues. During tonic neuromodulation, E2 was higher
than E1 in only 56% of the trials, whereas after phasic
neuromodulation, E2 was higher than E1 in 81% of
the trials (p << .00001; t test). In contrast, when the
intrinsic connections were modulated (see Figure 4b),

the differences between E1 and E2 were relatively
arbitrary (54% before the weight change and 53%
after the weight change) and insignificant (p > .85;
t test).

Another possible neuromodulatory mechanism is
an alteration of the synaptic gain in target neurons
(Bogacz, Usher, Zhang, & McClelland, 2007; Servan-
Schreiber, Printz, & Cohen, 1990). In this computa-
tional model, phasic neuromodulation occurs through
change in synaptic gain that increases the contrast
between activated and inhibited units. This drives the
neurons to be more binary in function when the gain
is high, and more arbitrary when the gain is low.
The activation function in Equation 2 can achieve
this modulation through changes in the gain parame-
ter.

(2)

E1 t 1+( ) Ext1wext E2 t( )wint E2 t( )winh rnd 1 +1,–( )+–+=

E2 t 1+( ) Ext2wext E1 t( )wint E1 t( )winh rnd 1 +1,–( )+–+=
Figure 3 Simulation of the effect of phasic activity on
decision making. The lines represent accumulated activi-
ty of two simulated neurons. The network connectivity fol-
lows Figure 2. Neuron E2 (solid black line) is receiving
slightly higher extrinsic stimulus input (0.60 vs. 0.50) than
neuron E1 (dashed gray line). In the tonic mode (prior to
black arrow), the two processes were subject to random
fluctuations with no clear winner. In the phasic mode (af-
ter the black arrow), the extrinsic (wext) and inhibitory
(winh) synaptic weights were increased from 0.10 to 2.5.
As a result of this neuromodulation, the activity of E2 is
enhanced and the activity of the E1 is suppressed.

activation
1

1 e gain∗input( )–+
-------------------------------------=
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where input is the total synaptic input to the neuron,
which is given in Equation 1, and gain is an open
parameter.

Although this change in synaptic gain drove the
network to be binary in its response, the choice was
not necessarily advantageous (see Figure 4c). The dif-
ferences between E1 and E2 were relatively arbitrary

(54% for tonic and 54% for phasic) and insignificant
(p > .90; t test). In these simulations, the neuron with
higher activation at the time of phasic neuromodula-
tion tended to be the winner.

The simulations shown in Figures 3 and 4 illus-
trate a biologically plausible network mechanism for
the exploration/exploitation trade-off. It appears from

Figure 4 Simulations of neuromodulation under varying conditions. The same protocol shown in Figure 3 was used in
these simulations. Each pixel in the figures shows the number of trials out of 100 where the activity of E2 was greater
than E1 at the mid-point of the trial (left column) and at the end of the trial (right column). The difference in input activity
was given by setting E1 to 0.50, and E2 to 0.50 plus the value shown in the y-axis. Prior to time step 50, all weights were
set to 0.10. (a) Simulation of phasic neuromodulation by increasing the extrinsic and inhibitory synaptic weights. At time
step 50, the extrinsic and inhibitory weights were set to the value given in the x-axis. (b) Simulation of tonic neuromodu-
lation by increasing the intrinsic synaptic weights. At time step 50, intrinsic weights were set to the value given in the x-
axis. (c) At time step 50, the synaptic gain was set to the value given in the x-axis (see Equation 2).
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these simulations that altering the relative weighting
of synaptic drives is more effective in exploiting sen-
sory stimuli differences than changing the synaptic
gain to all inputs.

This notion of neuromodulation through altering
synaptic signaling could be expanded from the simple
examples above to a more complete network model.
Differences in sensory stimuli would make some deci-
sion neurons more active than others. Phasic neuro-
modulation would amplify those decision neurons that
were slightly more active such that there is a winner-
take-all response. Initially, neuromodulator levels could
be driven by environmental stimuli as described in Sec-
tion 2. But, neuromodulator levels can be driven from
higher order cortical and limbic areas (see Figure 1).
Therefore, these decision neurons, through experience-
dependent plasticity, may associate specific neuromod-
ulators with extrinsic stimuli and drive phasic neuro-
modulation in response to sensory cues.

4 Computational Framework for 
Neuromodulatory Systems

In order to fully understand the neuromodulatory sys-
tems, such that they can be applied to artificial systems,
a general theory of how neuromodulation affects the
nervous system and the organism is necessary. There
are many open issues, at a basic systems neuroscience
level, in understanding how these neuromodulatory
systems control behavior. Many of these systems have
been studied individually, but few have studied the
interactions between these systems. A computational
framework for the neuromodulatory systems is pre-
sented based on the following premises:

• The common effect of the neuromodulatory sys-
tems is to drive an organism to be decisive when
environmental conditions call for such actions,
and to allow the organism to be more exploratory
when there are no pressing events.

• The main differences between neuromodulatory
systems are the environmental stimuli that acti-
vate them. The serotonergic (5-HT) system sets
the threat level for risk aversion (Millan, 2003),
the cholinergic (ACh) system sets the level of
attentional effort (Baxter & Chiba, 1999), the
dopaminergic (DA) system drives reward antici-
pation (Schultz et al., 1997) and motivation (K. C.

Berridge, 2004), and the noradrenergic (NE) sys-
tem sets the level of response to novel and salient
objects (C. W. Berridge & Waterhouse, 2003; Yu
& Dayan, 2005).

These premises are novel because they describe a
function for neuromodulation in general and because
such a method could be applied to the control of artifi-
cial agents.

4.1 Related Work

This article presents a framework for controlling the
behavior of artificial systems by specifically examining
the function of the vertebrate neuromodulatory system.
In this section, I review work from the fields of autono-
mous agents and computational neuroscience that is
related to topics of this article. Of particular relevance
are models of neuromodulation, as well as models of
affect, emotion, motivation, action selection, and
exploration/exploitation trade-offs.

In the field of autonomous agents, “affect” has been
used to shape the behavior of both simulated and robotic
agents. For example, Blanchard and Cañamero (2006)
examined trade-offs between exploration and exploi-
tation based on the notions of well-being and affect.
They define “affect” as the immediate or instinctive
evaluation of a situation (positiveness or negative-
ness). In their experiments, the robot’s well-being was
related to the agent’s internal value judgment of its
distance to a box, and its affect was related to the
agent’s evaluation of safety based on its familiarity
with the objects it was sensing. The robot’s behavior
is dictated by a dynamical system and the affect term
modulates the robot’s motivation to continue. Similar
to affect is the notion of comfort or safety, which has
also been proposed to influence exploration behavior
in robots (Likhachev & Arkin, 2000). Affect has been
used in evolutionary algorithms to develop explora-
tion/exploitation strategies in dynamic choice trials
(McMahon, Scott, Baxter, & Browne, 2006), and affect
has been embedded into the reinforcement-learning
algorithm where reward is based on the happiness and
sadness of the agent (Salichs & Malfaz, 2006).

In an interesting model that combines emotional
affect with internal anticipation, Broekens and col-
leagues modeled action selection through internal sim-
ulation of behavior (Broekens, Kosters, & Verbeek,
2007). The learning by their agents was influenced by
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affect: the positiveness and negativeness of a situa-
tion. The affect mechanism was based on how well
the agent was doing compared with what it was used
to. The internal simulation mechanism used artificial
affect to select potential interactions and fed these
simulated interactions into a reinforcement-learning
(RL) algorithm. Reinforcement learning treated these
inputs as real and selected behavior based on the pre-
dicted value of action–state pairs. Their agents were
simulated in two different gridworlds. One in which
they had to cope with changes in the environment that
made goals less attainable, and another where the
meaning of cues in the environment could change
drastically. Positive affect was more applicable to the
former task, whereas negative affect appeared to be
important for the latter when a new task had to be
learned.

Of particular interest to the present work are mod-
els of emotions because emotions may be linked to the
action of neuromodulation. However, real biological
emotions are extraordinarily complex and beyond the
scope of this article (Damasio, 2005; Rolls, 2000).
Models of emotions have been used to control and
affect behavior selection (Cañamero, 1997; Moffat, Phaf,
& Frijda, 1993; Pfeifer, 1994). For example, Cañamero
proposed that emotions could send “hormones” that
affect action selection, attention, and perception. In
Cañamero’s model, emotions included fear, anger,
happiness, sadness, boredom, and interest (Cañamero,
1997). The agents in this model also had motivations
such as aggression, cold, curiosity, fatigue, hunger,
self-protection, thirst, and warmth. Some of these emo-
tions and motivations described by Cañamero may
have neural correlates to the actions of the neuromod-
ulators that were described in Section 2. The agents,
called Abbotts, had to avoid enemies and find food and
drink to survive in a dynamic simulated environment.
Inspired by Cañamero’s model of emotion released
hormones, Cañamero and colleagues investigated how
hormonal feedback and affect can modulate action
selection and the exploration/exploitation trade-off by
introducing a hormone-like mechanism that modulated
the perception of cues in a robot (Avila-Garcia &
Cañamero, 2004). Their “hormone-like” mechanism
modified the perception of incentive cues by acting on
the motivation parameter in the equations dictating the
robot’s behavior. The hormonal feedback modulated
the robot’s action selection in an environment where it
competed for resources with another robot.

In the autonomous agent models discussed above,
brain-inspired terms such as anticipation, affect, emo-
tions, hormones, and modulation are simulated to
facilitate action selection and exploration/exploitation
trade-offs. However, these models do not specifically
address the mechanism by which the nervous system
gives rise to behaviors, such as action selection,
exploration, and exploitation. The framework pre-
sented here, provides a neural description of how the
neuromodulatory effect on neural circuitry could
account for such adaptive behavior. A possible advan-
tage of this approach is that it provides a model that
can be directly tested against animal models; both in
its behavioral response and in its neuronal response.
This synergy between empirical and simulated data,
which can lead to improvements in the model and pre-
dictions in the modeled organism, is a goal of compu-
tational neuroscience.

In the field of computational neuroscience, theo-
retical models have been proposed on neuromodulation,
but they have not considered all of the neuromodulatory
systems and their interactions with cortical and sub-
cortical areas. The phasic response of the dopamine
system has been proposed to signal temporal differ-
ence error (Schultz et al., 1997; Sutton & Barto,
1998). Following this idea, the phasic response of
dopamine has been modeled to shape action selection
and reward anticipation behavior in both simulated
agents and neurorobots (Alexander & Sporns, 2002;
Frank & Claus, 2006; Frank, Seeberger, & O’Reilly,
2004; Krichmar & Edelman, 2002; Krichmar, Seth,
Nitz, Fleischer, & Edelman, 2005; Sporns & Alexander,
2002). A recent theoretical model speculated that
cholinergic release is related to “expected uncertainty”
and noradrenergic release is related to “unexpected
uncertainty” (Yu & Dayan, 2005). Their statistical
model predicted ACh and NE levels, as well as the
behavioral responses in a probabilistic cued attention
task. Frank and O’Reilly have developed models of
decision making based on the anatomical and physio-
logical properties of the basal ganglia and its interac-
tion with frontal cortex (Frank & Claus, 2006; Frank et
al., 2004). In these models, they explicitly model neu-
rons, neuroanatomy, synaptic plasticity, and the levels
of neuromodulators such as dopamine and norepine-
phrine. Recently, they developed a model of frontal-
striatal dopamine and noradrenergic function to under-
stand attention deficit/hyperactivity disorder (ADHD) in
a Go/NoGo learning task (Frank, Santamaria, O’Reilly,
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& Willcutt, 2007). Their model predicts that dopamine
is important for motivation and updating working
memory, while the noradrenergic system is involved
in response inhibition and variability.

Neural models of action selection do not neces-
sarily address neuromodulation, but are pertinent to
the ideas presented here. For example, one biologi-
cally inspired model of action selection is called the
leaky competing accumulator (LCA) model of choice
(Bogacz et al., 2007; Usher & McClelland, 2001).
Similar to the examples given in Figures 3 and 4, there
is an accumulation of evidence and competition between
neuronal populations corresponding to different alter-
natives prior to a decision. However, the mechanism
of neuromodulation is different than that proposed
here. Bogacz uses an alteration of the gain function
similar to Equation 2 that was used generate the
results shown in Figure 4c (Bogacz et al., 2007). In
contrast, the present article proposes a specific shift in
synaptic signaling (see Figure 4a). Prescott and his
colleagues have developed models of the basal gan-
glia and more recently the brainstem that demonstrate
action selection and switching behavior (Gurney, Pres-
cott, & Redgrave, 2001a, 2001b; Gurney, Prescott,
Wickens, & Redgrave, 2004; Humphries, Gurney, &
Prescott, 2007; Prescott, Montes Gonzalez, Gurney,
Humphries, & Redgrave, 2006). Although these mod-
els do not explicitly include neuromodulation or plas-
ticity, they show that action selection and switching
behavior can emerge from the unique anatomy and
dynamics of these structures.

Kenji Doya and colleagues have proposed a the-
ory that encompasses multiple neuromodulatory sys-
tems (Doya, 2002, 2008). In this theory, Doya suggests
that each neuromodulator has a specific parametric role
in the temporal difference learning; that is, dopamine
represents the global learning signal for the prediction
of rewards, serotonin controls the balance between
short-term and long-term prediction or temporal dis-
counting, norepinephrine controls the balance between
exploration and exploitation, and acetylcholine controls
the speed of memory update or learning rate. In their
“Cyber-Rodent” project, autonomous robots explore
an environment containing battery packs for con-
sumption, and conspecifics with which to exchange
genetic information. In these robotic experiments they
have shown that agents explore new behaviors when
their battery packs are low, but take more exploitative
behavior when their battery packs are nearly empty

(Doya & Uchibe, 2005). They suggest that this behav-
ior has correlates with features of the noradrenergic
system. In their recent neurobiology work, they have
shown that serotonin levels are related to reward dis-
counting (Schweighofer et al., 2008; Schweighofer,
Tanaka, & Doya, 2007; Tanaka et al., 2007). Although
this theory is elegant in encapsulating the neuromodula-
tory systems, it does not take into account their effect
on neuronal targets and their specific ability to shape
behavioral responses. Also, despite their intriguing
modeling and experimental evidence, it is not clear
from the behavioral and neuroscience literature that
the role of neuromodulation is to calculate temporal
difference error and reinforcement learning. For
example, it has been proposed that dopamine is involved
with the discovery of new actions as opposed to reward
prediction (Redgrave & Gurney, 2006).

4.2 Neuromodulation as a Controller for an 
Artificial Agent

In this article, the effect of neuromodulation on neuro-
nal decision making is specifically addressed, a neural
mechanism has been put forward, and a role for each
neuromodulator has been identified. All neuromodu-
lators have the same effect on downstream targets,
that is, neuromodulators change the synaptic influ-
ences of extrinsic and intrinsic inputs to post-synaptic
targets (see Figures 2 to 4). Phasic neuromodulation
changes the organism’s behavior to be more exploitive
or decisive, whereas tonic neuromodulation causes the
organism to be more exploratory. This is in agreement
with the idea of cholinergic modulation of attention
(Pauli & O’Reilly, 2008) and noradrenergic modulation
of decision making (Aston-Jones & Cohen, 2005), but
extends it to the other neuromodulators. Specific neuro-
modulator levels are driven by different environmental
stimuli, but could also be influenced by limbic or cor-
tical areas through experience-dependent plasticity
and associative learning.

A novel means of controlling an autonomous sys-
tem could be developed by following the above prin-
ciples of vertebrate neuromodulation. A controller for
an artificial agent, based on the neuromodulatory sys-
tem, could be advantageous for autonomous robots
carrying out tasks in the face of environmental chal-
lenges. Environmental signals could trigger different
simulated neuromodulators causing the system to pay
particular attention to specific stimuli (see Figure 5).
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For example, a loud noise or looming object could
trigger the serotonergic system causing the robot to be
more risk averse. An object that suddenly appears
could trigger the noradrenergic system causing the
robot to be more inquisitive. The need to recharge bat-
teries or get maintenance could trigger the dopaminer-
gic system causing the robot to be more intent on
acquiring its goal. Sensor confusion or a noisy envi-
ronment could trigger the cholinergic system causing
the robot to focus on the most impending signals and
ignore distractions.

4.3 Future Work

In the future, we will expand the illustrative simula-
tions and networks of Figures 2 to 4 into a complete
network model containing the different neuromodula-
tors and cortical and limbic areas that have simulated
neuromodulator receptors. Initially, different environ-
mental stimuli would drive specific neuromodulators
as described in Section 2. After experience-dependent
learning, the cortical and limbic regions may become
associated with the sensory stimuli that trigger neuro-

modulation. In this manner, sensory and decision-
making neurons could drive the neuromodulatory
regions prior to an environmental event. For example,
if the color red has become associated with a noxious
stimulus (e.g., a bad odor), the agent’s visual system,
upon seeing red, may drive the serotonergic system
causing an escape response prior to interacting with the
red object. In our previous modeling work, we have
shown how this predictive signal can arise through
experience-dependent plasticity between cortical areas
and reward systems and how it can result in decisions
being made earlier and more decisively (Krichmar &
Edelman, 2002; Seth, McKinstry, Edelman, & Krich-
mar, 2004). Our previous work concentrated on the
dopaminergic system. The present framework expands
this idea to other neuromodulators that signal risks,
threats, novelty, surprise, and attentional effort. It will
be of interest to test this network model based on the
architecture in Figure 1 in a more diverse environment.
For example, many of the dynamic environments from
the artificial intelligence and autonomous agent com-
munity may provide a challenging test bed for a neu-
robiologically inspired model, as well as an interesting
comparison of approaches (Avila-Garcia & Cañamero,
2004; Broekens et al., 2007; Cañamero, 1997; Prescott
et al., 2006).

5 Summary

The main idea put forth in this article was that neuro-
modulators have the common effect of driving a neural
network to switch between exploratory and exploitive
decision making by the alteration of synaptic signaling
and that each neuromodulator is driven by different
stimuli. Furthermore, it was argued that these notions
of neuromodulation could be applied to the control of
autonomous agents and robots.

Specifically, the notion put forth by Aston-Jones
and colleagues (Aston-Jones & Cohen, 2005) was
extended to all neuromodulators. That is, in each of
the neuromodulatory systems, the tonic mode results
in exploratory behavior, and the phasic mode causes
exploitative behavior. Each neuromodulatory system
is triggered by specific environmental cues: (1) The
raphe nucleus signifies a threat to the organism. (2)
The locus coeruleus signifies novelty or saliency;
interactions with the raphe nucleus (see Figure 1)
may cause an organism to be more vigilant when a

Figure 5 Schematic of the effect of neuromodulation on
the behavior of an agent. Phasic neuromodulation drives
the agent toward more exploitive and decisive behavior,
and tonic neuromodulation drives the agent toward more
exploratory or curious behavior. The activity of each neu-
romodulator is related to environmental stimuli. For ex-
ample, serotonin levels appear to be related to threat
assessment, dopamine levels appear to be related to re-
ward anticipation, norepinephrine levels appear to be re-
lated to surprise or novelty, and acetylcholine levels
appear to be related to attentional effort.
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threat is imminent. (3) The ventral tegmental area sig-
nifies the motivational need or desire for objects. (4)
The basal forebrain signifies the need to increase
attentional effort. Note that this increase may be driven
in part by the other neuromodulatory systems (see Fig-
ure 1).

A controller modeled after the vertebrate neuromod-
ulatory system, in which the robot’s behavior approaches
the complexity and flexibility associated with higher
order animals, could improve the current state of auton-
omous system design. Such a system would be particu-
larly sensitive to a wide range of changes in an
organism’s environment and would allow the organism
to quickly and decisively act on these changes. Moreo-
ver, the neuromodulatory system alters plasticity in areas
that are important for conditioning, memory, and plan-
ning (e.g., amygdala, hippocampus, and prefrontal
cortex) allowing the system to adapt responses over a
longer timescale. In this way, the neuromodulatory
systems are well tuned to carry out important func-
tions for an organism’s survival. The neuromodula-
tory system is not only crucial for survival behavior,
but it also provides the foundation from which cogni-
tive function in higher organisms arises. This neu-
rally inspired control system would be flexible,
experience dependent, and autonomous; just like a bio-
logical organism.
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