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Abstract— Biological neural systems are well known for their 
robust and power-efficient operation in highly noisy 
environments. We outline key modeling abstractions for the 
brain and focus on spiking neural network models. We discuss 
aspects of neuronal processing and computational issues related 
to modeling these processes. Although many of these algorithms 
can be efficiently realized in specialized hardware, we present a 
case study of simulation of the visual cortex using a GPU based 
simulation environment that is readily usable by neuroscientists 
and computer scientists and efficient enough to construct very 
large networks comparable to brain networks. 

Keywords- Spiking neural networks, GPU, vision, 
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I.  INTRODUCTION 
The mammalian nervous system is a network of extreme 

size and complexity [1], and understanding the principles of 
brain processing by reverse engineering neural circuits and 
computational modeling is one of the biggest challenges of the 
21st century [2, 3]. Theoretical and computational 
methodologies will be crucial for healing, understanding, and 
enriching the mind [4]. Theories and models characterizing the 
computations underlying perception, memory, decision-
making, behavioral intentions, self-regulation, and many other 
types of mental activity have become essential elements of 
behavioral and neuroscience research.  

Computational neuroscience and neuromorphic engineering 
are now established subfields of the neurosciences. Computer 
scientists and engineers are looking to biology and the brain for 
inspiration when designing systems. Researchers are building 
large-scale models of the brain utilizing supercomputers [5, 6] 
and developing genomic brain atlases using high throughput 
techniques [7]. Current computational models are approaching 
the size of small mammalian brains [8, 9]. 

Despite recent increases in computer power, constructing a 
model the size of a human-brain will require several orders of 
magnitude increases in computation, communication, and 
memory capacity. Conventional computer hardware may not be 
the appropriate architecture for modeling a brain. Unlike a 
conventional computer, the brain is a massively parallel, 
analog, fault-tolerant, selective system that does not rely on 

programmed instructions [10]. Alternative computer 
architectures and programming paradigms, which are 
neurobiologically inspired, need investigation [11, 12]. 
Furthermore, the brain can be modeled and studied at multiple 
abstraction scales, from microscopic (e.g., biophysical and 
cellular) to macroscopic (e.g., functional) levels. 

There is a need within the computational neuroscience 
community for abstractions and simulation environments that 
support modeling at a large-scale (i.e., networks which 
approach the size of biological nervous systems). In particular, 
we consider large-scale network models of spiking neurons, 
which demonstrate important properties of neurobiological 
information processing, such as temporal dynamics, precise 
timing, and brain rhythms [13]. Moreover, spiking models, 
with their digital signaling and sparse coding, are energy 
efficient and amenable to hardware application development. 

Our group has been developing tools to incorporate these 
brain features into computer models. Specifically, we construct 
large-scale network models that capture the dynamics of neural 
signaling at the microcircuit (i.e., within brain areas) and 
macrocircuit (i.e., between brain areas) levels. Previously, we 
developed a GPU implementation of Spiking Neural Networks 
(SNN) that is highly efficient and released it to the modeling 
community so that researchers would have easy access to large-
scale SNN simulations [14]. Our latest simulator extends this 
prior model to include more biologically plausible descriptions 
of synaptic connections, and learning rules [15]. In particular, 
this new simulation environment facilitates the development of 
very large-scale spiking neural networks that follow the brain’s 
architecture.  

In the remainder of the paper, we give an overview of 
neurobiological systems, discuss some computational aspects 
of modeling such a system, how these models may be realized 
in specialized hardware, and present as a case study a model of 
the visual cortex using our GPU based simulation environment. 

II. BRIEF NEUROSCIENCE PRIMER 
The human brain has an estimated 100 billion neural 

processing elements (neurons) and about 1015 connections 
(synapses) between those neurons. Each neuron is a 
sophisticated analog processor that not only integrates 
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information from other neurons but also exhibits complex 
internal dynamics. Neurons communicate with other neurons 
through all-or-none digital signals called action potentials or 
spikes. These spikes are propagated via long-range fibers called 
axons. The neurons can be either excitatory or inhibitory, that 
is they increase or decrease the ability of a downstream neuron 
to spike in a small window of time. The efficacy of synaptic 
connections between neurons changes based on the firing 
pattern of the “sending” (pre-synaptic) neuron and the 
“receiving” (post-synaptic) neuron.  

Anatomically, the vertebrate brain is divided into three 
regions: the hindbrain, mind-brain and forebrain. The forebrain 
is further divided into two stages: the thalamic region and 
cerebrum. All vertebrates, including humans, follow the same 
basic structural plan [16]. The differences lie in the numbers of 
neurons and synaptic connections and the relative size of 
different areas. For example, the frontal cortex has expanded in 
primates relative to other animals [17]. Furthermore, the brain 
organization depends on the animal’s ecological niche and 
lifestyle [18]. A monkey, which is a highly visual creature, has 
a larger proportion of its brain dedicated to vision than a 
mouse, which is a nocturnal animal having much of its brain 
dedicated to processing whisker and odor information. 

III. NEURONAL MODELING ABSTRACTIONS 
The sheer complexity of the brain also requires designers of 

brain models to choose an appropriate level of modeling 
abstraction for their study. Brain modeling abstractions can be 
viewed as a hierarchy, with each level serving a different 
purpose and incorporating the relevant subset of the brain’s 
features. Lower level models represent biophysical interactions 
at the cellular level that incorporate molecular and electrical 
properties of neurons, ionic currents and protein receptors, as 
well as anatomical details of axonal branching and dendritic 
arborization [19, 20]. Such detailed models, while biologically 
accurate, incur tremendous computational costs for simulation 
and require costly parameter sweeps during modeling. Thus, 
large-scale simulation of the brain is extremely challenging at 
this level. At a level up, neural circuit models abstract away 
many molecular and cellular details and represent the brain as a 
massive circuit composed of four basic components: neurons 
for computation, synapses for learning and storage, axons for 
communication, and neuromodulatory systems to control action 
selection and learning. These neural circuit models are similar 
to analog and digital circuits and can take advantage of existing 
tools and simulation frameworks used in VLSI design. 
Functional models at higher abstraction levels simplify 
complex biological processes with more computationally 
efficient approximations. Although these models sacrifice 
biological accuracy, they stress functional aspects, have strong 
explanatory power, and are amenable for use in practical 
applications.  

In the remainder of the paper we focus on brain models at 
the neural circuit level, using spiking neural networks as an 
exemplar for these neural circuit models.  

IV. MODELING SPIKING NEURAL NETWORKS 
In this section, we describe the elements of our spiking 

neural network models. Our simulator was first published in 

[14], but has been greatly enhanced to improve functionality 
and ease of use. More detailed mathematical descriptions can 
be found in [15]. 

A. Neuronal Modeling 
As described above, we have chosen spiking elements for 

our model of the neuronal processing. Many modelers use 
mean firing rate models, which are efficient and can describe 
many aspects of cognition and neuroscience [21]. However, 
because these types of models average neural activity over 
hundreds of milliseconds, they lack the temporal resolution to 
capture many of the neural dynamics.  

To strike the right balance of temporal resolution, 
biophysical accuracy, and efficient computation, we use the 
Izhikevich spiking neuron [22]. This neuronal model is a 
dynamical system in which there is a variable that tracks the 
neuron’s membrane potential and a variable that tracks the 
recovery from a spiking event. Even though only four open 
parameters govern the dynamics of the model, it accurately 
replicates a wide range of neural behaviors. 

B. Synaptic Modeling 
The synaptic connection between two neurons is quite 

complex and is critical for neuronal dynamics, learning and 
memory. Integration of information takes place at the synapse. 
The state of the neuron, the type of neurotransmitter that is 
released at the synapse, and the time course of how this 
neurotransmitter is received are all important to integrating this 
input signal. This synaptic integration is called conductance 
and to capture this important aspect of neuronal processing, we 
model conductances that make the neuron more likely to fire a 
spike (excitatory) and less likely to fire a spike (inhibitory) 
over the appropriate timescales.  

Learning and memory are mainly due to long lasting 
changes at the synaptic connections. In general, when a 
sufficient number of input spikes (i.e., pre-synaptic) arrive 
“together” (i.e., temporally coincident), the post-synaptic 
neuron generates a spike of its own. Neurons are continually 
modifying the strength of their connections based on the timing 
of their inputs. The synaptic strength of a connection is 
increased if pre-synaptic spikes come before the post-synaptic 
spikes; in other words, the temporal order of spikes is 
consistent with the input causing the output neuron to spike. If 
however, the order is anti-causal (i.e., input spike occurs after 
output), the synaptic weight is decreased. This learning rule is 
called spike timing dependent plasticity (STDP) and can enable 
a network to learn spatial-temporal patterns and contribute to 
network stability [23]. 

Plasticity on a shorter time scale can affect other types of 
memory. Working memory is the ability to keep information, 
such as a phone number in mind, over a brief period of time. 
Alternatively, it may be important to habituate or ignore 
information that is uninteresting or repetitive. To capture this 
type of memory we apply Short-Term Plasticity (STP) to the 
processing of a synaptic event [24]. STP is faster than STDP, 
on the order of 100ms, and contributes to working memory by 
pre-synaptic facilitation and habituation by pre-synpatic 
depression.  

335



C. Creating a Simulation 
To create a simulation of the brain, the modeler needs to 

define the different brain areas they want to investigate, the 
type of neuronal elements found in these brain areas, and the 
connections within and between brain areas. In our simulation, 
the brain areas are defined as groups of Izhikevich neurons. 
Groups can range from one neuron up to hundreds of thousands 
of neurons. Once the neuronal groups have been defined, the 
synaptic connections between them can be defined. Common 
connection topologies for building networks include: 1) All-to-
all connectivity where all neurons in the pre-synaptic group are 
connected to all neurons in the post-synaptic group. 2) One-to-
one connectivity where neuron i in the pre-synaptic group is 
connected to neuron i in the post-synaptic group assuming the 
same number of neurons in both groups. 3) Random 
connectivity where a group of pre-synaptic neurons are 
randomly connected to a group of post-synaptic neurons with a 
probability. 4) User-defined connectivity where a topology or 
projection from one group to another can be specified. For all 
connection types the user specifies an initial synaptic weight, a 
maximum synaptic weight, and a range of synaptic delays. 

V. HW ARCHITECTURES FOR SPIKE-BASED COMPUTATION 
The advent of low-cost, high-performance graphics 
architectures (e.g., NVIDIA GPUs) opens the door for large-
scale SNN simulations on affordable, programmable 
platforms. Some fundamental benefits and limitations of such 
graphics architectures for simulating SNNs are: 

• Large fine-grained parallelism: Contemporary GPUs 
with hundreds of scalar processors can execute 
thousands of threads concurrently. Maximum 
performance can be achieved as long as a group of 
threads are executing the same instruction. However, 
when different threads within the same group require 
different instructions, thread divergence occurs, 
causing poor parallelism performance.  

• Large off-chip memory bandwidth: A typical GPU’s 
off-chip memory bus is based on a 512- (or 256-) bit 
wide DDR interface, resulting in a 5-fold increase in 
GPU memory bandwidth over the CPU. Through 
memory coalescing, this GPU memory bandwidth is 
exploited by clustering memory access patterns from 
different threads within a 128, 64, or 32-byte memory 
address space. 

• Special Function Units: Each streaming multiprocessor 
may have multiple special functional units (SFUs) 
allowing single instruction calculation of exponentials 
and other mathematical functions. 

The mapping of SNNs on to GPUs is non-trivial due to the 
random memory access structure in SNNs and large memory 
requirements to store the connectivity and network state 
(synapses and neurons) information. We proposed various 
optimization techniques to overcome the above limitations and 
effectively map SNNs on to GPUs including: (1) Exploiting 
both neuronal and synaptic parallelism to maximize thread 
level parallelism, (2) Efficient representation of large-scale 
SNNs that improves the off-chip memory coalescing, and (3) 
Minimizing thread divergence by delaying the execution of 

diverging conditions by buffering them and running them 
concurrently later. Using these optimization techniques, our 
SNN simulation with 100,000 neurons and 10 million synapses 
could be executed close to real-time [14]. Further, the GPU-
SNN simulation was about 26 times faster than the CPU for 
100K neurons with 50 million synapses. 

Large-scale SNN simulations are memory dominated and 
hence overall speed-up is limited due to saturation of off-chip 
memory-bandwidth. Off-chip memory requirements can be 
reduced by providing large, persistent local shared memory to 
store the neuron state, and also by providing on-chip 
communication networks for direct spike transfer between 
multiprocessors. Such improvements have been incorporated 
into an application specific multiprocessor in the SpiNNaker 
project for large-scale SNN simulations [25]. But to truly 
approach the power and area efficiency of brain circuits it is 
essential to directly model neuronal circuits using hybrid 
analog-digital architectures [11, 25-27]. Memristor 
architectures have been proposed to implement neuronal 
circuits with high-efficiency [28]. These and other approaches 
are currently being investigated in the EU FACETS 
(http://facets.kip.uni-heidelberg.de/) and the DARPA 
SyNAPSE (http://en.wikipedia.org/wiki/SyNAPSE) projects. 

Our approach is to design a simulator that is easy to use and 
yet provide significant computational performance on 
affordable, programmable platforms. We achieve this by using 
a PyNN-like interface and abstraction [29]. PyNN is a common 
programming interface developed by the neuronal simulation 
community to allow a single script to run on various 
simulators. In addition, to ensure our simulator can be 
supported on a wide-range of machines, our simulator runs on 
both generic x86 CPUs and NVIDIA GPUs under Windows 
and Unix operating systems. 

VI. CHALLENGES FOR THE VLSI-CAD COMMUNITY  
Although significant progress has been made towards 

specification and simulation of large-scale brain networks on a 
variety of hardware platforms, many challenges still remain 
open. Foremost among them is the problem of tuning and 
stabilization of these large-scale dynamical systems, which are 
characterized by a large number of state variables and open 
parameters. Examples of parameters of these large-scale 
systems include the connectivity profile, synaptic plasticity 
rules and synaptic strength limits, neuronal properties, etc. 
These parameters govern the network dynamics, and tuning of 
these parameters to generate stable, realistic behaviors is 
extremely challenging. Biology does provide some empirical 
data that can constrain these systems, but many parameter 
values must be chosen by the modeler to achieve appropriate 
neuronal dynamics. Another challenge remains in 
understanding and interpreting the spike trains generated by 
these large-scale systems. New approaches based on 
information theory and data mining need to be used to decipher 
the temporal aspects of spikes from a neural population over 
different timescales. Furthermore, new tools and approaches 
are necessary to visualize the state variables, and connectivity 
of large cortical networks in real-time. These issues, while 
challenging, provide research opportunities for the VLSI-CAD 
community. 

336



A. B.

 

Figure 1.  Snapshots from the large-scale simulation of  cortical visual processing. The image at the top is a video frame, at 64x64 pixel resolution, provided by 
the CASTLE virtual environment (http://www.setcorp.com/science-info.html) and fed as input to the V1 layer of the cortical model. Below the image are neuronal 

responses to color (V4 Color), motion (MT) and edges (V4 Orientations). The complete model contains 552,960 neurons and 118,188,000 synapses. 

VII. CASE STUDY: LARGE-SCALE SIMULATION OF CORTICAL 
VISUAL PROCESSING 

In order to demonstrate the power and ease of use of our 
simulator, we have built a large-scale, spiking network to 
simulate models of the visual cortex for color, orientation 
selectivity, and motion selectivity [15]. In the model, the 
primary visual cortex (V1) is a rate-based preprocessor, which 
calculates color opponency responses [30], as well as motion 
energy responses [31]. These rate-based responses are 
converted to Poisson spike trains and fed into higher cortical 
regions, such as V4 for color and edge detection, and MT for 
motion detection. All excitatory neurons are Regular Spiking 
and all inhibitory neurons are Fast Spiking, as defined by 
Izhikevich [32]. An input image resolution of 32x32 or 64x64 
pixels was used; and this resolution was then used for every 
layer in the network. Figure 1 shows snapshots from the 
complete model.  

A. Cortical model of color selectivity 
Following the opponent-color theory, we constructed a rate-

based model of area V1 where we had center-surround units 
that were selective to 1) red center, green surround; 2) green 
center, red surround; 3) yellow center, blue surround; and 4) 
blue center, yellow surround. Color opponent signals were then 
converted to spike-trains using Poisson spike generators and 
connected to populations that are selective to one of 6 colors: 
red, green, blue, yellow, magenta (blue+red) and cyan 
(blue+green). Each color had both an excitatory and inhibitory 
group, for a total of 12 V4 color groups. 

B. Cortical Model of Motion and Orientation Selectivity 
To generate motion selective responses, we used the 

Simoncelli and Heeger motion energy model for V1 [31] and 

implemented it to run on the GPU. The probability of a 
connection from V1 to MT was proportional to the projection 
of the V1 cell’s receptive field onto a plane in the spatial 
frequency-temporal frequency domain. The slope of this plane 
defined the speed preference of the resulting MT cell and the 
rotation of the plane around the time axis defined the direction 
preference. The neurons in our MT model responded 
preferentially to one of 8 different directions and 3 different 
speeds at a spatial location. The response of the MT neuron’s 
receptive field was based on connectivity from the V1 motion 
selective neurons. The motion energy responses were also used 
to generate orientation selective responses. Since there are units 
in the 28 space-time filters that are more selective to orientation 
than motion, their responses can be used to generate a 
population of V4 orientation selective units. 

C. Performance of the Complete Cortical Model 
The model demonstrated a wide range of 

neurophysiological and behavioral responses similar to those 
found in humans and non-human primates. V4 neuronal units 
had selectivity to their preferred colors and the appropriate 
broad tuning to a range of hues similar to those found in the 
monkey V4 brain region [33]. The model replicated Random 
Dot Kinematogram (RDK) experiments, performed with 
monkeys and humans, in which subjects must report the 
direction of dots moving coherently among a background of 
randomly moving dots. The model’s output was comparable to 
human psychophysical experiments [34]. 

The complete model had 138,240 neurons and 29,547,000 
synapses at a spatial resolution of 32 by 32. Running these 
138K neurons on a single NVIDIA C1060 GPU ran 5% faster 
than real-time and roughly 65 times faster than on the CPU. At 
64 by 64 input resolution network, the model which contained 
552,960 neurons and 118,188,000 synapses, did not fit on a 
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GPU and required being run on the CPU (see Figure 1). An 
advantage of this model, compared to other large-scale cortical 
models, is that it can replicate experimental results, as well as 
be used in application domains. It is constructed such that it can 
readily receive real image or video data for neurobiologically 
based machine vision, and so that it can be expanded across 
multiple GPUs to handle greater resolution in real-time. 
Moreover, by providing this interface to the real world, our 
simulation environment can close the loop between sensory 
input and motor output resulting in interesting behaviors. 

While these models are considered large-scale, they are still 
orders of magnitude smaller than human (1011 neurons) or even 
mouse (107 neurons) brains. Thus, many tools must be 
developed in order to ultimately reach these scales. Because we 
believe the complexity and dynamics, which are the hallmark 
of mammalian brains, are a function of large-scale population 
dynamics, such large-scale simulations will be necessary for 
the study of brain function and the construction of artificial 
brains that are truly intelligent. 

VIII. CONCLUSION  
Neuromorphic modeling is emerging due to the hope of 

brain-like intelligence in artificial systems and the advent of 
new hardware that is amenable to the parallel and distributed 
brain architecture. We outlined the major modeling abstractions 
for the brain and focused on spiking neuronal models that 
deliver good performance while ensuring biological accuracy. 
We presented a simulation environment that supports the 
construction of large-scale models of spiking neural networks 
on hardware readily available to most researchers. We also 
presented a case study for simulation of the visual cortex using 
a large-scale spiking neural network. It is our hope that this 
environment will benefit both the neuroscience and computer 
science communities and move us closer to meeting the grand 
challenge of reverse-engineering the brain. 
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