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Abstract—Neuromorphic computing is a promising solution for
reducing the size, weight and power of mobile embedded systems.
In this paper, we introduce a realization of such a system by creat-
ing the first closed-loop battery-powered communication system
between an IBM Neurosynaptic System (IBM TrueNorth chip)
and an autonomous Android-Based Robotics platform. Using this
system, we constructed a dataset of path following behavior by
manually driving the Android-Based robot along steep mountain
trails and recording video frames from the camera mounted on
the robot along with the corresponding motor commands. We
used this dataset to train a deep convolutional neural network
implemented on the IBM NS1e board containing a TrueNorth
chip of 4096 cores. The NS1e, which was mounted on the robot
and powered by the robot’s battery, resulted in a self-driving
robot that could successfully traverse a steep mountain path in
real time. To our knowledge, this represents the first time the
IBM TrueNorth has been embedded on a mobile platform under
closed-loop control.

I. INTRODUCTION

As the need for faster, more efficient computing continues
to grow, the observed rate of improvement of computing speed
shows signs of leveling off [1], [2]. In response, researchers
have been looking for new strategies to increase computing
power. Neuromorphic hardware is a promising direction for
computing, taking a brain-inspired approach to achieve magni-
tudes lower power than traditional Von Neumann architectures
[3], [4]. Mimicking the computational strategy of the brain, the
hardware uses event-driven, massively parallel and distributed
processing of information. As a result, the hardware has low

size, weight, and power, making it ideal for mobile embed-
ded systems. While the traditional solution to performing
computation with a limited power supply is often to offload
computation through cloud computing, this is unreliable in
areas of limited connectivity and would be ineffective for tasks
requiring immediate results. With neuromorphic hardware,
computationally intensive algorithms could be run at low
power on the device itself.

One such application is autonomous driving [5]. In order
for an autonomous mobile platform to perform effectively, it
must be able to process large amounts of information simul-
taneously, extracting salient features from a stream of sensory
data and making decisions about which motor actions to take
[6]. Particularly, the platform must be able to segment visual
scenes into objects such as roads and pedestrians [5]. Deep
convolutional networks (CNNs) have proven very effective for
many of these tasks [7]. A CNN is a multi-layer feedforward
neural network, most often used to classify input data with spa-
tial information such as images [8]. From one layer to the next,
a filter of weights is convolved along the spatial dimensions.
The weights are trained using the standard backpropagation
rule, comparing the desired and actual output of the final
layer of the network [9]. Training is performed iteratively, by
running a batch of the training data through a forward pass of
the network, calculating the difference between expected and
actual output, and incrementally adjusting network weights by
gradient descent.

CNNs have previously been applied in autonomous driving.
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For instance, Huval et al. [10] used deep learning on a large
dataset of highway driving to perform a variety of functions
such as object and lane detection . Recently, Bojarski et al.
[11] showed that tasks such as lane detection do not need to
be explicitly trained. In their DAVE-2 network, an end-to-end
learning scheme was presented in which the network is simply
trained to classify images from the car’s cameras into steering
commands learned from real human driving data. Intermediate
tasks such as lane detection were automatically learned within
the intermediate layers, saving the work of selecting these
tasks by hand.

Such networks are suitable for running on neuromorphic
hardware due to the large amount of parallel processing in-
volved. In fact, many computer vision tasks have already been
successfully transferred to the neuromorphic domain, such
as handwritten digit recognition [12] and scene segmentation
[13]. However, less work has been done in embedding the
neuromorphic hardware on mobile platforms. An example
includes NENGO simulations embedded on SpiNNaker boards
controlling mobile robots [14], [15]. Addressing the challenges
of physically connecting these components, as well as creating
a data pipeline for communication between the platforms is an
open issue, but worth pursuing given the small size, weight
and power of neuromorphic hardware.

At the Telluride Neuromorphic Cognition Workshop 2016,
we embedded the the IBM NS1e board containing the IBM
Neurosynaptic System (IBM TrueNorth chip) [16] on the
Android-Based Robotics platform [17] to create a self-driving
robot that uses a deep CNN to travel autonomously along an
outdoor mountain path. The result of our experiment is a robot
that is able to use video frame data to steer along a road in
real time with low-powered processing.

II. PLATFORMS

A. IBM TrueNorth

Fig. 1. A) Core connectivity on the TrueNorth. Each neuron on a core can
be configured to connect to all, none, or an arbitrary set of input axons on the
core. Neuron outputs connect to input axons on any other core in the system
(including the same core) through a Network-on-Chip. B) The IBM NS1e
board. Adapted from [18].

The IBM TrueNorth (Figure 1) is a neuromorphic chip
with a multicore array of programmable neurons. Within each
core, there are 256 input axon lines connected to 256 neurons
through a 256x256 synaptic crossbar array. Each neuron on a
core is configurably connected with every other neuron on the
same core through the crossbar, and can communicate with
neurons on other cores through their input axon lines. In our
experiment, we used the IBM NS1e board, which contains
4096 cores, 1 million neurons, and 256 million synapses. The
integrate-and-fire neuron model has 23 parameters and may
be configured to use trinary synaptic weights of -1, 0, and
1. As the TrueNorth has been used to run many types of
deep convolutional networks, and is able to be powered by
an external battery, it served as ideal hardware for this task
[19] [18] .

B. Android Based Robotics

Fig. 2. Left: Side view of CARLorado. A pan and tilt unit supports
the Samsung Galaxy S5 smartphone, which is mounted on a Dagu Wild
Thumper chassis. A plastic enclosure holds the IOIO-OTG microcontroller
and RoboClaw motor controller. A velcro strip on top of the housing can
attach any other small components. Top Right: Front view of CARLorado.
Three front-facing sonars can detect obstacles. Bottom Right: Close-up of
IOIO-OTG and motor controller.

The Android-Based Robotics platform (Figure 2) was cre-
ated at the University of California, Irvine, using entirely
off-the-shelf commodity parts and controlled by an Android
phone [17]. The robot used in the present experiment, the
CARLorado, was constructed from a Dagu Wild-Thumper
All-Terrain chassis that could easily travel through difficult
outdoor terrain. A IOIO-OTG microcontroller (SparkFun Elec-
tronics) communicated through a Bluetooth connection with
the Android phone (Samsung Galaxy S5). The phone provided
extra sensors such as a built-in accelerometer, gyroscope, com-
pass, and global positioning system (GPS). The IOIO-OTG
controlled a pan and tilt unit for changing the camera view
and a motor controller for the robot wheels, using pulse width
modulation to change the intensity and direction of movement.
The IOIO-OTG also communicated with ultrasonic sensors for
detecting obstacles. A differential steering technique was used,
moving the left and right sides of the robot at different speeds
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for turning. The modularity of the platform made it easy to
add extra units such as the IBM TrueNorth.

Software for controlling the robot was written in Java
using Android Studio. With various support libraries for the
IOIO-OTG, open-source libraries for computer vision such as
OpenCV, and sample Android-Based Robotics code, it was
straightfoward to develop intelligent controls.

III. METHODS AND RESULTS

A. Data Collection

Fig. 3. Data collection setup. Video from the smartphone mounted on the
robot was sent to the tablet through a Wi-Fi direct connection. A human
operator used two joysticks on the touchscreen of the tablet to issue motor
commands, which were sent to the phone through the same connection. With
the joysticks, the operator was able to change the speed of moving and turning
by changing the pulse width modulation signal sent to the motor controller.
Video frames and their corresponding motor commands in the form of pulse
width values were saved to the SD card on the smartphone.

First, we created datasets of first-person video footage of
the robot and motor commands issued to the robot as it was
manually driven along a mountain trail in Telluride, Colorado
(Figures 5 and 9 top). This was done by creating an app
in Android Studio that was run on both a Samsung Galaxy
S5 smartphone and a Samsung Nexus 7 tablet (Figure 3).
The smartphone was mounted on the pan and tilt unit of the
robot with the camera facing ahead. JPEG images captured
by the camera of the smartphone were saved to an SD card
at 30 frames per second. The JPEGs had a resolution of
176 by 144 pixels. Through a Wi-Fi direct connection, the
video frame data was streamed from the phone to a handheld
tablet that controlled the robot. The tablet displayed a control
for moving the robot forward and backward at an adjustable
speed and a control for steering the robot left and right at
an adjustable speed. These commands from the tablet were
streamed continuously in the form of pulse width values to the
smartphone via the Wi-Fi direct connection. The smartphone
then relayed these values to the IOIO-OTG, which generated
the pulse width modulation signals for controlling the steering
power of the robot. These values were also saved on the
smartphone as a text file for training purposes. A total of 4
datasets was recorded on the same mountain trail, with each
dataset recording a round trip of .5 km up and down a single
trail segment. To account for different lighting conditions,
we spread the recordings across two separate days, and on
each day we performed one recording in the morning and
one in the afternoon. In total we collected approximately 30

minutes of driving data. By matching the time stamps of motor
commands to video images, we were able to determine which
commands corresponded to which images. Images that were
not associated with a left, right, or forward movement such
as stopping were excluded. Due to lack of time, only the first
day of data collection was used in actual training.

B. Eedn Framework

Fig. 4. Convolution of layers in a CNN on TrueNorth. Neurons in each layer
are arranged in three dimensions, which can be convolved using a filter of
weights. Convolution occurs across all three dimensions. The third dimension
represents different features. The convolution can be divided along the feature
dimension into groups (indicated by blue and yellow colors) that can be
computed separately on different cores. Adapted from [18].

Fig. 5. The CNN classified images into three classes of motor output: turning
left, moving forward, and turning right. Accuracy of training was above 90
percent.

We used the dataset to train a deep convolutional neural
network using an energy-efficient deep neuromorphic network
(Eedn), a network that is structured to run efficiently on
the TrueNorth [18]. As the TrueNorth currently does not
support on-chip training, the framework provides a method
for training network weights off-line and assigning them to the
chip. In summary, a CNN is transferred to the neuromorphic
domain by first structuring the network according to the core,
axon, and neuron structure of TrueNorth. By dividing each
layer into groups along the feature dimension (Figure 4), the
convolutional operation may be distributed among cores of
the TrueNorth to take advantage of the parallel processing.
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Fig. 6. Effect of the number of cores used on the accuracy of the CNN.
One NS1e board contains 4096 cores. An accuracy above 85 percent was still
maintained even with the network reduced to one quarter of a full chip.

When a neuron targets multiple core inputs, exact duplicates
of the neuron and synaptic weights are created, either on the
same core or a different core. The response of each neuron
is the binary thresholded sum of synaptic input, in which the
trinary weight values are determined by different combinations
of two input lines. Then the weights of the restructured CNN
are learned using a backpropagation algorithm that trinarizes
the network weights, consistent with the low dimensional
representation of synaptic weights in TrueNorth. Information
from one forward pass of the externally trained CNN is
represented in Eedn according to the binary spike patterns of
each neuron’s response to its input, at every timestep. A more
complete explanation of the Eedn flow and structure of the
convolutional network used (1 chip version) can be found in
[18].

The video frames were preprocessed by down-sampling
them to a resolution of 44 by 36 pixels and separating them
into red, green, and blue channels. The output is a single layer
of three neuron populations, corresponding to three steering
movements of ”left”, ”straight”, or ”right”, as seen in Figure
5. Since the steering commands in the training data allowed for
different intensities of steering, the commands were simplified
such that any amount of turning left was classified as ”left”
and any amount of turning right was classified as ”right”.

Using the Eedn MatConvNet package, a Matlab toolbox
for implementing convolutional neural networks, the network
was trained to classify images using the motor command
class labels. Every image in the dataset was labeled with
the corresponding human-trained command of steering to the
left, right, or straight. In this way, the CNN learned the
types of images and image characteristics associated with each
command, completely from the dataset provided. No hand
labeling of images or a priori human knowledge of scene
characteristics was required. To test accuracy, the dataset was
split into train and test sets by using every fifth frame as a
test frame (in total 20 percent of the dataset). We achieved
an accuracy of over 90 percent, which took 10K iterations
and a few hours to train. Training was performed separately

from the TrueNorth chip, producing trinary synaptic weights
(-1,0,1) that could be used interchangeably in the traditional
CNN or Eedn.

For more extensive analysis on the training accuracy
achieved by the TrueNorth, multiple CNNs were designed
that used different amounts of processor capability. Although
one NS1e board contains 4096 cores, not all of them need
to be used. Using fewer cores reduces the amount of power
consumed by the chip [18], at the cost reduced accuracy. To
explore this tradeoff, we trained a range of CNNs that filled
from one tenth of a chip to the full chip. The sizes of the CNNs
were changed by controlling the stride, filter size, or number
of layers [20]. Using only one quarter of the chip resulted
in 85 percent accuracy (Figure 6). Using the complete chip
increased the accuracy to over 90 percent (Figure 6).

C. Data Pipeline
With the methods used in [18], the weights of the network

were transferred to the TrueNorth chip. The CNN was able
to run on the chip by feeding input from the camera on
the Android Galaxy S5 to the TrueNorth using a TCP/IP
connection. In order to achieve this, the phone had to replicate
the preprocessing used when training the network. The pre-
processing on the phone was achieved by using the Android
OpenCV scaling function to downsample the images. Then,
the images were separated into red, green, and blue channels.
Next, the filter kernels from the first layer of the CNN were
pulled from the Eedn training output and applied to the image
using a 2D convolution function from the Android OpenCV
library. The result of the convolution was thresholded into
binary spiking format, such that any neuron with an activity
greater than zero was set to spike. The spiking input to the
TrueNorth was sent in XYF format, where X, Y, and F are the
three dimensions to describe the identity of a spiking neuron
within a layer. At each tick of the TrueNorth, a frame was
fed into the input layer by sending the XYF coordinates of all
neurons that spiked for that frame. A detailed diagram of the
pipeline is found in Figure 7. Output from the TrueNorth was
sent back to the smartphone through the TCP/IP connection
in the form of a class histogram, which indicated the firing
activity of the output neurons. The smartphone could then
calculate which output neuron was the most active and issue
the corresponding motor command to the robot.

D. Physical Connection of Platforms
The TrueNorth was powered by connecting the robot’s

battery terminals from the motor controller to a two-pin
battery connection on the NS1e board. It was then secured
with velcro to the top of the housing for the IOIO and
motor controller. A picture of the setup is seen in Figure
8. The robot, microcontroller, motor controller, servos, and
NS1e were powered by a single Duratrax NiMH Onyx 7.2V
5000mAh battery.

E. Testing
With this wireless, battery-powered setup, the trained CNN

was able to successfully drive the robot on the mountain
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Fig. 7. Data pipeline for running CNN. Training is done separately using the Eedn MatConvNet package using Titan X GPUs. A Wi-Fi connection between
the Android Galaxy S5 and IBM NS1e transmit spiking data back and forth, using the TrueNorth (TN) Runtime API.

Fig. 8. Physical connection of TrueNorth NS1e and CARLorado. The NS1e is
attached to the top of the housing of the electronics housing using velcro. The
NS1e is powered by running connections from the motor controller within the
housing. The motor controller itself is powered by a Ni-MH battery attached
to the bottom of the robot chassis.

trail (Figure 9). A wireless hotspot was necessary to create
a TCP connection between the NS1e and the Android phone.
We placed the robot on the same section of the trail used
for training. For testing, the robot was programmed to drive
forward constantly while steering left, right, or straight ac-
cording to the class histograms received from the TrueNorth
output, which provided total firing counts for each of the
three output neuron populations. Steering was done by using
the histogram to determine which output population fired the
most, and steering in that direction. As a result, the robot
stayed near the center of the trail, steering away from green
brush on both sides of the trail. At some points, the robot did
travel off the trail and needed to be manually redirected back
towards the center of the trail. The robot drove approximately

Fig. 9. Mountain trail in Telluride, Colorado. Top: Google Satellite image
of trail (highlighted) Imagery c⃝2016 Google. Bottom: Testing CNN perfor-
mance.

0.5 km uphill, and returned 0.5 km downhill with minimal
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intervention. It should be noted that there was a steep dropoff
on the south side of the trail. Therefore, extra care was taken to
make sure the robot did not tumble down the mountainside.
A video of the path following performance can be seen at
https://www.youtube.com/watch?v=CsZah2hydeY.

IV. DISCUSSION

To the best of our knowledge, the present setup represents
the first time the IBM NS1e has been embedded on a mobile
platform under closed loop control. It demonstrated that a
low power neuromorphic chip could communicate with a
smartphone in an autonomous system. Furthermore, it showed
that a CNN using the Eedn framework was sufficient to achieve
a self-driving application. Additionally, this complete system
ran in real-time and was powered by a single off-the-shelf
hobby grade battery, demonstrating the power efficiency of the
TrueNorth chip. This was possible due to the power savings
of running the CNN computations on neuromorphic hardware
instead of directly on the smartphone. In comparison with
current methods of general-purpose computing on graphics
processing unit (GPGPU) approaches to running CNNs which
require up to 235 W to operate [21], the Eedn framework is
able to train on classic benchmark datasets at 1,200 and 2,600
frames/s and uses between 25 and 275 mW [18]. Similar power
savings should also hold for our application, as our processing
rate of 30 frames/s was sufficient for the road following task.

An expansion of this work would require better quantifica-
tion of the robot’s performance. This could be achieved by
tracking the number of times the robot had to be manually
redirected, or comparing the CNN classifier accuracy on the
training set of images versus the classifier accuracy on the
actual images captured in real time. Increasing the amount
of training data would likely increase the classifier accuracy,
since only 15 minutes of data were used for the training as
compared to other self-driving CNNs, which have used several
days or even weeks of training [10], [11]. Our success was
due in part to the simplicity of the landscape, with an obvious
red hue to the dirt road and bold green hue for the bordering
areas. It would therefore be useful to test the network in more
complex settings.

With further development, path following on Eedn can
integrate with a larger system of autonomous driving on a
neuromorphic system. For instance, a variety of other sensors
such as sonars may be used to train the CNN for better obstacle
detection. Additionally, the system can be combined with
longer-term strategies, such as path planning and decision-
making. A neurally inspired path planning algorithm using
spiking wavefront propagation has recently been implemented
on the IBM TrueNorth [22], along with a simulated version of
the algorithm that runs on the Android-based robot [23] and
adapts to changes in the environment. With a CNN structure
that leaves a few cores open on the TrueNorth chip, the path
following and path planning algorithm can run on the same
board simultaneously, sharing a communication line with the
Android phone. The result would be an entirely self-contained
neuromorphic navigating robot.

V. CONCLUSION

In the present study, we demonstrated a novel closed-loop
system between a robotic platform and a neuromorphic chip,
operating in a rugged outdoor environment. We have shown
the advantages of integrating neuromorphic hardware with
popular machine learning methods such as deep convolutional
neural networks. We have shown that neuromorphic hardware
can be integrated with smartphone technology and off-the-
shelf components resulting in a complete autonomous system.
The present setup is one of the first demonstrations of using
neuromorphic hardware in an autonomous, embedded system.
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