
GPGPU Accelerated Simulation and Parameter Tuning for Neuromorphic
Applications

Kristofor D. Carlson1, Michael Beyeler2, Nikil Dutt2, Jeffrey L. Krichmar1,2

Abstract - Neuromorphic engineering takes inspiration from
biology to design brain-like systems that are extremely low-power,
fault-tolerant, and capable of adaptation to complex
environments. The design of these artificial nervous systems
involves both the development of neuromorphic hardware
devices and the development neuromorphic simulation tools. In
this paper, we describe a simulation environment that can be
used to design, construct, and run spiking neural networks
(SNNs) quickly and efficiently using graphics processing units
(GPUs). We then explain how the design of the simulation
environment utilizes the parallel processing power of GPUs to
simulate large-scale SNNs and describe recent modeling
experiments performed using the simulator. Finally, we present
an automated parameter tuning framework that utilizes the
simulation environment and evolutionary algorithms to tune
SNNs. We believe the simulation environment and associated
parameter tuning framework presented here can accelerate the
development of neuromorphic software and hardware
applications by making the design, construction, and tuning of
SNNs an easier task.

I Introduction

Neuromorphic systems are gaining importance as
traditional scaling in CMOS technology begins to reach its
physical limits. These systems aim to mimic the biological
structure of the nervous system; potentially both for solving
engineering applications as well as understanding neural
computation, which is one of the grand challenges of the 21st
century [1], [2]. Biological information processing systems
operate at performance levels set by fundamental physical
limits, and do so under severe constraints of size, weight, and
energy resources. As a result of these constraints, biological
nervous systems are extremely energy-efficient (8–9 orders of
magnitude better than digital computation [3]). In addition,
brain networks employ learning at all levels of computation,
are capable of adapting to complex environments, and possess
remarkable fault tolerance by maintaining excellent
performance even after the loss of many neurons. Thus
investigating the computational mechanisms and engineering
strategies that give rise to these system properties may not
only further our understanding of the brain, but may also lead
to novel algorithmic and architectural approaches that can
overcome the limits of Moore’s law.

A key aspect to the computing power of brain circuits is
their massively parallel architecture. Brain systems are

organized into highly interconnected modules that operate in
concert with one another to carry out intrinsically parallel
algorithms, rather than parallelizations of inherently serial
procedures. For example, a certain computation in the brain
might be carried out by millions of low-precision processing
elements (neurons) in less than 100 serial steps [4]. On the
other hand, parallelization of serial code typically leads to
very limited speedup due to Amdahl’s law [5]. The resulting
energy efficiency of brain architectures is remarkable: For
example, although there are approximately 20 billion neurons
and 240 trillion synapses in the human cortex alone, the power
consumption of the human brain is estimated to be no more
than 13–15 watts [6].

Another key aspect to the computing power of brain circuits
is the use of an event-driven communication protocol.
Generally speaking, neurons employ relatively infrequent
(~10–100 Hz) brief electrical pulses (called action potentials
or spikes) as their main communication means. These pulses
travel along a wire (axon) to the connection site (synapse) of
another neuron, where they cause a small change in the
electric potential of the receiving neuron. Neurons integrate
these small changes and spike when their voltage reaches a
threshold value [7]. Neuromorphic systems have successfully
modeled this type of communication using address-event
representation (AER), which is a communication protocol that
represents each spike by its location (that is, the neuron that
fired; explicitly encoded as an address) and the time at which
it occurred (implicitly encoded) ([8], [9]). Using AER, it is
possible to emulate massive connectivity in an efficient way.

A powerful framework in the development of neuromorphic
applications that captures both of these key aspects is the use
of spiking neural network (SNN) models in combination with
highly parallel, off-the-shelf graphics processing units (GPUs).
SNN models provide detailed neuronal dynamics [10] while
utilizing the digital AER protocol for efficient communication,
which makes them amenable to hardware application
development. Furthermore, recent developments in
high-performance GPUs enable the simulation of large-scale
SNNs in real-time on affordable, programmable platforms. In
order for the field of neuromorphic engineering to produce
results and applications of practical value, such large-scale
networks will be necessary. However, the tuning and
stabilization of these large-scale dynamical systems is
challenging, due to the large number of state variables and
open parameters. Incorrect values in the parameter landscape
lead to unstable, chaotic or undesired network operations (e.g.,

Department of Cognitive Sciences1

School of Social Sciences
University of California, Irvine

Irvine, CA 92697
{kdcarlso}{jkrichma}@uci.edu

Department of Computer Science2

Bren School of Information and Computer Sciences
University of California, Irvine

Irvine, CA 92697
{mbeyeler}{dutt}@uci.edu

978-1-4799-2816-3/14/$31.00 ©2014 IEEE 570

7S-3

epileptic oscillations). Thus there is a need for both hardware
and software tools that can aid the modeler in the otherwise
extremely tedious and possibly error-prone process of tuning
complex, large-scale dynamical systems.

In this paper we introduce a software environment for the
efficient simulation of SNN models on general-purpose
graphics processing units (GPGPUs) as well as an automated
parameter tuning framework that uses evolutionary algorithms
(EAs) to tune SNN models in parallel. The remainder of the
paper is organized as follows. In Section II, we briefly discuss
recent hardware and software efforts aimed at building
neuromorphic applications. Section III then introduces a
GPU-accelerated SNN simulator called CARLsim, and the
accompanying parameter tuning interface (PTI) for use in the
neuromorphic engineering community.

We believe that the simulation environment and parameter
tuning framework presented here will allow neuromorphic
engineers to more easily construct larger, more complex SNNs,
leading to the development of more powerful neuromorphic
applications that may offer practical solutions to currently
unsolved real-world problems.

II. Neuromorphic Hardware Devices and Software Tools

A. Neuromorphic Hardware Devices

Neuromorphic engineers have made significant progress
developing neuromorphic devices to emulate both sensory
systems and cognitive architectures. We briefly review recent
advances in the development of neuromorphic cognitive
architectures from research teams in the USA and Europe. We
refer the reader to the following review on neuromorphic
sensory systems [11] and focus our discussion on
neuromorphic devices that emulate cognitive architectures.

The construction of neuromorphic chips and devices is an
active area of research, and has spawned major research
initiatives. The Neurogrid board at Stanford University is a
neuromorphic device that emulates ion channels with analog
circuit components but handles synaptic addressing with
digital circuit components. It is capable of simulating 1
million neurons and 6 billion synaptic connections in real-time
using only 5 watts and is an impressive example of the speed
and power that can be achieved with neuromorphic devices
[12]. Both IBM and HRL Laboratories, LLC (HRL)
participated in the DARPA-funded systems of neuromorphic
adaptive plastic scalable electronics (SyNAPSE) project,
where the goal was to build highly scalable neuromorphic
devices. The Cognitive Computing Group at IBM recently
unveiled its True North architecture, which features a
hierarchical design of neurosynaptic cores, each with 256
neurons and approximately 256k synapses [13]. These
neurosynaptic cores are built from silicon neurons that can
perform many realistic biophysical behaviors but lack synaptic
plasticity (and thus lack learning capabilities). HRL also
released a general purpose neural chip which has 576 neurons
and 70k time multiplexed virtual synapses. The neural chip
implements simple spiking neural models and plasticity in the
form of spike-timing-dependent plasticity (STDP) [14], a
learning paradigm which modulates the weight of synapses
according to their degree of causality.

European researchers have also made advances in the
design of neuromorphic chips due to funding from a number
of initiatives that include two projects called fast analog
computing with emergent transient states (FACETS) and
brain-inspired multiscale computation in neuromorphic hybrid
systems (BrainScaleS). The FACETS/BrainScaleS projects
have produced two neuromorphic hardware devices to date.
The first neuromorphic device is a single chip system called
Spikey, which simulates 384 spiking neurons and 256
synapses per neuron [15]. The second neuromorphic device is
more ambitious and is referred to as a wafer-scale
neuromorphic hardware system. This system is constructed
from 352 separate analog network cores (ANCs), in which
each contains 512 spiking neurons and 16k synapses per
neuron. The 352 ANCs can fit onto a single 20 cm wafer with
a total of 180k neurons and 4·107 synapses [16].

Neuromorphic architectures can be either digital, analog, or
a hybrid. The SpiNNaker (a contraction of spiking neural
network architecture) project uses a digital design that has
resulted from a unique collaboration between UK universities
and industry partners. The ultimate goal of the SpiNNaker
project is to build a computing engine that consists of
1,036,800 ARM9 processor cores capable of simulating 1
billion neurons in real-time. The SpiNNaker computing engine
consists of an array of nodes, each containing 18 ARM9 cores,
which communicate via packets using a custom interconnect
fabric. Each ARM9 core can model 100 neurons and
approximately 1M synapses or 10,000 inputs per neuron [17].
The projected power dissipation for the full million-core
machine is 90 kW. SpiNNaker can implement spiking and
non-spiking neurons models and synaptic plasticity with a
novel form of STDP [18]. On the other hand, research teams
from the University and ETH Zurich have recently developed
a hybrid analog/digital VLSI implementation of an SNN with
programmable synaptic weights. The chip has 32 silicon
neuron circuits, 128 virtual synaptic weights per neuron, and
STDP learning. Because the synaptic weights can be changed
on-line and saved offline, the chip can be used to explore
spike-based learning rules [19].

B. Neuromorphic Software Tools: SNN Simulators

Many research groups have developed SNN simulators to
study brain function [20]–[22] or develop neuromorphic
applications [23], [24]; we briefly review SNN simulators
produced from these research efforts. Both NEURON [25] and
GENESIS [26] began as simulation environments originally
designed for detailed neuronal modeling at the ionic channel
level, but both have the capability to run network models.
These simulation environments have a large user-base,
extensively-tested code, and parallelized versions that can be
executed using MPI on super-computing clusters. However,
the computation cost for solving all the equations governing
channel activity and propagation of signals makes these
models difficult to use in large network applications. Other
simulation environments like CSIM/PCSIM, NCS, XPPAUT,
SPLIT, Brian, NEST, and Mvaspike were built specifically to
run SNNs and have been optimized with SNNs in mind; see
[27] for more information. Of particular note are Brian [20]
and NEST [21], which have Python interfaces, multiple
spiking neuron model implementations, and distributed

571

7S-3

parallel implementations. Brian is flexible and easily
extensible, partially because it is written in Python. However,
there is a slight performance penalty, as it is about 25% slower
than similar C implementations. NEST has an optional Python
front-end but avoids the potential decrease in performance by
using a kernel written in C++. Although NEST has an MPI
implementation, it does not currently have a parallel GPU
implementation. Because NEST is a larger, more mature
software project, the implementation of new features like
accelerated GPU implementations may take more time.

There are SNN environments implemented for specific
hardware and simulation environments. For example, IBM’s
C2 SNN simulator is massively parallelized and designed to
run on powerful Blue Gene/P supercomputing clusters [28].
The C2 simulator ran a large-scale SNN simulation that
consisted of 1.6 billion neurons and 8.87 trillion synapses on a
Blue Gene/P with 147,456 central processing units (CPUs)
and 144 TB of memory, which is one of the largest SNN
simulations to date [29]. NENGO is an SNN simulator that
uses a control theory oriented approach called the neural
engineering framework (NEF) to specify the synaptic weights
required to achieve a desired computation and has been used
to build a large-scale brain model with impressive
functionality [22]. There are also SNN simulators designed to
mimic neuromorphic hardware computing architectures, such
as HRLsim [23] developed at HRL and Compass [24]
developed at IBM. However, these classes of simulators are
currently not available for public use.

C. GPU-Enabled SNN Simulators

Many SNN modelers are turning to GPGPUs for
developing application software. Modern GPUs are a low-cost
alternative to traditional supercomputing clusters for
applications in scientific computing [30] and theoretical
neuroscience [31]. A number of groups have developed
parallel implementations of SNN simulators that run on GPUs
[23], [32]–[38] . For a more comprehensive review see [39].

Whereas some of these software tools are still under heavy
development, there are a number of fully functional SNN
simulators that feature a whole range of detailed neuronal and
synaptic dynamics (such as spike-rate adaptation, plasticity,
homeostasis, and specific ion channels), routines that enable
the construction of arbitrary connection topologies, and an
optimized GPU implementation. Among them are
HRLsim [23], NeMo [33], and CARLsim [36], [37]. Although
HRLsim is the only simulator to offer parallelization across a
GPU cluster using MPI and CUDA, it is currently unavailable
for public use. NeMo is a C++ library that simulates networks
of Izhikevich neurons on multiple CUDA-enabled GPUs, with
a frontend in C/C++, Matlab, and Python. NeMo also features
synaptic plasticity in the form of STDP and axonal delays.
CARLsim has specifications that are similar to NeMo, in that
it simulates networks of Izhikevich neurons on a single
CUDA-enabled GPU. Multi-GPU support is planned in the
future. Additionally, CARLsim offers optimal computational
efficiency by utilizing a reduced AER protocol, different kinds
of synaptic plasticity, a method to stabilize synaptic dynamics,
the simulation of specific ion channels, and the option to
either run the network on a CPU or a GPU. Moreover,
CARLsim has been used in a variety of computational studies

to simulate detailed large-scale models of cortical processing.
The next section will discuss these features in more detail.

III. CARLsim: An SNN Simulator

The Cognitive Anteater Robotics Laboratory Simulator
(CARLsim) was designed to make large-scale SNN modeling
readily available and is intended for use by the computational
neuroscience and neuromorphic engineering communities [36],
[37]. CARLsim is written in C/C++ and has both a
single-threaded CPU implementation and parallelized GPU
implementation. To maximize accessibility, CARLsim runs on
both generic x86 CPU architectures and the widely used
NVIDIA CUDA GPU architecture under both the Windows
and Linux operating systems. We provide a user-friendly
programming interface similar to that of PyNN [40] and allow
the user to specify a number of preprogrammed connection
topologies along with a mechanism to allow for user-defined
connection topologies. CARLsim is publicly available at
http://www.socsci.uci.edu/~jkrichma/CARLsim/.

A. CARLsim Features

CARLsim uses the Izhikevich spiking neuron model [41],
which is well-suited for large-scale neuromorphic applications,
because it is computationally efficient yet allows for complex
neuronal dynamics that closely mimic biological neurons.
CARLsim includes expressions to model specific ion channels
(such as AMPA, GABA, and NMDA), which play an
important role in neuronal excitability and plasticity.

CARLsim employs a reduced AER protocol for efficient
encoding of neuronal communication, which helps reduce
both memory usage and memory bandwidth limitations.
Recall that AER stores a spike event by representing it as an
address-time pair. If many neurons have the same time step,
however, this approach leads to high memory overhead due to
duplicate storing of time for each address. We overcome this
limitation by removing the duplicate time entry for each
address, and instead store the cumulative count of fired
neurons during each time step [37]. Additionally, SNN state
variables are compactly stored in memory and ordered in a
manner that minimizes the state update process.

CARLsim includes descriptions of synaptic plasticity at
different time scales. Short-term plasticity (STP) occurs over
timescales of milliseconds to minutes, whereas long-term
plasticity (LTP) occurs over time steps of minutes or
longer [42]. STP changes the synaptic weight over time in a
way that reflects the history of presynaptic activity. It can be
used to model phenomena such as synaptic facilitation or
synaptic depression (fatigue). LTP can be induced through
STDP, which has been shown to play a crucial role in
unsupervised learning [43], forming sparse representations of
temporal sequences [44], and computing with neural
synchrony [45]. CARLsim offers routines to implement both
STP and LTP.

Learning rules in SNNs can often lead to unstable, runaway
synaptic dynamics and completely disrupt learning and neural
function [46]. To cope with this challenge, CARLsim
implements a biologically plausible weight update rule that
promotes stable learning and homeostasis that mimics

572

7S-3

experimental observations [47]. For more information on the
details of the STDP and homeostasis update rules please see
reference [48].

B. CARLsim Parallel GPU Implementation

The GPU-accelerated NVIDIA CUDA implementation of
CARLsim is an important aspect of the simulation framework
and allows for a significant speed up over the single-threaded
CPU implementation, as we will see later. The basic structure
of the CUDA GPU architecture is shown in Figure 1. Each
GPU consists of multiple streaming multiprocessors (SMs)
and a global memory accessible by all SMs. Each SM is
built from multiple floating-point scalar processors, a
cache/shared memory, and one or more special functions units
(SFU), which execute transcendental functions such as sine,
cosine, and square root operations. CUDA groups parallel
threads into ‘warps’, where the number of threads per warp
varies depending on the specific CUDA architecture. Each SM
also has at least one warp scheduler that is built to maximize
the number of threads running concurrently. The warp
scheduler monitors threads within a warp and automatically
switches to another warp when a thread makes a
time-consuming memory access.

Fig. 1. Simplified diagram of NVIDIA CUDA GPU architecture.

CARLsim simulations are primarily run on the M2090
Tesla GPU that utilizes the CUDA Fermi architecture. The
Tesla M2090 has 6 GB of global memory, 512 cores (each
operating at 1.30 GHz) grouped into 16 SMs, and a single
precision compute power of 1331.2 GFLOPS. Each SM is
composed of 32 SPs, 16 load/store units, 4 special function
units, and two warp schedulers [49].

The GPU implementation of CARLsim utilizes a number of
approaches to maximize the degree of parallelization,
minimize memory usage, reduce the effects of memory
bandwidth limitations, and avoid thread/warp divergence.
There are number of ways to assign SNN calculations to the
GPU threads for parallelization. N-parallelism describes
organizing the computations assigned to GPU threads by
neuron while S-parallelism organizes the computations
assigned to GPU threads by synapse. CARLsim uses both of
these approaches by using N-parallelism for neuron state

variable updates and S-parallelism for synapse variable
updates. Thread/warp divergence occurs when a thread
executes a different operation than other threads in a warp
causing the other threads to wait for its completion. CARLsim
prevents thread/warp divergence by buffering data until all
threads are ready to execute the same operation. More
information about the CARLsim GPU implementation can be
found in reference [36].

C. CARLsim Applications

CARLsim has been used to construct large-scale
simulations of cognitive processes on the order of 10k–100k
neurons and millions of synapses, with examples that include
models of visual processing [37], neuromodulation [50], and
neural plasticity [48]. Although their efficient implementation
is challenging due to the associated computational cost,
investigating large-scale models of cortical networks in more
biological detail is widely regarded as crucial in order to
understand brain function [51].

One of our most recent works [52] concerned the ability of
a large-scale spiking neural network model to rapidly
categorize highly correlated patterns of neural activity such as
handwritten digits from the MNIST database [53]. Although
many studies have focused on the design and optimization of
neural networks to solve visual recognition tasks, most of
them either lack neurobiologically plausible learning rules or
decision-making processes. In contrast, our model
demonstrated how a low-level memory encoding mechanism
based on synaptic plasticity could be integrated with a
higher-level decision-making paradigm to perform the visual
classification task in real-time.

The model consisted of Izhikevich neurons and
conductance-based synapses for realistic approximation of
neuronal dynamics, an STDP-like synaptic learning rule for
memory encoding (previously described in [54]), and an
accumulator model for memory retrieval and categorization
[55]. Grayscale input images were fed through a feed-forward
network consisting of visual cortical areas V1 and V2
(selective to one of four spatial orientations, in 45°
increments), which then projected to a layer of downstream
classifier neurons through plastic synapses that implement the
STDP-like learning rule mentioned above. Decision neurons
were equally divided into ten pools, each of which would
develop selectivity to one class of input stimuli from the
MNIST dataset (i.e., one of the ten digits) as a result of
training. Population responses of these classifier neurons were
then integrated over time to make a perceptual decision about
the presented stimulus.

The model constitutes an important proof of concept; that is,
(i) to show how considerably hard problems such as visual
pattern recognition and perceptual decision-making can be
solved by general-purpose neurobiologically inspired cortical
models solely relying on local learning rules that operate on
the abstraction level of a synapse, and (ii) to do it in real-time.
The network achieved 92% correct classifications on MNIST
in 100 rounds of random sub-sampling, which provides a
conservative performance metric, yet is comparable to other
SNN approaches ([54], [56]). Additionally, the model
correctly predicted both qualitative and quantitative properties
of reaction time distributions reported in psychophysical

573

7S-3

experiments. The full network, which comprised 71,026
neurons and approximately 133 million synapses, ran in
real-time on a single NVIDIA Tesla M2090, which
demonstrates the efficiency of the CARLsim implementation.
Moreover, because of the scalability of the approach and its
neurobiological fidelity, the model can be extended to an
efficient neuromorphic implementation that supports more
generalized object recognition and decision-making
architectures found in the brain.

III. CARLsim Parameter Tuning Interface

The size and complexity of the SNN models used by the
neuromorphic engineering community has been steadily
increasing in an effort to capture more biological realism [57]
and underlying functionality [22]. This complexity has taken
the form of more detailed neuron models, the inclusion of
plasticity rules, and connection topologies that include
recurrent connections. The integration of these features into
SNN models comes at a cost: it produces SNNs with less
stable neuronal and synaptic dynamics. Both the size and
instability of this new generation of SNNs have made the task
of constructing and tuning them a difficult one. To meet this
challenge, we have developed an automated parameter tuning
framework that uses evolutionary algorithms (EAs) and
CARLsim to construct and tune SNNs in parallel with GPUs.

Fig. 2. Diagram illustrating the overall approach of the parameter tuning
framework using evolutionary algorithms. The dotted gray box indicates
processes that are done in parallel using the GPU implementation of
CARLsim. The rest of the processes are done sequentially using Evolving
Objects.

The process of tuning an SNN with the automated
parameter tuning framework is detailed in Figure 2: (1) a
population of SNNs, each with a different set of parameters, is
created. (2) Each SNN is evaluated by a fitness function and
assigned a fitness score based on how well the behavior of the
SNN matches a target behavior. (3) The highest scoring SNNs
are selected to produce the next generation of offspring via
recombination and mutation while the remaining individuals
are discarded. (4) This evolutionary process continues until
the desired fitness is reached or another termination condition

has been met. Using this approach, an SNN can be tuned to
produce suitable firing patterns, stable learning dynamics, and
behaviors that closely match experimental data.

The automated parameter tuning framework has three
components: the CARLsim SNN simulator, an open source
EA library called Evolving Objects [58], and a program to
pass information between CARLsim and Evolving Objects we
call the parameter tuning interface (PTI). Evolving Objects
handles all EA computations shown with light blue boxes in
Fig. 2. CARLsim executes the most computationally
expensive portion of the tuning algorithm, evaluating the
fitness of each SNN, in parallel indicated by the light brown
box. During each new EA generation, Evolving Objects
assigns parameters from each offspring individual in the
population to CARLsim SNNs using the PTI. CARLsim then
runs these SNNs, each with a different set of parameters, in
parallel and assigns them a fitness which is passed backed to
Evolving Objects via the PTI. Evolving Objects then selects
those individuals with the best fitness and produces the new
parent generation via recombination and mutation until a
termination condition is reached.

A. Preliminary Tuning Framework Results

As a proof of concept, an SNN with 4,104 Izhikevich
neurons, two forms of synaptic plasticity, and feedback
connections was successfully tuned to reproduce neuronal
responses found in the visual cortex. Each generation
consisted of 10 SNNs and the simulation framework took
127.2 hours of wall-clock time to complete 287 generations.
The parallelized GPU CARLsim implementation was
performed on an NVIDIA Tesla M2090 GPU card with 6 GB
of memory and 512 cores. The single-threaded CPU
implementation was performed on a system with an Intel Core
i7 2.67 GHz quad-core processor with 6 GB of memory.

Fig. 3. Comparison of speedups of the parallel GPU CARLsim
implementations over the single-threaded CPU CARLsim implementation.
The different colored bars represent the number of configurations run in
parallel for each SNN network size. The maximum speedup occurs at the
largest network size (4,104 neurons) that ran 30 SNN configurations in
parallel.

574

7S-3

To further characterize the relationship between the
speedup of the GPU implementation over the CPU
implementation, both the SNN network size and number of
SNN configurations were varied. The results are shown in
Figure 3. Three SNNs with 4104, 2312, and 1032 neurons
were run for 10 simulated minutes each. The number of
configurations each SNN ran in parallel was varied from 5 to
30. There were significant speedups over the single threaded
CPU implementation for all three network sizes when 5 or
more SNNs were executed in parallel. The largest speedup
was approximately (65x) and occurred when 30 configurations
of 4,104-neuron SNN were simulated in parallel, as shown in
Figure 3. The automated parameter tuning framework
presented here efficiently searches SNN parameter spaces
using EAs and performs fitness evaluations in parallel using
GPUs. The tuning approach presented here uses these two
techniques to build a powerful tool for researchers to design,
construct, and test complex SNNs for neuromorphic
applications.

IV. Summary and Conclusions

Neuromorphic applications have the potential to provide
insight into brain function and create low-power, fault tolerant
neuromorphic devices for use in sensory systems and
cognitive computing architectures. However, due to the
massive number of computing elements and the unstable
neuronal and synaptic dynamics inherent in these models, the
design and construction of neuromorphic applications is a
difficult task. We presented the CARLsim SNN simulation
environment, which features Izhikevich spiking neurons, three
plasticity mechanisms, and GPU acceleration for use in the
computational neuroscience and neuromorphic engineering
communities. We also presented an automated parameter
tuning framework which integrates CARLsim and an EA
library to efficiently tune SNNs in parallel using GPU
acceleration. We believe these software tools will accelerate
the design and construction of large-scale neural models and
neuromorphic applications, potentially offering practical
solutions to currently unsolved real-world problems.

Acknowledgments

This work was supported by the Defense Advanced
Research Projects Agency (DARPA) subcontract 801888-BS
and by NSF Award IIS/RI-1302125. We thank Micah Richert
for his work developing CARLsim 2.0 and Jayram
Nageswaran for his work developing CARLsim 1.0 and the
parameter tuning framework.

References

[1] J. M. Nageswaran, M. Richert, N. Dutt, and J. L.
Krichmar, “Towards reverse engineering the brain:
Modeling abstractions and simulation frameworks,” in
VLSI System on Chip Conference (VLSI-SoC), 2010
18th IEEE/IFIP, 2010, pp. 1–6.

[2] “NAE Grand challenges for engineering
-www.engineeringchallenges.org.”

[3] J. Hasler and B. Marr, “Finding a roadmap to achieve
large neuromorphic hardware systems,” Front.
Neuromorphic Eng., vol. 7, p. 118, 2013.

[4] G. Lynch, G. S. Lynch, and R. Granger, Big Brain: the
origins and future of human intelligence. Macmillan,
2008.

[5] G. M. Amdahl, “Validity of the single processor
approach to achieving large scale computing
capabilities,” in Proceedings of the April 18-20, 1967,
spring joint computer conference, 1967, pp. 483–485.

[6] C. Koch, Biophysics of computation: information
processing in single neurons. Oxford university press,
2004.

[7] E. R. Kandel, J. H. Schwartz, T. M. Jessell, and others,
Principles of neural science, vol. 4. McGraw-Hill New
York, 2000.

[8] J. Lazzaro, J. Wawrzynek, M. Mahowald, M. Sivilotti,
and D. Gillespie, “Silicon auditory processors as
computer peripherals,” Neural Netw. IEEE Trans. On,
vol. 4, no. 3, pp. 523–528, 1993.

[9] M. Mahowald, “An Analog VLSI System for
Stereoscopic Vision,” 1994.

[10] W. Gerstner and W. M. Kistler, Spiking neuron models:
Single neurons, populations, plasticity. Cambridge
university press, 2002.

[11] S.-C. Liu and T. Delbruck, “Neuromorphic sensory
systems,” Curr. Opin. Neurobiol., vol. 20, no. 3, pp.
288–295, Jun. 2010.

[12] R. Silver, K. Boahen, S. Grillner, N. Kopell, and K. L.
Olsen, “Neurotech for neuroscience: unifying concepts,
organizing principles, and emerging tools,” J. Neurosci.,
vol. 27, no. 44, pp. 11807–11819, 2007.

[13] S. K. Esser, A. Andreopoulus, R. Appuswamy, P. Datta,
D. Barch, A. Amir, J. Arthur, A. Cassidy, M. Flickner, P.
Merolla, S. Chandra, N. Basilico, S. Carpin, T.
Zimmerman, F. Zee, R. Alvarez-Icaza, J. A. Kusnitz, T.
M. Wong, W. P. Risk, E. McQuinn, T. K. Nayak, R.
Singh, and D. S. Modha, “Cognitive Computing
Systems: Algorithms and Applications for Networks of
Neurosynaptic Cores,” in The 2013 International Joint
Conference on Neural Networks (IJCNN), 2013.

[14] J. M. Cruz-Albrecht, T. Derosier, and N. Srinivasa, “A
scalable neural chip with synaptic electronics using
CMOS integrated memristors,” Nanotechnology, vol. 24,
no. 38, p. 384011, 2013.

[15] T. Pfeil, A. Grübl, S. Jeltsch, E. Müller, P. Müller, M.
Schmuker, D. Brüderle, J. Schemmel, and K. Meier,

575

7S-3

“Six networks on a universal neuromorphic computing
substrate,” Front. Neuromorphic Eng., vol. 7, p. 11,
2013.

[16] J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier,
and S. Millner, “A wafer-scale neuromorphic hardware
system for large-scale neural modeling,” in Proceedings
of 2010 IEEE International Symposium on Circuits and
Systems (ISCAS), 2010, pp. 1947–1950.

[17] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E.
Painkras, S. Temple, and A. D. Brown, “Overview of
the SpiNNaker System Architecture,” IEEE Trans.
Comput., vol. 99, no. PrePrints, 2012.

[18] S. Davies, F. Galluppi, A. D. Rast, and S. B. Furber, “A
forecast-based STDP rule suitable for neuromorphic
implementation,” Neural Netw., vol. 32, pp. 3–14, Aug.
2012.

[19] S. Moradi and G. Indiveri, “An Event-Based Neural
Network Architecture With an Asynchronous
Programmable Synaptic Memory,” IEEE Trans. Biomed.
Circuits Syst., vol. Early Access Online, 2013.

[20] D. Goodman and R. Brette, “Brian: a simulator for
spiking neural networks in Python,” Front.
Neuroinformatics, vol. 2, p. 5, 2008.

[21] M.-O. Gewaltig and M. Diesmann, “NEST (NEural
Simulation Tool),” Scholarpedia, vol. 2, no. 4, p. 1430,
2007.

[22] C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T.
DeWolf, Y. Tang, and D. Rasmussen, “A Large-Scale
Model of the Functioning Brain,” Science, vol. 338, no.
6111, pp. 1202–1205, Nov. 2012.

[23] C. M. Thibeault, “Computational Neuroscience: Theory,
Development and Applications in Modeling The Basal
Ganglia,” Ph.D., University of Nevada, Reno, United
States -- Nevada, 2012.

[24] R. Preissl, T. M. Wong, P. Datta, M. Flickner, R. Singh,
S. K. Esser, W. P. Risk, H. D. Simon, and D. S. Modha,
“Compass: a scalable simulator for an architecture for
cognitive computing,” in Proceedings of the
International Conference on High Performance
Computing, Networking, Storage and Analysis, Los
Alamitos, CA, USA, 2012, pp. 54:1–54:11.

[25] M. L. Hines and N. T. Carnevale, “The NEURON
simulation environment,” Neural Comput., vol. 9, no. 6,
pp. 1179–1209, 1997.

[26] J. M. Bower, D. Beeman, and A. M. Wylde, The book of
GENESIS: exploring realistic neural models with the
GEneral NEural SImulation System. Telos Santa Clara,
Calif, 1998.

[27] R. Brette, M. Rudolph, T. Carnevale, M. Hines, D.

Beeman, J. M. Bower, M. Diesmann, A. Morrison, P. H.
Goodman, F. C. Harris Jr, M. Zirpe, T. Natschläger, D.
Pecevski, B. Ermentrout, M. Djurfeldt, A. Lansner, O.
Rochel, T. Vieville, E. Muller, A. P. Davison, S. El
Boustani, and A. Destexhe, “Simulation of networks of
spiking neurons: a review of tools and strategies,” J.
Comput. Neurosci., vol. 23, no. 3, pp. 349–398, Dec.
2007.

[28] R. Ananthanarayanan and D. S. Modha, “Anatomy of a
cortical simulator,” in Proceedings of the 2007
ACM/IEEE conference on Supercomputing, New York,
NY, USA, 2007, pp. 3:1–3:12.

[29] R. Ananthanarayanan, S. K. Esser, H. D. Simon, and D.
S. Modha, “The cat is out of the bag: cortical
simulations with 109 neurons, 1013 synapses,” in
Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, New
York, NY, USA, 2009, pp. 63:1–63:12.

[30] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J.
Krüger, A. E. Lefohn, and T. J. Purcell, “A Survey of
General-Purpose Computation on Graphics Hardware,”
in Computer graphics forum, 2007, vol. 26, pp. 80–113.

[31] J. Baladron, D. Fasoli, and O. Faugeras, “Three
Applications of GPU Computing in Neuroscience,”
Comput. Sci. Eng., vol. 14, no. 3, pp. 40–47, Jun. 2012.

[32] D. Yudanov, M. Shaaban, R. Melton, and L. Reznik,
“GPU-based simulation of spiking neural networks with
real-time performance & high accuracy,” in Neural
Networks (IJCNN), The 2010 International Joint
Conference on, 2010, pp. 1–8.

[33] A. K. Fidjeland, E. B. Roesch, M. P. Shanahan, and W.
Luk, “NeMo: A Platform for Neural Modelling of
Spiking Neurons Using GPUs,” in Application-specific
Systems, Architectures and Processors, 2009. ASAP
2009. 20th IEEE International Conference on, 2009, pp.
137–144.

[34] V. K. Pallipuram, M. C. Smith, N. Raut, and X. Ren,
“Exploring Multi-level Parallelism for Large-Scale
Spiking Neural Networks,” 2012.

[35] T. Nowotny, “Flexible neuronal network simulation
framework using code generation for NVidia(R)
CUDATM,” BMC Neurosci., vol. 12, no. Suppl 1, p.
P239, 2011.

[36] J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau,
and A. V. Veidenbaum, “A configurable simulation
environment for the efficient simulation of large-scale
spiking neural networks on graphics processors,”
Neural Netw. Off. J. Int. Neural Netw. Soc., vol. 22, no.
5–6, pp. 791–800, Aug. 2009.

576

7S-3

[37] M. Richert, J. M. Nageswaran, N. Dutt, and J. L.
Krichmar, “An efficient simulation environment for
modeling large-scale cortical processing,” Front.
Neuroinformatics, vol. 5, no. 19, 2011.

[38] “NeoCortical Simulator -
http://www.cse.unr.edu/brain/ncs.” .

[39] R. Brette and D. F. M. Goodman, “Simulating spiking
neural networks on GPU,” Netw.-Comput. Neural Syst.,
vol. 23, no. 4, pp. 167–182, 2012.

[40] A. P. Davison, D. Bruderle, J. Eppler, J. Kremkow, E.
Muller, D. Pecevski, L. Perrinet, and P. Yger, “PyNN: A
Common Interface for Neuronal Network Simulators,”
Front. Neuroinformatics, vol. 2, Jan. 2009.

[41] E. M. Izhikevich, “Simple model of spiking neurons,”
IEEE Trans. Neural Netw., vol. 14, no. 6, pp. 1569 –
1572, Nov. 2003.

[42] P. Dayan and L. F. Abbott, Theoretical neuroscience,
vol. 31. MIT press Cambridge, MA, 2001.

[43] T. Masquelier and S. J. Thorpe, “Unsupervised learning
of visual features through spike timing dependent
plasticity,” PLoS Comput. Biol., vol. 3, no. 2, p. e31,
2007.

[44] S. Byrnes, A. N. Burkitt, D. B. Grayden, and H. Meffin,
“Learning a sparse code for temporal sequences using
STDP and sequence compression,” Neural Comput., vol.
23, no. 10, pp. 2567–2598, Oct. 2011.

[45] R. Brette, “Computing with neural synchrony,” PLoS
Comput. Biol., vol. 8, no. 6, p. e1002561, Jun. 2012.

[46] L. F. Abbott and S. B. Nelson, “Synaptic plasticity:
taming the beast,” Nat. Neurosci., vol. 3, no. 11, pp.
1178–1183, Nov. 2000.

[47] G. Turrigiano, “Homeostatic synaptic plasticity: local
and global mechanisms for stabilizing neuronal
function,” Cold Spring Harb. Perspect. Biol., vol. 4, no.
1, Jan. 2012.

[48] K. D. Carlson, M. Richert, N. Dutt, and J. L. Krichmar,
“Biologically Plausible Models of Homeostasis and
STDP: Stability and Learning in Spiking Neural
Networks,” in The 2013 International Joint Conference
on Neural Networks (IJCNN), Dallas, Texas, 2013.

[49] “NVIDIA’s Next Generation CUDA Compute
Architecture: Fermi,” NVIDIA Corp., white paper,
2009.

[50] M. C. Avery, D. A. Nitz, and J. L. Krichmar,
“Simulation of cholinergic and noradrenergic
modulation of behavior in uncertain environments,”
Front. Comput. Neurosci., vol. 6, p. 5, 2012.

[51] C. J. Honey, R. Kötter, M. Breakspear, and O. Sporns,
“Network structure of cerebral cortex shapes functional

connectivity on multiple time scales,” Proc. Natl. Acad.
Sci., vol. 104, no. 24, pp. 10240–10245, Jun. 2007.

[52] M. Beyeler, N. D. Dutt, and J. L. Krichmar,
“Categorization and decision-making in a
neurobiologically plausible spiking network using a
STDP-like learning rule,” Neural Netw. Off. J. Int.
Neural Netw. Soc., vol. 48C, pp. 109–124, Aug. 2013.

[53] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document
recognition,” Proc. IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.

[54] J. M. Brader, W. Senn, and S. Fusi, “Learning
Real-World Stimuli in a Neural Network with
Spike-Driven Synaptic Dynamics,” Neural Comput., vol.
19, no. 11, pp. 2881–2912, Sep. 2007.

[55] P. L. Smith and R. Ratcliff, “Psychology and
neurobiology of simple decisions,” Trends Neurosci.,
vol. 27, no. 3, pp. 161–168, Mar. 2004.

[56] D. Querlioz, O. Bichler, and C. Gamrat, “Simulation of
a memristor-based spiking neural network immune to
device variations,” in The 2011 International Joint
Conference on Neural Networks (IJCNN), 2011, pp.
1775–1781.

[57] E. M. Izhikevich and G. M. Edelman, “Large-scale
model of mammalian thalamocortical systems,” Proc.
Natl. Acad. Sci. U. S. A., vol. 105, no. 9, pp. 3593–3598,
Mar. 2008.

[58] M. Keijzer, J. J. Merelo, G. Romero, and M. Schoenauer,
“Evolving objects: a general purpose evolutionary
computation library,” in Artficial Evolution, vol. 2310, P.
Collet, C. Fonlupt, J. K. Hao, E. Lutton, and M.
Schoenauer, Eds. Berlin: Springer-Verlag Berlin, 2002,
pp. 231–242.

577

7S-3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

