
GPGPU Accelerated Simulation and Parameter Tuning for Neuromorphic 
Applications 

Kristofor D. Carlson1, Michael Beyeler2, Nikil Dutt2, Jeffrey L. Krichmar1,2

Abstract - Neuromorphic engineering takes inspiration from 
biology to design brain-like systems that are extremely low-power, 
fault-tolerant, and capable of adaptation to complex 
environments. The design of these artificial nervous systems 
involves both the development of neuromorphic hardware 
devices and the development neuromorphic simulation tools. In 
this paper, we describe a simulation environment that can be 
used to design, construct, and run spiking neural networks 
(SNNs) quickly and efficiently using graphics processing units 
(GPUs).  We then explain how the design of the simulation 
environment utilizes the parallel processing power of GPUs to 
simulate large-scale SNNs and describe recent modeling 
experiments performed using the simulator.  Finally, we present 
an automated parameter tuning framework that utilizes the 
simulation environment and evolutionary algorithms to tune 
SNNs.  We believe the simulation environment and associated 
parameter tuning framework presented here can accelerate the 
development of neuromorphic software and hardware 
applications by making the design, construction, and tuning of 
SNNs an easier task. 

I Introduction 

Neuromorphic systems are gaining importance as 
traditional scaling in CMOS technology begins to reach its 
physical limits. These systems aim to mimic the biological 
structure of the nervous system; potentially both for solving 
engineering applications as well as understanding neural 
computation, which is one of the grand challenges of the 21st 
century [1], [2]. Biological information processing systems 
operate at performance levels set by fundamental physical 
limits, and do so under severe constraints of size, weight, and 
energy resources. As a result of these constraints, biological 
nervous systems are extremely energy-efficient (8–9 orders of 
magnitude better than digital computation [3]). In addition, 
brain networks employ learning at all levels of computation, 
are capable of adapting to complex environments, and possess 
remarkable fault tolerance by maintaining excellent 
performance even after the loss of many neurons. Thus 
investigating the computational mechanisms and engineering 
strategies that give rise to these system properties may not 
only further our understanding of the brain, but may also lead 
to novel algorithmic and architectural approaches that can 
overcome the limits of Moore’s law. 

A key aspect to the computing power of brain circuits is 
their massively parallel architecture. Brain systems are 

organized into highly interconnected modules that operate in 
concert with one another to carry out intrinsically parallel 
algorithms, rather than parallelizations of inherently serial 
procedures. For example, a certain computation in the brain 
might be carried out by millions of low-precision processing 
elements (neurons) in less than 100 serial steps [4]. On the 
other hand, parallelization of serial code typically leads to 
very limited speedup due to Amdahl’s law [5]. The resulting 
energy efficiency of brain architectures is remarkable: For 
example, although there are approximately 20 billion neurons 
and 240 trillion synapses in the human cortex alone, the power 
consumption of the human brain is estimated to be no more 
than 13–15 watts [6]. 

Another key aspect to the computing power of brain circuits 
is the use of an event-driven communication protocol. 
Generally speaking, neurons employ relatively infrequent 
(~10–100 Hz) brief electrical pulses (called action potentials 
or spikes) as their main communication means. These pulses 
travel along a wire (axon) to the connection site (synapse) of 
another neuron, where they cause a small change in the 
electric potential of the receiving neuron. Neurons integrate 
these small changes and spike when their voltage reaches a 
threshold value [7]. Neuromorphic systems have successfully 
modeled this type of communication using address-event 
representation (AER), which is a communication protocol that 
represents each spike by its location (that is, the neuron that 
fired; explicitly encoded as an address) and the time at which 
it occurred (implicitly encoded) ([8], [9]). Using AER, it is 
possible to emulate massive connectivity in an efficient way. 

A powerful framework in the development of neuromorphic 
applications that captures both of these key aspects is the use 
of spiking neural network (SNN) models in combination with 
highly parallel, off-the-shelf graphics processing units (GPUs). 
SNN models provide detailed neuronal dynamics [10] while 
utilizing the digital AER protocol for efficient communication, 
which makes them amenable to hardware application 
development.  Furthermore, recent developments in 
high-performance GPUs enable the simulation of large-scale 
SNNs in real-time on affordable, programmable platforms. In 
order for the field of neuromorphic engineering to produce 
results and applications of practical value, such large-scale 
networks will be necessary. However, the tuning and 
stabilization of these large-scale dynamical systems is 
challenging, due to the large number of state variables and 
open parameters. Incorrect values in the parameter landscape 
lead to unstable, chaotic or undesired network operations (e.g., 
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epileptic oscillations). Thus there is a need for both hardware 
and software tools that can aid the modeler in the otherwise 
extremely tedious and possibly error-prone process of tuning 
complex, large-scale dynamical systems. 

In this paper we introduce a software environment for the 
efficient simulation of SNN models on general-purpose 
graphics processing units (GPGPUs) as well as an automated 
parameter tuning framework that uses evolutionary algorithms 
(EAs) to tune SNN models in parallel. The remainder of the 
paper is organized as follows. In Section II, we briefly discuss 
recent hardware and software efforts aimed at building 
neuromorphic applications. Section III then introduces a 
GPU-accelerated SNN simulator called CARLsim, and the 
accompanying parameter tuning interface (PTI) for use in the 
neuromorphic engineering community. 

We believe that the simulation environment and parameter 
tuning framework presented here will allow neuromorphic 
engineers to more easily construct larger, more complex SNNs, 
leading to the development of more powerful neuromorphic 
applications that may offer practical solutions to currently 
unsolved real-world problems. 

II. Neuromorphic Hardware Devices and Software Tools 

A. Neuromorphic Hardware Devices 

Neuromorphic engineers have made significant progress 
developing neuromorphic devices to emulate both sensory 
systems and cognitive architectures. We briefly review recent 
advances in the development of neuromorphic cognitive 
architectures from research teams in the USA and Europe. We 
refer the reader to the following review on neuromorphic 
sensory systems [11] and focus our discussion on 
neuromorphic devices that emulate cognitive architectures. 

The construction of neuromorphic chips and devices is an 
active area of research, and has spawned major research 
initiatives. The Neurogrid board at Stanford University is a 
neuromorphic device that emulates ion channels with analog 
circuit components but handles synaptic addressing with 
digital circuit components. It is capable of simulating 1 
million neurons and 6 billion synaptic connections in real-time 
using only 5 watts and is an impressive example of the speed 
and power that can be achieved with neuromorphic devices 
[12].  Both IBM and HRL Laboratories, LLC (HRL) 
participated in the DARPA-funded systems of neuromorphic 
adaptive plastic scalable electronics (SyNAPSE) project, 
where the goal was to build highly scalable neuromorphic 
devices. The Cognitive Computing Group at IBM recently 
unveiled its True North architecture, which features a 
hierarchical design of neurosynaptic cores, each with 256 
neurons and approximately 256k synapses [13]. These 
neurosynaptic cores are built from silicon neurons that can 
perform many realistic biophysical behaviors but lack synaptic 
plasticity (and thus lack learning capabilities). HRL also 
released a general purpose neural chip which has 576 neurons 
and 70k time multiplexed virtual synapses. The neural chip 
implements simple spiking neural models and plasticity in the 
form of spike-timing-dependent plasticity (STDP) [14], a 
learning paradigm which modulates the weight of synapses 
according to their degree of causality.  

European researchers have also made advances in the 
design of neuromorphic chips due to funding from a number 
of initiatives that include two projects called fast analog 
computing with emergent transient states (FACETS) and 
brain-inspired multiscale computation in neuromorphic hybrid 
systems (BrainScaleS). The FACETS/BrainScaleS projects 
have produced two neuromorphic hardware devices to date. 
The first neuromorphic device is a single chip system called 
Spikey, which simulates 384 spiking neurons and 256 
synapses per neuron [15]. The second neuromorphic device is 
more ambitious and is referred to as a wafer-scale 
neuromorphic hardware system. This system is constructed 
from 352 separate analog network cores (ANCs), in which 
each contains 512 spiking neurons and 16k synapses per 
neuron. The 352 ANCs can fit onto a single 20 cm wafer with 
a total of 180k neurons and 4·107 synapses [16].  

Neuromorphic architectures can be either digital, analog, or 
a hybrid. The SpiNNaker (a contraction of spiking neural 
network architecture) project uses a digital design that has 
resulted from a unique collaboration between UK universities 
and industry partners. The ultimate goal of the SpiNNaker 
project is to build a computing engine that consists of 
1,036,800 ARM9 processor cores capable of simulating 1 
billion neurons in real-time. The SpiNNaker computing engine 
consists of an array of nodes, each containing 18 ARM9 cores, 
which communicate via packets using a custom interconnect 
fabric. Each ARM9 core can model 100 neurons and 
approximately 1M synapses or 10,000 inputs per neuron [17]. 
The projected power dissipation for the full million-core 
machine is 90 kW. SpiNNaker can implement spiking and 
non-spiking neurons models and synaptic plasticity with a 
novel form of STDP [18]. On the other hand, research teams 
from the University and ETH Zurich have recently developed 
a hybrid analog/digital VLSI implementation of an SNN with 
programmable synaptic weights. The chip has 32 silicon 
neuron circuits, 128 virtual synaptic weights per neuron, and 
STDP learning. Because the synaptic weights can be changed 
on-line and saved offline, the chip can be used to explore 
spike-based learning rules [19]. 

B. Neuromorphic Software Tools: SNN Simulators

Many research groups have developed SNN simulators to 
study brain function [20]–[22] or develop neuromorphic 
applications [23], [24]; we briefly review SNN simulators 
produced from these research efforts. Both NEURON [25] and 
GENESIS [26] began as simulation environments originally 
designed for detailed neuronal modeling at the ionic channel 
level, but both have the capability to run network models. 
These simulation environments have a large user-base, 
extensively-tested code, and parallelized versions that can be 
executed using MPI on super-computing clusters. However, 
the computation cost for solving all the equations governing 
channel activity and propagation of signals makes these 
models difficult to use in large network applications. Other 
simulation environments like CSIM/PCSIM, NCS, XPPAUT, 
SPLIT, Brian, NEST, and Mvaspike were built specifically to 
run SNNs and have been optimized with SNNs in mind; see 
[27] for more information. Of particular note are Brian [20] 
and NEST [21], which have Python interfaces, multiple 
spiking neuron model implementations, and distributed 
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parallel implementations. Brian is flexible and easily 
extensible, partially because it is written in Python.  However, 
there is a slight performance penalty, as it is about 25% slower 
than similar C implementations. NEST has an optional Python 
front-end but avoids the potential decrease in performance by 
using a kernel written in C++.  Although NEST has an MPI 
implementation, it does not currently have a parallel GPU 
implementation. Because NEST is a larger, more mature 
software project, the implementation of new features like 
accelerated GPU implementations may take more time. 

There are SNN environments implemented for specific 
hardware and simulation environments. For example, IBM’s 
C2 SNN simulator is massively parallelized and designed to 
run on powerful Blue Gene/P supercomputing clusters [28]. 
The C2 simulator ran a large-scale SNN simulation that 
consisted of 1.6 billion neurons and 8.87 trillion synapses on a 
Blue Gene/P with 147,456 central processing units (CPUs) 
and 144 TB of memory, which is one of the largest SNN 
simulations to date [29]. NENGO is an SNN simulator that 
uses a control theory oriented approach called the neural 
engineering framework (NEF) to specify the synaptic weights 
required to achieve a desired computation and has been used 
to build a large-scale brain model with impressive 
functionality [22]. There are also SNN simulators designed to 
mimic neuromorphic hardware computing architectures, such 
as HRLsim [23] developed at HRL and Compass [24] 
developed at IBM. However, these classes of simulators are 
currently not available for public use.  

C. GPU-Enabled SNN Simulators 

Many SNN modelers are turning to GPGPUs for 
developing application software. Modern GPUs are a low-cost 
alternative to traditional supercomputing clusters for 
applications in scientific computing [30] and theoretical 
neuroscience [31]. A number of groups have developed 
parallel implementations of SNN simulators that run on GPUs 
[23], [32]–[38] . For a more comprehensive review see [39]. 

Whereas some of these software tools are still under heavy 
development, there are a number of fully functional SNN 
simulators that feature a whole range of detailed neuronal and 
synaptic dynamics (such as spike-rate adaptation, plasticity, 
homeostasis, and specific ion channels), routines that enable 
the construction of arbitrary connection topologies, and an 
optimized GPU implementation. Among them are 
HRLsim [23], NeMo [33], and CARLsim [36], [37]. Although 
HRLsim is the only simulator to offer parallelization across a 
GPU cluster using MPI and CUDA, it is currently unavailable 
for public use. NeMo is a C++ library that simulates networks 
of Izhikevich neurons on multiple CUDA-enabled GPUs, with 
a frontend in C/C++, Matlab, and Python. NeMo also features 
synaptic plasticity in the form of STDP and axonal delays. 
CARLsim has specifications that are similar to NeMo, in that 
it simulates networks of Izhikevich neurons on a single 
CUDA-enabled GPU. Multi-GPU support is planned in the 
future. Additionally, CARLsim offers optimal computational 
efficiency by utilizing a reduced AER protocol, different kinds 
of synaptic plasticity, a method to stabilize synaptic dynamics, 
the simulation of specific ion channels, and the option to 
either run the network on a CPU or a GPU. Moreover, 
CARLsim has been used in a variety of computational studies 

to simulate detailed large-scale models of cortical processing. 
The next section will discuss these features in more detail. 

III. CARLsim: An SNN Simulator 

The Cognitive Anteater Robotics Laboratory Simulator 
(CARLsim) was designed to make large-scale SNN modeling 
readily available and is intended for use by the computational 
neuroscience and neuromorphic engineering communities [36], 
[37]. CARLsim is written in C/C++ and has both a 
single-threaded CPU implementation and parallelized GPU 
implementation. To maximize accessibility, CARLsim runs on 
both generic x86 CPU architectures and the widely used 
NVIDIA CUDA GPU architecture under both the Windows 
and Linux operating systems. We provide a user-friendly 
programming interface similar to that of PyNN [40] and allow 
the user to specify a number of preprogrammed connection 
topologies along with a mechanism to allow for user-defined 
connection topologies. CARLsim is publicly available at 
http://www.socsci.uci.edu/~jkrichma/CARLsim/. 

A. CARLsim Features 

CARLsim uses the Izhikevich spiking neuron model [41], 
which is well-suited for large-scale neuromorphic applications, 
because it is computationally efficient yet allows for complex 
neuronal dynamics that closely mimic biological neurons. 
CARLsim includes expressions to model specific ion channels 
(such as AMPA, GABA, and NMDA), which play an 
important role in neuronal excitability and plasticity. 

CARLsim employs a reduced AER protocol for efficient 
encoding of neuronal communication, which helps reduce 
both memory usage and memory bandwidth limitations. 
Recall that AER stores a spike event by representing it as an 
address-time pair. If many neurons have the same time step, 
however, this approach leads to high memory overhead due to 
duplicate storing of time for each address. We overcome this 
limitation by removing the duplicate time entry for each 
address, and instead store the cumulative count of fired 
neurons during each time step [37]. Additionally, SNN state 
variables are compactly stored in memory and ordered in a 
manner that minimizes the state update process. 

CARLsim includes descriptions of synaptic plasticity at 
different time scales. Short-term plasticity (STP) occurs over 
timescales of milliseconds to minutes, whereas long-term 
plasticity (LTP) occurs over time steps of minutes or 
longer [42]. STP changes the synaptic weight over time in a 
way that reflects the history of presynaptic activity. It can be 
used to model phenomena such as synaptic facilitation or 
synaptic depression (fatigue). LTP can be induced through 
STDP, which has been shown to play a crucial role in 
unsupervised learning [43], forming sparse representations of 
temporal sequences [44], and computing with neural 
synchrony [45]. CARLsim offers routines to implement both 
STP and LTP.  

Learning rules in SNNs can often lead to unstable, runaway 
synaptic dynamics and completely disrupt learning and neural 
function [46]. To cope with this challenge, CARLsim 
implements a biologically plausible weight update rule that 
promotes stable learning and homeostasis that mimics 
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experimental observations [47]. For more information on the 
details of the STDP and homeostasis update rules please see 
reference [48]. 

B. CARLsim Parallel GPU Implementation 

The GPU-accelerated NVIDIA CUDA implementation of 
CARLsim is an important aspect of the simulation framework 
and allows for a significant speed up over the single-threaded 
CPU implementation, as we will see later. The basic structure 
of the CUDA GPU architecture is shown in Figure 1. Each 
GPU consists of multiple streaming multiprocessors (SMs) 
and a global memory accessible by all SMs.  Each SM is 
built from multiple floating-point scalar processors, a 
cache/shared memory, and one or more special functions units 
(SFU), which execute transcendental functions such as sine, 
cosine, and square root operations.  CUDA groups parallel 
threads into ‘warps’, where the number of threads per warp 
varies depending on the specific CUDA architecture. Each SM 
also has at least one warp scheduler that is built to maximize 
the number of threads running concurrently. The warp 
scheduler monitors threads within a warp and automatically 
switches to another warp when a thread makes a 
time-consuming memory access. 

Fig. 1. Simplified diagram of NVIDIA CUDA GPU architecture. 

CARLsim simulations are primarily run on the M2090 
Tesla GPU that utilizes the CUDA Fermi architecture.  The 
Tesla M2090 has 6 GB of global memory, 512 cores (each 
operating at 1.30 GHz) grouped into 16 SMs, and a single 
precision compute power of 1331.2 GFLOPS.  Each SM is 
composed of 32 SPs, 16 load/store units, 4 special function 
units, and two warp schedulers [49]. 

The GPU implementation of CARLsim utilizes a number of 
approaches to maximize the degree of parallelization, 
minimize memory usage, reduce the effects of memory 
bandwidth limitations, and avoid thread/warp divergence.  
There are number of ways to assign SNN calculations to the 
GPU threads for parallelization.  N-parallelism describes 
organizing the computations assigned to GPU threads by 
neuron while S-parallelism organizes the computations 
assigned to GPU threads by synapse.  CARLsim uses both of 
these approaches by using N-parallelism for neuron state 

variable updates and S-parallelism for synapse variable 
updates. Thread/warp divergence occurs when a thread 
executes a different operation than other threads in a warp 
causing the other threads to wait for its completion. CARLsim 
prevents thread/warp divergence by buffering data until all 
threads are ready to execute the same operation. More 
information about the CARLsim GPU implementation can be 
found in reference [36]. 

C. CARLsim Applications 

CARLsim has been used to construct large-scale 
simulations of cognitive processes on the order of 10k–100k 
neurons and millions of synapses, with examples that include 
models of visual processing [37], neuromodulation [50], and 
neural plasticity [48]. Although their efficient implementation 
is challenging due to the associated computational cost, 
investigating large-scale models of cortical networks in more 
biological detail is widely regarded as crucial in order to 
understand brain function [51]. 

One of our most recent works [52] concerned the ability of 
a large-scale spiking neural network model to rapidly 
categorize highly correlated patterns of neural activity such as 
handwritten digits from the MNIST database [53]. Although 
many studies have focused on the design and optimization of 
neural networks to solve visual recognition tasks, most of 
them either lack neurobiologically plausible learning rules or 
decision-making processes. In contrast, our model 
demonstrated how a low-level memory encoding mechanism 
based on synaptic plasticity could be integrated with a 
higher-level decision-making paradigm to perform the visual 
classification task in real-time. 

The model consisted of Izhikevich neurons and 
conductance-based synapses for realistic approximation of 
neuronal dynamics, an STDP-like synaptic learning rule for 
memory encoding (previously described in [54]), and an 
accumulator model for memory retrieval and categorization 
[55]. Grayscale input images were fed through a feed-forward 
network consisting of visual cortical areas V1 and V2 
(selective to one of four spatial orientations, in 45°   
increments), which then projected to a layer of downstream 
classifier neurons through plastic synapses that implement the 
STDP-like learning rule mentioned above. Decision neurons 
were equally divided into ten pools, each of which would 
develop selectivity to one class of input stimuli from the 
MNIST dataset (i.e., one of the ten digits) as a result of 
training. Population responses of these classifier neurons were 
then integrated over time to make a perceptual decision about 
the presented stimulus. 

The model constitutes an important proof of concept; that is,  
(i) to show how considerably hard problems such as visual 
pattern recognition and perceptual decision-making can be 
solved by general-purpose neurobiologically inspired cortical 
models solely relying on local learning rules that operate on 
the abstraction level of a synapse, and (ii) to do it in real-time. 
The network achieved 92% correct classifications on MNIST 
in 100 rounds of random sub-sampling, which provides a 
conservative performance metric, yet is comparable to other 
SNN approaches ([54], [56]). Additionally, the model 
correctly predicted both qualitative and quantitative properties 
of reaction time distributions reported in psychophysical 
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experiments. The full network, which comprised 71,026 
neurons and approximately 133 million synapses, ran in 
real-time on a single NVIDIA Tesla M2090, which 
demonstrates the efficiency of the CARLsim implementation. 
Moreover, because of the scalability of the approach and its 
neurobiological fidelity, the model can be extended to an 
efficient neuromorphic implementation that supports more 
generalized object recognition and decision-making 
architectures found in the brain. 

III. CARLsim Parameter Tuning Interface 

The size and complexity of the SNN models used by the 
neuromorphic engineering community has been steadily 
increasing in an effort to capture more biological realism [57] 
and underlying functionality [22]. This complexity has taken 
the form of more detailed neuron models, the inclusion of 
plasticity rules, and connection topologies that include 
recurrent connections. The integration of these features into 
SNN models comes at a cost: it produces SNNs with less 
stable neuronal and synaptic dynamics. Both the size and 
instability of this new generation of SNNs have made the task 
of constructing and tuning them a difficult one.  To meet this 
challenge, we have developed an automated parameter tuning 
framework that uses evolutionary algorithms (EAs) and 
CARLsim to construct and tune SNNs in parallel with GPUs. 

Fig. 2. Diagram illustrating the overall approach of the parameter tuning 
framework using evolutionary algorithms. The dotted gray box indicates 
processes that are done in parallel using the GPU implementation of 
CARLsim. The rest of the processes are done sequentially using Evolving 
Objects. 

The process of tuning an SNN with the automated 
parameter tuning framework is detailed in Figure 2: (1) a 
population of SNNs, each with a different set of parameters, is 
created. (2) Each SNN is evaluated by a fitness function and 
assigned a fitness score based on how well the behavior of the 
SNN matches a target behavior. (3) The highest scoring SNNs 
are selected to produce the next generation of offspring via 
recombination and mutation while the remaining individuals 
are discarded. (4) This evolutionary process continues until 
the desired fitness is reached or another termination condition 

has been met. Using this approach, an SNN can be tuned to 
produce suitable firing patterns, stable learning dynamics, and 
behaviors that closely match experimental data. 

The automated parameter tuning framework has three 
components: the CARLsim SNN simulator, an open source 
EA library called Evolving Objects [58], and a program to 
pass information between CARLsim and Evolving Objects we 
call the parameter tuning interface (PTI). Evolving Objects 
handles all EA computations shown with light blue boxes in 
Fig. 2.  CARLsim executes the most computationally 
expensive portion of the tuning algorithm, evaluating the 
fitness of each SNN, in parallel indicated by the light brown 
box. During each new EA generation, Evolving Objects 
assigns parameters from each offspring individual in the 
population to CARLsim SNNs using the PTI. CARLsim then 
runs these SNNs, each with a different set of parameters, in 
parallel and assigns them a fitness which is passed backed to 
Evolving Objects via the PTI. Evolving Objects then selects 
those individuals with the best fitness and produces the new 
parent generation via recombination and mutation until a 
termination condition is reached. 

A. Preliminary Tuning Framework Results 

As a proof of concept, an SNN with 4,104 Izhikevich 
neurons, two forms of synaptic plasticity, and feedback 
connections was successfully tuned to reproduce neuronal 
responses found in the visual cortex. Each generation 
consisted of 10 SNNs and the simulation framework took 
127.2 hours of wall-clock time to complete 287 generations. 
The parallelized GPU CARLsim implementation was 
performed on an NVIDIA Tesla M2090 GPU card with 6 GB 
of memory and 512 cores. The single-threaded CPU 
implementation was performed on a system with an Intel Core 
i7 2.67 GHz quad-core processor with 6 GB of memory.  

Fig. 3. Comparison of speedups of the parallel GPU CARLsim 
implementations over the single-threaded CPU CARLsim implementation. 
The different colored bars represent the number of configurations run in 
parallel for each SNN network size. The maximum speedup occurs at the 
largest network size (4,104 neurons) that ran 30 SNN configurations in 
parallel. 
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To further characterize the relationship between the 
speedup of the GPU implementation over the CPU 
implementation, both the SNN network size and number of 
SNN configurations were varied. The results are shown in 
Figure 3. Three SNNs with 4104, 2312, and 1032 neurons 
were run for 10 simulated minutes each. The number of 
configurations each SNN ran in parallel was varied from 5 to 
30. There were significant speedups over the single threaded 
CPU implementation for all three network sizes when 5 or 
more SNNs were executed in parallel. The largest speedup 
was approximately (65x) and occurred when 30 configurations 
of 4,104-neuron SNN were simulated in parallel, as shown in 
Figure 3. The automated parameter tuning framework 
presented here efficiently searches SNN parameter spaces 
using EAs and performs fitness evaluations in parallel using 
GPUs. The tuning approach presented here uses these two 
techniques to build a powerful tool for researchers to design, 
construct, and test complex SNNs for neuromorphic 
applications. 

IV. Summary and Conclusions 

Neuromorphic applications have the potential to provide 
insight into brain function and create low-power, fault tolerant 
neuromorphic devices for use in sensory systems and 
cognitive computing architectures. However, due to the 
massive number of computing elements and the unstable 
neuronal and synaptic dynamics inherent in these models, the 
design and construction of neuromorphic applications is a 
difficult task. We presented the CARLsim SNN simulation 
environment, which features Izhikevich spiking neurons, three 
plasticity mechanisms, and GPU acceleration for use in the 
computational neuroscience and neuromorphic engineering 
communities. We also presented an automated parameter 
tuning framework which integrates CARLsim and an EA 
library to efficiently tune SNNs in parallel using GPU 
acceleration. We believe these software tools will accelerate 
the design and construction of large-scale neural models and 
neuromorphic applications, potentially offering practical 
solutions to currently unsolved real-world problems. 
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