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Recent findings suggest that acetylcholine mediates uncertainty-seeking behaviors through its pro-
jection to dopamine neurons — another neuromodulatory system known for its major role in
reinforcement learning and decision-making. In this paper, we propose a leaky-integrate-and-fire
model of this mechanism. It implements a softmax-like selection with an uncertainty bonus by a
cholinergic drive to dopaminergic neurons, which in turn influence synaptic currents of downstream
neurons. The model is able to reproduce experimental data in two decision-making tasks. It also
predicts that: (i) in the absence of cholinergic input, dopaminergic activity would not correlate
with uncertainty, and that (ii) the adaptive advantage brought by the implemented uncertainty-
seeking mechanism is most useful when sources of reward are not highly uncertain. Moreover, this
modeling work allows us to propose novel experiments which might shed new light on the role
of acetylcholine in both random and directed exploration. Overall, this study contributes to a more
comprehensive understanding of the role of the cholinergic system and, in particular, its involvement
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in decision-making.
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1. Introduction

Animals constantly face uncertainty due to noisy and incom-
plete information about the environment. From the information-
processing perspective, uncertainty is typically considered a
burden, an issue that has to be resolved for the animal to behave
correctly (Cohen, McClure, & Yu, 2007; Rao, 2010). In the frame-
work of reinforcement learning, for example, to allow optimal
exploitation and outcome maximization, agents must explore
the environment and gather information about action-outcome
contingencies (Rao, 2010; Sutton & Barto, 1998).

The neural mechanisms driving the decision to perform ac-
tions with uncertain outcomes are still poorly understood. In
contrast, the processes by which individuals learn to perform
successful actions have been extensively studied. Notably, the
dopaminergic system is thought to play a key role in these pro-
cesses, both in the learning related and in the motivation related
aspects (Berke, 2018; Berridge, 2012; Schultz, 2002). Moreover,
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studies have reported dopaminergic activities that are correlated
with the uncertainty of reward (Fiorillo, Tobler, & Schultz, 2003;
Linnet et al., 2012).

Another neuromodulatory system which has been largely im-
plicated in the processing of novelty and uncertainty is the
cholinergic system. For instance, Yu and Dayan (2005) suggested
that acetylcholine (ACh) suppresses top-down, expectation-driven
information relative to bottom-up, sensory-induced signals in
situations of expected uncertainty, i.e. when expectations are
known to be unreliable. Additionally, Hasselmo (1999, 2006)
proposed that the level of ACh in the hippocampus determines
whether it is encoding new information or consolidating old
memories. The cholinergic system also interacts with the
dopaminergic system. In particular, there are cholinergic projec-
tions onto neurons in the ventral tegmental area (VTA), one of
the two major sources of dopamine (DA) in the brain (Avery &
Krichmar, 2017; Scatton, Simon, Le Moal, & Bischoff, 1980). In a
recent study, Naudé et al. (2016) provided evidence that these
projections might mediate the motivation to select uncertain
actions.

The softmax rule, where the probability of choosing an action
is a function of its estimated value, is generally thought to be
a good model of human (Daw, O'doherty, Dayan, Seymour, &
Dolan, 2006) and animal (Cinotti et al., 2019) decision-making.
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But Naudé et al. (2016) showed that the decisions made by wild-
type (WT) mice exhibited an uncertainty-seeking bias and fol-
lowed a softmax function which included an uncertainty bonus.
In contrast, mice lacking the nicotinic acetylcholine receptors
on the dopaminergic neurons in VTA showed less uncertainty-
seeking behaviors and their decisions rather followed the stan-
dard softmax rule.

In neural networks, decision-making processes are generally
modeled using competition mechanisms (Carpenter & Grossberg,
1988; Rumelhart & Zipser, 1985). Such mechanisms can consti-
tute a neural implementation of the softmax rule. In particu-
lar, Krichmar (2008) proposed a model where neurotransmitters
act upon different synaptic currents to modulate the network’s
sensitivity to differences in input values, much like the temper-
ature parameter in the softmax model (Sutton & Barto, 1998). In
this paper, we propose a new version of this model using leaky-
integrate-and-fire neurons and an additional uncertainty bonus.
We use this model, in comparison with three alternative models,
to verify a set of hypotheses about how cholinergic projections to
dopaminergic neurons in VTA mediate uncertainty-seeking. We
then perform additional simulations to assess the interest of such
a mechanism for animals foraging in volatile environments. These
simulations suggest that ACh affects behavior by translating un-
certainty into a source of motivation thus driving exploratory
behaviors.

2. Background
2.1. Dopamine

Dopamine (DA) is involved in decision-making through its role
in reward processing and motivation (Berridge, 2012; Schultz,
2002). The largest group of dopaminergic neurons is found in the
ventral tegmental area (VTA) (Scatton et al., 1980). It projects to
the basal ganglia (BG), in particular to the striatum, but also to the
frontal cortex. The substantia nigra is also an important source of
dopamine in the BG.

There is strong evidence of the role of dopamine in the learn-
ing of the value of actions, stimuli and states of the environment.
In this context, Schultz and colleagues hypothesized that the ac-
tivity of DA neurons encoded a reward prediction error (Schultz,
2002). Indeed, phasic dopaminergic activities show strong cor-
relations with an error in the prediction of conditioned stimuli
after Pavlovian learning. Other theoretical accounts suggested
that dopamine might signal the value of actions (Berke, 2018;
Howe, Tierney, Sandberg, Phillips, & Graybiel, 2013). Berridge and
colleagues claimed that DA is essential for “incentive salience”
and “wanting”, i.e. for motivation (Berridge, 2012; Berridge &
Kringelbach, 2008). For instance, DA deprived rats were unable to
generate the motivation arousal necessary for ingestive behavior
and could starve to death although they were able to move and
eat (Ungerstedt, 1971). However, dopamine has also been sug-
gested to signify novelty, which may be related to an uncertainty
signal (Kakade & Dayan, 2002; Redgrave & Gurney, 2006). In
summary, the dopaminergic system seems to implement a series
of mechanisms that reinforce and favor stimuli and actions that
have been rewarding in the past, or that may be of interest in the
future.

2.2. Acetylcholine

Acetylcholine (ACh) originates from various structures in the
brain: the laterodorsal tegmental (LDT) and the pedunculopon-
tine tegmental (PPT) mesopontine nuclei projecting to the VTA
and other nuclei in the brainstem, basal forebrain and basal
ganglia (Mena-Segovia, 2016); the medial septal nucleus mainly

targets the hippocampus; and the nucleus basalis in the basal
forebrain mainly acts on the neocortex (Baxter & Chiba, 1999). In
addition, striatal interneurons provide an internal source of ACh
in the BG.

ACh has been largely implicated in the processing of novelty
and uncertainty. Significant research highlighted this role in the
septo-hippocampal cholinergic system for instance. In this case,
novelty detection increases the level of septal ACh: novel patterns
elicit little recall which reduces hippocampal inhibition of the
septum and allows ACh neurons to discharge (Meeter, Murre,
& Talamini, 2004). In addition, Hasselmo (1999, 2006) proposed
that high and low levels of ACh in the hippocampus - during
active waking on the one hand, and quiet waking and slow-
wave sleep on the other hand - respectively allow encoding
new information and facilitate memory consolidation. Similarly,
higher activity of the cholinergic neurons in the tegmentum and
nucleus basalis has been shown to be associated with cortical
activation during waking and paradoxical sleep (Jones, 2005) - a
sleep phase physiologically similar to waking states. Thus, various
computational models of the cholinergic system have focused
on its role in learning and memory (Carrere & Alexandre, 2015;
Grossberg, 2017; Hasselmo, 2006; Pitti & Kuniyoshi, 2011).

A complementary theory was developed by Yu and Dayan
(2005) suggesting that acetylcholine suppresses top-down,
expectation-driven information relative to bottom-up, sensory-
induced signals in situations of expected uncertainty, i.e. when
expectations are known to be unreliable. To illustrate their the-
ory, the authors modeled the so-called Posner task. Posner (1980)
proposed this paradigm to study attentional processes. Typically,
a cue is presented to the participants, followed by a target
stimulus. Posner (1980) showed that individuals responded more
rapidly and accurately on correctly cued trials (i.e. cue on the
same side as the target) than on incorrectly cued trials (i.e. cue on
opposite side). The difference in response time between valid and
invalid trials was termed the validity effect (VE). The model pro-
posed by Yu and Dayan (2005) reproduced the results obtained
by Phillips, McAlonan, Robb, and Brown (2000) which showed
in rat experiments that the VE varied inversely with the level
of ACh which was manipulated pharmacologically. Additionally,
ACh has been hypothesized to set the threshold for noradren-
ergic signaling of unexpected uncertainty (Yu & Dayan, 2005)
which calls for more exploration by counterbalancing DA-driven
exploitation (Cohen et al., 2007).

2.3. Model hypotheses

Based on the experimental evidence, we designed our model
to study the influence of cholinergic and dopaminergic neuro-
modulation on the decision-making process. To do so, the above
mentioned literature allowed us to derive the following set of
hypotheses:

e (H1) dopamine encodes the estimated value (Berke, 2018;
Berridge, 2012),

o (H2) dopamine modulates the decision-making network such as
to implement a softmax-like rule (Cinotti et al., 2019; Daw et al.,
2006; Krichmar, 2008),

e (H3) acetylcholine encodes the estimated uncertainty (Yu &
Dayan, 2005),

e (H4) acetylcholine increases dopamine firing (Naudé et al.,
2018, 2016),

e (H5) acetylcholine introduces an uncertainty bonus in the
softmax-like decision rule (Naudé et al.,, 2016).

To account for the difference between wild type (WT) mice
and mice in which nicotinic acetylcholine receptors in dopamine
neurons were removed (KO), as reported by Naudé et al. (2016),
we defined two variants of the neuromodulation component: the
WT and KO variants.
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Fig. 1. Bandit task and core model (A) Task setup used by Naudé et al. (2016).
(B) Expected reward and uncertainty as a function of reward probability in this
task. (C) Neural network model of decision-making (see text for description).

3. Methods
3.1. Bandit task

The experiment reported by Naudé et al. (2016) was a
3-armed bandit task adapted for mice. The setup was an open-
field in which three target locations were associated with a
certain probability of rewards (Fig. 1A), which was delivered
through intracranial self-stimulation (ICSS). Mice could not re-
ceive two consecutive ICSS at the same location. Thus, each time
they were at a target location, they had to choose the next target
among the two remaining alternatives. As in a classical bandit
task, this is referred to as a gamble. Since the outcome was
binary (i.e. reward delivered or not), the expected uncertainty
was represented by the variance p(1—p) of Bernoulli distributions
(Fig. 1B).

Naudé et al. (2016) used this task to study the influence of
uncertainty on decision-making, and more specifically on the
dopaminergic activity under the influence of cholinergic pro-
jections. Notably, they showed that while wild type (WT) mice
exhibited uncertainty-seeking behavior in their task, such behav-
iors were suppressed in mice with deleted nicotinic acetylcholine
receptors in the dopaminergic neurons in VTA (hereafter KO
mice).

3.2. Neural network model of uncertainty seeking

We modeled the decision-making process involved in this task
using an artificial neural network (Fig. 1C). This network had
three channels, each corresponding to one of the targets. Similar
to Krichmar (2008), the competition took place in a decision layer
where neurons had lateral excitatory and inhibitory connections

(i.e. connections with neurons pertaining to the same layer) in ad-
dition to extrinsic input from upstream layers. Indeed, Krichmar
(2008) showed that this allows switching between exploration
and exploitation modes more efficiently than with other models.
Neuromodulatory signals driven by the cholinergic and dopamin-
ergic representative neurons modulated this competition. When
the dopaminergic activity was low, the low signal-to-noise ratio
in decision neurons leaves room for exploration. However, strong
dopaminergic activity amplifies the efficacy of extrinsic input
connections and those of inhibitory interconnections in order to
achieve exploitative decisions. This neuromodulation thus imple-
ments a neuronal equivalent to the softmax decision policy based
on the value of the target. Moreover, the cholinergic activity
increased the firing of DA neurons and introduced an uncertainty
bias in the softmax-like neuromodulation of the competition (as
we shall explain in Section 3.2.1). As a first step, the value and
uncertainty signals are manually provided to the model (see
Section 3.2.1). Then, we showed how these can be learned to
allow the system to adapt to changes in the environment (see
Section 3.5).

All neurons were leaky-integrate-and-fire (LIF) neurons. The
change in the membrane potential V is represented as follows:

av(t)
T.——
dt

where t is the time constant, V.. is the resting potential, R the
resistance of the membrane, and [;;, the input current:

Iin(t) = Iext(t) + IO(t) (2)
with Iy "‘N(pLo,O’o) (3)

where I, and Iy are respectively extrinsic and background in-
put currents. The latter was modeled as a Gaussian distribution
N(o, 00) and accounted for spontaneous activities, as well as
possible other extrinsic inputs which were not specifically mod-
eled here. When the membrane potential was higher than a
threshold Vi, the neuron fired, i.e. the potential rose to Ve
then decreased to V. and a current I,,, was transmitted to
post-synaptic neurons:

= _V(t) + Vrest + Iin(t)R (1)

V(t) = Vspike
If V(t)>Vy then V(it+1) = Vs (4)
Iou[(t) =1

A single trial of the experiment consisted of a decision made
between two target locations. For simplicity, neurons of the target
identification layer (in blue in Fig. 1A) were tuned such that they
fire every two iterations (a spike was followed by a refractory
period) with random initialization (i.e. whether the first spike
occurred at the first or second iteration). Only the two target
neurons corresponding to the current options were activated in
each trial.

Similarly to the model used by Krichmar (2008), the extrinsic
input current of the decision neurons 1% (in green in Fig. 1A) was
defined as follows:

19¢(x, t) = w x (14 n(x, ). (x, t) (5)

+ Zw X Ifﬁf(y, t —dt)
Y#X

= > w x (14 n(x, 0).J%(y, £ — dr)
Y#EX

where x € {A, B, C} corresponds to the gambling options, w
is a synaptic weight factor common to all connections and 7
is a neuromodulation factor which specifically targets upstream
and inhibitory connections to change the signal-to-noise ratio as
proposed by Krichmar (2008). We will define the n term below.
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As for selection neurons (in orange in Fig. 1A), the extrinsic
input current was simply I;;’ﬁ(x, t) = Igjf(x, t). This layer imple-
mented a winner-takes-all readout of the decision. The first spike

corresponded to the network’s decision.

3.2.1. WT variant

The ability to learn the reward probability and maximize
the outcome is thought to be mediated by the dopaminergic
system. Thus, in our model, DA activity was a function of the
targets value v(x) representing the reward probability. In addition
to the motivation to maximize reward by choosing the target
with highest reward probability, Naudé et al. (2016) observed an
uncertainty-driven motivation in WT mice. They showed that this
uncertainty-seeking behavior was dependent upon the choliner-
gic projections to DA neurons, which also modulate the dopamin-
ergic activity. Since the expected uncertainty is thought to be
encoded by ACh neurons, in our model, ACh activity was deter-
mined by the reward uncertainty u(x) which we represented as
the variance of a Bernoulli distribution v(x)(1 — v(x)) (Fig. 1B).
We defined I, = erm) u(x) as an input current generated by
the overall expected uncertainty in the current trial, and I, =
er(o) v(x) as an input current generated by the overall expected
rewards in the current trial. Thus, the activity in neuromodulation
network was determined by the following equations:

I20() = I, (6)
1246) = 1, + I8/ (¢) 7)
n(x, t) = ID0(0)(v(x) + u(x)) (8)

Introducing the output current of the ACh neuron as an input
to the DA neuron is consistent with the increase of dopaminergic
activity observed in the presence cholinergic receptors (Graupner,
Maex, & Gutkin, 2013; Naudé et al., 2016). Altering connection
weights differently for different targets was justified by existing
evidence of the sensitivity to local value (Daw et al., 2006) and
uncertainty (Naudé et al., 2016) of specific options/actions.

In the bandit task, v(x) and u(x) of each target were manually
fixed for simplicity. But in the foraging task, these variables were
estimated by the model (see Section 3.5).

3.2.2. KO variant

Naudé et al. (2016) showed that uncertainty-seeking was re-
moved in KO mice. These mice’s decisions were rather exploita-
tive, similarly to a classical softmax policy. Thus, in this variant of
the model, the cholinergic effect on decision was eliminated and
the dopaminergic activity only depended on reward probabilities:
Ioe(t) =1, (9)

N(x, £) = Iy (O)(x) (10)

It is worth noting that Egs. (8) and (10) introduce only a
small difference in the amplitude of the n signal between the
WT and the KO variants. The ratio was 1:1.25 because v varied
between 0 and 1 while u varied between 0 and 0.25 (see Fig. 1B).
For simplicity, we chose not to compensate for this difference
(e.g. using a gain factor of 1.25). The only effect would be to
increase the propensity to make exploitative decisions with the
KO variant; thus reinforcing rather than contradicting our point.

3.3. Alternative models

The proposed model assumed hypotheses H1, H2, H3, H4 and
H5 listed above. To test the limits of this model, we implemented
three alternative models - all including a WT and a KO variant -
selectively introducing changes in the neuromodulation circuit to
challenge these assumptions.

Alternative model 1. Acetylcholine has been reported to increase
the firing rate of dopamine neurons (Naudé et al., 2018, 2016). In
this model, we tested whether this feature alone could account
for the difference between WT and KO animals (i.e. independently
from uncertainty). Thus, ACh was set to fire at a similar rate
as previously using a constant input. But, uncertainty was not
processed by ACh or DA. Hence, there was no difference in the
neuromodulation term between the WT and KO variants, both
using the form in Eq. (10). The only difference between the WT
and KO variants was whether ACh activated DA. This alternative
model challenged H3 and H5.

Alternative model 2. Dopamine has also been hypothesized to
signal uncertainty (Fiorillo et al.,, 2003; Linnet et al,, 2012). In
this model, we tested whether the difference between WT and
KO animal could be captured if DA neurons alone encoded uncer-
tainty along with value. As in Alternative model 1, the ACh neuron
also has a constant input independent from reward uncertainty.
However, uncertainty is processed by the DA neuron. Hence,
there was no difference in the neuromodulation term between
the WT and KO variants, both used the form in Eq. (8). The only
difference between the WT and KO variants is again whether ACh
activates DA:

{(1., +1)/2 + Il (D),
(I, +1.)/2,
Dividing by 2 compensated for the difference in amplitude with

the other models. This alternative model challenges H1, H2, H3
and H5.

if WT

PA(t) = 11
exc(0) if KO an

Alternative model 3. The softmax rule is generally thought to be
a good model of decision-making in vivo (Cinotti et al., 2019;
Daw et al., 2006; Krichmar, 2008). In this alternative model, we
tested whether the uncertainty bonus was superfluous. In other
words, whether the difference between WT and KO animals can
be observed solely with the increase of dopamine firing driven
by uncertainty-dependent cholinergic activity. Thus, ACh projec-
tions only increase DA firing rate but do not add an uncertainty
bonus. Hence, there is again no difference in the neuromodulation
term between the WT and KO variants, both used the form
in Eq. (10). The only difference between the WT and KO variants
was whether ACh activates DA. This model challenges H5; it
differs from Alternative model 1 in that ACh firing is not driven
by a constant input but rather by the estimated uncertainty of
reward.

3.4. Foraging task

Naudé et al. (2016) did an additional experiment with a dy-
namic setup simulating a volatile environment. More specifically,
in each session, two of the targets were rewarding 100% of
time while the remaining one was not. The non-rewarding target
changed from one session to another (Fig. 4A), which required
that animals detect the change of rule and learn the new reward
probabilities.

3.5. Learning task statistics

In Egs. (6)-(10), the expected reward probability v and un-
certainty u for each target were manually fixed. But to model
the dynamic foraging task, these statistics about the environment
outcomes could no longer be hardwired and had to be learned by
trial-and-error.

To learn the expected reward probabilities, we used the
Rescorla-Wagner rule (Rescorla & Wagner, 1972):

dv(x, t)
dt

= ad(x, t) (12)
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Table 1

Hyperparameter values (when set) and ranges (when optimized). The hyperpa-
rameters 7, Vpike, Vin, Vrest, 1o and oo were chosen manually. Rh and RY were
set to fit experimentally observed firing rates of DA neurons. R, R¢ and w
were optimized through a grid search.

Hyperparameter Value

T 20

Vspike 5

Vin 1

Vres[ -2

o 0.15

) 0.05

Ruch 60

Rda 5.5

Hyperparameter Range Step

Rdec [10, 60] 1

R [5, 16] 1

w [0, 1] 0.05
with 8(x, t) =r(t) — v(x, t) (13)

where r is the reward function, equal to 1 when a reward is
obtained, and to O otherwise.

Additionally, the reward uncertainty could be estimated as
follows (Balasubramani, Chakravarthy, Ravindran, & Moustafa,
2014; Naudé et al., 2016):
du(x, t)

dt

The hyperparameter o was set to 0.1.

= a(8%(x, t) — u(x, t)) (14)

3.6. Model fitting

The hyperparameters t, Vspike, Viny Viest» o and og were com-
mon to all neurons and were set manually so as to determine the
dynamics of the network (see values in Table 1). The values of
R and R%, i.e. the membrane resistance in ACh and DA neurons
respectively, were accordingly set to match the mean firing rate
reported by Naudé et al. (2018). For ACh neurons, there was less
data available and the reported frequencies are highly variable
(for example, Mena-Segovia, Sims, Magill, and Bolam (2008) re-
port firing rates from 1 Hz to 30 Hz in the pedunculopontine
nucleus). Therefore, we did not attempt to fit a specific spike rate.
However, we found the firing rate obtained by our model to be
within an acceptable range (see Fig. 2C).

The values of R%‘, R*¢! and w, i.e. respectively the membrane
resistance in the decision and the selection layers and the base-
line synaptic weight in the lateral connection within the decision
layer, were optimized using a grid search (see ranges listed in
Table 1) to fit the proportion of exploitative choices observed
by Naudé et al. (2016) in WT and KO mice. The models’ results
were averaged over 30 runs comprising 300 trials each and the
fitness score S was calculated as follows:

S = 100— (Z| XWT (g) — X (g))
geg
+ Y IXER(8) — XiulE) ) /6 (15)
geg

where X is the average proportion of exploitative choices and G
is the set of gambles. Thus, the score computed the similarity
between the results of a model and the data by subtracting the
average distance - over the three gambles with both WT and KO
variants - from a theoretical upper bound of 100.
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Fig. 2. The proposed model reproduces mice behavior (A) Schematic illustration
of the task setup and the three possible gambles. (B) Example of spike trains
generated by the model. (C) Mean firing rate produced by the WT and KO
versions of the model. (D) Percentage of exploitative transitions (i.e. choosing
the option with the highest reward probability) in each gamble. WT and KO
mice (Left) had distinct profiles, which the WT and KO variants (Right) were
able to reproduce. (E) Percentage of targets selection as a function of their
reward probability. The model (Right) also reproduced the repartition of choices
exhibited by mice (Left). (F) Dwell time (i.e. time to decision) was also similar
between targets with our model (Right), like in mice (Left). Mice results were
plotted with data from Naudé et al. (2016). N = 30 runs were used to plot the
model’s results.
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Fig. 3. Alternative models fail to fully reproduce mice behavior (A) Schematic illustration of the differences in the neuromodulatory component between the core
model and the three alternative models. (B) Percentage of exploitative transitions. (C) Percentage of targets selection as a function of their reward probability across
gambles. In (B) and (C), the alternative models did not fit the profiles observed in WT and KO mice. N = 30 runs were used to plot the results of each model.

4. Results
4.1. Bandit task

In this task reported by Naudé et al. (2016), animals had to
make binary choices (called gambles) among the remaining two
out of three target locations that were set to deliver rewards
with probabilities P = 25%, 50% and 100% respectively (Fig. 2A).
We modeled this decision-making process with a neural network
(Fig. 1C). The hyperparameters determining the dynamics of the
model were first manually set to match the mean firing rate
reported by Naudé et al. (2018) in DA neurons in vivo (Fig. 2B and
C). The remaining hyperparameters of the model were optimized
to fit the proportion of exploitative choices observed by Naudé
et al. (2016) in WT and KO mice (Fig. 2D). As a result, the model
reproduced experimental data (Fig. 2D). Notably, the two groups
had distinct profiles, which corresponded to an uncertainty bonus
and a standard softmax decision rule, respectively.

Interestingly, the WT and KO variants also reproduced the
repartition of choices among targets (i.e. overall percentage of
times each target was selected across trials) that was observed
by Naudé et al. (2016) (Fig. 2E). As with the softmax rule, KO
mice and the corresponding model selected targets proportion-
ally to their probability of reward whereas WT mice and the
corresponding model exhibited a bias in favor of uncertainty in

the case of reward probability 50%. Additionally, like in mice,
there was no difference between the targets in terms of dwell
time (i.e. time to make a decision, calculated in the model as the
time of the first spike in the trial). In other words, there was no
effect of the reward probability on the decision time (H = 4.70,
p = 0.09, Kruskal-Wallis test; Fig. 2F). Importantly, these two
criteria (repartition of choices and dwell time) were not explicitly
optimized by the model fitting procedure.

To further validate our model, we tested three alternative
models that introduced two types of changes in the neuromod-
ulatory component: (i) uncertainty could be either encoded by
dopamine directly (alt2) or not taken into account at all (alt1),
(ii) if uncertainty was not encoded by DA, the softmax rule was
used for both WT and KO variants (alt1 and alt3), (iii) the absence
of ACh receptors on DA only affected the latter’s firing, but not
the neuromodulatory effect (all alternative models; summarized
in Fig. 3A, refer to ‘Methods’ for more detailed explanation).
Upon optimization, none of the alternative models were able to
fully fit the behavioral data. Indeed, the fitness scores (calculated
using Eq. (15)) for these alternative models were significantly
lower than our model’s (model versus alt1, t(29) = 3.38,p =
0.0013, model versus alt2, t(29) = 5.63,p = 10~° model
versus alt3, t(29) = 3.35,p = 0.0014, t-test; Table 2). Fitness
scores quantified the ability of the WT and KO variants of a
model to fit the proportion of exploitative transitions made by
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Table 2

Model fitting results. Optimized parameters and fitness scores. All models have
the same number of parameters. The proposed model has the highest score. R4
and R are the membrane resistance in the decision layer and the selection
layer respectively. Stars indicate the results of a t-test comparison between the
model’s score to each of the alternative models’ score: ** p < 0.01, *** p <

0.001.
Rdec Ree! w Score
Model 12 12 0.7 96.19
alt 1 59 5 1 94.95**
alt 2 43 7 0.6 94,72
alt 3 10 13 0.8 95.06**

the corresponding group of mice. Lower scores can be explained
by the fact that WT variants of the alternative models did not
follow the same linear increase from gamble 1 to 3 in terms of
exploitative transitions (Fig. 3B). Also, the slope of the repartition
is higher for alt1 than with the proposed model and the data for
example (see Fig. 3C). Moreover, qualitatively, the differences in
exploitative transitions and probability of selection of each target
between the WT and KO variants were smaller than with our
model (Fig. 3B and C).

4.2. Foraging task

We also tested our model in a foraging task where only two
of the targets were rewarding. The non-rewarding target changed
from one session to another (Fig. 4A). In such a volatile environ-
ment, animals must detect the changes in reward probabilities
and adapt their decisions accordingly. We initially tested a setup
in which rewarding targets had 100% probability as in the original
experiments (Naudé et al., 2016). In line with the experimental
results, we found that the KO variant had a lower foraging efficacy
(i.e. global reward rate) than the WT variant (WT versus KO:
t(29) = —3.92, p = 0.0002, t-test; Fig. 4B). We split the sessions
in half to analyze the model’s behavior more closely (Fig. 4C).
The WT and KO variants had similar failure rates (i.e. proportion
of unrewarded choices) in the beginning of sessions (WT versus
KO, U = 4249.0,p = 0.566, Mann-Whitney test), and both
significantly reduced their failure rates at the end of session
(beginning versus end of session for WT, T = 854.5, p = 6.1071,
for KO, T = 854.5, p = 5.10~°, Wilcoxon test). However, the rate
of failure was significantly lower at the end of session for the WT
variant (WT versus KO, U = 5695.5, p = 2.10~%, Mann-Whitney
test), suggesting that the KO variant adapted more slowly to
condition changes.

To assess how robust this effect was on foraging efficacy, we
further tested similar setups where reward probability in the
two rewarding targets was lower (but still equal) resulting in
higher uncertainty: p = 90%, 75% and 50% probability of reward
corresponding to mid-low, mid-high and high uncertainty. The
model successfully estimated the expected reward probability v
and uncertainty u (Fig. 4D; see Eqs. (12)-(14)). While the foraging
efficacy was still higher for the WT variant with reward proba-
bility 90% (WT versus KO: t(29) = —4.64,p = 2.107>, t-test;
Fig. 4E), the difference was no longer significant with a probability
of 75% (WT versus KO: t(29) = —1.89, p = 0.06, t-test; Fig. 4E)
and 50% (WT versus KO: t(29) = —1.73, p = 0.08, t-test; Fig. 4E).

Overall, these results demonstrated the importance of the
uncertainty-seeking behaviors mediated by the cholinergic pro-
jections to VTA dopaminergic neurons. But they also suggest that
the scope of such an adaptively advantageous mechanism may be
limited to situations where the uncertainty is relatively low. This
is because despite the uncertainty-driven exploration, it is diffi-
cult to find the most rewarding target when the associated prob-
ability is low. This highlights the possible effect of environmental
conditions on the studied decision-making mechanism.
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Fig. 4. Model's results and predictions in the foraging task. (A) Schematic
illustration of the dynamic setup consisting of three sessions. Full circles indicate
the two rewarding targets and empty circles indicate the non-rewarding target.
(B) Higher foraging efficacy with the WT variant than KO variant. Efficacy is
defined as the success rate, i.e. the average proportion of rewarded choices. (C)
Failure rate (i.e. proportion of unrewarded choices) in the beginning and in the
end of sessions shows a decrease for both WT and KO variants but is lower
for WT. (D) Reward probability v and uncertainty u were correctly estimated
by the model throughout sessions. Dashed lines indicate the correct values. (E)
The model predicts that the difference in foraging efficacy between WT and KO
mice vanishes in situations where the reward uncertainty is high. *** p < 0.001,
n.s. not significant at p > 0.05. N = 30 runs.

5. Discussion

Prominent theories about the role of acetylcholine hold that
it helps control the balance between the storage and update of
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memory (Hasselmo, 1999) and between top-down expectation-
driven and bottom-up stimulus-driven attention (Avery, Nitz,
Chiba, & Krichmar, 2012; Cohen et al., 2007; Yu & Dayan, 2005).
Accordingly, most computational models of this neuromodula-
tor at the functional level focus on memory and attention re-
lated functions (Avery et al., 2012; Carrere & Alexandre, 2015;
Grossberg, 2017; Hasselmo, 2006; Pitti & Kuniyoshi, 2011; Yu &
Dayan, 2005). In this paper, we targeted another aspect of the
cholinergic action which was highlighted in recent experimental
studies (Naudé et al., 2018, 2016). These studies suggest that,
through their projections to dopaminergic neurons in the ventral
tegmental area, mesopontine cholinergic neurons promote ex-
ploratory uncertainty-seeking behaviors. In other words, that the
neuromodulator participates in the process by which individuals
decide to perform actions associated with uncertain outcomes.

We modeled this process using a decision-making neural net-
work under the influence of cholinergic and dopaminergic mod-
ulation based on hypotheses drawn from the literature. We used
representative LIF neurons, which allowed us to tie neuromodula-
tion to realistic spike rates and to introduce intra- and inter-trial
variability. Yet, keeping the model relatively minimal allowed
us to systematically test the plausibility of the non-trivial idea
which is central in this study: that the exploration bonus is
indirectly applied through the cholinergic effect on dopaminergic
activity. We evaluated the model in two decision-making tasks -
bandit task and foraging task - and successfully reproduced the
behavioral results reported by Naudé et al. (2016).

The model fit the experimental data from the bandit task
better than three alternative models, which differed in the ex-
pression of the neuromodulation component. Qualitatively, these
alternative models exhibit a smaller difference between the WT
and the KO variants (see Fig. 3B and C) than reported in the data
from Naudé et al. (2016). Both variants (WT and KO) exhibit a
softmax-like behavior with a marked linear relation between the
reward probability of a target and the probability of choosing it
(see Fig. 3C). These qualitative differences are captured and sum-
marized by the significantly higher fitness scores of the proposed
model in comparison with the alternative ones (see Table 2).

Overall, our results support the notion that the cholinergic
influence on dopamine mediates uncertainty-seeking behaviors.
Moreover, the model makes testable predictions: (i) the corre-
lation of dopaminergic activity with reward uncertainty as re-
ported by Fiorillo et al. (2003) should not be observed in the
absence of the cholinergic influence on DA neurons; (ii) the adap-
tive advantage brought by the implemented uncertainty-seeking
mechanism is most useful when sources of reward are not highly
uncertain.

Our model of cholinergic modulations differs from those ex-
isting in the literature in that it studies acetylcholine’s interplay
with another neuromodulator (namely dopamine) and the subse-
quent effect on decision-making circuit when uncertainty varies
locally (i.e. for each action). Indeed, to our knowledge, previous
studies rarely addressed the case where different options have
different levels of uncertainty. For example, in the works by Avery
et al. (2012) and Yu and Dayan (2005), uncertainty is com-
puted globally for each trial. Additionally, these studies modeled
the relation between acetylcholine and norepinephrine, but not
dopamine. On the other hand, Zannone, Brzosko, Paulsen, and
Clopath (2018) addressed the interplay between acetylcholine
and dopamine. However, the role of acetylcholine in their model
is to perform a systematic exploration, suppressing unrewarded
choices to accelerate the discovery of the reward. Their study
did not specifically investigate the effect of uncertainty. Addi-
tionally, only one source of reward was provided during each
trial in their simulations. Therefore, our model provides a novel
and complementary account with respect to previous studies by

investigating uncertainty-seeking behavior driven by the cholin-
ergic and dopaminergic effect on decisions between competing
options associated with different levels of uncertainty.

How animals generate variable decisions and manage the
exploitation-exploration dilemma (i.e. choosing between pre-
dictably rewarding actions and other uncertain and suboptimal
options) is still poorly understood. It has been suggested that
humans rely on two types of exploratory behaviors (Wilson,
Geana, White, Ludvig, & Cohen, 2014): directed exploration in
which uncertain actions are purposely chosen for the sake of
information-gathering; and random exploration where actions
are selected regardless of their predicted outcome. Our model
formally describes how these two exploratory processes can be
implemented: the former via the uncertainty bonus driven by the
cholinergic influence on dopamine and the latter through a global
decrease of dopaminergic modulation of decisions which results
in lower selectivity and higher sensitivity to noise. This model
could thus be tested against other experimental data to further
assess the validity of this formal description.

Moreover, some models suggest that the striatal cholinergic
interneurons modulate the level of noise during action selection
in the basal ganglia (Stocco, 2012). This implies a key role of
acetylcholine, not only in directed exploration as we show in
this paper, but also in random exploration. We believe that new
experimental studies are required which specifically investigate
this possible dual implication of acetylcholine in exploratory pro-
cesses. For instance, using tasks that leverage both random and
directed exploration, lentiviral expression could selectively target
cholinergic receptors in the striatum and in VTA to evaluate
their respective involvement in these behaviors as well as pos-
sible interdependences. Furthermore, it is still unclear whether
the cholinergic receptors in VTA dopamine neurons are required
for learning the uncertainty bonus or solely for operating the
bonus during action selection. These two alternatives could be
differentiated experimentally via genetic-chemical manipulations
rendering the cholinergic receptors light-controllable (Durand-de
Cuttoli et al., 2018). If the receptors are switched off during the
initial sessions in which animals learn the statistics of reward
delivery, and then switched on again, we should be able to ob-
serve whether the uncertainty seeking behavior appears rapidly
or requires additional learning.

This work is a step toward a more comprehensive under-
standing of the implication of the dopaminergic and cholinergic
systems in decision-making. It highlights their role in motivation
and the execution of decisions. More effort is yet needed to
further disentangle these neural mechanisms. For instance, more
realistic neuron models could offer a complementary insight into
the learning process (Deperrois, Moiseeva, & Gutkin, 2019). It has
also been suggested that to be able to account for both learning
and motivation related processes, it is important to distinguish
dopamine cell firing from local dopamine release on dopamine
terminals (Berke, 2018). Thus, a more detailed model of the
decision-making network might be necessary to fully capture the
role and functioning of the neuromodulators in these processes.
By showing how ACh might drive uncertainty seeking behavior
through its influence on DA, the present model is a first step in
that direction.
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