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Abstract— Attentional mechanisms allow the brain to enhance 

the representation and transmission of certain signals at the 

expense of others.  The basal forebrain has been shown to play an 

important role in attention through its diverse set of interactions 

with sensory and associational areas.  A recent empirical study 

indicates that the nucleus basalis, a subset of neurons located in 

the basal forebrain, is important for improving sensory 

processing by increasing reliability and decreasing redundancy in 

the cortex and thalamus [1, 2].  We developed a spiking neural 

network model that simulates the nucleus basalis’ interaction 

with the thalamus and visual cortex.  In this model, we simulated 

two modes of action by which it is thought that the nucleus 

basalis may be influencing sensory processing: (1) inhibitory 

projections from the nucleus basalis to the thalamic reticular 

nucleus, which disinhibit the lateral geniculate nucleus (LGN) 

and gate information into the cortex, and (2) cholinergic 

excitation of inhibitory neurons in the visual cortex.  We showed 

that the inhibition of the thalamic reticular nucleus GABAergic 

neurons leads to an increase in the reliability of spikes in the 

LGN and cortex.  We observed that a decrease in the burst to 

tonic firing ratio in the LGN, coupled with the cholinergic system 

increasing inhibition in the visual cortex caused decorrelation in 

the cortex.  These findings will help us better understand the 

mechanisms behind the control of attention by the basal 

forebrain and shed light on how the orchestrated action of the 

basal forebrain on multiple target areas can improve information 

processing in the brain.  
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microcircuit; neuromodulation; spiking neurons; vision;  

I.  INTRODUCTION 

Neuromodulators, such as acetylcholine, signal 
environmental events, especially under noisy uncertain 
conditions, and increase attention such that the organism can 
respond quickly and accurately to these important stimuli [3]. 
Specifically, attention describes the brain’s ability to 
selectively sharpen or filter sensory information moment by 
moment. Recent experimental studies have shown that 
attention causes changes in the variability of neural responses 
within and between trials [4-6].  The nucleus basalis (NB), a 
subset of neurons located in the basal forebrain, has been 
shown to play a key role in attention and arousal through its 
diverse set of interactions with cortical and subcortical 
structures [7-9].  It has recently been shown that stimulation of 
the NB increases neuronal reliability and decreases coding 

redundancy in the brain by mediating changes in neuronal 
variability [1].  In their experiment, Goard and Dan recorded 
spiking activity from all layers of an anaesthetized rat’s visual 
cortex while showing it a video of natural scenes and 
periodically stimulating the rat’s NB.  They found that 
stimulation of the NB increased the between-trial correlation 
(reliability) and decreased the between-cell correlation 
(decorrelation) of neurons in visual cortex, which leads to an 
overall improvement in information processing in the brain [2].   

Previous studies have shown that muscarinic receptors 
(mAChRs) suppress intracortical activity and nicotinic 
receptors (nAChRs) enhance thalamocortical efficacy [10, 11]. 
This led Goard and Dan to hypothesize that (1) mAChRs were 
responsible for the decorrelation of neuronal signals and (2) 
nAChRs were responsible for the increase in reliability.  To test 
(1), they applied a muscarinic antagonist (atropine) to visual 
cortical neurons while stimulating the NB and saw that the 
decorrelation decreased, leading them to conclude that 
muscarinic receptors mediated the active decorrelation of 
neurons in the cortex.  The mechanism behind this increased 
decorrelation is not completely understood, however, several 
studies investigating cortical desynchronization and muscarinic 
receptor distributions help to provide a clearer answer.  
Muscarinic receptors, for example, have been shown to affect 
neuronal excitability, synaptic transmission and neuronal 
plasticity [12] and tend to be localized to inhibitory neurons in 
visual cortex [13].  It has also been demonstrated that the 
excitation of inhibitory neurons in a recurrent network may be 
crucial for decorrelating a population of neurons [14].   

Hypothesis (2), however, was refuted when they still 
measured an increase in response reliability when applying a 
nicotinic antagonist to the visual cortical neurons.  Knowing 
that the NB modulation of responses must be happening before 
information gets to the cortex, they then recorded from lateral 
geniculate nucleus (LGN) neurons and discovered that these 
neurons also had an increase in reliability with NB stimulation.  
Since the NB does not project directly to the LGN, it was 
suggested that the NB’s influence on LGN was indirect and 
that the increase in reliability occurs as a result of the NB 
disinhibiting the LGN through its GABAergic projections to 
the thalamic reticular nucleus [1, 2].  The thalamic reticular 
nucleus (TRN) is composed of inhibitory neurons and receives 
topographically organized collaterals from both the cortex and 
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the thalamus [15-17].  In turn, the TRN projects to first and 
higher order thalamic nuclei, including the LGN.  The LGN 
relays all visual sensory information to the cortex and is 
typically referred to as the gateway to the cortex.  Due to its 
inhibitory projections to LGN, the TRN has been referred to as 
the “guarding to the gateway” [18, 19].  The inhibitory 
projections from the basal forebrain could then regulate the 
flow of information to the cortex by inhibiting TRN neurons. 

We constructed a spiking neuron model of the NB, TRN, 
LGN, and a V1 cortical column to replicate Goard and Dan’s 
experimental results (Figure 1). Similar to their findings, we 
were able to show an increase in between-trial correlations in 
LGN and cortex and a decrease in between-cell correlation in 
the cortex.  Furthermore, we demonstrated that GABAergic 
projections from the NB to the TRN increased reliability in 
both the LGN and the cortex, which in turn led to a decrease in 
the burst to tonic ratio, as was seen in Goard and Dan (2009).  
We also demonstrated that cholinergic mediated excitation of 
inhibitory neurons led to a decrease in correlations between 
neurons in the cortex.  These findings will help us better 
understand the mechanisms behind the control of attention by 
the basal forebrain and shed light on how the orchestrated 
action of the basal forebrain on multiple target areas 
simultaneously can improve information processing in the 
brain.               

II. METHODS 

A. Stimuli presentation and preprocessing 

Our experiment had a total of 60 trials.  In each trial, we 
presented a 12 second long natural scene video from the van 
Hateren movie database to the network 
(http://biology.ucsd.edu/labs/reinagel/pam/NaturalMovie.html).  
Experiments consisted of 6 blocks of 10 trials.  In each block of 
10 trials, 5 trials were performed without NB stimulation 
(control) followed by 5 trials with NB stimulation.  In between 
each trial and block, 1 and 4 seconds, respectively, of random, 
Poissonian spikes were injected into the network at a rate of 2 
Hz to allow network activity to settle.  The total simulation 
time of the experiment was 13.4 seconds.  This took 
approximately 180 minutes to run on an Intel Core i7 CPU 920 
@ 2.67 GHz with 6GB of RAM.  

The video contained 300 frames and each frame was 
presented to the model for 40 ms of simulation time.  Each 
image was originally 256x256 pixels.  Because our cortical 
model is a single column, however, the input size was reduced 
to 20x20 pixels in order to approximate the visual space that 
would drive neurons in a single receptive field.   

It has been shown that retinal neurons remove linear 
correlations by “whitening” images before they reach the 
cortex [20]. To simulate this, all the images were whitened and 
normalized before being presented to the network.  Since we 
did not want to model the development of orientation 
selectivity in V1, we assumed that the simulated V1 column 
was selective to vertical edges. Therefore, the images were 
convolved with a vertical Gaussian filter after whitening.  
Inhibitory and excitatory Poisson spike generators converted 
the images into spike trains in the input layer.   

B. Network model 

To develop our model, we used a publicly available 
simulator, which has been shown to simulate large-scale 
spiking neural networks efficiently and flexibly [21].  The 
model contained a subcortical area composed of an input, TRN, 
LGN, and NB and a four-layered cortical microcircuit (Figure 
1).  The cortical microcircuit architecture was adapted from 
[22].  All connections that occur between layers in the 
microcircuit are shown in Figure 1.  Within each layer, there 
are excitatory-excitatory, excitatory-inhibitory, inhibitory-
excitatory, and inhibitory-inhibitory connections (not shown).  
Connection probabilities in our cortical model were the same as 
was used in [22] and can be found in Table 2 of their paper.  
All subcortical connection probabilities were set to 0.1 except 
LGN excitatory to L4 excitatory (p=0.15), LGN excitatory to 
L4 inhibitory (p=0.0619), and TRN inhibitory to LGN 
excitatory (p=0.3).  The number of neurons in each area is 
shown in Table 1 below.  The model contained a total of 
21,903 neurons and approximately 21 million synapses. 

 

 

Figure 1: Neural Architecture.  The neural network contained an input layer 
(Retina), 3 subcortical layers (lateral geniculate nucleus (LGN), thalamic 

reticular nucleus (TRN), nucleus basalis (NB)), and a 4-layer microcircuit 
(L2/3, L4, L5, L6).  Inhibitory, excitatory and cholinergic projections are 

colored red, green, and yellow, respectively.  The retinal group, which is fed 

input from the video of natural scenes, drives activity in the LGN, which in 
turn, drives activity in the TRN and L4 of visual cortex.  During NB-

stimulated cases, cholinergic and inhibitory neurons in the NB are excited 

(indicated by yellow star).  Excitation of NB inhibitory neurons results in an 
inhibition of TRN neurons, disinhibiting the LGN.  Excitation of NB 

cholinergic neurons leads to an increase in the excitability of inhibitory 

neurons in L2/3 and L5 of the cortex.  All connections between layers in the 
cortical microcircuit are shown.  Excitatory-excitatory, excitatory-inhibitory, 

inhibitory-excitatory, and inhibitory-inhibitory connections within a layer, 

however, are not shown for clarity.   
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TABLE I.       NUMBER OF NEURONS PER AREA   

Neural Area Excitatory neurons Inhibitory neurons 

Input 400 400 

   

Subcortical   

LGN 220 - 

TRN - 220 

NB - 220 

Cortical   

Layer 2/3 5170 1458 

Layer 4 5478 1369 

Layer 5 1212 266 

Layer 6 3698 737 

 

Simple and extended versions of the Izhikevich model were 
used to govern the dynamics of the spiking neurons in this 
simulation.  Inhibitory and excitatory neurons in the cortex 
were modeled using the simple Izhikevich model, which are 
described by the following equations [23]: 

  ̇                    

 ̇          

       if v=30, then v=c, u=u+d     

(1) 

(2) 

(3) 

where v is the membrane potential, u is the recovery variable, I 
is the input current, and a, b, c, d are parameters chosen based 
on the neuron type.  For regular spiking, excitatory neurons, we 
set a=0.01, b=0.2, c=–65.0, d=8.0.   For fast-spiking, inhibitory 
neurons, we set a=0.1, b=0.2, c=–65.0, d=2.0.  GABAergic and 
cholinergic neurons in the NB were modeled as simple 
Izhikevich inhibitory and excitatory neurons, respectively. 

LGN and TRN neurons were modeled using the extended 
version of the Izhikevich neuron model in order to account for 
the bursting and tonic modes of activity, which these neurons 
have shown to exhibit [24].  The equations governing these 
neurons are given as: 

 

 

  ̇                    

 ̇               

(4) 

(5) 

The equations for this extended model are similar to the 
previous model, except they include additional parameters, 
such as: membrane capacitance (C), resting potential (vr), and 
instantaneous threshold potential (vt). For LGN neurons, 
parameters were set to: a=0.1, c=–60, d=10,C=200, vr=–60, 
vt=–50.  For TRN neurons, parameters were set to: a=0.015, 
c=–55, d=50, C=40, vr=–65, vt=–45. In order to simulate the 
switch between bursting (Figure 2A) and tonic (Figure 2B) 
mode, the b parameter, which is related to the excitability of 
the cell, was changed depending upon membrane potential, v.  
Specifically, if v < –65, b was set equal to 70 and the neuron 
would be in bursting mode.  If v > –65, b was set equal to 0 and 
the neuron would be in tonic mode.   

The synaptic input, I, driving each neuron was dictated by 
simulated AMPA, NMDA, GABAA and GABAB conductances 
[21, 24].  The total synaptic input seen by each neuron was 
given by: 

 

                  

[
    

  
]
 

  [
    

  
]
       

       
             

       

 

 

(6) 

 

where v is the membrane potential and g is the conductance.  
The conductances change according to the following first order 
equation: 

  ̇   
 

  
 (7) 

where τi=5, 100, 6, 150 ms for i=AMPA, NMDA, GABAA, 
GABAB conductances, respectively.  When an excitatory 
(inhibitory) neuron fires gAMPA and gNMDA (gGABAA and gGABAB) 
increase by the synaptic weight, w, between pre- and post-
synaptic neurons. 

 

Figure 2: A.  Example LGN neuron in bursting mode.  The membrane 
potential was held below -65 mV (b parameter set equal to 70, see text) by 

injecting a strong inhibitory current into the cell until t=100 ms at which time 

a step excitatory current (green line) was injected into the cell.    B.  Example 
LGN neuron in tonic mode.  The membrane potential was held at around -60 

mV by injecting a weak inhibitory current into the cell until t=100 ms at 

which time a step excitatory current (green line) was injected into the cell.     

C. NB modulation of cortical and subcortical structures 

The simulated NB modulated activity in the network in two 
ways.  First, in trials in which the NB was stimulated, 
excitatory Poisson spike trains drove GABAergic neurons 
within the NB.  These GABAergic neurons projected from the 
NB to the TRN, inhibiting GABAergic neurons in the TRN.  
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This in turn released TRN inhibition of LGN.  Second, 
cholinergic projections from NB to inhibitory neurons in the 
cortical microcircuits were simulated.  It has been shown that 
mAChRs tend to be localized on inhibitory neurons in the 
visual cortex and are likely to increase their excitability [13, 
25].  When the NB was stimulated, the b parameter in the 
Izhikevich model, which controls cell excitability, was 
increased from 0.20 to 0.32 for inhibitory neurons in layers 2 
and 5 of the cortical microcircuit.  This is intended to mimic 
the cholinergic activation of mAChRs on inhibitory neurons, 
which leads to increased cell excitability.  

D. Push-pull 

     An important component in our model for generating bursts 

in the LGN was the push-pull mechanism.  It has been 

suggested that switching between burst and tonic mode is 

facilitated by a “push-pull” mechanism through feed-forward 

excitation and inhibition from the retina to the LGN [26, 27].  

This mechanism involves input from the retina hyperpolarizing 

LGN neurons through feed-forward inhibitory circuits when 

luminance levels are low or zero, and depolarizing LGN 

neurons through feed-forward excitation after luminance levels 

reach a certain threshold.  We implemented this phenomenon 

by having inhibitory Poisson neurons driving the LGN when 

inputs were less than 0 and excitatory Poisson neurons driving 

the LGN when inputs were greater than 0.     

 

 

Figure 3: A. Between-trial correlation in LGN. B. Between-trial correlation in 

cortex (100 neurons in each layer). Scatter plots showing the between-trial 

correlation of neurons in both the control (x-axis) and NB-stimulated (y-axis) 
cases.  Responses from single neurons were taken and compared across trials.   

As can be seen in Figure 3A and 3B, the centroid (indicated by the red “+” 

symbol) is situated higher on the y-axis in both the LGN (Figure 3A, 
x=0.89,y=0.78) and the cortex (Figure 3B, x=0.61,y=0.5) due to a larger 

number of scatter points above the line y=x.  This indicated that during the 

NB-stimulated case, neurons in both the cortex and LGN have a higher degree 
of correlation between trials when compared with the control case.  This 

implies that the reliability of neurons tends to increase when the NB is 

stimulated.   

III. RESULTS 

A. Increase in between-trial correlation 

The between trial correlation was measured in the LGN and 
the cortex during both control and NB stimulated cases.  This 
was done by first binning the spikes of a single neuron at 25 Hz 
and grouping the responses into trials.  We then used the 
MATLAB routine corrcoef to compute the correlation 
coefficient for each neuron in the LGN across trials in control 
and NB stimulated cases. In Figure 3, we show that the cortex 
and LGN both show an increase in between-trial correlation 
(reliability) when the NB was stimulated versus when the NB 
is not stimulated (control).  Goard and Dan recorded neurons in 
both the LGN and cortex and showed similar increases in the 
between-trial correlation of these neurons as a result of NB 
stimulation (see Figures 4b and 6b in [1]).  In our model, this 
increase in reliability happens as a result of GABAergic 
projections from the NB inhibiting inhibitory cells in the TRN, 
which in turns disinhibits the LGN.  We suspect that the 
differences in the mean and variance of the LGN and cortical 
plots (Figure 3A and B) occurred as a result of  feedforward 
inhibition  from LGN to layer 4 inhibitory neurons, which has 
been shown reduce correlations [28]. 

B. Burst-to-tonic ratio 

     We also measured the burst-to-tonic ratio in the LGN.  A 

series of spikes are declared a “burst” when they occur with 

inter-spike intervals less than 4 ms followed by the absence of 

a spike for 100 ms or more.  Tonic spikes were any spikes that 

were not part of a burst.  We plotted the ratio of the number of 

burst spikes to the number of tonic spikes during both the 

control and NB stimulated cases (Figure 4).  As shown in 

Figure 4, when the NB is stimulated the burst to tonic ratio is 

smaller than in control conditions, indicating that bursting 

behavior in the LGN decreases when the NB is stimulated.  

Goard and Dan recorded neurons in the LGN and showed 

similar decreases in the burst-to-tonic ratio of these neurons as 

a result of NB stimulation (see Figure 6c in [1]).  In our 

model, when inhibitory projections in the NB are stimulated, 

they hyperpolarize TRN neurons.  As a result, TRN neurons 

are less active and have less inhibitory control over LGN 

neurons, which depolarizes LGN neurons and switches them 

from bursting to tonic firing mode. 
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Figure 4: Burst-to-tonic ratio in LGN.  Scatterplot showing the burst-to-tonic 

ratio in the LGN in both control (x-axis) and NB-stimulated (y-axis) cases.  

This plot shows that when the NB is stimulated the burst-to-tonic ratio is 
larger compared to the non-NB stimulated (control) condition.  This means 

that the number of burst spikes decreases relative to the number of tonic 

spikes when the NB is stimulated. 

C. Decrease in between-cell correlation 

Goard and Dan showed that when the NB was stimulated, 
neurons became decorrelated in the visual cortex.  When a 
mAChR antagonist was applied, however, the decorrelation 
decreased.  This indicated that mAChRs mediated this 
decorrelation (see Figures 3b and 5b in [1]).  It has been shown 
that mAChRs tend to be localized on inhibitory neurons in V1 
[12] and, when activated, excite the cell upon which they are 
located [24].  Thus, in our simulation, when NB was stimulated 
we increased the excitability of V1 inhibitory interneurons in 
layers 2 and 5 by changing the b parameter from 0.20 to 0.32.  
In Figure 5A and 5B, we show scatter plots of the between-cell 
correlation with and without the mAChR-mediated excitation 
of inhibitory neurons in V1, respectively.  The plot of between-
cell correlation without mAChRs was meant to simulate the 
application of a mAChR antagonist as was shown in Figure 5b 
of [1].  In each plot, the NB stimulated case was plotted on the 
y-axis and the non-NB stimulated (control) case was plotted on 
the x-axis.  The centroids (indicated by the red “+” symbol) 
indicate where the center of mass is for the set of scatter points 
in each figure.  A lower (higher) center of mass in the y-
direction implies that NB stimulation led to a decrease 
(increase) in correlations.  The centroid in the models that were 
run with simulated mAChRs is centered at (0.89, 0.61).  The 
centroid in models that were run without simulated mAChRs 
(simulating the application of a muscarinic antagonist) was 
centered at (0.89, 0.78).  This implies that the addition of 
simulated mAChRs to the model (i.e. excitation of L2/3 and L5 
inhibitory neurons) was necessary for increasing decorrelation 
amongst neurons and removing the simulated mAChRs (i.e. 
simulating the application of a muscarinic antagonist) removes 
this decorrelation. 

 

 

Figure 5: A. Between-cell correlation in cortex with mAChR.  B. Between-

cell correlation in cortex without mAChR.  Scatter plots showing the between-
cell correlation of neurons (100 neurons from each layer) in the cortex in both 

the control (x-axis) and NB-stimulated (y-axis) cases.  As can be seen in 

comparing Figure 5A and 5B, the centroid (indicated by the red “+” symbol) 
is situated lower on the y-axis when simulated mAChRs are present (Figure 

5A, x=0.89,y=0.61) than when they are not present (Figure 5B, 

x=0.89,y=0.78) due to a larger number of scatter points below the line y=x.  
This means, that when the simulated mAChRs are present (i.e. inhibitory 

neurons in L2/3 and L5 are excited), there is less between-cell correlation (i.e. 

decorrelation) between neurons in the cortex.  This implies that excitation of 
inhibitory neurons via the activation of mAChRs is a mechanism by which the 

cortex actively decorrelates incoming inputs.  

 

IV. DISCUSSION 

In this paper, we presented a spiking neuron model of the 
basal forebrain, thalamus, and visual cortex that matched 
experimentally verified data, and demonstrated how the 
nucleus basalis of the basal forebrain increases neuronal 
reliability and decreases between-cell correlation in the brain.  
We demonstrated possible pathways and cellular mechanisms 
by which these changes in neuronal dynamics may be 
occurring.  First, we showed that NB stimulation in our model 
led to an increase in reliability in the LGN and cortex and a 
decrease in the burst-to-tonic ratio in the LGN, as a result of 
the activation of GABAergic projections from the NB to the 
TRN.  This finding adds evidence to the notion that inhibition 
of the TRN by NB is a means by which the NB can switch 
LGN cells from bursting to tonic mode. This switch in firing 
mode leads to an increase in neuronal reliability in LGN and 
cortex.  Our simulations demonstrated a mAChR mediated 
mechanism for the decrease in between-cell correlation in the 
cortex that occurs with NB stimulation.  In our model, the 
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mAChR mediated decorrelation of neuronal responses in the 
cortex happened as a result of excitation of fast-spiking 
inhibitory neurons.  This suggests that the activation of 
inhibitory neurons via neuromodulators in cortex is a possible 
mechanism by which the cortex actively decorrelates its input 
in order to decrease redundancy. 

Goard and Dan proposed that the increase in reliability 
resulted from a switch in LGN neurons from bursting to tonic 
mode.  Bursting mode occurs when a cell is hyperpolarized to 
the extent that it leads to a low threshold Ca

2+
 spike that 

triggers a burst in action potentials [29].  In tonic mode, the cell 
is depolarized and linearly sums its input.  As a result, when 
LGN cells are in tonic mode they will more reliably send the 
signal to the cortex, whereas in burst mode the detectability of 
the signal is greater at the expense of a decrease in reliability.  
Since the NB does not directly project to the LGN, it was 
suggested that inhibitory neurons in the NB may inhibit 
GABAergic neurons in the TRN, leading to a depolarization of 
LGN cells.  We tested the plausibility of this prediction by 
modeling the NB to TRN pathway and found that stimulation 
of the NB could lead to increased reliability in the cortex via a 
switch from bursting to tonic firing.  

Changing the degree of correlation in a group of neurons 
has been shown to be an important mechanism involved in 
attention [4-6, 30].  Our model suggests that mAChRs mediate 
the decorrelation of neuronal responses in visual cortex via 
cholinergic excitation of fast-spiking inhibitory neurons.  The 
biophysical mechanisms involved in modulating correlations 
are not completely understood, however, several studies 
suggest it may involve inhibitory neurons [6, 14, 28, 31], 
synaptic depression [32], and/or slow afterhyperpolarization 
currents [33].  Our result matches well with theoretical and 
computational studies which highlight the importance of 
inhibition in decorrelating neurons [14], and experimental 
studies, which show that mAChRs are typically expressed on 
fast-spiking inhibitory neurons [13] and increase neuronal 
excitability [25].   

Several computational models have been recently 
developed that show how neuromodulation can effect cortical 
processing.  The SMART model (Synchronous Matching 
Adaptive Resonance Theory), developed by Grossberg and 
Versace [34], is a spiking model that includes a detailed 
cortical and subcortical (thalamic) circuit design as well as 
synaptic plasticity and cholinergic neuromodulation.  This 
model shows how top-down expectations and bottom-up input 
may be compared and might lead to changes in plasticity.  
Specifically, if top-down and bottom-up information match 
(resonate), learning is increased, whereas, if top-down and 
bottom-up input mismatch, a reset state is triggered and 
learning is reduced.  The cholinergic system in this model is 
associated with the level of vigilance and regulates the degree 
by which top-down and bottom-up input must match in order to 
trigger states of learning or reset.  Deco and Thiele [35] also 
developed a model demonstrating how cholinergic activity 
effects the interaction between top-down attentional input and 
bottom-up sensory information in a cortical area.  Their model 
incorporated four ways in which the cholinergic system has 
been shown to influence the cortex, including: (1) reducing 
firing rate adaptation, (2) increasing thalamocortical efficacy, 

(3) reducing lateral interactions, and (4) increasing inhibitory 
drive.  They showed that the dominant way in which the 
cholinergic system effects top-down attentional modulation is 
by reducing lateral interactions amongst neurons in the cortex.   
Finally, a third model was developed that demonstrates how 
the cholinergic and noradrenergic systems track expected and 
unexpected uncertainty in the environment, respectively, and 
effect several cortical targets in order to optimize behavior 
[36].  This model incorporated five different ways in which the 
cholinergic and noradrenergic systems may influence cortical 
processing, including: (1) nicotinic enhancement of 
thalamocortical input, (2) muscarinic regulation of 
corticocortical feedback, (3) noradrenergic mediation of a 
network reset, (4) locus coeruleus (LC) activation of the basal 
forebrain (BF), and (5) cholinergic and noradrenergic balance 
between sensory input and frontal cortex predictions.  The 
simulation was able to make several interesting predictions, 
including how the BF and LC influence one another and how 
faults in either system can lead to deficits in cortical processing 
and degradation of behavior. 

The present model differs from those mentioned above in a 
few important ways.  First, we showed how non-cholinergic 
neurons (GABAergic) in the basal forebrain can influence 
subcortical structures (TRN).  The three papers above, on the 
other hand, concentrated exclusively on cholinergic neurons in 
the BF and their influence on the cortex.  Our model also 
focuses on reproducing the experimental results found by 
Goard and Dan given current knowledge about muscarinic 
receptor distributions and their influence on cell excitability.  
This allowed us to come to the more specific conclusion that 
cholinergic modulation alters information processing in visual 
cortex via mAChR-mediated increase in the excitability of 
inhibitory neurons in layers 2 and 5.  Finally, because we 
developed a microcircuit model, our model adds a level of 
detail in terms of circuit architecture that is missing in [35] and  
[36].  The SMART model on the other hand, has a highly 
detailed microcircuit architecture.  In the future it would be 
interesting to combine the level of detail of our model and the 
SMART model with the wide range of cholinergic actions that 
were incorporated into [35] and  [36].     

In both the Goard and Dan experiment and our simulation 
the NB was artificially stimulated, however, it is important to 
keep in mind what drives the NB in order to better understand 
its role in the brain.  It has been suggested that the basal 
forebrain responds to the amount of expected uncertainty in the 
environment [37].  Strong projections from association, 
sensory, and subcortical brain regions drive the NB, indicating 
that the NB plays an important role in balancing bottom-up 
(sensory) and top-down (expectations) information [9].  This 
suggests that when there is a large amount of uncertainty in 
either expectations or sensory input, the basal forebrain may be 
recruited to coordinate changes in information processing in 
multiple areas across the brain.   

In addition to its role in sensory processing, the basal 
forebrain has also been shown to play an important role in 
working memory [38], attention [39], and the encoding of long-
term memories [40] via its projections to prefrontal, parietal, 
and hippocampal cortices.  This suggests that when there is a 
large amount of uncertainty in either your priors or sensory 
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input, the basal forebrain may be recruited to coordinate 
changes in information processing in multiple areas across the 
brain in order to ultimately optimize behavior.  In order to truly 
understand the link between attention, learning, memory, and 
action-selection in the brain, it will be important to further 
elucidate how and when the basal forebrain is activated and the 
effect of basal forebrain’s impact on cortical and subcortical 
targets. 
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