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Reciprocity and Retaliation in Social Games With
Adaptive Agents

Derrik E. Asher, Andrew Zaldivar, Brian Barton, Alyssa A. Brewer, and Jeffrey L. Krichmar

Abstract—Game theory has been useful for understanding
risk-taking and cooperative behavior. However, in studies of the
neural basis of decision-making during games of conflict, subjects
typically play against opponents with predetermined strategies.
The present study introduces a neurobiologically plausible model
of action selection and neuromodulation, which adapts to its
opponent’s strategy and environmental conditions. The model
is based on the assumption that dopaminergic and serotonergic
systems track expected rewards and costs, respectively. The model
controlled both simulated and robotic agents playing Hawk–Dove
and Chicken games against subjects. When playing against an
aggressive version of the model, there was a significant shift in
the subjects’ strategy from Win-Stay-Lose-Shift to Tit-For-Tat.
Subjects became retaliatory when confronted with agents that
tended towards risky behavior. These results highlight the impor-
tant interactions between subjects and agents utilizing adaptive
behavior. Moreover, they reveal neuromodulatory mechanisms
that give rise to cooperative and competitive behaviors.

Index Terms—Adaptive systems, cognition, cognitive robotics,
human robot interaction, neurotransmitters.

I. INTRODUCTION

E LUCIDATING the neurobiological basis for decision-
making under competitive and conflicting situations is

an important step towards understanding reciprocity, social
cognition, cooperation, and competition [1], [2]. Game theory
has been successful in describing such social behaviors [3]–[5]
and has been applied to the investigation of their neural bases
[1], [6]–[8].
The vertebrate neuromodulatory systems play a key role in

the regulation of social behavior [9], [10]. In particular, the sero-
tonergic neuromodulatory system is involved in a wide variety
of emotional, cognitive, and social responses [11]. The raphe
nucleus, which is the source of serotonin in the central nervous
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system (CNS), may underlie cognitive control of stress, social
interactions, and risk-taking behavior [12].
Of particular interest to the present work are studies in which

levels of neuromodulators are depleted or altered while subjects
play cooperative and competitive games. In one such study, sub-
jects, who were serotonin-depleted through dietary changes, co-
operated less than control subjects in an iterated version of Pris-
oner’s Dilemma against a computer-generated Tit-For-Tat op-
ponent [13]. Another study showed similar results with a “one-
shot” version of the UltimatumGame, where serotonin-depleted
subjects tended to reject monetary offers more than control sub-
jects when they deemed these offers to be unfair [14]. Con-
versely, increasing serotonin levels through the drug citalopram,
a selective serotonin reuptake inhibitor, resulted in a decrease in
the rejection of such offers [15]. In the same study, citalopram
was shown to increase subjects’ aversion to personally harming
others when faced with moral dilemmas.
It would be illuminating, however, to advance these

“one-shot” games by examining human subject responses
against opponents in iterative games, during which their op-
ponents can adapt their strategies to aspects of the game,
environment, and subject responses. In addition, subjects’
decisions in games against physical agents that are embedded
in the real world may be quite different from decisions in games
against a computer simulation. Indeed, such embodied models
have been shown to elicit strong reactions in humans [16], [17]
and to exhibit more natural and complex behavior than pure
simulations [18], [19]. The goal of the present study is to ex-
plore these issues by investigating human subject interactions
with artificial neural agents, both embodied and simulated, that
can adapt their behavior to their opponent’s strategy and to
environmental change.
Previously, we developed a computational model of neuro-

modulation and action selection based on the assumptions that
dopamine levels are related to the expected reward of an action,
and serotonin levels are related to the expected cost of an action
[20], [21]. That is, serotonergic activity might track the expected
cost of an action in a similar way that dopaminergic activity is
thought to track the expected reward of an action [22], [23]. The
neural agent adapted its behavior appropriately to changes in en-
vironmental conditions and to changes in its opponent’s strategy
[20], [21]. The present study embedded our neural model of
neuromodulation and action selection in both simulated and em-
bodied neural agents to investigate reciprocal social interactions
in games of cooperation and conflict with human subjects. Sub-
jects played a series of competitive games (i.e., Hawk–Dove and
Chicken) with tradeoffs between high risk, high payoff actions
and low risk, low payoff actions, against robotic and simulated
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agents. The effects of serotonergic levels on adaptive behavior
in these games were further tested by: 1) simulating seroton-
ergic lesions in the neural agent; and/or 2) lowering the CNS
serotonin levels of human subjects through a dietary manipula-
tion called acute tryptophan depletion (ATD), which has been
shown to decrease cooperation and lower harm-aversion [13],
[14], [24].

II. METHODS

A. Subjects

Eight subjects (three female; mean age: 26.6 3.8 years) par-
ticipated in this study. The Institutional Review Board at Uni-
versity of California, Irvine, approved the experimental protocol
and informed consent was obtained from all subjects.
Prior to enrollment in the study, all potential participants were

screened for psychiatric and neurological disorders using the
Structured Clinical Interview for DSM-IV-TR Axis I Disorders
(SCID-I Research Version, Biometrics Research; [25]). Poten-
tial participants were excluded for a history of cardiac, hepatic,
renal, pulmonary, neurological, psychiatric or gastrointestinal
disorders, pregnancy, psychiatric medication, drug use, or a per-
sonal or family history of mood disorders. Because serotonin
levels can be affected by estrogen fluctuations, female subjects
participated in the study only during the first two weeks of their
menstrual cycles [26]–[28].

B. Acute Tryptophan Depletion

Several studies of social behavior have used a dietary manip-
ulation, called the acute tryptophan depletion procedure (ATD),
to investigate the short-term effects of a decline in serotonin
levels on mood in humans [13], [24]. The goal of ATD is to
temporarily alter the levels of serotonin in the brain via a de-
crease in blood plasma tryptophan, the amino acid precursor
to serotonin. Because free blood plasma tryptophan levels, and
the corresponding serotonin levels in the brain, vary with the
amount of dietary tryptophan and the rate of protein synthesis,
these levels can be altered by a low protein diet in combination
with a specially prepared “protein shake.” This “protein shake”
contains an amino acid load (lacking tryptophan), which has two
effects. First, it stimulates protein synthesis in the liver, which
uses up blood plasma tryptophan. Second, the amino acids that
are given in the “protein shake” compete with tryptophan for
transport across the blood-brain barrier, which restricts entry of
tryptophan into the brain and leads to lower levels of serotonin
in the brain [29], [30]; for reviews see [31] and [32].
The ATD “protein shake” (our Trp- mixture) contains 15

amino acids (NutraBio, www.nutrabio.com) mixed with 400
ml water and flavoring (Crystal Light, Kraft Foods, Inc.). The
amino acids are used in proportions approximating human
milk, except for three amino acids (see Table I). The ATD
Trp- mixture lacks tryptophan, the amino acid under study,
as well as aspartic acid and glutamic acid, which are omitted
because of concern about their toxicity at high doses [13], [24].
Our Trp- mixture had a total protein content of 100 g. Our
control mixture (Trp+ condition) used the same ratio of amino
acids, but additionally included 2.3 g of tryptophan. For female

TABLE I
“PROTEIN SHAKE” AMINO ACID LEVELS FOR THE ACUTE TRYPTOPHAN

DEPLETION (ATD) PROCEDURE (MALES)

participants, the same ratios of amino acids were used, but
with a 17% reduction in quantity to take into account average
lower body weight [24].
Subjects followed a low protein ( 20 g) diet for 24 h before

each experimental day. Additionally, they fasted 12 h prior to
the administration of the amino acid drink and followed a low-
protein diet ( 5 g) throughout each experimental day.

C. General Procedures

In a double-blind study, human subjects were randomly as-
signed on the first experimental day to receive either the Tryp+
control mixture or the Tryp- mixture. Each subject then returned
to participate in the other condition at least seven days later to
ensure the return to baseline blood plasma tryptophan levels be-
tween experimental days. On the morning of each experimental
day, a blood sample was drawn to determine baseline blood
plasma tryptophan levels. Following the blood draw, subjects
ingested one of the amino acid drinks (either Tryp+ or Tryp-). A
second blood sample was drawn approximately five hours after
ingestion of the amino acid drink to confirm reduction (Trp-
condition) or maintenance (Trp+ condition) of blood plasma
tryptophan levels. Roughly 5.5 hours after consumption of the
amino acid drink, human subjects then participated in a series
of Hawk–Dove and Chicken games against a neural agent.
In order to: 1) track potential short-termmood effects of ATD;

and 2) ensure that ATD had no long term effects on subjects’
mood, the positive and negative affect scale (PANAS) was ad-
ministered on two occasions during each experimental day [33],
once before the amino acid drink was consumed (i.e., base-
line) and once just prior the start of the interactive games (i.e.,
5.5 h after consumption of the amino acid drink). A follow-up
PANAS assessment was also performed at least seven days after
the experiments and compared with baseline measurements.

D. Hawk–Dove Game

The Hawk–Dove game consisted of a human and a neural
agent choosing a single action in response to a territory of in-
terest (TOI). The Hawk–Dove game, which is similar to Pris-
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Fig. 1. Schematic representation of the Hawk–Dove game. The objective is for
the human subject (H) and the neural agent (N) to reach the territory of interest
(TOI). The TOI is denoted with magenta when it is an Open resource. Upon
reaching the TOI, players decide whether to Display, a cooperative action to
share the resource, which changes the TOI to blue, or to Escalate, a confronta-
tional action to solely obtain the resource, which changes the TOI to green if
chosen by the agent or red if chosen by the subject.

TABLE II
PAYOFF MATRIX FOR HAWK–DOVE GAME BETWEEN SUBJECTS (H) AND

NEURAL AGENTS (N)

V is the value of the resource and is set to 0.60. D is the damage incurred
when both players choose to Escalate. D is set to 1.60 for serious injury and
0.62 for low injury. The probability of a serious injury is 0.25 or 0.75.

oner’s Dilemma, was chosen because it is amenable to a phys-
ical instantiation with a robot. Moreover, it has an additional
strategic element since choices are different depending on who
arrives at the TOI first. The agent that arrives at the TOI first
can signal its intention to compete or cooperate. However, the
agent that arrives second to the TOI has the advantage of seeing
its opponent’s move and responding appropriately.
At the start of the game, the TOI and the human subject’s lo-

cation were randomly placed on a 5 5 playing grid (see Fig. 1).
If the neural agent was simulated, its location was randomly
chosen as well. Otherwise, the current location of the robot was
used as a starting position. The player that arrived at the neutral
TOI first had the opportunity to take one of two possible actions:
Escalate (i.e., an aggressive, confrontational tactic) or Display
(i.e., a nonviolent, cooperative tactic). The player that arrived
second responded with one of the two aforementioned actions.
After each game, a payoff was calculated based on the matrix
given in Table II. If both players chose Escalate, they received
a penalty that was either a serious injury (large penalty) or just a
scratch (small penalty). The probability of serious injury was set
to 0.25 or 0.75 at the start of the game. If both players choseDis-
play, they split the value of the TOI resource. If one player chose
Escalate and the other chose Display, the player that chose Es-
calate received the entire value of the resource.
In order to carry out the embodied version of the Hawk–Dove

game, we modified the CARL robot and its interactive floor
apparatus, which was originally developed for a conditioning
paradigm [34]. The robot consisted of a two wheeled mo-
bile base equipped with IR sensors for obstacle avoidance,

Fig. 2. Experimental apparatus for playing the Hawk–Dove game. A subject
is playing the Hawk–Dove game with the CARL robot [34]. The GUI viewed
by the subject reflects the state of the interactive floor and allows the subject to
move the icon and to change the TOI state. A neural agent guides the robot’s
behavior. Note that the TOI on the GUI and CARL’s interactive floor are in the
same location with the same color.

compass for orienting and navigation, a WiFi device server
(http://www.sena.com) for communication between the robot
and a computer workstation, and a CCD video camera with a
RF transmitter for vision. The model for the neural agent ran on
a computer workstation, which received sensor input through
RF and RS-232 communication and sent motor commands
to the CARL robot through RS-232 communication. The pan
and tilt position of the camera was controlled by commands
to a pair of servomotors. The base of the robot was 10 in in
diameter and 8.5 in high. Visual processing was carried out on
the workstation using open source Computer Vision (OpenCV)
libraries (http://opencv.willowgarage.com/wiki/). A color his-
togram method was run across image frames to classify salient
features [34].
The robot’s environment consisted of a 10-foot by 10-foot

enclosure that contained 25 light panels arranged in a 5-by-5
grid (see Fig. 2). The panel color was set to magenta, red, blue
or green through RS-232 communication from the workstation
to electronics controlling the panels. All 25 panels had IR trans-
ceivers that could communicate position information to the
robot when it was directly above the panel. Robot navigation
was achieved by combining heading information with visual
tracking.
The game proceeded with the human subject and neural agent

approaching the TOI and then upon arriving at the TOI, making
a decision to choose Escalate or Display. A human subject sat
at a computer workstation with a visual representation that re-
flected the state of the interactive floor (see Fig. 2). At the start of
each game, the TOI was set to the Open state by displaying one
panel on the human subject’s user interface as magenta, and set-
ting the corresponding four panels on CARL’s interactive floor
to magenta. After the TOI was presented to both players, the
human subject and robot moved toward the Open resource. The
human moved his or her icon by clicking on one adjacent panel
at a time using a mouse. A ten-second delay between moves
was used to prevent the human from moving toward the TOI
faster than the robot. If the human subject’s icon was adjacent
to the TOI, the human was allowed to make a decision. The
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human could Display by turning the panel to blue, or Escalate
by turning the panel to Red.When the robot was at the TOI loca-
tion, it would make a decision by visually recognizing the light
panel’s color (i.e., magenta for Open, red for Escalate, and blue
for Display). The robot chose Display by turning the panel to
blue, or Escalate by turning the panel to green. The change of
state was reflected on the human subject’s interactive screen.
We also developed a simulated variant of the Hawk–Dove

game in which subjects used the same interactive screen, but
instead of a real robot, there was a robot icon on the screen.
The same neural model used for the robot dictated the control
of the robot’s icon and its decision-making. This simulated setup
allowed us to judgewhether playing against a robot had an effect
on human behavior.
In the Hawk–Dove game there were three experimental

conditions per subject per experimental day (i.e., Trp- and
Trp+): 1) simulation versus Robot—subjects would play games
against a computer agent or against the robot; 2) control versus
Raphe—subjects would play games against a neural agent
with an intact simulated neuromodulatory system (Control), or
against a neural agent with a simulated lesion of its serotonergic
system (Raphe); and 3) friendly versus Harsh environment—in
the friendly environment, the chance of a serious injury was
25%, and in the harsh environment, the chance of a serious
injury was 75%. The neural agents underwent the same three
experimental conditions except that the neural agent’s Control
and Raphe corresponded to the human subjects’ Tryp- and
Tryp+ days. Subjects played 20 games of Hawk–Dove per con-
dition. The average time of completion for all the conditions of
the Hawk–Dove paradigm was roughly 60 min.

E. Chicken Game

In the chicken game, two cars approach each other on a col-
lision course, and players must decide to drive Straight for a
high-risk, high reward or Swerve away. While somewhat sim-
ilar to Hawk–Dove and Prisoner’s Dilemma, the Chicken game
forces players to decide on an action quickly without knowledge
of the opponent’s choice. Therefore, the players must rely solely
on prior game experience when making their decisions.
In our instantiation of the Chicken game, the human subject

and neural agent drove their cars along a single lane from op-
posite directions (see Figs. 3 and 4). Both players started si-
multaneously at the same speed. The human subject had less
than one second to decide to Swerve or to continue Straight and
risk a crash. After each game, a payoff was calculated based on
the outcome of the game (see Table III). If both players drove
Straight, the result was a head-on collision with a heavy penalty.
If one player Swerved (thereby deemed the “chicken”), then the
player that continued moving Straight on the lane received a
high payoff. If both players Swerved, both players received a
small payoff.
In the embodied version of the Chicken game, human sub-

jects and the neural agent controlled racecars from a digital
slot car racing set (see Fig. 4). We modified the Carrera Dig-
ital 1/24 23602 Classic Legends racing car set (http://us.car-
rera-toys.com) such that two cars moved in opposite directions
toward each other. Slot cars were placed on opposite ends of

Fig. 3. Schematic representation of the Chicken game. In this game, two race-
cars approach each other on a collision course. The human subject (H) controlled
one car and the neural agent (N) controlled the other. Players decide whether to
Swerve onto another lane or stay Straight.

Fig. 4. Experimental apparatus for the Chicken game. Subjects have control of
one racecar, and the agent has control of the other. The subject may choose to
Swerve by clicking on a button shown on the interactive screen.

TABLE III
PAYOFF MATRIX FOR THE CHICKEN GAME BETWEEN HUMAN SUBJECTS (H)

AND NEURAL AGENTS (N)

a long straightaway. The control of both cars was han-
dled through RS-232 serial communication from a computer.
The racecar controller consisted of a peripheral interface con-
troller (PIC) microcontroller with two digital potentiometers
used to control the speed of the cars, and a serial line level con-
verter necessary for serial communication between the software
and racing car set. The speed was fixed to insure that both cars
reached the Swerve/Straight decision point at the same time. We
developed a graphical user interface to allow the human sub-
ject’s car to switch lanes with a mouse click. The output of
the model for the neural agent dictated whether the other car
would Swerve or not. If both cars chose Straight, they crashed
in the middle of the track. Rubber foam bumpers were placed
on the racecars to prevent damage from collisions. If both cars
chose Swerve, they both switched lanes and stopped before hit-
ting each other. In the case where one car chose Swerve and
the other car chose Straight, the car that chose Straight traveled
down the track, and the car that chose Swerve switched to the
other lane and stopped.
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Fig. 5A. Neural network architectures and initial connection weights for the
neural agents. The thick arrows represent plastic pathways. The dotted arrows
and shaded ovals represent neuromodulatory pathways. Within the Action area,
neurons with excitatory reciprocal connections are denoted with the lines with
an arrow at the end, and neurons with reciprocal inhibitory connections are de-
noted with lines with a dot at the end. (a). Architecture for the Hawk–Dove
neural model. The solid arrows extending from the TOI state neurons represent
all-to-all connections.

Similar to the Hawk–Dove paradigm, human subjects played
a pure simulation version of this game. The interactive represen-
tation was identical to controlling the racecars. Instead of seeing
the cars move on the track, the outcome of the game was shown
on the subject’s computer screen.
For the Chicken game there were two experimental condi-

tions per subject per experimental day: 1) simulation versus
robot; and 2) control versus raphe. Similar to the Hawk–Dove
game, the neural agents played against subjects in the Tryp- and
Tryp+ states. Human subjects played 20 games of Chicken per
condition. The average time of completion for all the conditions
of the Chicken paradigm was roughly 40 min.

F. Neural Agent

Throughout these games, a neural network controlled the
behavior of the neural agent. The neural agent was rigorously
tested in a previous modeling study against simple opponents
with fixed strategies [20], [21]. The focus of this study was to
move past using simple opponents with fixed strategies and
introduce adaptive neural agents. For both games, the neural
network had three neural areas (see Fig. 5): 1) TOI-State for
Hawk–Dove, and Previous Action for Chicken; 2) action; and
3) neuromodulatory. For the Hawk–Dove games, the TOI-State
included three neurons that corresponded to the possible states
the neural agent may observe [see Fig. 5(a)]: 1) open—the
neural agent reached the TOI first; 2) escalate—the human
player reached the TOI first and chose to create a conflict; or
3) display—the human player reached the TOI first but did not
start a conflict. At the start of each condition, the weights of the
neural network were set to their initial values [see Fig. 5(b)].
For the Chicken games, the Previous Action area featured
four neurons that provided information on possible outcomes
performed in the prior game for both itself and the human
subject [see Fig. 5(c)]: 1) neural straight; 2) neural swerve;
3) opponent straight; or 4) opponent swerve. Congruent with

Fig. 5B. Synaptic connections between neural areas in the Hawk–Dove neural
network that controlled the neural agent.

Fig. 5C. Architecture for the Chicken game neural model. The solid arrows
extending from the Previous Action neurons represent all-to-all connections.

Fig. 5D. Synaptic connections between neural areas in the Chicken neural net-
work that controlled the neural agent.

the Hawk–Dove games, at the start of each condition, the
weights of the neural network were set to their initial values
[see Fig. 5(d)].
In both games, the equations for the activity of each of these

neurons were computed similarly. In Hawk–Dove, the ac-
tivity of TOI-State neurons was based on the current state of the
TOI

TOIState
Otherwise

(1)

where rnd (0.0, 0.25) was a random number uniformly dis-
tributed between 0.0 and 0.25.
In Chicken, the activity of PreviousAction neurons was based

on what occurred in the previous game

Otherwise
(2)

where rnd (0.0, 0.05) was a random number uniformly dis-
tributed between 0.0 and 0.05.
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The Action area in both games included two neurons. For
Hawk–Dove, these neurons were labeled: 1) escalate—the
neural agent created a conflict; or 2) display—the neural agent
did not start a conflict. For Chicken, the neurons in this area
represented: 1) straight—the neural agent remained in the same
lane; or 2) swerve—the neural agent moved away from the lane.
The neural activity was based on input from TOI-State/Previous
Action neurons and neuromodulation.
The neuromodulatory areas were identical in both games

and included two neurons: 1) Raphe—a simulated raphe nu-
cleus, which was the source of serotonergic neuromodulation;
and 2) VTA—a simulated ventral tegmental area, which was
the source of dopaminergic neuromodulation. The synaptic
connectivity of the network is shown in Fig. 5. Some of these
connections were subject to synaptic plasticity and phasic neu-
romodulation, where the activity of neuromodulatory neurons
affected the synaptic efficacy.
The neural activities in both games were simulated by a mean

firing rate neuron model, where the firing rate of each neuron
ranged continuously from 0 (quiescent) to 1 (maximal firing).
The equation for the mean firing rate neuron model was

(3)

where was the current time step, was the activation level of
neuron , was a constant set to 0.1 and denoted the persis-
tence of the neuron, and was the synaptic input. The synaptic
input of the neuron was based on presynaptic neural activity,
the connection strength of the synapse, and the amount of neu-
romodulatory activity

(4)

where was the synaptic weight from neuron to neuron
, and was the level of neuromodulation, which was the
combined average activity of Raphe and VTA.
Phasic neuromodulation can have a strong effect on action

selection and learning [10]. During phasic neuromodulation,
synaptic projections from sensory systems and inhibitory neu-
rons are amplified relative to recurrent or associational connec-
tions. In our model, the input (TOI-State/Previous Action) to
Action neurons represented sensory connections and the exci-
tatory Action-to-Action neurons represented the associational
connections. To simulate the effect of phasic neuromodulation,
inhibitory and sensory connections were amplified by setting

to ten times the combined average activity of the simulated
Raphe and VTA neurons. Otherwise, was set to 1 for asso-
ciation connections. The last columns of Fig. 5(b) and (d) list
connections amplified by phasic neuromodulation. In previous

simulation studies and robotic experiments, this mechanismwas
shown to be effective in making the network exploitive when
neuromodulation levels were high and exploratory when neuro-
modulation levels were low [10], [34].
Action selection depended on the activity of the Action neu-

rons when the neural agent reached the TOI in Hawk–Dove,
or just prior to the racecar moving in Chicken. At this time,
neural activities of all neurons were calculated for ten time-steps
[see(1)–(4)]. The Action neuron with the largest cumulative ac-
tivity after ten time-steps dictated the action taken.
After both the neural agent and human player chose an ac-

tion, a learning rule was applied to the plastic connections of the
neural model [see Fig. 5(b)(d)]. The learning rule depended on
the current activity of the presynaptic neuron, the postsynaptic
neuron, the overall activity of the neuromodulatory systems, and
the payoff from the game

(5)

where was the presynaptic neuron activity level, was the
postsynaptic neuron activity level, was the average activity
of all neuromodulatory neurons, and was the level of rein-
forcement based on payoff and cost (6). The presynaptic neuron

in (5) was either the most active TOI-State neuron for
Hawk–Dove or the most active Previous Action neurons for
Chicken. The postsynaptic neuron could either be the most
active Action neuron, the Raphe neuron, or the VTA neuron.
Weights were normalized by the square root of sum of squared
weights.
The level of reinforcement was given by [see (6), shown at

bottom of page], where the Reward and Cost were the neural
agent’s payoff from Tables II and III were divided by the max-
imum positive payoff and maximum negative payoff, respec-
tively, [see (7)]

Reward
for HawkDove

for Chicken

Cost
for HawkDove

for Chicken

Equations (6) and (7) were based on the assumption that
dopaminergic activity predicted the reward resulting from an
action and serotonergic activity predicted the cost of an action.
If the prediction were accurate, there would be little change in
synaptic plasticity, whereas if the prediction were inaccurate,
synaptic plasticity would occur [see (5)–(7)].

III. RESULTS

We first report on the performance of the neural agent, both
in simulations and in interactions with human subjects. We then

TOI-State/Previous Action Action Connection
TOI-State/Previous Action VTA Connection
TOI-State/Previous Action Raphe Connection

(6)
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TABLE IV
PERCENTAGE OF ESCALATIONS BY 100 NEURAL AGENTS PLAYING 100 GAMES
EACH IN SIMULATIONS AGAINST OPPONENTS WITH PRESET STRATEGIES

describe the subjects’ performance against the neural agents in
select conditions.

A. Neural Agent’s Performance

1) Neural Agent’s Performance in Simulations: In prior work
to assess the neural agent’s performance [20], [21], we ana-
lyzed the responses of the neural agent in the Hawk–Dove game
against three specific opponent strategies: 1) statistical—its op-
ponent chose to Escalate either 25% or 75% of the time; 2)
tit-for-tat (T4T)—its opponent copied the most recent move of
the neural agent; or 3) win–stay, lose–shift (WSLS)—its oppo-
nent selected the same action that led to a positive payoff in the
previous game (win–stay), or selected a different action from
the previous game if that action led to zero or negative payoff
(Lose-Shift). The purpose of these initial simulations was to de-
velop the model of neuromodulatory decision-making against
simpler models and opponents. This allowed us to develop and
analyze the model guiding the neural agent’s behavior under
more controlled conditions.
The neural agent adapted its behavior appropriately to the

environmental conditions (see Table IV) and its opponent’s
strategy [20], [21]. The neural agent tended to be less aggres-
sive (i.e., chose Display more frequently) when playing in a
harsh environment where the probability of a serious injury was
high, or against an aggressive opponent that retaliates (T4T).
Conversely, when the neural agent was in a cooperative, for-
giving environment, it tended to take advantage of the situation
by choosing to Escalate more (see Table IV).
An intact neuromodulatory system was necessary for appro-

priate behavior [20], [21]. When serotonin was removed from
the system by simulated lesions to the neural agents’ raphe nu-
cleus (Raphe), the neural agent’s behavior became more Hawk-
like, with a high probability of choosing to Escalate, even when
the chance of serious injury was high (see Harsh columns in
Table IV). This aggressive behavior was due to its inability to
assess the cost of its actions. Even when the chance of serious
injury was high, the Raphe lesioned agent still tended to Esca-
late, thus incurring lower payoffs.
The activity of the simulated neuromodulatory systems drove

the agent’s behavior and adapted to environmental context. For
example, the Neural agent adapted to a T4T opponent by oscil-
lating between escalating and displaying in successive games.
In essence, the Neural agent learned to adopt a T4T strategy
against this opponent, which yielded approximately equal re-
ward to both agents [see Fig. 6(a): games 84–92]. Similarly, the
Neural agent adjusted appropriately to a WSLS opponent, by
creating opportunities for high payoffs. High cost and reward
were expected when both agents escalated [see Fig. 6(b): games
79, 82, or 86]. In these examples, theNeural agent escalated first

and its Opponent escalated second. The Neural agent learned
that this tactic caused the Opponent agent to “lose-shift’” to-
wards Display in the following game, which could be taken ad-
vantage of by escalating [see Fig. 6(b): games 80, 83, or 87)].
This tactic resulted in a maximal reward to the Neural agent,
but caused the Opponent agent to “lose-shift” back to Escalate
in the following game [see Fig. 6(b): games 81, 84, or 88].
The neural response of the simulated neuromodulators gov-

erned the Neural agent’s actions. Dopaminergic and seroton-
ergic activity tracked the expected rewards and costs respec-
tively. When the VTA (dopamine) activity dropped below the
Raphe (serotonin) activity, the neural agent chose a Display ac-
tion, and when the VTA activity was greater than the Raphe, the
neural agent chose toEscalate. Raphe activitymay be acting as a
threshold for the expected cost of upcoming actions, whereas the
VTA activity rises and falls based on the expected reward. For
example, when a Neural agent behaved Dove-like, its serotonin
activity was high relative to the dopamine activity due to the low
expected reward from displaying [see Fig. 6(a): games 78–80].
In addition, the oscillatory actions taken by the Neural agent
are exactly matched by the oscillatory VTA neuromodulatory
activity [see Fig. 6(a): games 84–99] rising above and falling
below the Raphe neuromodulatory activity. The low fluctuation
in Raphe values from one game to the next in Fig. 6(a) result
from the predictable cost estimates when playing an opponent
using the T4T strategy. Predicted cost was not as regular for the
Neural agent when playing against the WSLS opponent, which
may explain why the Raphe neuromodulatory activity fluctuated
more in Fig. 6(b). Although the Raphe activity fluctuated more
when playing against the WSLS opponent, the actions taken by
the Neural agent were consistent with the VTA and Raphe neu-
romodulatory activity.
2) Neural Agent’s Performance Against Subjects: Similar to

its performance against simulated opponents, the neural agent
needed an intact neuromodulatory system to appropriately
adapt its performance to a subject’s strategy and the environ-
mental conditions. We assessed the percentage of times the
neural agents chose to Escalate in the Hawk–Dove game with
a four-way repeated-measures analysis of variance (ANOVA;
alpha , Bonferroni corrected) that included the factors
of Neural State (Control and Raphe), Embodiment (Robot
and Sim), Probability of Serious Injury (0.25 and 0.75), and
Experimental Day (Tryp- and Tryp+). We found a significant
main effect for Neural State [ , ;
Fig. 6(a)], driven by a higher percentage of choices to Escalate
for Raphe (mean standard error of the mean
(SEM)) than for Control mean . We
found no significant effect for Embodiment ( ,

), Probability of Serious Injury ( ,
), or Experimental Day ( ,

). There were no significant interactions .
Similar to the Hawk–Dove game statistical analysis, we as-

sessed the percentage of times the neural agents chose to drive
Straight in the Chicken game with a three-way repeated-mea-
sures analysis of variance (ANOVA; , Bonfer-
roni corrected) that included factors Neural State (Control and
Raphe), Embodiment (Robot and Sim), and Experimental Day
(Tryp- and Tryp+). We found a significant main effect of Neural
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Fig. 6. Actions taken by both a Neural and Opponent agent during the last 25 games of a 100 game series, and the corresponding neuromodulatory activity for
the Neural agent. The stair plots located on the top half of A and B show the actions taken by both the Neural (yellow) and Opponent (black) agents. The line plots
located in the bottom of A and B show neuromodulatory activity for the Neural agent during the same 25 games. The red line represents the Raphe activity, and
the blue line represents the VTA activity. (a). Control agent versus the Tit-For-Tat opponent. (b). Control agent versus Win-Stay, Lose-Shift opponent.

State [ , ; Fig. 6(b)], driven
by a higher percentage of choices to drive Straight for Raphe
mean than for Control mean

. We found no significant effect of Em-
bodiment ( , ) or Experimental Day
( , ). There were no significant inter-
actions .
In both the Hawk–Dove and Chicken games, the neural

agent became more aggressive when its simulated serotonergic
system was lesioned by increasing the number of times it to
chose to Escalate or to drive Straight (see Fig. 7). These results
from games against subjects were consistent with the behavior
of the neural agent against simulated opponents.

B. Subjects’ Performance

1) Acute Tryptophan Depletion: The ATD procedure effec-
tively altered subjects’ blood plasma tryptophan levels. The
ratio between total blood plasma tryptophan levels at the two
time points (baseline 0 h and experimental 5.5 h)
for each day resulted in a highly significant difference when
comparing Tryp- with Tryp+. ( , Wilcoxon rank-sum
test; Fig. 8). At baseline, the total blood plasma tryptophan
levels for both days ranged from 49–69 . At five hours
after the amino acid drink, tryptophan levels ranged from 5–8

Fig. 7A. Responses of neural agents against human subjects. The bar plots
show the mean and SEM for each level (Control and Raphe) within the main
factor Neural State for the dependent variable %Escalations. The double
asterisks indicate significance (a). Percentage of choices to Escalate in the
Hawk–Dove game for an intact neural agent (Control) and for a neural agent
with a lesion to its simulated serotonergic system (Raphe-lesioned). There
was an increase in the percentage of choices to Escalate for Raphe-lesioned
neural agents (four-way repeated-measures ANOVA; ,

; , Bonferroni corrected).

for the Tryp- condition, and 51–182 for the
Tryp+ condition.
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Fig. 7B. There was an increase in the percentage of choices to stay Straight for
Raphe-lesioned neural agents in the Chicken game (three-way repeated-mea-
sures ANOVA; , ; , Bonfer-
roni corrected).

Fig. 8. The y-axis shows the ratio of total blood plasma tryptophan levels at
the experimental time point (5.5 h) to the baseline time point (before ATD shake
consumption). The left column represents the ATD day and the right column rep-
resents the control day. The red lines represent the median value for each distri-
bution, and the whiskers are the spread of each distribution. The horizontal bars
represent the upper and lower quartile values for each distribution. The two dis-
tributions of baseline and postshake blood tryptophan levels were significantly
different ( , Wilcoxon rank-sum test).

ATD did not have an effect on mood assessment. No signifi-
cant differences were found through analysis of the human sub-
jects’ responses to the PANAS immediately before drink con-
sumption and immediately before human robot interaction for
each experimental day. We assessed positive affect and nega-
tive affect with 2 separate two-way repeated-measures analysis
of variance (ANOVA; alpha , Bonferroni corrected)
that included factors Time of Day (Morning and Afternoon)
and Experimental Day (Tryp- and Tryp+). Consistent with other
studies we found no significant main effects (positive affect:

; negative affect: ) or interactions (posi-
tive affect: ; negative affect: ) when com-
paring the two time points within an experimental day or across
days, or when comparing negative affect within a day or across
days [35].

Fig. 9A. Subjects’ performance while playing the Hawk–Dove game against
neural agents. The bar plots show the mean and SEM for each level (Control and
Raphe) within the main factor Neural State for the respective dependent vari-
ables,%T4T and %WSLS. (a). The percentage of choices by subjects to use the
T4T strategy while playing the Hawk–Dove game. The double asterisks indi-
cate that there was a significant increase in the percentage of choices to use T4T
against Raphe-lesioned neural agents (four-way repeated-measures ANOVA;

, ; , Bonferroni corrected).

Fig. 9B. Percentage of choices by subjects to use the WSLS strategy while
playing the Hawk–Dove game. The single asterisk indicates that there was
a marginally significant decrease in the percentage of choices to use WSLS
against Raphe-lesioned neural agents (four-way repeated-measures ANOVA;

, ; , Bonferroni corrected).

2) Subjects’ Responses in the Hawk–Dove Game: Subjects
tended to change their strategies depending on the type of neural
agent they were playing against. Specifically, they tended to
adopt a WSLS strategy against control neural agents with intact
neuromodulatory systems and a T4T strategy against simulated
Raphe-lesioned neural agents (see Fig. 9).
We assessed the percentage of choices by the subject to use

each strategy (T4T or WSLS) and the percentage of choices
to Escalate with two separate four-way repeated-measures
analysis of variance (ANOVA; alpha , Bonferroni
corrected) that included factors Neural State (Control and
Raphe), Embodiment (Robot and Sim), Probability of Se-
rious Injury (0.25 and 0.75), and Experimental Day (Tryp-
and Tryp+). We found a significant main effect of Neural
State ( , ; Fig. 9(a)), driven by
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Fig. 10A. Subjects’ performance while playing the Chicken game against
neural agents. The bar plots show the mean and SEM for each level (Control
and Raphe) within the main factor Neural State for the respective dependent
variables, %T4T and %WSLS. The single asterisk indicates marginal signifi-
cance. (a). The percentage of choices by subjects to use the T4T strategy while
playing the Chicken game. There was an increase in the percentage of choices
to use T4T against Raphe-lesioned neural agents (three-way repeated-mea-
sures ANOVA; , ; alpha , Bonferroni
corrected).

a higher percentage of choices to use the T4T strategy for
Raphe mean than for Con-
trol mean . Additionally, we
found a marginally significant main effect of Neural State
( , ; Fig. 9(b)), driven by a higher
percentage of choices to use the WSLS strategy for the
Control than for Raphe

. We found no significant
effects for Embodiment (T4T: , ;
WSLS: , ), Probability of Se-
rious Injury (T4T: , ; WSLS:

, ), or Experimental Day (T4T:
, ; WSLS: ,

). There were no significant interactions (T4T:
; WSLS: ). We also found no significant

effects when assessing the percentage of choices to Escalate
for all the factors: Neural State ( , ),
Embodiment ( , ), Probability of
Serious Injury ( , ), and Experimental
Day ( , ). There were no signif-
icant interactions with the percentage of choices to Escalate

.
This shift from WSLS to T4T against a neural agent with a

Raphe lesion suggested that subjects were retaliating against an
aggressive opponent. Subjects tended to respond to cooperation
with cooperation and aggression with aggression by adopting a
T4T strategy.
3) Subjects’ Responses in the Chicken Game: Consistent

with the results of the Hawk–Dove game, subjects tended to
change their strategies depending on the state of the neural agent
they were playing against in the Chicken game. That is, they
tended to adopt a WSLS strategy against a control neural agent
with an intact neuromodulatory system and tended to adopt the

Fig. 10B. Percentage of choices by subjects to use the WSLS strategy while
playing the Chicken game. There was a decrease in the percentage of choices to
use WSLS against Raphe-lesioned neural agents (three-way repeated-measures
ANOVA; , ; alpha , Bonferroni corrected).

T4T strategy against a simulated Raphe-lesioned neural agent
(see Fig. 10).
We assessed the percentage of choices by subjects to use each

strategy (T4T or WSLS) and the percentage of choices by sub-
jects to drive Straight with two separate three-way repeated-
measures analysis of variance (ANOVA; , Bon-
ferroni corrected) that included factors Neural State (Control
and Raphe), Embodiment (Robot and Sim), and Experimental
Day (Tryp- and Tryp+). We found a marginally significant main
effect of Neural State ( , ; Fig. 10(a)),
driven by a higher percentage of choices to use the T4T strategy
for Raphe than for Control

. Additionally, we found a
marginally significant main effect of Neural State [

, ; Fig. 10(b)], driven by a higher percentage
of choices to use the WSLS strategy for the Control

than for Raphe
. We found no significant effects for Embodiment

(T4T: , ; WSLS: ,
) or Experimental Day (T4T: ,

; WSLS: , ). There were no
significant interactions (T4T: ; WSLS: ).
We also found no significant effects when assessing the per-
centage of choices to drive Straight for all factors: Neural State
( , ), Embodiment ( ,

), and Experimental Day ( ,
). No significant interactions were found between factors

for choices to drive Straight .
4) Assessing Individual Subject Behavior Through Cognitive

Modeling: We used hierarchical Bayesian cognitive modeling
to analyze individual differences in behavior [36]. Bayesian
cognitive models can illuminate individual differences between
subjects that may otherwise get lost in population averages.
Using the Hawk–Dove dataset, this approach to cognitive
modeling found a subgroup within the subject population who
tended to Escalate more frequently when tryptophan depleted,
while there was another subgroup who tended to Escalate less
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when tryptophan depleted. Similarly, there was a subgroup
that Escalated more when playing the embodied neural agent
(robot) and another that Escalated more against the simulated
neural agent. The presence of two subgroups canceling each
other out may have resulted in the insignificant effects of ATD
and embodiment using population statistics. These cognitive
modeling results point to the importance of taking individual
differences into consideration in these types of studies. More-
over, these results show that subject decision-making is strongly
influenced by the embodiment of the neural agent and the effect
of tryptophan depletion.

IV. DISCUSSION

The main contributions of the present study are: 1) playing
games against opponents that are interactive and personified
evoke strong responses in subjects; 2) an agent with the ability
to adapt to contextual changes in the environment or its op-
ponent’s behavior is an important factor in evoking these re-
sponses; and 3) subjects tend to reciprocate and retaliate against
adaptive agents when they believe they are being treated un-
fairly.
Game theory has had a long and productive history of pre-

dicting and describing human behavior in cooperative and com-
petitive situations [3]–[5], [37]. The theory of games has also
been used to illuminate the neural basis of economic and social
decision-making [1], [2], [8]. These studies have identified brain
areas and neural systems involved in social decision-making
through brain imaging, as well as pharmacological and dietary
manipulations. However, these studies typically have human
subjects play against computer opponents with set strategies
having predictable behavior.
The present work extends these studies by pitting human

subjects against neural models that have the ability to adapt
their behavior based on their opponent’s strategy or changes in
environmental conditions. Specifically, human subjects played
Hawk–Dove and Chicken games against a simulated neural
agent with the ability to assess the potential costs and rewards
of its actions and adapt its behavior accordingly. The model
for the neural agent was based on known interactions of the
dopaminergic and serotonergic neuromodulatory systems with
cortical areas [10], [20], [21], [34]. This double-blind study
consisted of two experimental days during which the levels of
serotonin were lowered in both humans and the neural model
in half of the trials.
Similar to the idea of autonomous mental development

(AMD), the appropriate behavior with which the neural agent
should effectively play these games was unknown at the outset
and the agent had to develop strategies based on its experience
[38]–[40]. The adaptive agent did have innate values in the
form of positive payoffs (reward related dopamine signals) and
negative payoffs (cost related serotonin signals). From these
inborn values, the neural agent learned when to act aggressively
and when to act cooperatively based on the responses of its
opponent and the environmental context. The plasticity in the
model was initially driven by cost and rewards from payoff,
but over time, the game cues and prior history shaped synaptic
plasticity and behavioral responses. Both in simulations and in
games with human subjects, the neural model developed the

appropriate responses by adapting its decision-making to the
game context.
The main finding of the study was that human subjects

changed their overall strategies in response to changes in the
neural agent’s state (Control or Raphe). Specifically, subjects
switched from a WSLS strategy when playing against a neural
agent with an intact simulated nervous system to a T4T strategy
when playing against a neural agent with a lesion to its sero-
tonergic system (see Figs. 9 and 10). This change in strategy
was independent of the embodiment of the neural agent and
independent of tryptophan levels. A neural agent with a sim-
ulated lesion to its serotonergic system tended toward more
aggressive behavior, because it lost its ability to assess the
cost of an action (see Fig. 7). Subjects playing against such an
opponent did not increase their levels of aggression; that is,
there were not significant increases in their decisions to choose
to Escalate or drive Straight (see Results for details). Rather,
subjects responded to aggressive behavior with aggression and
cooperative behavior with cooperation, through the adoption
of the T4T strategy.
The shift to a T4T strategy may be similar to the rejection of

unfair offers in the Ultimatum Game [4]. In both cases, subjects
behaved irrationally by lowering their overall utility through ag-
gressive behavior. That is, aggressive behavior by both resulted
in lower payoffs (see Tables II and III). In the Ultimatum Game,
a subject rejects what he deems to be unfair offers even if he
is the only one penalized by the rejection, and even if the pro-
poser of the offer is unaware of his actions [8]. A T4T strategy,
which is strategically less advantageous thanWSLS, could send
a message to another player that the subject believes he is being
treated unfairly. The neural agent, which was developed in sim-
ulations against simpler opponents, did not have the capacity to
retaliate. It will be of interest to include this capacity in future
versions of these human-robot interaction studies.
Playing an opponent that is interactive and personified has

previously been observed to evoke strong responses in subjects.
For example, in the Ultimatum Game, subjects reject more of-
fers made by a human partner than those offers made by a com-
puter, suggesting that participants have a stronger emotional re-
action to unfair offers from humans than from a computer [41].
In our study, however, the physical instantiation of the neural
agent in both games did not evoke stronger responses from sub-
jects than did the simulated neural agent. We suggest that both
the simulated and embodied versions of the neural agent evoked
strong responses in subjects because of the neural agent’s adap-
tive behavior. The neural agent demonstrated a variety of strate-
gies and adjusted its behavior to environmental conditions and
its opponent. Moreover, lesions to the neural agent’s simulated
serotonergic system resulted in additional classes of more ag-
gressive opponents.
In previous studies, treatment with ATD has led to an in-

creased number of defections in the Prisoner’s Dilemma [13]
and more rejections of offers in the Ultimatum Game [14]. In
contrast, we did not observe a decrease of cooperativeness in
our subjects due to ATD, but rather the emergence of a signifi-
cant shift in strategies based on opponent type (Figs. 9 and 10).
It may be that iterative interactions with a responsive, adaptive
agent outweighed the effects of ATD in our human subjects.
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Another possible reason for lack of significant effect due to
embodiment and ATD was the small subject size in the study

. The ATD protocol is invasive and time consuming
for subjects. Therefore, it is difficult to run large-scale studies
under this protocol. Moreover, the effects on behavior can be
somewhat mild [13], [14].
Rather than attempting to expand the study, we turned to

hierarchical Bayesian cognitive modeling to analyze individual
differences in behavior during the Hawk–Dove games [36].
This approach to cognitive modeling found a subgroup within
the subject population who tended to Escalate more frequently
when tryptophan depleted, while there was another subgroup
who tended to Escalate less when tryptophan depleted. Simi-
larly, there was a subgroup that Escalated more when playing
the embodied neural agent (robot) and another that Escalated
more against the simulated neural agent. Taken together, these
results: 1) point to the importance of taking individual dif-
ferences into consideration in these types of studies; and 2)
demonstrate that embodiment and serotonin levels had a strong
effect on subject decision-making.
Game theory has revealed the mechanisms underlying

cognitive behaviors, such as cooperation, competition, social
contracts, and reciprocity. Our study, which included both
embodied and simulated versions of adaptive agents, sheds
light on how humans interact with others in conflicting situa-
tions. Moreover, this study will assist in the development of
neural agents that can respond more naturally in human-robot
interactions.
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