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a b s t r a c t

In uncertain domains, the goals are often unknown and need to be predicted by the organism or
system. In this paper, contrastive Excitation Backprop (c-EB) was used in two goal-driven perception
tasks – one with pairs of noisy MNIST digits and the other with a robot in an action-based attention
scenario. The first task included attending to even, odd, low, and high digits, whereas the second task
included action goals, such as ‘‘eat’’, ‘‘work-on-computer’’, ‘‘read’’, and ‘‘say-hi’’ that led to attention
to objects associated with those actions. The system needed to increase attention to target items and
decrease attention to distractor items and background noise. Because the valid goal was unknown,
an online learning model based on the cholinergic and noradrenergic neuromodulatory systems was
used to predict a noisy goal (expected uncertainty) and re-adapt when the goal changed (unexpected
uncertainty). This neurobiologically plausible model demonstrates how neuromodulatory systems can
predict goals in uncertain domains and how attentional mechanisms can enhance the perception for
that goal.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Artificial attentional mechanisms in neural networks tend to
respond to sensory inputs similarly regardless of context and
goals (Itti & Koch, 2000; Tsotsos, Eckstein, & Landy, 2015; Zhang
et al., 2018). However, biological systems select relevant infor-
mation to guide behavior in the face of noisy and unreliable
signals, as well as rapidly adapt to unforeseen situations. Goal-
driven perception treats the same situation differently based on
context and effectively directs attention to goal-relevant inputs.
Often, these goals are unknown and must be learned through
experience. Moreover, these goals or contexts can shift without
warning. Goal-driven perception helps prevent overemphasis on
less relevant stimuli and instead focus on critical stimuli that
require an immediate response.

In the brain, neuromodulators are important contributors to
attention and goal-driven perception. In particular, the choliner-
gic (ACh) system drives bottom-up, stimulus-driven attention, as
well as top-down, goal-driven attention (Avery, Dutt, & Krichmar,
2014). Furthermore, the ACh system increases attention to task-
relevant stimuli, while decreasing attention to distractions (Bax-
ter & Chiba, 1999; Oros, Chiba, Nitz, & Krichmar, 2014). This
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procedure is similar to the core idea behind contrastive Excitation
Backprop (c-EB). In c-EB, a top-down excitation mask increments
attention to the target features, and an inhibitory mask decre-
ments attention to distractors (Zhang et al., 2018). The noradren-
ergic (NE) system responds to surprises or large deviations from
priors (Yu & Dayan, 2005). When the NE system responds phasi-
cally, where the neural activity rapidly and transiently increases,
it causes a network to reset (e.g., by re-initializing activities) that
allows rapid adaptation under unseen/new conditions (Bouret &
Sara, 2005; Grella et al., 2019).

We modified the c-EB network for use in a goal-driven per-
ception task, where the system needed to increase attention to
the intended goal object and decrease attention to the distractor.
In the first experiment, we presented pairs of noisy MNIST digits
to the neural network. One goal class was to attend to the digit
based on its parity (i.e., even or odd goal), and another goal class
was to attend based on the magnitude of the digit (i.e., low- or
high-value goal). In addition, we added a neuromodulatory model
to the head of the network architecture that regulated goal se-
lection. Similar to the model of the ACh and NE neuromodulatory
systems proposed by Yu and Dayan (2005), we framed the task
as an attentional task where the goal (even, odd, low or high
value) needed to be learned from experience (goal identity) and
the goal might be noisy and rewarded with some probability (goal
validity). In the second experiment, we generalized our model
to an action-based attention scenario, where ‘‘eat’’, ‘‘work-on-
computer’’, ‘‘read’’, and ‘‘say-hi’’ were goal actions and the robot
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Fig. 1. Network setup for our bottom-up classification process and our top-down attentional search process, with a pair of noisy MNIST digits as the input data in
the forward pass. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

needed to attend to and retrieve objects that corresponded to the
action.

2. Methods

We modified the c-EB neural network model to attend to
different goals. Section 2.1 describes how we tested the ability
of the network to increase attention to different goals and dig-
its for the noisy MNIST-pair experiment. Section 2.2 introduces
our neuromodulatory learning system to predict unknown and
uncertain goals based on experience, still using the noisy MNIST-
pair experiment as an example. Section 2.3 describes how our
method was generalized to demonstrate goal-driven perception
in a human support robot.

2.1. Network architecture

Fig. 1 shows our bottom-up classification process and our
top-down attentional search process. In the forward pass, the
input layer received a pair of 28 × 28-pixel noisy MNIST digits
and thus had 28 × 28 × 2 = 1568 neurons (LeCun, Bottou,
Bengio, & Haffner, 1998). To test the network’s ability to filter
out distractions, noise that was randomly set between 0 and 0.7
was added to normalized pixel values (between 0 and 1) of the
original MNIST digits. The final pixel values were then normalized
again between 0 and 1.

Following the input layer were two sequential fully connected
hidden layers with 800 and 600 neurons, respectively. Next, there
were two parallel fully connected hidden layers, each with 400
neurons. All neurons in these layers implemented a Rectified
Linear Unit (ReLU) as the activation function (Nair & Hinton,
2010). Each of the two parallel hidden layers led to the output
in one goal class (parity/magnitude) along with the digit output.
For each (left/right) side of the input image, after the third hid-
den layer, there were two parity (an even and an odd) output
neurons and ten digit output neurons, which contributed to the

parity/digit prediction using winner-take-all (WTA) on the activa-
tion probability of each parity/digit output neuron. Similarly the
magnitude/digit prediction was obtained after the fourth hidden
layer for each side of the input image. During training, the final
digit output took the average of the digit output generated from
the two parallel hidden layers. During testing, the final digit
prediction was the digit output generated from one of the two
parallel hidden layers, depending on the cued goal class.

In our top-down attentional search process (see backward
arrows in Fig. 1), one of the four goals (even, odd, low, and high)
was selected, which excited the corresponding goal neuron for
each of the two digits in the image and inhibited all the other
goal neurons at the top layer of the backward pass (i.e., the output
layer of the forward pass). The weights were backpropagated
from the top layer to one of the parallel hidden layers below to
excite the neurons corresponding to the goal (see dashed arrows
from the top layer to parallel hidden layers 3 and 4 in Fig. 1).
Then the weights at the top layer were converted from excitatory
to inhibitory in order to create a mask (note that the weights
were originally non-negative). This inhibitory mask was used in
an additional backpropagation from the top layer to the parallel
hidden layer below corresponding to the goal. The result of a
subtraction between the two backpropagations was a contrastive
signal (Zhang et al., 2018). This contrastive signal was then used
to perform regular EB over the remaining layers, which finally
generated the probability of each given pixel in the input layer
for exciting the cued goal neurons. In addition to exciting the
goal neurons and inhibiting non-goal neurons, the contrastive
signal canceled out common winner neurons. Such a contrastive
extension of the backpropagation could effectively ignore noisy
distractors and lead to more accurate attention focus on the
goal (Zhang et al., 2018).

2.1.1. Modification of c-EB
Excitation Backprop (EB) was developed as a goal-driven at-

tentional framework for a CNN classifier based on a probabilistic
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winner-take-all (WTA) process (Zhang et al., 2018). It could visu-
alize the features at each layer in the hierarchy that were relevant
to a given output neuron. An important extension of EB was to
have contrastive Excitation Backprop (c-EB), which discriminated
the goal pixels from distractors by canceling out common winner
neurons for different goals and amplifying discriminative neurons
for the target goal (Zhang et al., 2018).

The EB mechanism kept non-negative weights between acti-
vation neurons and used these excitatory connections to transmit
top-down signals. The top-down relevance of a neuron an in the
layer Ll was defined by its probability of being chosen as a layer-
wise winner, which was called the Marginal Winning Probability
(MWP) P(an) (Zhang et al., 2018):

P(an) =

∑
am∈(L0,L1,...,Ll−1)

(P(an|am) · P(am)) , (1)

where am denoted each parent neuron in the preceding layer(s).
The winner neurons were recursively sampled in the top-down
direction according to the conditional winning probability
P(an|am) (Zhang et al., 2018):

P(an|am) =

⎧⎨⎩
ân · wnm∑

n:wnm≥0 (ân · wnm)
if wnm ≥ 0,

0 otherwise,
(2)

where wnm was the weight between a parent neuron am and
one child neuron an, and ân denoted a non-negative activation
response.

For c-EB, the contrastive signals were transmitted in the top-
down fashion to obtain highly discriminative attention maps
(i.e., contrastive MWP maps) in the target layer (i.e., the bottom
layer in Fig. 1). Extending from Eq. (1), Zhang et al. (2018) defined
the contrastive MWP (c-MWP) of the target layer Ll as

A − A = P0 · (P1 − P1) · P1 · ... · Pl−1, (3)

where A represented the MWP, A was the dual MWP for the
contrastive units, P0 was the signal from the guessed goal, and
P1 was the conditional probability of the inhibition mask from
the top layer. The weights for the inhibition mask were the
negation of the original weights from the top layer. Therefore, the
threshold condition for P1 was the reverse of that for P1 in Eq. (2).

We extended the PyTorch (Paszke et al., 2017) implementa-
tion of c-EB (Greydanus, 2018), whereas the original code for
c-EB (Zhang et al., 2018) was written in Caffe (Jia et al., 2014).
Different from their implementation, our network included differ-
ent goal classes labeled for each of the two noisy MNIST digits. In
addition, the c-EB was processed through one of the two parallel
hidden layers immediately below the top layer in the backward
pass of our network.

The system increased attention to the digit corresponding to
the selected goal and decreased attention to the distractor digit.
One goal class attended to the digit based on its parity (i.e., either
odd or even), whereas the other goal class attended to the digit
based on its magnitude (i.e., low values between 0 and 4 inclu-
sively or high values between 5 and 9 inclusively). This resulted
in two goals within each goal class. After supervised training on
noisy pairs generated from the MNIST training dataset, c-EB was
applied to the top-down attentional process on the test pairs and
driven by one of the four goals to excite only the pixels relevant
to the goal digit.

Fig. 2 shows the two noisy test pairs and their c-EB generated
attention maps according to each goal. c-EB driven by a goal went
through the backward pass and excited the pixel neurons only
related to the goal digit. On the irrelevant digit side, most pixel
neurons were inhibited instead. Furthermore, background noise
on both sides were ignored. Therefore, the goal digits and goal

Fig. 2. Two example test pairs of noisy MNIST digits and their c-EB highlighted
results. The two digits in each test pair had the opposite goals both in the
parity (even/odd) goal class and in the magnitude (low/high) goal class. These
restrictions were not applied to the training pairs during the experiments.

identity neurons could all be predicted correctly with high cer-
tainty in the end of the forward pass in these examples. However,
even if two goal identities targeted the same goal digit, their
highlighted pixels in c-EB visualization were not all the same. It
is reasonable because our model had different output heads for
the different goal classes.

With the first noisy test pair of ‘‘5’’ and ‘‘4’’ in Fig. 2 as an
example, if an even goal was selected, then both even goal neu-
rons in the left and right digit sides were activated and all other
goal neurons were inhibited in the top layer of the backward
pass. After the c-EB process that sent contrastive signals through
the third hidden layer and added them up for normal EB via the
second and first hidden layers to reach the bottom layer (see
Fig. 1), pixels related to the digit ‘‘4’’ were highlighted, whereas
pixels related to the distractor digit ‘‘5’’ and the background noise
were inhibited.

2.1.2. Training and testing process
The training process consisted of incremental learning on

noisy MNIST pairs. The original MNIST dataset was split into
60,000 digit images for training and 10,000 digit images for
testing (LeCun et al., 1998). At each training step, 256 pairs of
noisy MNIST digits were randomly selected and modified from
the original MNIST training set. Every 200 training steps, 2000
noisy MNIST pairs, randomly selected and modified from the
original MNIST test set, were used for validation to evaluate the
current training progress. The training process stopped after 4400
steps, when the validation accuracy was the highest. Therefore,
a total of 1,126,400 noisy MNIST pairs were used for training.
The following test process consisted of 10,000 pairs randomly
selected and modified from the original MNIST test set. Given
the sizes of the original MNIST training and test sets, there must
be digit overlap within some training pairs or within some test
pairs. However, there was no digit overlap between training and
test. The two digits in each training pair could have the same or
opposite parity (even/odd) and the same or opposite magnitude
(low/high), whereas those in each test pair all had the opposite
parity and the opposite high and low values.

During training, a log-softmax function, followed by a negative
log likelihood function, was applied after the forward pass to
the neurons in the output layers that represented a digit, even
parity, odd parity, low value, or high value. Then the sum of
loss was used to calculate the gradient for each parameter in
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Fig. 3. Two more example test pairs of noisy MNIST digits and their c-EB
highlighted results. The two digits in each test pair had the same goals both
in the parity (even/odd) goal class and in the magnitude (low/high) goal class.
The tested condition with same parity and/or high/low was not included in later
experiments.

the model. At the end of each training step, a parameter update
was performed based on the current gradient calculated using
the Adam optimizer (Kingma & Ba, 2014) with a learning rate of
0.001.

During testing, c-EB drove goal-driven perception by increas-
ing the activity of input neurons corresponding to the goal digit
and masking out the neurons corresponding to the distractor
digit. In the top layer of our network (Figs. 1 and 4), either two
out of the four parity neurons or two out of the four magnitude
neurons were activated, depending on the selected goal. For
example, if an ‘‘odd’’ goal was selected, the odd neuron for the
left digit and the odd neuron for the right digit were both excited,
whereas all other goal neurons for both digits were inhibited. This
resulted in c-EB in the backward pass to increase attention to this
goal and its corresponding digit, and to ignore all other goals (see
blue arrows for a parity goal and red arrows for a magnitude goal
in Fig. 1). Such c-EB generated input, with pixels highlighted for
the goal digit (Fig. 2), then went through the forward pass again in
a way similar to the training process. However, according to the
goal identity, only the parallel hidden layer related to the target
goal class was used to predict the goal digit.

If a test pair had same parity or same high or low values (see
Fig. 3), an existing goal would drive c-EB to highlight pixels from
both digits. As expected, it shows that this ambiguous situation
would cause confusion in the attention system. We assume it
would cause confusion and random selection by a human facing
the same stimuli. Thus, we did not present same parity or same
high or low values as test pairs.

After this training and testing procedure, the parameters of
the fully trained model were fixed for the neuromodulated goal-
driven perception experiments.

2.2. Neuromodulated goal-driven perception

The overall neuromodulated procedure of goal-driven percep-
tion is shown in Fig. 4. As described in Section 2.1.2, the network
was trained with pairs of noisy MNIST digits to learn the dig-
its and their parity (even/odd-value) and magnitude (low/high-
value) goal classes. Then it was tested by selecting one of the
even, odd, low-value, and high-value goals to trigger c-EB in the
backward pass and generate an attention map, which further led
to prediction of the digit and goal in the succeeding forward pass.

After the robustness of c-EB prediction was verified, we applied
ACh and NE neuromodulatory neurons to track the expected and
unexpected uncertainties respectively and guess the goal for each
trial. The guessed goal was applied to the top layer for c-EB as
the intended goal for the current test pair. The guessed goal and
the predicted digit were compared with the true goal and the
true goal-related digit. The prediction was used to modify the
neuromodulatory activities for the next trial, as will be described
in Section 2.2.1.

2.2.1. ACh and NE neuromodulation

Algorithm 1 ACh and NE Neuromodulation Process

Constant Input: β = 0.7, num_switches = 10,
K = 4, trial_interval = 400, trial_range = 30,
nereset = 0.25, nemin

= 0.25, nemax
= 1.0,

chreset
= 1.0, chmin

= 0, chmax
= 10.0,

necorrect = 0.70, newrong = 1.10,
chcorrect = 1.40, chwrong = 0.90
Other Input: all_test_pairs, validity_options
Initialize AChi to chreset for i = 1, 2, ..., K .
Initialize NE to nereset .
Set minLen to (trial_interval − trial_range).
Set maxLen to (trial_interval + trial_range).
for q = 1 to num_switches do

Randomly set majorGoal from 0, 1, ..., K-1.
Set minorGoal from the same goal class.
Randomly set validity from validity_options.
Randomly set trialLen within [minLen,maxLen].
for t = 1 to trialLen do

Pick a new test_pair from all_pairs.
Randomly set r between [0, 1.0).
if r < validity then

Set trueGoal to majorGoal.
else

Set trueGoal to minorGoal.
end if
Select guessGoal from Softmax (see Eq. (4)).
Get trueDigit from test_pair with trueGoal.
Apply guessGoal to the top layer.
Obtain map via c-EB (see Eq. (3)).
Get predDigit via fwd pass with map.
Compare predDigit with trueDigit .
Compare trueGoal with guessGoal.
Update ACh and NE (see Eqs. (5) and (6)).
Compute the reset threshold θ reset (see Eq. (7)).
if NE > θ reset then

Reset AChi to chreset for i = 1, 2, ..., K .
Reset NE to nereset .

end if
end for

end for

For goal-driven perception, the network must select a goal
when they are uncertain and unknown a priori. Similar to a model
of the ACh and NE neuromodulatory systems proposed by Yu
and Dayan (2005), the goal target (even, odd, low, or high value)
was rewarded with a probability (goal validity), but that goal
would change periodically (goal identity). ACh neurons tracked
expected uncertainties of the potential goals. NE neurons tracked
unexpected uncertainties, and responded phasically when a goal
identity change was detected. When the NE system responded
phasically, it caused a network reset by re-initializing the ACh
and NE neural activities, which allowed rapid adaptation under
novel conditions.

Algorithm 1 shows the logic of our ACh and NE neuromodula-
tory model. There were K = 4 ACh neurons, each corresponding
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Fig. 4. The neuromodulated procedure of making digit prediction from a guessed goal for the noisy MNIST-pair experiment.

to a goal (i.e., even, odd, low, or high value), and one NE neuron.
One of the four attentional goal tasks was selected as the major
goal for each goal switch. The true goal identity in each trial was
set to either the major goal or the minor goal according to the
goal validity (see Section 2.2.2 for details). The true goal digit was
obtained from the labels of the test pair by using the true goal
identity. The activities of ACh neurons were input to a softmax
function for goal selection:

p(goal)i =
exp(β · AChi)∑K
j=1 exp(β · AChj)

for i = 1, 2, . . . , K , (4)

where β was the temperature governing exploration versus ex-
ploitation and p(goal)i was the probability of selecting goal i. This
guessed goal activated two neurons related to the goal in the top
layer of our network architecture (Figs. 1, 4), which directed c-
EB in the backward pass to activate the goal-relevant pixels in
the test pair and then predicted the digit in the forward pass. If
the prediction was correct (which means that the guessed goal
identity matched the true goal identity and the predicted digit
matched the true goal digit), the ACh level corresponding to the
guessed goal (i.e., AChg ) increased and the NE level decreased; the
opposite would happen otherwise:

(AChg )t =

{
min(chcorrect (AChg )t−1, chmax) if correct,

max(chwrong (AChg )t−1, chmin) otherwise,
(5)

NEt =

{
max(necorrect · NEt−1, nemin) if correct,

min(newrong · NEt−1, nemax) otherwise,
(6)

where [chmin, chmax
] and [nemin, nemax

] were ranges for ACh and
NE levels. chcorrect and newrong must be set within [1.0, 2.0), and
chwrong and necorrect must be within (0, 1.0]. If the NE level was
above a threshold θ reset , ACh and NE activities were reset to
baseline levels (Yu & Dayan, 2005):

θ reset
=

(∑K
i=1 AChi

)
/K

0.5 +

(∑K
i=1 AChi

)
/K

. (7)

Our settings for constant parameters of the neuromodulation
process are listed in Algorithm 1. However, there was a wide
range of parameter values that could be used to produce stable
results. The randomness in Algorithm 1 followed a uniform distri-
bution within the ranges specified, except that selecting guessGoal
required the softmax distribution.

2.2.2. Goal selection
We added an online neuromodulatory model (Fig. 4 and

Algorithm 1) to the head of the network architecture in the
backward pass to regulate goal selection automatically. In these
experiments, the goal (with goal identities of even, odd, low, or
high value) needed to be learned from experience. It might be
noisy and rewarded with some probability (i.e., goal validity).

Automatic goal selection was tested in 10 runs to measure
the average performance. In each run, one of the four attentional
goal tasks was randomly selected as the major goal, which stayed
the same every 400 ± 30 trials for 10 switches. The minor goal
identity came from the same goal class as the major goal identity.
For example, if the major goal was ‘‘high’’, then the minor goal
became ‘‘low’’ in the same magnitude goal class; or if the major
goal was ‘‘even’’, then the minor goal became ‘‘odd’’ in the same
parity goal class. The true goal identity was set to either the
major goal or the minor goal randomly according to the validity
distribution per trial. The true goal digit was obtained from the
labels of the test pair of noisy MNIST digits using the true goal
identity.

The goal validity values (i.e., 0.99, 0.85, and 0.70) were chosen
to correspond with Yu and Dayan (2005). The major goal validity
was randomly chosen among the three values each time the
major goal identity got switched in a run. The minor goal validity
was (1 − major goal validity).

2.3. Action-based attention in a robot experiment

To test whether the goal-driven perception model could gen-
eralize to a more real-world application, we tested the model
in an action-based attention task on the Toyota Human Support
Robot (HSR) (Yamamoto, Nishino, Kajima, Ohta, & Ikeda, 2018).
For the second experiment, we had four goal actions (i.e., ‘‘eat’’,
‘‘work-on-computer’’, ‘‘read’’, ‘‘say-hi’’) that were associated with
images of objects seen by the HSR. Given a desired action, the task
for the HSR was to guess the action and direct attention to the
object in the scene that could achieve that action. For example,
the action ‘‘eat’’ might result in attention to an ‘‘apple’’.

For object classification, we used the Microsoft COCO dataset
(Lin et al., 2014) to train a GoogLeNet (Szegedy et al., 2015) via
the Caffe framework (Jia et al., 2014) instead of the MNIST-pair
network shown in Fig. 1. An advantage of the COCO dataset was
it used segmentation to localize individual object instances in an
image, which was more accurate and more helpful for top-down
attention than using bounding boxes.

For each run of this experiment, desired actions were ran-
domly switched every 50 trials for 10 switches. In each trial,
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Fig. 5. The neuromodulated procedure of making object prediction from a guessed goal action for the indoor robot experiment.

Fig. 6. The top-down attentional search process for a guessed action ‘‘eat’’ based
on three different real indoor views to select the highest attention region for
bottom-up object prediction.

Fig. 7. The test scenario for the indoor robot experiment.

each image from three capture angles within an indoor scene
was loaded as the input to the pretrained bottom-up model and
went through a forward pass with the output layer specified as
‘‘loss3/classifier’’ in Caffe. The number of output prediction classes
was set to 80, same as the number of object labels available for
the COCO dataset (Lin et al., 2014). Then the c-EB method was
applied for the top-down attention process. As in the MNIST-pair
experiment, the ACh–NE neuromodulation process with softmax

Table 1
Relationship between goal actions and object labels.
Action Role Objects in role

eat obj banana, apple, sandwich, orange, donut,
carrot, broccoli, hot dog, pizza, cake

instr fork, knife, spoon, bowl, cup
work instr laptop, tv, mouse, keyboard
read obj book

instr laptop, cell phone
say-hi obj person

on the ACh activities was applied for goal (action) selection (see
Fig. 5).

Table 1 linked the guessed action with all related objects –
from 80 COCO labels regardless of their semantic roles – which
might or might not exist in the test scenario. Those activated
object neurons in the top layer drove the c-EB through the second
top layer ‘‘pool5/7x7_s1’’ and then normal EB to the bottom
layer ‘‘pool3/3x3_s2’’ to generate attention maps related to this
guessed goal action. The notation ‘‘pool5/7x7_s1’’ referred to a
pooling layer with a kernel size of 7 × 7 and a stride of 1. Only the
highest attention region (with normalized attentional strength
above the threshold of 0.1) corresponding to one of the three
real captures maintained its original pixel values, whereas all
other parts of the image became black (see Fig. 6). This attention-
modulated image became the input to the forward pass of the
network and generated object prediction via the top layer. Three
conditions needed to be satisfied to generate a overall correct
match for that trial: (1) the guessed action matched the true
action; (2) the predicted object matched the real object in the
scene; (3) the predicted object was associated with the guessed
action.

The test environment for this experiment was a classroom
scenario as shown in Fig. 7. The test agent was a Toyota HSR (Ya-
mamoto et al., 2018). During each trial, the HSR first guessed
an action using the activity of the neuromodulatory neurons and
linked it with objects using the semantic network. The HSR then
moved from a starting point to the center of the testing scenario,
where it captured three images from different view angles using
the RGB-D camera. After the attention network predicted an
object as described above, the HSR moved towards the object
and either picked up the object if it was grabbable (e.g., apple)
or pointed at the object with its arm (e.g., laptop). At the trial
end, the HSR would present the object to a user who would
respond with a ‘‘YES’’ if it matched his/her desired action or
otherwise with a ‘‘NO’’. This feedback would be used by the
neuromodulatory model to adjust the activity levels of both the
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Table 2
Prediction for 10,000 test pairs of noisy MNIST digits.
Goal task % Correct digit prediction % Correct goal prediction

Even 92.03 99.50
Odd 91.15 99.75
Low 95.39 99.54
High 87.46 98.22

NE neuron and the ACh neuron related to the current guessed
action before guessing the action for the following trial.

3. Results

Section 3.1 shows how the network attended to correct goals
and predicted the digits corresponding to those goals. Section 3.2
demonstrates the ability of the neuromodulatory head to learn
goals based on its experience in uncertain domains. Section 3.3
shows the necessity of having both NE and ACh neurons to
correctly predict goals. Section 3.4 compares the performance
of our method with two benchmarks. The experiments in these
sections were carried out with noisy MNIST pairs. Section 3.5
shows how our goal-driven perception method generalized to an
action-based attention task with a physical robot.

3.1. Digit prediction with c-EB and noisy MNIST pairs

The training process was carried out for 4400 steps, including
256 noisy MNIST pairs modified from the original MNIST training
set per step. The prediction performance of the fully trained
model was tested on 10,000 pairs of noisy MNIST digits modified
from the original MNIST test set (LeCun et al., 1998). Table 2
shows the digit and goal prediction results with c-EB driven by
one of the four goal tasks (i.e., even, odd, low, or high value).

The goal was predicted along with the digit in the output
layers for each forward pass. As shown in Table 2, the model
predicted the goal correctly over 99% of the time, meaning that
after the backward and forward passes the most active neuron
for goal prediction matched the true goal. The model predicted
the goal digit correctly over 90% of the time, meaning that the
most active digit neuron matched the expected digit correspond-
ing to the goal (see Table 2). This indicates that the goal tasks
were successfully understood by the c-EB process to highlight
related pixels. Although the statistics of the high-value goal task
was slightly weaker than that of the other three goal tasks, the
performance was still robust overall.

In the next section, we show how this network can au-
tonomously predict goals in uncertain domains.

3.2. Goal-driven perception with uncertainties

The robust digit and goal prediction results using c-EB (see
Section 3.1) assured that the network architecture could be ap-
plied to situations where goals are uncertain and contexts are
unknown. Therefore, the next step was to test the reliability and
flexibility of our proposed neuromodulation model for predicting
goals in a noisy, dynamic environment.

Fig. 8 shows typical runs of our neuromodulated system for
three major validity settings. For each major validity of 0.99
(Fig. 8a), 0.85 (Fig. 8b), or 0.70 (Fig. 8c), the first subplot includes
the true goals (labeled as ‘‘major goal’’ and ‘‘minor goal’’) and
ACh-guessed goals (labeled as ‘‘guess’’); the second and third
subplots show NE and ACh levels. Note that the activity level of
the ACh neuron corresponding to a major goal quickly increased,
driving attention to the most likely goal as well as suppressing
attention to distractors. In cases where the major goal validity

was low, the ACh neuron corresponding to the minor goal was
also activated, resulting in more exploration and a higher chance
of guessing the minor goal. Interestingly, the prediction during
exploration tended to remain in the same goal class. When there
was a change in the goal identity, the NE neuron quickly rec-
ognized the change and responded with spiking activity. This
caused the activities in the goal prediction network to reset, and
a short period of exploration before the system found the new
goal identity. Lower major goal validity led to longer exploration,
especially after a goal identity switch, as well as more frequent
NE bursts.

We also ran experiments where the goal validity could change
during the run. Fig. 9 shows the performance of a typical run
with random switching among three major goal validity options,
0.99, 0.85, and 0.70. Similar to Fig. 8, the system in this setting
still focused more on the major goal. With lower major goal
validity (i.e., when the major goal appeared less frequently, see
0.70 in Fig. 9), the NE neuron fired phasically more frequently;
meanwhile, the activity level of the major goal’s ACh neuron
oscillated more frequently with larger amplitude, giving higher
potential for the minor goal’s ACh neuron to fire at a low level.
Because both the goal validity and goal identity changed during a
run, the exploration period lasted longer with a lower major goal
validity of 0.85 or 0.70. However, this also led to higher prediction
accuracy of the minor goal.

Table 3 shows the performance of goal and digit prediction on
the noisy MNIST pairs over 10 runs for each validity setting. The
third and fourth columns refer to the percent of trials at which
the goal digit prediction was correct. The fifth column refers to
the percent of incorrect goal guesses based on the ACh softmax
distribution (see Eq. (4), with β = 0.7). The sixth column refers to
the percent of incorrect digit predictions with c-EB driven by the
guessed goal, when the ACh-guessed goal already matched the
true goal. The seventh column refers to lag length of choosing
the correct goals, which was computed as the number of trials
between the first trial of a major goal switch and when the
network started consistently making correct goal prediction at
least 80% of the time over the last 10 trials. The first three rows
provide average statistics for runs at which a single goal validity
was tested (see also Fig. 8), and the last row corresponds with
runs at which the goal validity could change randomly among
three options (see also Fig. 9).

3.3. Ablation studies

We wanted to understand the effect of each neuromodulator
on the network’s capability of goal selection. Therefore, we sim-
ulated ablation studies on ACh and/or NE neurons in a randomly
changing goal validity experiment. These ablations had drastic
effects on performance (see Table 4 and Fig. 10) compared to the
complete network. With ablation of the NE neuron (see Fig. 10a),
there was no scheme for network reset. The ACh neurons were
still able to track the major goal switches. However as time
elapsed, it took longer for the ACh activity level corresponding
to the major goal to rise significantly and properly after each
major goal switch, as measured by the lag length. With ablation
of the ACh neurons (see Fig. 10b), the goal guessing became
random. The firing rate of the NE neuron increased rapidly in the
beginning and stayed at extremely high values afterwards. With
ablation of both ACh and NE neurons (see Fig. 10c), there was no
firing activity of either the NE or ACh neurons, and thus the goal
guessing was random. These ablation studies demonstrate the
necessity of having one system track the expected uncertainties
of goals (ACh) and another respond appropriately when the goal
distribution changes (NE).
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Fig. 8. Visualization of goal-driven perception performance on noisy MNIST pairs with the major goal validity chosen from (a) 0.99, (b) 0.85, or (c) 0.70. The major
goal identity was randomly picked every 400 ± 30 trials for 10 switches in a run. The minor goal was the other goal in the same class of the major goal. For
example, if the major goal ‘‘odd’’ had validity of 0.70, the minor goal ‘‘even’’ had validity of 0.30 until the next major goal switch. For each major goal validity, the
top subplot shows guessed goal identities (in yellow) and true goal identities (either major goals in red or minor goals in blue); the middle and bottom subplots
show NE and ACh levels. A softmax function (see Eq. (4), with β = 0.7) was applied to ACh levels for goal guessing. See text for details. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 3
Average goal-driven perception performance on noisy MNIST pairs over 10 runs for each of the four goal validity settings. The first three rows of data correspond
with the first experiment of one major goal validity. The last row relates to the second experiment of randomly switched goal validity. p_valid means the major
goal validity, and (1 − p_valid) means the minor goal validity. In each run, the major goal was randomly picked every 400 ± 30 trials for 10 switches. The minor
goal was selected from the same goal class. The β value for the softmax function (see Eq. (4)) was set to 0.7.
Major goal
validity

Minor goal
validity

% Correct major
goal

% Correct
minor goal

% Incorrect ACh softmax
goal guessing

% Incorrect c-EB digit
prediction

Lag length
(trials)

0.99 0.01 86.1 0.0 7.8 6.1 21
0.85 0.15 73.0 0.3 20.4 6.3 29
0.70 0.30 57.9 1.5 34.3 6.3 48
p_valid 1 − p_valid 75.1 0.7 18.0 6.2 30

Table 4
Average goal-driven perception performance on noisy MNIST pairs over 10 runs for each of the four ablation conditions on the NE and/or ACh
neuron(s). In each run, the major goal was randomly picked among the four goal options every 400 ± 30 trials for 10 switches. For each major
goal switch, the major goal validity was selected randomly among 0.99, 0.85, and 0.70. The minor goal was selected from the same goal class. The
β value for the softmax function (see Eq. (4)) was set to 0.7.
Ablated
neuron(s)

% Correct major
goal

% Correct
minor goal

% Incorrect ACh softmax
goal guessing

% Incorrect c-EB digit
prediction

Lag length
(trials)

None 75.1 0.7 18.0 6.2 30
NE 70.8 1.1 21.6 6.5 54
ACh 19.8 2.9 70.9 6.4 400
NE & ACh 19.9 2.9 70.9 6.3 400

Table 5
Average goal-driven perception performance on noisy MNIST pairs over 10 runs among neuromodulated softmax (with β = 0.7), neuromodulated WTA, and ‘‘random-
or-fixed’’ methods. In each run, the major goal was randomly picked among the four goal options every 400 ± 30 trials for 10 switches. For each major goal switch,
the major goal validity was selected randomly among 0.99, 0.85, and 0.70. The minor goal was selected from the same goal class.
Goal-guessing method % Correct major goal % Correct minor goal % Incorrect goal guessing % Incorrect c-EB digit prediction Lag length (trials)

Neuromodulated softmax 75.1 0.7 18.0 6.2 30
Neuromodulated WTA 76.4 0.8 16.5 6.3 24
‘‘Random-or-fixed’’ 63.1 1.7 29.0 6.2 23

Fig. 9. Visualization of goal-driven perception performance on noisy MNIST pairs with the major goal validity randomly switching among 0.99, 0.85, and 0.70. All
other settings were the same as shown in Fig. 8. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

3.4. Goal selection method comparison

In the neuromodulated procedure of our model (see Fig. 4), the
goal was selected by calculating the softmax distribution based on
the activities of the four ACh neurons (see Eq. (4), with β = 0.7).
The softmax function was important for raising the chance of
choosing the minor goal when the major goal validity was low
(e.g., 70%). We compared softmax to a winner-take-all (WTA)
selection method, which still used the neuromodulatory head.

In addition, we compared the neuromodulatory head to an-
other benchmark, which we call ‘‘random-or-fixed’’. In the
‘‘random-or-fixed’’ benchmark, a predicted goal was randomly
selected until it matched the true goal. Then the goal selection
was fixed until a mismatch appeared. In other words, whether
the guessed goal was random or stayed the same depended on
whether there was a mismatch or match in the goal guessing
process of the previous trial.

Table 5 shows the performance comparison among neuromod-
ulated softmax (shown in Fig. 9), neuromodulated WTA (shown
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Fig. 10. Visualization of goal-driven perception performance on noisy MNIST pairs with the major goal validity randomly switching among 0.99, 0.85, and 0.70, after
(a) NE ablation, (b) ACh ablation, and (c) NE and ACh ablation. All other settings were the same as shown in Figs. 8 and 9. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

in Fig. 11), and ‘‘random-or-fixed’’ (shown in Fig. 12) on the noisy
MNIST pairs. All three methods had similar lag lengths. Although
the ‘‘random-or-fixed’’ method generated the highest percentage
of minor goal matches, it was mostly caused by random guesses

among all four goals, which also lowered the percentage of ma-
jor goal matches. Therefore, the neuromodulation process was
important for quickly following the desired goal class without
hesitating over all four goals after each major goal switch. For
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Fig. 11. Visualization of goal-driven perception performance on noisy MNIST pairs with the major goal validity randomly switching among 0.99, 0.85, and 0.70. In
this neuromodulated benchmark, WTA replaced the softmax distribution in our model for cholinergic goal guessing. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Visualization of goal-driven perception performance on noisy MNIST pairs with the major goal validity randomly switching among 0.99, 0.85, and 0.70. In
this ‘‘random-or-fixed’’ benchmark, whether the guessed goal was random or stayed the same depended on whether there was a mismatch or match in the goal
guessing process of the previous trial. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

neuromodulated softmax and neuromodulated WTA, their overall
accuracy of major and minor goal guessing was quite similar.
However, comparing Fig. 9 for softmax with Fig. 11 for WTA, we
observed that the softmax function allowed higher chances of
selecting the minor goal during the intervals at which the major
goal validity was low, whereas the WTA function would like to
select the major goal regardless of its true validity and could
cause a much longer lag when the major goal validity dropped.

3.5. Goal-driven perception on robot

To demonstrate that our model could generalize to a more
practical application than MNIST digits, we tested our model on
a human support robot that needed to guess an action with
the neuromodulatory head, selectively attend to an object that
corresponded to that action, and retrieve the object. The methods
for this scenario were described in Section 2.3.

Fig. 13 shows the performance of a typical run of the action-
based goal-driven perception. Its neuromodulation process was
similar to Algorithm 1 for the noisy MNIST-pair experiment.
Changes included using input images from three view angles of
the HSR’s camera, a fixed goal (action) validity of 1, and several
parameter value adjustments (i.e., β = 10, trial_interval = 50,
trial_range = 0, necorrect = 0.75, newrong = 1.15, chcorrect = 1.35,
chwrong = 0.95). The average goal selection error for 5 runs was
23.8%, which was higher than the noisy MNIST-pair experiment
(see Table 3) because of the shortened trial interval for each goal

(action) switch. The average c-EB object prediction incorrectness
was 30.6%. The average lag length was 13 trials. Uncertainties in
each trial were addressed by possible object location switch, pos-
sible object removal and/or introduction, possible multi-instances
of the same object(s), and slight view angle adjustment, in addi-
tion to possible true action switch (i.e., every 50 trials, not given
to the agent). A complete trial with HSR in the testing room can
be watched in a YouTube video (https://youtu.be/DUy-0fDZEvY).

4. Discussion

4.1. Main findings

In this paper, we have shown that a neuromodulated goal-
driven perception model, which combines ideas from neuro-
science with goal-driven perception in machine learning and
artificial neural networks, could track context and flexibly shift
attention to intended goals. Among many top-down attentional
systems, we adapted c-EB (Zhang et al., 2018) as part of our
model because of its similarities to how the ACh neuromodula-
tory system both increments attention to a goal and decrements
attention to a distractor (Baxter & Chiba, 1999; Oros et al., 2014).
Goals are often unknown and need to be discovered. The c-EB
algorithm was modified to support multiple goals. After training,
the biologically inspired algorithm could quickly learn the context
without supervision, flexibly apply attention to the appropriate
goal, and rapidly detect and re-adapt to context changes.

https://youtu.be/DUy-0fDZEvY
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Fig. 13. Visualization of action-based goal-driven perception performance on different angles of robot views in an indoor scenario. The true goal action was randomly
picked every 50 trials for 10 switches in a run. A softmax function (see Eq. (4), with β = 10) was applied to ACh levels for action guessing. See text for details. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.1.1. Neural implementation of uncertainty tracking
Yu and Dayan (2005) proposed a Bayesian model of neu-

romodulation in which the ACh system tracked expected un-
certainty and the NE system tracked unexpected uncertainty.
The present paper advances this work in two ways to support
goal-driven perception: (1) The Bayesian model was recast as a
neural model to make it compatible with neural networks. The
neuromodulators were implemented as a neural network layer
to drive attention toward a goal digit and divert attention away
from distractors. (2) A neural network reset was implemented to
rapidly re-adapt when a goal changes.

Neuroanatomical studies show the basal forebrain, which con-
tains ACh neurons, has topographical connections specific to
stimulus modalities and values (Zaborszky, 2002). Therefore, dif-
ferent ACh neurons tracked the expected uncertainties of differ-
ent potential goals in our model. In a dynamic situation, the goal
identity can change unexpectedly. Empirical evidence suggests
that the NE system detects such changes and generates a ‘‘reset’’
signal to discard prior expectations when these expectations
are violated (Bouret & Sara, 2005; Grella et al., 2019). In our
experiments, the NE system rapidly recognized a change in the
goal contingency, and drove a reset of ACh and NE activities.
This caused the neural network to quickly explore new goals. It
should be noted that the ‘‘reset’’ did not erase the learned object
categories (e.g., digit parity and magnitude). Instead, it cleared
the prior likelihood of potential goals, and resulted in a rapid
re-adaptation to the new goal distribution.

In the real world, goals are often uncertain and unknown. In
our noisy MNIST-pair experiment, the goal validity (i.e., prob-
ability of a goal being rewarded) ranged from 0.99 to 0.85 to
0.70, and the system needed to respond by either choosing the
most likely goal or exploring alternative goals. Furthermore, the
experimental design had a hierarchy of goals. For example, the
goal would be to attend to the parity goal class and the sub-goal
might be to reward odd digits 70% of the time and even digits 30%
of the time. Interestingly, the neural network would often stay
within a goal class (i.e., to choose parity and not magnitude).

In the robot action-based attention experiment, the objects
linked with a predicted goal action might or might not exist in
the views and may probably be at different locations. The adapted

c-EB attention mechanism could pay significantly higher atten-
tion to existing objects. Selecting the highest attention region
helped further with object localization and prediction. In both the
MNIST-pair and real-scenario experiments, the unexpected major
goal (action) switch after some trials could be quickly caught by
the network within an acceptable lag.

4.1.2. Exploration and uncertainty seeking
Exploring options, rather than always choosing the most likely

goal, is known as probability matching behavior (Wozny, Beier-
holm, & Shams, 2010). Similar to the results presented here,
humans tend to underselect the most rewarding goal (Craig,
Phillips, Zaldivar, Bhattacharyya, & Krichmar, 2016). Such behav-
ior may be due to feature exploration, as subjects test hypotheses
by switching between the features before deciding upon their
most rewarding goal. In rodent studies, it has been shown that
rats will seek uncertainty, and that this uncertainty seeking is
governed by the ACh system (Naude et al., 2016). These uncer-
tainty seeking strategies that appear in natural systems may be
advantageous for artificial systems that are deployed in dynamic
environments.

4.2. Related work

Top-down task-driven attention is an important mechanism
for efficient visual search in humans and artificial systems (Baluch
& Itti, 2011). Many computational models of attention have been
proposed and implemented to either explain top-down attention
or develop an application inspired by these mechanisms (Tanner
& Itti, 2017, 2019; Tsotsos et al., 2015). Of particular interest
are attentional systems that can leverage the power of CNNs.
In these cases attentional information can propagate backwards,
highlighting the features of a given goal (Zhang et al., 2018; Zhou,
Khosla, Lapedriza, Oliva, & Torralba, 2016). Similar to the effect
of the ACh system to increment attention to a goal and decre-
ment attention to distractors (Baxter & Chiba, 1999), Zhang et al.
(2018) proposed an Excitation Backprop (EB) mechanism with a
contrastive top-down signal to enhance the perception of goal
features. Similarly, Zhou et al. (2016) proposed a technique called
Class Activation Mapping (CAM) for identifying regions in an at-
tention map. Selvaraju et al. (2017) proposed Gradient-weighted
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Class Activation Mapping (Grad-CAM) to highlight regions of
interest and generate visual explanations. Their model could be
applied to any CNN with no re-training. Similarly, our proposed
model can work with any CNN. Moreover, our model replaces
the Winner-Take-All mechanism or rigid probabilistic methods,
with a flexible and adaptable layer based on neurobiological
neuromodulation.

Intrinsic rewards and curiosity seeking have similarities to the
exploration due to uncertainty demonstrated by our model. These
intrinsic reward systems typically are rewarded for exploring
infrequently observed states (Achiam & Sastry, 2017; Burda et al.,
2018; Pathak, Agrawal, Efros, & Darrell, 2017), whereas the model
introduced here selects goals based on the expected uncertainty
of stimuli. In future work, it may be of interest to combine
intrinsic rewards with uncertainty seeking.

4.2.1. Uniqueness of our model
Our model is unique compared to existing attention models –

they only focus on highlighting predefined (and pre-trained) goal
objects in test images (Cao et al., 2015; Cho, Courville, & Bengio,
2015), without any ability to deal with unpredictable switching
and validity of goals. c-EB, which we adapted in our work, has
been shown to achieve top-down attention competitively and
robustly (Zhang et al., 2018). Moreover, it is similar to how the
ACh neuromodulatory system both increments attention to a
goal and decrements attention to a distractor (Baxter & Chiba,
1999; Oros et al., 2014). The neuromodulatory layer on top of
a top-down attentional network demonstrates a means toward
goal-driven perception where the system can autonomously learn
which objects to attend to and which objects to filter out in a
noisy, dynamic setting.

In addition to the unique aspects of our neuromodulatory
model, its robustness was ascertained via comparisons with neu-
romodulated WTA and ‘‘random-or-fixed’’ benchmarks. We also
used ablation studies to show the necessity of having both ACh
and NE neuromodulators to track the expected and unexpected
uncertainties of goals and respond appropriately when the goal
distribution changes. Further, generalization was ascertained via
the HSR implementation in a real indoor scenario.

4.3. Future directions

4.3.1. Handling new goals
In the present work, the goal classes were known, and the

system guessed the appropriate goal given a goal identity and
goal validity. However, the system might need to adapt to new
goals or new goal classes. Adding multiple heads to the output
layer of the network is one way to handle this. Instead of re-
training the stimuli (e.g., digits or real objects), it would require
some additional training for the new goal classes. However, the
architecture might be more scalable with a single head that learns
the goals online without any a priori assumptions. Similar to the
present model, these unknown goals would initially be guessed.
After sufficient reward feedback, the model would associate dif-
ferent goals with different reward likelihoods. The introduction
of the ACh/NE neuromodulation should make the goal search fast
and flexible. This will be explored in future iterations of our work.

4.3.2. Different attentional mechanisms
The choice of c-EB for a top-down attentional mechanism was

motivated by its similarity to ACh system and its affect on top-
down attention. However, as mentioned above, we believe that
the proposed system could also work with other state-of-the-art
attentional mechanisms, including the CAM (Zhou et al., 2016)
and its more general variation Grad-CAM (Selvaraju et al., 2017).
As long as the neural network structure can support an additional
neuromodulation layer, and there is some means to flow goal
information from the top to lower layers, our neuromodulatory
goal-driven perception system should be compatible.

4.3.3. Application for artificial intelligence (AI)
We have shown the compatibility of the adapted c-EB atten-

tion mechanism with the Microsoft COCO dataset and an indoor
scenario. Our model is applicable in broader AI scenarios. If a
system (e.g., a self-driving car, a human support robot, etc.) faces
many known and unknown task structures, our neuromodulatory
goal-driven architecture would be able to help it choose tasks
wisely regarding seen/unseen goals in a complex scenario.

4.3.4. Inspiration for cognitive neuroscience
Our experimental design could be replicated in biological stud-

ies with non-human primates or rodents to investigate relevant
neuromodulatory signals in the brain. We predict that NE neu-
rons would increase phasic activity after a goal switch. Cor-
betta, Patel, and Shulman (2008) have shown that the locus
coeruleus/norepinephrine system redirects attention from one
object to another, and switches attention between networks.
Attention is strongly modulated by acetylcholine through its pro-
jections to sensory cortex (Sarter, Hasselmo, Bruno, & Givens,
2005). Cholinergic activation has been shown to increase goal-
driven attention in V1 by increasing the firing rate of neurons
coding the attended objects (Goard & Dan, 2009; Herrero et al.,
2008). It would be of interest to test whether ACh activity to V1
becomes somewhat random after phasic NE responses and if ACh
modulation varies depending on goal validity.

The robot experiments highlight a somewhat unexplored as-
pect of attention. In addition to feature or spatial attention, atten-
tion is deployed to intended actions (for a review, see Atkinson,
Simpson, & Cole, 2018). Recent results suggest that attention
is required for both action planning and movement outcome
monitoring (Mahon, Bendžiūtė, Hesse, & Hunt, 2018). In our robot
experiments, an intended action led to attention to an object
associated with the desired action. Such an attentional network
could have benefits for human–robot interaction, especially when
the intended actions could change due to context.

5. Conclusions

In this paper, we introduced a model of ACh and NE neu-
romodulation to perform goal-driven perception. The proposed
network architecture discovers goals using online learning, and
highlights the stimulus features corresponding to the goal. More-
over, the proposed system rapidly adapts when goal contingen-
cies change. This neurobiologically inspired model can be ap-
plied to other problem domains and other top-down attentional
networks.
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