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Abstract—Robots and self-driving vehicles face a number of
challenges when navigating through real environments. Success-
ful navigation in dynamic environments requires prioritizing
subtasks and monitoring resources. Animals are under similar
constraints. It has been shown that the neuromodulator serotonin
(5-HT) regulates impulsiveness and patience in animals. In the
present paper, we take inspiration from the serotonergic system
and apply it to the task of robot navigation. In a set of outdoor
experiments, we show how changing the level of patience can
affect the amount of time the robot will spend searching for a
desired location. To navigate GPS compromised environments,
we introduce a deep reinforcement learning paradigm in which
the robot learns to follow sidewalks. This may further regulate a
tradeoff between a smooth long route and a rough shorter route.
Using patience as a parameter may be beneficial for autonomous
systems under time pressure.

Index Terms—autonomous vehicle, deep reinforcement learn-
ing, impulsiveness, navigation, neuromodulation, road following,
serotonin

I. INTRODUCTION

Real-world environments can change due to the season,
time of day, construction, or the behavior of other agents.
Furthermore, goals, motivations, or context can change due
to altered conditions. Uncertainty can arise due to sensor
noise, unforeseen obstacles or uncertain goals. An autonomous
system needs to cope with these challenges and have the ability
to rapidly adapt its behavior based on the current situation.

For successful behavior in a dynamic world, an agent
may need to tradeoff between patience and assertiveness. For
example, a self-driving car may get stuck at a four-way stop
sign because human drivers are not waiting their turn. A
self-driving car that became impatient would eventually assert
itself, and move into the intersection. On the other hand, in
a dangerous driving situation (e.g., icy roads), an autonomous
vehicle may need to slow down and possibly delay its arrival
time for safe travel. In this case, patience is a virtue. Or if
a search and rescue robot’s task is to locate as many injured
people as possible, even if it means the robot could run out
of energy, patient search would be a priority. In these cases, a
signal dynamically regulating the patience, or impatience, of
the autonomous system would be beneficial.

Biological inspiration for regulating patience in autonomous
systems could be obtained from the mammalian nervous
system, which has a number of neuromodulators that regulate
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context, signal changes, and direct actions. The neuromodula-
tor serotonin (5-HT) is thought to have a role in harm aver-
sion, anxious states, and temporal discounting [1]]. Recently,
Miyazaki and colleagues showed that optogenetically increas-
ing 5-HT levels caused mice to be more patient, especially
when the timing of a reward was uncertain [2f]. Based on
these results, they developed a Bayesian decision model for
the probability to wait or quit.

Although great progress has been made in the robotics
community for path planning, there are still a number of open
issues when it comes to flexible navigation under dynamic
conditions [3]. Classic path planning algorithms include Di-
jkstra’s algorithm, A Star (A*), and D*. Dijkstra’s algorithm
uses a cost function from the starting point to the desired goal.
A* additionally considers the distance from the start to the
goal “as the crow flies” [4]. D* extends the A* algorithm by
working backward from the goal toward the start position, and
can readjust costs, allowing it to replan paths in the face of
obstacles [5]. However, these cost functions are typically fixed
or deterministic. Neurobiolgically inspired algorithms have
demonstrated the ability to readjust paths depending on cost,
such as our work on adaptive path planning [6]], and Erdem
and Hasselmo’s work that demonstrated the ability to take
shortcuts [[7]]. The above algorithms do not consider motivation
or context, and do not reflect the flexibility observed in animal
navigation.

In order to add context and flexibility to path planning, we
apply the rodent model of patience [2f] to a ground robot.
Specifically, our robot navigates through a series of waypoints.
The level of 5-HT dictates how patiently the robot will search
for a waypoint. We show that changing the 5-HT level can have
dramatic effects on the robot’s behavior. Such a system may
be beneficial for adjusting autonomous behavior depending on
the context and uncertainty of a situation.

II. METHODS
A. Navigation task

Robot navigation tasks were carried out in two different
outdoor parks with varying terrain and features. Figure [I]
shows satellite images of the two parks. Waypoints were
GPS coordinates placed on sidewalks in the park. The park
on the left of Figure Encinitas Community park, was



relatively flat. Waypoints were placed along the perimeter of
the test area on either sidewalks or the paved parking lot. In
the middle of the test area was a grassy region with some
trees. The park on the right of Figure [} Aldrich park at
the University of California, Irvine, was hilly with numerous
obstacles (e.g., bushes, benches, and buildings). It should be
noted that the Aldrich park test area was in a sunken bowl
surrounded by tall buildings and trees. These features made
GPS signals unreliable. For this reason, a road following
algorithm, which will be discussed below, was introduced
to assist with navigation. The waypoints were placed on the
sidewalk that surrounded the inner grassy region.

In both parks, the robot’s task was to proceed to each
waypoint in order. If the robot became impatient, it would
skip searching for the present waypoint and randomly choose
a future waypoint. However, the robot had to reach the last
waypoint for a trial to be complete.

B. Robot and Software Design

For the robot experiments, we used the Android-Based
Robotic platform [6]], a mobile ground robot constructed
from off-the-shelf commodity parts and controlled through
an Android smartphone (see Figure [2). An IOIO-OTG mi-
crocontroller communicated with an Android smartphone via
a Bluetooth connection and relayed motor commands to a
separate motor controller for steering the Dagu Wild Thumper
6-Wheel Drive All-Terrain chassis. Three ultrasonic sensors,
which were used for obstacle avoidance, were connected to
the robot through the IOIO-OTG. A software application,
which controlled the robot, was written in Java using Android
Studio and deployed on a Google Pixel XL smartphone. The
application utilized the phone’s built-in camera, accelerometer,
gyroscope, compass, and GPS for navigation.

For waypoint navigation, a GPS location was queried using
the Google Play services location API. The bearing direction
from the current GPS location of the robot to a desired
waypoint was calculated using the Android API function
bearingTo. A second value, the heading, was calculated by
subtracting declination of the robot’s location to the smart-
phone compass value, which was relative to magnetic north.
This resulted in an azimuth direction relative to true North.
The robot traveled forward and steered in attempt to minimize
the difference between the bearing and heading. The steering
direction was determined by deciding whether turning left
or turning right would require the least amount of steering
to match the bearing and heading. The navigation procedure
continued until the distance between the robot’s location and
the current waypoint was less than 20 meters, at which point
the next waypoint in the list was selected.

C. Waypoint Navigation and Model of Neuromodulated Pa-
tience

The robot proceeded through a list of waypoints as de-
scribed above. However, if the robot became impatient, it
skipped the present waypoint and randomly chose a waypoint
closer to the final destination.

The likelihood to skip a waypoint was based on the
Bayesian Decision Model given by [2]. Specifically, we cal-
culated the probability to wait given the time elapsed:

1
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where 8 was equal to 50, and L(t) was the likelihood of
reaching the waypoint at time ¢, and SHT denoted the serotonin
level. The likelihood was calculated with a Normal cumulative
distribution function having a mean of 40 seconds and a
standard deviation of 20 seconds. The likelihood function
was multiplied by a scalar that represented the probability of
receiving a reward. As in [2], we assumed that increasing 5-
HT levels caused an overestimation of the prior probability.
Therefore, in our experiments low 5-HT equated to a proba-
bility of a reward of 0.50 and high 5-HT equated to probability
of a reward of 0.95 (see [2|] for details). Figure [3| shows the
resulting probability to wait, p(W ait|t), curves.

The p(Wait|t) curves in Figure [3| were used to decide
whether to keep searching for a waypoint or to forego the
desired waypoint and choose another. A random number
between 0 and 1 was generated and if the number was greater
than p(Wait|t), where ¢ was the time elapsed that the robot
had been searching for a waypoint, the robot stopped searching
for this waypoint. A new waypoint was randomly chosen that
was closer to the final destination. Note that if the robot was
searching for the final destination waypoint or for a waypoint
after a skip, the p(Wait|t) curve was not referenced. That is,
the robot had to reach the shortcut waypoint or had to reach
the final waypoint for a successful trial. See Algorithm (1| for
implementation details.

D. Road Following with Deep Reinforcement Learning

A road following algorithm based on deep reinforcement
learning was used in the experiments carried out in Aldrich
park. This became necessary due to poor GPS reception in this
environment. We used a Deep Q-Network (DQN) for online
learning of a driving policy on the Aldrich park sidewalks [J8]].

1) Road Following DQON States and Actions: In reinforce-
ment learning, an agent is acting in an environment. At each
time step t, the agent chooses an action a; € A in response
to the current state s, € S. The system makes the transition
from s, to s,y with a reward r; based on the reward function
R(st, a). The goal of reinforcement learning algorithms is to
learn a policy that maps a state s to an action a , such that the
expected sum of rewards E.[> . v'r’[s;, a;] is maximized
where 7 is the agent’s behavior function. v € [0,1] is a
discounting factor used to penalize the rewards in the future.
As a value-based deep reinforcement learning method, the
DQN learns a state-action value function Qy(s,a) which
outputs the expected discounted sum of future rewards that will
be received by following the policy. Some recent works used
deep reinforcement learning in robot navigation tasks [9]], [[10],
but all of them are set in ideal indoor environments. To the best
of our knowledge, our project is the first work that trained the



Fig. 1: Parks where robot navigation experiments were carried out. The left is an image of Encinitas Community park and the
right is an image of Aldrich park at the University of California, Irvine. The labels denote the waypoints (i.e., WP1...WP10).
Waypoints were approximately 50-60 meters apart. Imagery from Google Maps, 2019.

(a) Android Based Robot in Encinitas Park.

(b) Android Based Robot in Aldrich Park.

Fig. 2: Android Based Robot used for the experiments.

robots to navigate in complicated outdoor environments with
deep reinforcement learning.

In our experiments that utilized road following, the agent
was the Android-Based Robot and the environment was
Aldrich Park (see figure [6). The state was represented by
an annotated camera image, as will be described in Section
I-D2} from the smartphone that was mounted on the robot.
The reward was either 0.5 when the robot stayed on road or 0
when the robot went off road. In the beginning of each training
episode, the robot was initialized in the center of the road.
When the robot was not on road, the episode ended and the
robot was reset to the center of the road for the next episode.
In each step, the robot moved forward for 0.6 seconds with
a constant speed but a different steering angle ranged from
sharp left to slight left to straight to slight right and to sharp
right. During the training, the robot was reinforced by staying

on the road. After around 15 episodes and 2 hours of training,
roughly 2000 training steps, the robot learned to follow the
road.

2) Semantic Segmentation of Images: To evaluate the states
of the robot in the environment and then generate rewards for
the deep reinforcement learning module, we used ENet ,
a pixel-wise real-time semantic segmentation neural network.
ENet labeled each pixel of the image as road or non-road.
We used middle-bottom portion of the segmented image to
evaluate if the robot was on road. The image size in the
experiment is 320x240 pixels and the size of middle-bottom
portion for evaluation is 80x32 pixels. If most pixels in that
portion were labeled as road, we judged that the robot was on
road. Otherwise, the robot was thought to be off-road.

The environment of Aldrich Park and camera setting in this
project were very different from those of popular datasets
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Fig. 3: Probability of waiting function. Higher 5-HT levels
shifted the curve to the right resulting in longer wait times.

such as Kitti [12] where road detection was also involved.
Therefore, we created a scene understanding dataset for the
robot from data collected in Aldrich Park. Smartphone camera
frames were collected in Aldrich Park at different times
(i.e., 2pm to 7pm) of day. We selected 418 distinct and
representative pictures and did binary (road and non-road)
pixel-wise labeling for these using the PixelAnnotationTool
from [[13]]. Figure 4] shows examples of semantic segmentation
taken from the Aldrich Park dataset. The ENet model trained
on the Aldrich Park dataset allowed us to rapidly label road
and non-road portions of a scene and generate rewards for the
deep reinforcement learning module.

Besides its necessity for reward generation, the semantic
segmentation module provided two other benefits. First, the
segmented observation, which was fed to the deep reinforce-
ment module, removed noisy information from the original
image and kept the most important features (road or non-
road). This simplified the task for deep reinforcement learning
and thus the training of the DQN was faster. Second, the
semantic segmentation module increased the generalization
and adaptability of the self-driving navigation to handle dy-
namic characteristics of outdoor environments such as lighting
changes due to time of day or weather. Examples in Figure
[ show some of the various lighting conditions in the park.
Without the semantic segmentation module, the DQN trained
at 2pm could not work at 7pm because sunlight changed.
To solve this problem without the semantic segmentation
module, we would have needed to train under all differ-
ent environment situations, which would be time consuming
and would need to deal with potential problems such as
catastrophic forgetting. Another case that demonstrates the
advantage of semantic segmentation is that, the robot could
avoid a pedestrian automatically because the pedestrian would
be labeled as non-road and the robot would try to stay on
road. The robot trained without semantic segmentation could
not achieve this and would instead take random action since
the appearance of a pedestrian was a novel state for it. By

Algorithm 1: Waypoint Navigation with Neuromodu-
lated Patience
Input: GPS and compass readings, N waypoints;
Initialize waypoint index w = 0;
Initialize time count ¢ = 0;
Initialize shortcut = false;
Initialize finished = false;
while not finished do
get the current GPS and compass readings;
if robot is within 20m of waypoint(w) then
if w == N then
finished = true;

break;

else
w=w+1;
t=0;

end

shortcut = false;
end
if not shortcut and w != N then
generate a random number rand_num and
update p(Wait|t);
if rand_num > p(Wait|t) then
update w with a random integer in the
range of [w+ 1, N);

t=0;
shortcut = true;
end
end
if not shortcut and in Aldrich park and on road
then

move forward toward waypoint(w) based on
road following algorithm;

else
use GPS and compass to get bearing to

waypoint(w);
navigate toward waypoint(w);

end
t=t+4+1;

end

separating the scene understanding task from reinforcement
learning, semantic segmentation enables faster training and
better generalization capability [[14].

3) Road Following Data Pipeline: Figure [5] shows the data
pipeline. The Android Based Robot took pictures with the
smartphone’s camera. Using a WiFi “hotspot”, the image was
sent to a nearby laptop, which performed real-time image
segmentation of “road” versus “non-road”. The laptop also
ran a deep reinforcement learning network, based on the DQN,
which processed the image and outputted action values used
by the agent to choose actions. The actions ranged from sharp
left to slight left to straight to slight right and to sharp right.
The reward was also based on the segmented state. A detailed
illustration of the road following deep reinforcement neural
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Fig. 5: High level illustration of the data pipeline for the
road following algorithm. Images from the Android Based
Robot’s (ABR) smartphone camera are sent to a nearby laptop
via a socket. The laptop runs a deep reinforcement learning
algorithm, which rewards staying on the road, and generates
steering actions for the robot.
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network is given in Figure [6] The laptop took about 400 ms
to process the information, generate an action, and update the
network. This was adequate for online learning in real-time.

The robot learned to follow the road after roughly 2000
training steps. The road following algorithm was used in
Aldrich park where waypoints were set along the sidewalk
that surrounded a hilly grass region (Figure [T} right). The robot
could move to the next waypoint by following the road. In the
present experiments, we segmented road and non-road. But,
potentially, we could also segment people, trees, benches, etc.
These object classes could be used as further inputs for training
the network and implementing more complex behavior.

III. RESULTS

Two sets of robot navigation experiments were carried out.
One set was in the Encinitas Community park (see Figure [I]
left) and the other was in Aldrich park (see Figure [I] right).
In both cases, the robot navigated through a set of waypoints
with low and high 5-HT levels. In Aldrich park, the navigation
experiments were carried out with road following activated.

A. Waypoint Navigation in Encinitas Community park

We ran 6 trials for low 5-HT and 6 trials for high 5-HT in
the Encinitas Community park (see Figure [7). The waypoints
were roughly 50-60 meters apart. In Figure [/| each marker
denotes the GPS location from the smartphone when the robot
was within 20 meters of a waypoint (different colors denote
different trials). Note that this reading could vary dramatically
due to GPS inaccuracies.

The level of 5-HT affected the robot’s patience in finding a
waypoint. Over the 6 trials, 9 waypoints were skipped when
5-HT was low, but only 2 waypoints were skipped when 5-
HT was high. The average time before skipping a waypoint
was 68 seconds for low 5-HT and 97 seconds for high 5-HT
(see Table[l). These experiments demonstrated how this model
could change route planning behaviors.

Figure (8] shows all the GPS readings from two representative
trials, one with high 5-HT and the other with low 5-HT. In the
high 5-HT trial, the robot reached every waypoint. In the low
5-HT trial, the probability to wait was exceeded for reaching
Waypoint 6 after 69 seconds and the robot skipped to Waypoint
9. A video of the robot performing waypoint navigation with
low 5-HT can be found at: https://youtu.be/6EcNchTGLKw,
and a video of the robot performing waypoint navigation with
high 5-HT can be found at: https://youtu.be/q_mOgbVN6UE.

B. Waypoint Navigation in Aldrich park

We ran 5 high 5-HT trials and 5 low 5-HT trials in Aldrich
park (see Figure [0). Since the area is sunken in a bowl
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TABLE I: Results of High/Low 5-HT Modulating Navigation

Encinitas Park Aldrich Park
High 5-HT | Low 5-HT | High 5-HT | Low 5-HT
Navigation Time (s) 525.521 413.549 414.905 389.625
Shortcuts 0.3 1.5 0.0 14
Waypoints Reached 9.67 6.5 8.0 6.0
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Fig. 8: Two representative navigation trials in the Encinitas
Community park. All the GPS points are shown. The markers
in the figure correspond to the grey markers in Figure

surrounded by tall buildings and trees, the GPS readings
were highly inaccurate. In particular, the robot had difficulty
finding Waypoints 2 and 3 due to the poor GPS signal. As a
result, we introduced the road following algorithm described
in Section which helped the robot stay on the sidewalk
and increased the likelihood of finding a waypoint within the
probability of wait constraint. During road following based
navigation, the robot moved towards the waypoint by follow-
ing the road. Since the waypoints were placed along the outer
ring of the test area, the robot tended to move closer to the
next waypoint by following the road. When the robot decided
to take a shortcut because of being impatient, the movement
of the robot was based on GPS because the shortcuts took the
robot off the road and over the grassy interior of the test area.
Once the shortcut waypoint was reached, the road following
algorithm took over again.

It should be noted that during road following, the robot
took longer to complete the course with high 5-HT (i.e., 420
seconds on average) than with low 5-HT (i.e., 390 seconds
on average) in which shortcuts were taken. However, since
the robot was traveling over smoother terrain with high 5-HT,

it reached more waypoints and took less energy than when
it took shortcuts with low 5-HT (see Table [[). A video of
the robot navigating using road following can be found at:
https://youtu.be/DixOxO2UafQ.

These results show the benefits and the tradeoffs associated
with being patient versus being impulsive during navigation.
In both two parks, when 5-HT was high, the robot was more
patient when navigating towards waypoints, which meant it
took less shortcuts and reached more waypoints, but at the
cost of taking longer to complete a trial (see Table [I).

IV. DISCUSSION

In the present paper, we showed how a concept from
behavioral neuroscience could be applied to robot navigation
and possibly self-driving vehicles. It has been shown that 5-HT
in the brain affects impulsiveness in an animal’s behavior [2].
The present model applied this idea to waypoint navigation in
autonomous robots. Specifically, we showed that simulating
high 5-HT led to increased search time for a desired location
and that simulating low 5-HT led to an increase in calling
off the search for some waypoints. Even under high 5-HT
conditions, if a waypoint was particularly difficult to find or
there were environmental challenges, there was a limit to how
long the robot would try to reach a desired location (see Figure
). Our results showed that neuromodulated patience led to
flexible behaviors, which are not typically found in traditional
navigation solutions [3[], [5].

The goal of the present algorithm and demonstrations
was not to achieve some benchmark, but rather to suggest
a neurobiologically inspired strategy that could complement
other navigation systems. The present approach could be
applied to biomimetic navigation systems [15]], [[16]], as well
as engineering approaches to navigation [[17]], [18]]. In general,
the probability to wait suggests a level of urgency in the overall
system. We imagine this could be applied to a number of tasks
where resource allocation is time critical.

Furthermore, the probability of waiting could be associated
to some internal parameter in the system (e.g., battery level
or prioritizing goals). Presumably, the impulsiveness signal in
the rodent is closely tied to its natural foraging behavior. The
animal will search for food, but the time it will search depends
on the food value and on the uncertainty of the food resource.
Such considerations could be beneficial for a robot navigation
system or for a self-driving vehicle.

The patience-based neuromodulated navigation algorithm
adds another dimension to the present navigation system. By
giving the robot an alternative to point-to-point navigation, the
robot now must weigh the cost of staying on a smooth and
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Fig. 9: Five trials in Aldrich park with high 5-HT (upper figure) and five trials in Aldrich park with low 5-HT (lower figure).
Red traces are drawn from GPS readings from the phone mounted on the robot. The robot went across all waypoints one by
one in trials with high 5-HT and took multiple shortcuts when 5-HT was low.

reliable road that may take longer to travel versus traversing
over rough terrain that may be shorter but takes more energy
and could be potentially harmful to the robot. Since the
deep reinforcement learning introduced here is designed for
online learning, these costs could be learned along with the
rewards for staying on the road. Ideally, the deep reinforcement
learning algorithm could set the 5-HT level dynamically.

The present algorithm is a step towards a complete nav-
igation or self-driving system that takes inspiration from
neurobiology and behavioral neuroscience.
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