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Abstract—Neuromorphic computing systems are embracing memristors to implement high density and low power synaptic storage as

crossbar arrays in hardware. These systems are energy efficient in executing Spiking Neural Networks (SNNs). We observe that long

bitlines and wordlines in a memristive crossbar are a major source of parasitic voltage drops, which create current asymmetry. Through

circuit simulations, we show the significant endurance variation that results from this asymmetry. Therefore, if the critical memristors

(ones with lower endurance) are overutilized, they may lead to a reduction of the crossbar’s lifetime. We propose eSpine, a novel

technique to improve lifetime by incorporating the endurance variation within each crossbar in mapping machine learning workloads,

ensuring that synapses with higher activation are always implemented on memristors with higher endurance, and vice versa. eSpine

works in two steps. First, it uses the Kernighan-Lin Graph Partitioning algorithm to partition a workload into clusters of neurons and

synapses, where each cluster can fit in a crossbar. Second, it uses an instance of Particle Swarm Optimization (PSO) to map clusters

to tiles, where the placement of synapses of a cluster to memristors of a crossbar is performed by analyzing their activation within the

workload. We evaluate eSpine for a state-of-the-art neuromorphic hardware model with phase-change memory (PCM)-based

memristors. Using 10 SNN workloads, we demonstrate a significant improvement in the effective lifetime.

Index Terms—Neuromorphic computing, spiking neural networks (SNNs), non-volatile memory (NVM), memristor, endurance

Ç

1 INTRODUCTION

SPIKING Neural Networks (SNNs) are machine learning
approaches designed using spike-based computations and

bio-inspired learning algorithms [1]. Neurons in an SNN com-
municate information by sending spikes to other neurons, via
synapses. SNN-based applications are typically executed on
event-driven neuromorphic hardware such as DYNAP-
SE [2], TrueNorth [3], and Loihi [4]. These hardware platforms
are designed as tile-based architectures with a shared inter-
connect for communication [5] (see Fig. 1a). A tile consists of a
crossbar formapping neurons and synapses of an application.
Recently, memristors such as Phase-Change Memory (PCM)
and Oxide-based Resistive RAM (OxRRAM) are used to
implement high-density and low-power synaptic storage in
each crossbar [6], [7], [8], [9], [10], [11].

As the complexity of machine learning models increases,
mapping an SNN to a neuromorphic hardware is becoming
increasingly challenging. Existing SNN-mapping approaches

have mostly focused on improving performance and energy
[12], [13], [14], [15], [16], [17], [18], and reducing circuit
aging [19], [20], [21]. Unfortunately, memristors have limited
endurance, ranging from 105 (for Flash) to 1010 (for
OxRRAM), with PCM somewhere in between (� 107). We
focus on endurance issues in amemristive crossbar of a neuro-
morphic hardware and propose an intelligent solution tomiti-
gate them.

We analyze the internal architecture of a memristive
crossbar (see Fig. 3) and observe that parasitic components
on horizontal and vertical wires of a crossbar are a major
source of parasitic voltage drops in the crossbar. Using
detailed circuit simulations at different process (P), voltage
(V), and temperature (T) corners, we show that these volt-
age drops create current variations in the crossbar. For the
same spike voltage, current on the shortest path is signifi-
cantly higher than the current on the longest path in the
crossbar, where the length of a current path is measured in
terms of its number of parasitic components. These current
variations create asymmetry in the self-heating temperature
of memristive cells during their weight updates, e.g., during
model training and continuous online learning [22], which
directly influences their endurance.

The endurance variability in a memristive crossbar
becomes more pronounced with technology scaling and at
elevated temperature. If this is not incorporated when exe-
cuting a machine learning workload, critical memristors,
i.e., those with lower endurance may get overutilized, lead-
ing to a reduction in the memristor lifetime.

In this work, we formulate the effective lifetime, a joint
metric incorporating the endurance of a memristor, and its
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utilization within a workload (see Section 5). Our goal is to
maximize the minimum effective lifetime. We achieve this
goal by first exploiting technology and circuit-specific charac-
teristics of memristors, and then proposing an endurance-
aware intelligent mapping of neurons and synapses of a
machine learningworkload to crossbars of a hardware, ensur-
ing that synapses with higher activation are implemented on
memristors with higher endurance, and vice versa.

Endurance balancing (also called wear leveling) is previ-
ously proposed for classical computing systems with Flash
storage, where a virtual address is translated to different
physical addresses to balance the wear-out of Flash
cells [23], [24], [25], [26], [27]. Such techniques cannot be
used for neuromorphic hardware because once synapses
are placed to crossbars they access the same memristors
for the entire execution duration. Therefore, it is necessary
to limit the utilization of critical memristors of a neuromor-
phic hardware during the initial mapping of neurons and
synapses.

To the best of our knowledge, no prior work has studied
the endurance variability problem in neuromorphic hard-
ware with memristive crossbars. To this end, we make the
following novel contributions in this paper.

� We study the parasitic voltage drops at different P,
V, & T corners through detailed circuit simulations
with different crossbar configurations.

� We use these circuit simulation parameters within a
compact endurance model to estimate the endurance
of different memristors in a crossbar.

� We integrate this endurance model within a design-
space exploration framework, which uses an
instance of Particle Swarm Optimization (PSO) to
map SNN-based workloads to crossbars of a neuro-
morphic hardware, maximizing the effective lifetime
of memristors.

The proposed endurance-aware technique, which we call
eSpine, operates in two steps. First, eSpine partitions a
machine learning workload into clusters of neurons and
synapses using the Kernighan-Lin Graph Partitioning algo-
rithm such that, each cluster can be mapped to an individ-
ual crossbar of a hardware. The objective is to reduce inter-
cluster communication, which lowers the energy consump-
tion. Second, eSpine uses PSO to map clusters to tiles, plac-
ing synapses of a cluster to memristors of a crossbar in each
PSO iteration by analyzing their utilization within the work-
load. The objective is to maximize the effective lifetime of
the memristors in the hardware. We evaluate eSpine using
10 SNN-based machine learning workloads on a state-of-
the-art neuromorphic hardware model using PCM memris-
tors. Our results demonstrate an average 3.5x improvement
of the effective lifetime with 7.5 percent higher energy

consumption, compared to a state-of-the-art SNN mapping
technique that minimizes the energy consumption.

2 BACKGROUND

Fig. 1a illustrates a tile-based neuromorphic hardware such
as DYNAP-SE [2], where each tile consists of a crossbar to
map neurons and synapses of an SNN. A crossbar, shown
in Fig. 1b, is an organization of row wires called wordlines
and column wires called bitlines. A synaptic cell is con-
nected at a crosspoint, i.e., at the intersection of a row and a
column. Pre-synaptic neurons are mapped along rows and
post-synaptic neurons along columns. A n� n crossbar has
n pre-synaptic neurons, n post-synaptic neurons, and n2

synaptic cells at their intersections. Memristive devices such
as Phase-Change Memory (PCM) [7], Oxide-based Resistive
RAM (OxRRAM) [6], Ferroelectric RAM (FeRAM) [28],
Flash [29], and Spin-Transfer Torque Magnetic or Spin-
Orbit-Torque RAM (STT- and SoT-MRAM) [30] can be used
to implement a synaptic cell.1 This is illustrated in Fig. 1c,
where a memristor is represented as a resistance.

We demonstrate eSpine for PCM-based memristive
crossbars. We start by reviewing the internals of a PCM
device. The proposed approach can be generalized to other
memristors such as OxRRAM and SOT-/STT-MRAM by
exploiting their specific structures (see Section 6.1).

Fig. 2a illustrates how a chalcogenide semiconductor
alloy is used to build a PCM cell. The amorphous phase
(logic ‘0’) in this alloy has higher resistance than its crystal-
line phase (logic ‘1’). When using only these two states,
each PCM cell can implement a binary synapse. However,
with precise control of the crystallization process, a PCM
cell can be placed in a partially-crystallized state, in which
case, it can implement a multi-bit synapse. Phase changes in
a PCM cell are induced by injecting current into resistor-
chalcogenide junction and heating the chalcogenide alloy.
Fig. 2b shows the different current profiles needed to pro-
gram and read in a PCM device.

3 ANALYZING TECHNOLOGY-SPECIFIC CURRENT

ASYMMETRY IN MEMRISTIVE CROSSBARS

Long bitlines and wordlines in a crossbar are a major source
of parasitic voltage drops, introducing asymmetry in cur-
rent propagating through its different memristors. Fig. 3
shows these parasitic components for a 2x2 crossbar. We
simulate this circuit using LTspice [35], [36] with

Fig. 1. Neuron and synapse mapping to a tile-based neuromorphic hard-
ware such as DYNAP-SE [2]. Fig. 2. (a) A phase change memory (PCM) cell and (b) current needed to

SET, RESET, and read a PCM cell.

1. Beside neuromorphic computing, some of these memristor tech-
nologies are also used as main memory in conventional computers to
improve performance and energy efficiency [31], [32], [33], [34].
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technology-specific data from predictive technology model
(PTM) [37]. We make the following three key observations.

Observation 1: The current on the longest path from a pre- to
a post-synaptic neuron in a crossbar is lower than the current on
its shortest path for the same input spike voltage and the same
memristive cell conductance programmed along both these paths.

Fig. 4 shows the difference between currents on the
shortest and longest paths for 32x32, 64x64, 128x128, and
256x256 memristive crossbars at 65nm process node. The
input spike voltage of the pre-synaptic neurons is set to gen-
erate 200mA on ther longest paths. This current value corre-
sponds to the current needed to amorphize the crystalline
state of a PCM-based memristor.

We observe that the current injected into the post-synap-
tic neuron on the longest path is lower than the current on
the shortest path by 13.3 percent for 32x32, 25.1 percent for
64x64, 39.2 percent for 128x128, and 55.8 percent for
256x256 crossbar. This current difference is because of the
higher voltage drop on the longest path, which reduces the
current on this path compared to the shortest path for the
same amount of spike voltage applied on both these paths.
The current difference increases with crossbar size because
of the increase in the number of parasitic resistances on the
longest current path, which results in larger voltage drops,
lowering the current injected into its post-synaptic neuron.
Therefore, to achieve the minimum 200mA current on this
path, the input spike voltage must be increased, which
increases the current on the shortest path. This observation
can be generalized to all current paths in a memristive
crossbar. Current variation in a crossbar may lead to differ-
ence in synaptic plasticity behavior and access speed of
memristors [16], [38], [39], [40], [41]. A circuit-level solution
to address the current differences is to add proportional
series resistances to the current paths in a crossbar. How-
ever, this circuit-level technique can significantly increase
the area of a crossbar (n2 series resistances are needed for a
nxn crossbar). Additionally, adding series resistances can
increase the power consumption of the crossbar.Although
current balancing in a crossbar can be achieved by adjusting
the biasing of the crossbar’s cells, a critical limitation is that
this and other circuit-level solutions do not incorporate the
activation of the synaptic cells, which is dependent on the

workload being executed on the crossbar. Therefore, some
of its cells may get utilized more than others, leading to
endurance issues.We propose a system-level solution to
exploiting the current and activation differences via intelli-
gent neuron and synapse mapping.

Current imbalance may not be a critical consideration for
smaller crossbar sizes (e.g., for 32x32 or smaller) due to
comparable currents along different paths. However, a neu-
ron is several orders of magnitude larger than a memristor-
based synaptic cell [42]. To amortize this large neuron size,
neuromorphic engineers implement larger crossbars, sub-
ject to a maximum allowable energy consumption. The
usual trade-off point is 128x128 crossbars for DYNAP-SE [2]
and 256x256 crossbars for TrueNorth [3].

Observation 2: Current variation in a crossbar becomes sig-
nificant with technology scaling and at elevated temperatures.

Fig. 5 plots the current on the shortest path in a 128x128
memristive crossbar for four process corners (65nm, 45nm,
32nm, and 16nm) and four temperature corners (25�C, 50�C,
75�C, and 100�C) with all memristors configured in their
crystalline state with a resistance of 10KV. The input spike
voltage of the crossbar is set to a value that generates 200mA
on the longest path at each process and temperature cor-
ners. We make two key conclusions.

First, current on the shortest path is higher for smaller
process nodes. This is because, with technology scaling, the
value of parasitic resistances along the bitline and wordline
of a current path increases [38], [43], [44]. The unit wordline
(bitline) parasitic resistance ranges from approximately
2:5V (1V) at 65nm node to 10V (3:8V) at 16nm node. The
value of these unit parasitic resistances are expected to scale
further reaching � 25V at 5nm node [38]. This increase in
the value of unit parasitic resistance increases the voltage
drop on the longest path, reducing the current injected into
its post-synaptic neuron. Therefore, to obtain a current of
200mA on the longest path, the input spike voltage must be
increased, which increases the current on the shortest path.

Second, current reduces at higher temperature. This is
because, the leakage current via the access transistor of each
memristor in a crossbar increases at higher temperature,
reducing the current injected into the post-synaptic neu-
rons. To increase the current to 200mA, the spike voltage is
increased, which increases the current on the shortest path.

Based on the two observations and the endurance formu-
lation in Section 4, we show that higher current through
memristors on shorter paths in a memristive crossbar leads
to their higher self-heating temperature and correspond-
ingly lower cell endurance, compared to those on the
longer current paths in a crossbar. Existing SNN mapping
approaches such as SpiNeMap [13], PyCARL [45], DFSyn-
thesizer [12], and SNN Compiler [46] do not take endur-
ance variation into account when mapping neurons and

Fig. 3. Parasitcs of bitlines and wordlines in a memristive crossbar.

Fig. 4. Difference between current on the shortest and the longest path
for different crossbar sizes.

Fig. 5. Current obtained on the shortest path in a 128x128 memristive
crossbar at 65nm, 45nm, 32nm, and 16nm technology nodes for 4 ambi-
ent temperatures (25�C, 50�C, 75�C, and 100�C). The input spike volt-
age is adjusted to obtain 200mA on the longest path.
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synapses to a crossbar. Therefore, synapses that are acti-
vated frequently may get mapped on memristors with
lower cell endurance, lowering their lifetime.

Observation 3: Synapse activation in a crossbar is specific to
the machine learning workload as well as to mapping of neurons
and synapses of the workload to the crossbars.

Fig. 6 plots the number of synaptic activation, i.e., spikes
propagating through the longest and the shortest current
paths in a crossbar as fractions of the total synaptic activa-
tion. Results are reported for 10 machine learning work-
loads (see Section 7) using SpiNeMap [13]. We observe that
the number of activation on the longest and shortest current
paths are on average 3 percent and 5 percent of the total
number of activation, respectively. Higher synaptic activa-
tion on shorter current paths in a crossbar can lead to lower-
ing of the lifetime of memristors on those paths due to their
lower cell endurance (see observations 1 and 2, and the
endurance and lifetime formulations in Section 4).

4 ENDURANCE MODELING

We use the phenomenological endurance model [47], which
computes endurance of a PCM cell as a function of its self-
heating temperature obtained during amorphization of its
crystalline state. Fig. 7 shows the iterative approach to com-
pute this self-heating temperature (TSH) [48], [49].

At start of the amorphization process, the temperature of
a PCM cell is equal to the ambient temperature Tamb. Subse-
quently, the PCM temperature is computed iteratively as
follows. For a given crystalline fraction VC of the GST mate-
rial within the cell, the thermal conductivity k is computed
using the TC Module, and PCM resistance RPCM using the
PCMR Module. The thermal conductivity is used to compute
the heat dissipation Wd using the HD Module, while the
PCM resistance is used to compute the Joule heating in the
GST Wj for the programming current Iprog using the JH

Module. The self-heating temperature TSH is computed
inside the SH Module using the Joule heating and the heat
dissipation. Finally, the self-heating temperature is used to
compute the crystallization fraction Vc using the CF Mod-

ule. The iterative process terminates when the GST is
amorphized, i.e., Vc ¼ 0. We now describe these steps.

� Crystallization Fraction (CF) Module: CF represents the
fraction of solid in a GST during the application of a
reset current. Vc is computed using the Johnson-
Mehl-Avrami (JMA) equation as

Vc ¼ exp �a� ðTSH � TambÞ
Tm

� t

� �
; (1)

where t is the time, Tm ¼ 810 K is the melting tem-
perature of the GST material [48], [49], Tamb is the

ambient temperature computed using [15], [50], and
a ¼ 2:25 is a fitting constant [48], [49].

� Thermal Conductivity (TC) Module: TC of the GST is
computed as [51]

k ¼ ðka � kcÞ � Vc þ ka; (2)

where ka ¼ 0:002WK�1cm�1 for amorphous GST,
kc ¼ 0:005WK�1cm�1 for crystalline GST [48], [49].

� PCM Resistance (PCMR) Module: The effective resis-
tance of the PCM cell is given by

RPCM ¼ Rset þ ð1� VcÞ � ðRreset �RsetÞ; (3)

where Rset ¼ 10 KV in the crystalline state of the
GST and Rreset ¼ 200 KV in the amorphous state.

� Heat Dissipation (HD) Module: Assuming heat is dis-
persed to the surrounding along the thickness of the
PCM cell, HD is computed as [52]

Wd ¼ kV

l2
ðTSH � TambÞ; (4)

where l ¼ 120 nm is the thickness and V ¼
4� 10�14cm3 is the volume of GST [48], [49].

� Joule Heating (JH) Module: The heat generation in a
PCM cell due to the programming current Iprog is

Wj ¼ I2prog �RPCM: (5)

� Self-Heating (SH) Module: The SH temperature of a
PCM cell is computed by solving an ordinary differ-
ential equation as [48]

TSH ¼ I2progRPCMl2

kV
� 1� exp � kt

l2C

� �� �
þ Tamb;

(6)

where C ¼ 1:25 JK�1cm�3 is the heat capacity of the
GST [48], [49].

The endurance of a PCM cell is computed as [47]

Endurance � tf
ts
; (7)

where tf and ts are respectively, the failure time and the
switching time. In this model, to switch memory state of a
PCM cell, an ion (electron) must travel a distance d across
insulating matrix (the gate oxide) upon application of the
programming current Iprog, which results in the write volt-
age V across the cell. Assuming thermally activated motion
of an with activation energy Us and local self-heating ther-
mal temperature TSH , the switching speed can be approxi-
mated as

Fig. 6. Fraction of activation of memristor on the longest and shortest
current paths in a crossbar using SpiNeMap [13]. Fig. 7. Iterative approach to calculating the self-heating temperature of a

PCM cell during amorphization.
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ts ¼ d

vs
� 2d

fa
exp

Us

kBTSH

� �
exp � qV

2kBTSH

a

d

� �
; (8)

where d ¼ 10 nm, a ¼ 0:2 nm, f ¼ 1013 Hz, andUs ¼ 2 eV [47].
The failure time is computed considering that the endur-

ance failure mechanism is due to thermally activated motion
of ions (electrons) across the same distance d but with higher
activation energyUF , so that the average time to failure is

tf ¼ d

vf
� 2d

fa
exp

Uf

kBTSH

� �
exp � qV

2kBTSH

a

d

� �
(9)

where Uf ¼ 3ev [47].
The endurance, which is the ratio of average failure time

and switching time, is given by

Endurance � tf
ts

� exp
g

TSH

� �
; (10)

where g ¼ 1000 is a fitting parameter [47].
The thermal and endurance models are used in our SNN

mapping framework to improve endurance of neuromor-
phic hardware platforms (see Section 8). Although we have
demonstrated our proposed SNN mapping approach using
these models (see Section 5), the mapping approach can be
trivially extended to incorporate other published models.

4.1 Model Prediction

The thermal and endurance models in Equations (6) and
(10), respectively are integrated as follows. The self-heating
temperature of Equation (6) is first computed using the
PCM’s programming current. This self-heating temperature
is then used to compute the endurance using Equation (10).

Fig. 8 shows the simulation of the proposed model with
programming currents of 200mA and 329mA, which corre-
spond to the longest and shortest current paths in a 65 nm
128x128 PCM crossbar at 298 K. Figus. 8a, 8b, and 8c plot
respectively, the crystallization fraction, the PCM resistance,
and the temperature for these two current values. We make
the following two key observations.

First, the speed of amorphization depends on the current,
i.e., with higher programming current, the GST material

amorphizes faster. This means that the PCM cells on shorter
current paths are faster to program. Second, the self-heating
temperature is higher for higher programming current. This
means that PCM cells on shorter current paths have lower
endurance.

Fig. 8 is consistent with the change in crystallization vol-
ume, resistance, and self-heating temperature in PCM cells
as reported in [48], [49]. Fig. 9 plots the temperature and
endurance maps of a 128x128 crossbar at 65nm process
node with Tamb ¼ 298 K. The PCM cells at the bottom-left
corner have higher self-heating temperature than at the top-
right corner. This asymmetry in the self-heating tempera-
ture creates a wide distribution of endurance, ranging from
106 cycles for PCM cells at the bottom-left corner to 1010

cycles at the top-right corner. These endurance values are
consistent with the values reported for recent PCM chips
from IBM [53].

Our goal is to assign synapses with higher activation
towards the top-right corner using an intelligent SNN map-
ping technique, which we describe next.

5 ENDURANCE-AWARE INTELLIGENT NEURON AND

SYNAPSE MAPPING

We present eSpine, our novel endurance-aware technique to
map SNNs to neuromorphic hardware. To this end, we first
formulate a joint metric effective lifetime (Li;j), defined for the
memristor connecting the ith pre-synaptic neuron with jth

post-synaptic neuron in a memristive crossbar as

Li;j ¼ Ei;j=ai;j; (11)

where ai;j is the number of synaptic activations of the mem-
ristor in a given SNN workload and Ei;j is its endurance.
Equation (11) combines the effect of software (SNN map-
ping) on hardware (endurance and temperature) in neuro-
morphic computing. eSpine aims to maximize the
minimum normalized lifetime, i.e.,

Fopt ¼ maximizefmini;jLi;jg (12)

In most earlier works on wear-leveling in the context of
non-volatile main memory (e.g., Flash), lifetime is com-
puted in terms of utilization of NVM cells, ignoring the vari-
ability of endurance within the device. Instead, we
formulate the effective lifetime by considering a mem-
ristor’s endurance and its utilization in a workload. This is

Fig. 8. Validation of the proposed model.

Fig. 9. Temperature and endurance map of a 128x128 crossbar at 65nm
process node with Tamb ¼ 298 K.
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to allow cells with higher endurance to have higher utiliza-
tion in a workload.

5.1 High-level Overview

Fig. 10 shows a high-level overview of eSpine, consisting of
three abstraction layers – the application layer, system soft-
ware layer, and hardware layer. A machine learning appli-
cation is first simulated using PyCARL [45], which uses
CARLsim [54] for training and testing of SNNs. PyCARL
estimates spike times and synaptic strength on every con-
nection in an SNN. This constitutes the workload of the
machine learning application. eSpine maps and places neu-
rons and synapses of a workload to crossbars of a neuro-
morphic hardware, improving the effective lifetime. To this
end, a machine learning workload is first analyzed to gener-
ate clusters of neurons and synapses, where each cluster
can fit on a crossbar. eSpine uses the Kernighan-Lin Graph
Partitioning algorithm of SpiNeMap [13] to partition an
SNN workload, minimizing the inter-cluster spike commu-
nication (see Table 1 for comparison of eSpine with SpiNe-
Map). By reducing the inter-cluster communication, eSpine
reduces the energy consumption and latency on the shared
interconnect (see Section 8.2). Next, eSpine uses an instance
of the Particle Swarm Optimization (PSO) [55] to map the
clusters to the tiles of a hardware, maximizing the minimum
effective lifetime of memristors (Equation (11)) in each tile’s
crossbar. Synapses of a cluster are implemented on memris-
tors using the synapse-to-memristor mapping, ensuring
that those with higher activation are mapped to memristors
with higher endurance, and vice versa.

To perform the optimization using PSO, eSpine uses
crossbar specification, including its dimensions, architec-
ture, and memristor technology, and performs circuit simu-
lations at a target P, V, and T corner. Extracted currents in
the crossbar are used in the endurance model (see Section 4)
to generate the endurance map, which is then used in the
cluster-to-tile and synapse-to-memristor mapping, optimiz-
ing the effective lifetime.

Table 1 reports the differences between the objective
function of SpiNeMap and eSpine. In addition to the com-
parison between SpiNeMap and eSpine, we also show the
performance of a hybrid approach SpiNeMap++ (see
Fig. 14), which uses the synapse-to-memristor mapping of
eSpine with SpiNeMap. See our results in Section 8.

Although PSO is previously proposed in SpiNeMap, our
novelty is in the use of the proposed synapse-to-memristor
mapping step, which is integrated inside each PSO iteration
to find the minimum effective lifetime.

5.2 Heuristic-Based Synapse-to-Memristor Mapping

Fig. 11 illustrates the synapse-to-memristor mapping of
eSpine and how it differs from SpiNeMap. Fig. 11a illus-
trates the implementation of four pre-synaptic and three
post-synaptic neurons on a 4x4 crossbar. The letter and
number on a connection indicate the synaptic weight and
number of activation, respectively. Existing technique such
as SpiNeMap maps synapses arbitrarily on memristors. As
a result, a synapse with higher activation may get placed at
the bottom-left corner of a crossbar where memristors have
lower endurance (see Fig. 11b). eSpine, on the other hand,
incorporates the endurance variability in its synapse-to-
memristor mapping process. It first sorts pre-synaptic neu-
rons based on their activation, and then allocates them such
that those with higher activation are placed at the top-right
corners, where memristors have higher endurance (see
Fig. 11c). Once the pre-synaptic neurons are placed along
the rows, the post-synpatic neurons are placed along the
columns, considering their connection to the pre-synaptic
neurons, and their activation. In other words, post-synaptic
neurons with higher activation are placed towards the right
corner of a crossbar. This is shown in Fig. 11c, where the
post-synaptic neuron 7 (with 5 activation) is mapped to the
left of the post-synaptic neuron 3 (with 18 activation), both
of which receives input from the same pre-synaptic neuron
1. This is done to incorporate the online weight update
mechanism in SNNs, which depend on both the pre- and
post-synaptic activation (see Section 7.1). This synapse-to-
memristor mapping is part of Alg. 1 (lines 9-10).

Fig. 10. High-level overview of eSpine.

TABLE 1
eSpine vs. SpiNeMap [13]

SpiNeMap [13] eSpine (proposed)

Clustering Algorithm Kernighan-Lin Graph Partitioning [56] Kernighan-Lin Graph Partitioning [56]
Objective Energy Energy

Cluster-to-Tile Algorithm PSO PSO
Objective Energy Effective Lifetime

Synapse-to-Memristor Algorithm — Sorting heuristic
Objective Effective Lifetime

Fig. 11. Synapse-to-memristor mapping of eSpine.
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5.3 PSO-Based Cluster-to-Tile Mapping

To formulate the PSO-based optimization problem, let
GðC; SÞ be a machine learning workload with a set C of
clusters and a set S of connections between the clusters. The
workload is to be executed on a hardwareHðT;LÞwith a set
T of tiles (each tile has one crossbar) and a set L of links
between the tiles. Mapping of the application G to the hard-
wareH,M ¼ fmx;yg is defined as

mx;y ¼ 1 if cluster cx 2 C is mapped to tile ty 2 T
0 otherwise

�

(13)

Algorithm 1 computes the minimum effective lifetime of
all memristors in the hardware for a given mappingM.

Algorithm 1. MinEffLife(): Compute Minimum Effec-
tive Lifetime of Crossbars for MappingM

InputM
Output L

1: for ty 2 T /* iterate for each tile in the hardware

*/

2: do
3: Sy ¼ fcxg 3 mx;y ¼ 1 /* clusters mapped to ty */
4: Ly

i;j ¼ 0 8 fi; jg 2 1; 2; � � � ;M /*Initializetheeffec-

tivelifetimeontile ty. */

5: for ck 2 Sy /* iterate for each cluster */

6: do
7: Nk ¼ fng /* pre-synaptic neurons of ck */
8: Ak ¼ fag /* number of activations of n */

9: sort Ak /* sort the pre-synaptic neurons in

descending order of their activations. */

10: map Nk to the crossbar using sorted Ak/* place the

pre-synaptic neurons sorted by their acti-

vations starting from the farthest input in

the crossbar. */

11: repeat lines 7-10 for post-synaptic neurons;
12: Ly

i;j ¼ Ly
i;j þ Ei;j=ai;j /* using Equation (11) */

13: end
14: Ly ¼ minfLy

i;jg /* minimum effective lifetime */

15: end
16: return minfLyg/* return minimum effective life-

time of all crossbars */

For each tile, the algorithm first records all clusters
mapped to the tile in the set Sy (line 3), and initializes the
effective lifetime of the crossbar on the tile (line 4). For each
cluster mapped to the tile, the algorithm records all its pre-
synaptic neurons in the set Nk (line 7) and their activation,
i.e., the number of spikes in the set Ak (line 8). The two sets
are sorted in descending order of Ak (line 9). Next, the clus-
ter (i.e, pre-synaptic neurons, post-synaptic neurons, and
their synaptic connections) is placed on the crossbar (line
10-11). To do so, pre-synaptic neurons with higher activa-
tion are mapped farther from the origin (see Fig. 11) to
ensure they are on longer current paths. This is to incorpo-
rate the endurance variability within each crossbar. The
post-synaptic neurons are mapped along the columns by
sorting their activation. With this mapping, the effective
lifetime is computed (line 12). The minimum effective life-
time is retained (line 14). The algorithm is repeated for all

tiles of the hardware. Finally, the minimum effective life-
time of all crossbars in the hardware is returned (line 16).

The fitness function of eSpine is

F ¼ MinEffLifeðMÞ (14)

The optimization objective of eSpine is

Lmin ¼ La; where a

¼ argminfMinEffLifeðMiÞji 2 1; 2; � � �g; (15)

The constraint to this optimization problem is that a clus-
ter can map to exactly 1 tile, i.e.,

X
y

mx;y ¼ 1 8 x (16)

To solve Equation (15) using PSO, we instantiate np

swarm particles. The position of these particles are solutions
to the fitness functions, and they represent cluster map-
pings, i.e., M’s in Equation (15). Each particle also has a
velocity with which it moves in the search space to find the
optimum solution. During the movement, a particle updates
its position and velocity according to its own experience
(closeness to the optimum) and also experience of its neigh-
bors. We introduce the following notations.

D ¼ jCj � jVj ¼ dimensions of the search space

Q ¼ ful 2 RDgnp�1
l¼0 ¼ positions of particles in the swarm

V ¼ fvl 2 RDgnp�1
l¼0 ¼ velocity of particles in the swarm

(17)

Position and velocity of swarm particles are updated, and
the fitness function is computed as

Qðtþ 1Þ ¼ QðtÞ þVðtþ 1Þ
Vðtþ 1Þ ¼ VðtÞ þ ’1 �

�
Pbest �QðtÞ

�
þ ’2 �

�
Gbest �QðtÞ

�
F ðulÞ ¼ Ll ¼ MinEffLifeðMlÞ

(18)
where t is the iteration number, ’1;’2 are constants and Pbest

(and Gbest) is the particle’s own (and neighbors) experience.
Finally, local and global bests are updated as

Pl
best ¼ F ðulÞ if F ðulÞ < F ðPl

bestÞ
Gbest ¼ argmin

l¼0;...np�1
Pl
best

(19)

Due to the binary formulation of the mapping problem
(see Equation (13)), we need to binarize the velocity and
position of Equation (17), which we illustrate below.

V̂ ¼ sigmoidðVÞ ¼ 1

1þ e�V
Q̂ ¼ 0 if randðÞ < V̂

1 otherwise

�

(20)

Fig. 12 illustrates the PSO algorithm. The algorithm first
initializes positions of the PSO particles (13). Next, the algo-
rithm runs for NPSO iterations. At each iteration, the PSO
algorithm evaluates the fitness function (F ) and updates its
position based on the local and global best positions (Equa-
tion (18)), binarizing these updates using Equation (20).
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The PSO algorithm of eSpine can be used to explore the
energy and lifetime landscape of different neuron mapping
solutions to the hardware. Section 8.3 illustrates such explo-
ration for a representative application. eSpine gives design-
ers the flexibility to combine energy and lifetime metrics
beyond simply obtaining the minimum energy and maxi-
mum lifetime mappings (for instance, minimizing energy
for a given lifetime target, and vice versa).

6 EXTENDED SCOPE OF ESPINE

6.1 Other Memristor Technologies

Temperature-related endurance issues are also critical for
other memristor technologies such as FeRAM and STT-/
SOT-MRAM. A thermal model for Magnetic Tunnel Junc-
tion (MTJ), the basic storage element in STT-MRAM based
memoristor, is proposed in [57]. According to this model,
the self-heating temperature is due to the spin polarization
percentages of the free layer and the pinned layer in the
MTJ structure, which are dependent on the programming
current. Similarly, a thermal model for FeRAM-based mem-
ristor is proposed in [58]. These models can be incorporated
directly into our SPICE-level crossbar model to generate the
thermal and endurance maps, similar to those presented in
Fig. 9 for PCM. The proposed cluster-to-tile mapping and
the synapse-to-crossbar mapping (see Section 5) can then
use these maps to optimize the placement of synapses for a
target memristor technology, improving its endurance.
Although the exact numerical benefit may differ, eSpine can
improve endurance for different memristor technologies.

6.2 Other Reliability Issues

There are other thermal-related reliability issues in memris-
tors, for instance retention-time [59], [60], [61] and transistor
circuit aging [19], [20], [21], [62]. Retention time is defined
as the time for which a memristor can retain its pro-
grammed state. Recent studies show that retention time
reduces significantly with increase in temperature [59], [63].
Retention time issues are relevant for supervised machine
learning, where the synaptic weights are programmed on
memristors once, during inference. For online learning
(which is the focus of this work), synaptic weight update

frequency is usually much smaller than the retention time.
Therefore, a reduction in retention time is less of a concern.
Nevertheless, by lowering the average temperature of cross-
bars, eSpine also addresses the retention time-related reli-
ability concerns in memristors.

7 EVALUATION METHODOLOGY

7.1 Use-Case of eSpine

Fig. 13 illustrates the use-case of eSpine applied for on-line
machine learning. We use Spike-Timing Dependent Plastic-
ity (STDP) [64], which is an unsupervised learning algo-
rithm for SNNs, where the synaptic weight between a pre-
and a post-synaptic neuron is updated based on the timing
of pre-synaptic spikes relative to the post-synaptic spikes.2

STDP is typically used in online settings to improve accu-
racy of machine learning tasks.

A machine learning model is first analyzed offline using
PyCARL with representative workload and data set. This is
to estimate the relative activation frequency of the neurons
in the model when it is trained at run-time using current
data. Although neuron activation can deviate at run-time,
our more detailed analysis shows that using representative
workload and data set, such deviations can be limited to
only a few neurons in the model.3 We have validated this
observation for the evaluated applications that use ECG
and image data (see Section 7).

The activation information obtained offline is processed
using eSpine (see Fig. 10 for the details of eSpine) to gener-
ate cluster-to-tile and synapse-to-crossbar mappings. The
offline trained weight updates are discarded to facilitate
relearning of the model from current (in-field) data. The
untrained machine learning model is placed onto the hard-
ware using the mappings generated from eSpine.

Although online learning is the main focus, eSpine is also
relevant for supervised machine learning, where no weight
updates happen at run-time. By mapping the most active
neurons to the farthest corner of a crossbar (i.e., on longest
current paths), eSpine minimizes crossbar temperature,
which reduces 1) leakage current and 2) circuit aging.

7.2 Evaluated Applications

We evaluate 10 SNN-based machine learning applications
that are representative of three most commonly-used neural
network classes — convolutional neural network (CNN),
multi-layer perceptron (MLP), and recurrent neural network
(RNN). These applications are 1) LeNet based handwritten

Fig. 12. Flow chart of our PSO algorithm.

Fig. 13. Use-case of eSpine.

2. Apart from STDP, many other online learning algorithms depend
on the activation of both the pre- and post-synaptic neurons.

3. In the worst-case, the lifetime obtained using eSpine for these few
neurons will be similar to SpiNeMap. However, for most neurons in
the model, eSpine significantly outperforms SpiNeMap. Therefore, the
lifetime obtained using eSpine is higher (see Section 8.1).
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digit recognition with 28� 28 images of handwritten digits
from the MNIST dataset; 2) AlexNet for ImageNet classifica-
tion; 3) VGG16, also for ImageNet classification; 4) ECG-based
heart-beat classification (HeartClass) [65], [66] using electro-
cardiogram (ECG) data; 5) multi-layer perceptron (MLP)-
based handwritten digit recognition (MLP-MNIST) [67] using
theMNIST database; 6) edge detection (EdgeDet) [54] on 64�
64 images using difference-of-Gaussian; 7) image smoothing
(ImgSmooth) [54] on 64� 64 images; 8) heart-rate estimation
(HeartEstm) [68] using ECG data; 9) RNN-based predictive
visual pursuit (VisualPursuit) [69]; and 10) recurrent digit
recognition (R-DigitRecog) [67]. Table 2 summarizes the
topology, the number of neurons and synapses of these appli-
cations, and their baseline accuracy on DYNAP-SE using
SpiNeMap [13].

7.3 Hardware Models

We model the DYNAP-SE neuromorphic hardware [2] with
the following configurations.

� A tiled array of 4 tiles, each with a 128x128 crossbar.
There are 65,536 memristors per crossbar.

� Spikes are digitized and communicated between
cores through a mesh routing network using the
Address Event Representation (AER) protocol.

� Each synaptic element is a PCM-based memristor.
To test the scalability of eSpine, we also evaluate

DYNAP-SE with 16 and 32 tiles.
Table 3 reports the hardware parameters of DYNAP-SE.

7.4 Evaluated Techniques

We evaluate the following techniques (see Fig. 14).

� SpiNeMap: This is the baseline technique to map
SNNs to crossbars of a hardware. SpiNeMap gener-
ates clusters from an SNN workload, minimizing the

inter-cluster communication. Clusters are mapped to
tiles minimizing the energy consumption. Synapses
of a cluster are implemented on memristors arbi-
trarily, without incorporating their endurance.

� SpiNeMap++: This is an extension of SpiNeMap,
where the cluster-to-tile mapping is performed using
SpiNeMap, minimizing energy consumption, and
the synapse-to-memristor mapping is performed
using eSpine, maximizing effective lifetime.

� eSpine: This is another extension of SpiNeMap. eSpine
uses only the clustering technique of SpiNeMap,
thereby minimizing the inter-cluster communication,
which also improves energy consumption and latency.
The cluster-to-tile and synapse-to-memristor map-
pings are performed using PSO, maximizing the effec-
tive lifetime. Furthermore, eSpine allows to explore
the entire Pareto space of energy and lifetime.

7.5 Evaluated Metric

We evaluate the following metrics.

� Effective lifetime: This is the minimum effective life-
time of all memristors in the hardware.

� Energy consumption: This is the total energy con-
sumed on the hardware. We also evaluate the static
and dynamic energy consumption.

� Compilation time: This is the time it takes for the
PSO to find a solution.

TABLE 2
Applications Used to Evaluate eSpine

Class Applications Synapses Neurons Topology Accuracy

CNN LeNet 282,936 20,602 CNN 85.1%
AlexNet 38,730,222 230,443 CNN 90.7%
VGG16 99,080,704 554,059 CNN 69.8 %
HeartClass [65] 1,049,249 153,730 CNN 63.7%

MLP DigitRecogMLP 79,400 884 FeedForward (784, 100, 10) 91.6%
EdgeDet [54] 114,057 6,120 FeedForward (4096, 1024, 1024, 1024) 100%
ImgSmooth [54] 9,025 4,096 FeedForward (4096, 1024) 100%

RNN HeartEstm [68] 66,406 166 Recurrent Reservoir 100%
VisualPursuit [69] 163,880 205 Recurrent Reservoir 47.3%
R-DigitRecog [67] 11,442 567 Recurrent Reservoir 83.6%

TABLE 3
Major Simulation Parameters Extracted From [2]

Neuron technology 65 nm CMOS
Synapse technology PCM
Supply voltage 1.2V
Energy per spike 50pJ at 30 Hz spike frequency
Energy per routing 147pJ
Switch bandwidth 1.8 G. Events/s

Fig. 14. Evaluated techniques.
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8 RESULTS AND DISCUSSIONS

8.1 Normalized Lifetime

Fig. 15 compares the effective lifetime obtained using each
technique for each evaluated application on DYNAP-SE.
We make the following two key observations.

First, between SpiNeMap and SpiNeMap++, SpiNeMap+
+ has an average 2.7x higher effective lifetime than SpiNe-
Map. Although both SpiNeMap and SpiNeMap++ have the
same cluster-to-tile mapping, SpiNeMap++ maps synapses
of a cluster intelligently on memristors of a crossbar, incor-
porating 1) the endurance variability of memristors in a
crossbar and 2) the activation of synapses in a workload.
Therefore, SpiNeMap++ has higher effective lifetime than
SpiNeMap, which maps synapses arbitrarily to memristors
of a crossbar. Second, eSpine has the highest effective life-
time than all evaluated techniques. The effective lifetime of
eSpine is higher than SpiNeMap and SpiNeMap++ by aver-
age 3.5x and 1.30x, respectively. Although both eSpine and
SpiNeMap++ uses the same synapse-to-memristor mapping
strategy, i.e., they both implement synapses with higher
activation using memristors with higher endurance, the
improvement of eSpine is due to the PSO-based cluster-to-
tile mapping, which maximizes the effective lifetime. Third,
for some applications such as MLP-MNIST and R-DigitRe-
cog, the effective lifetime using eSpine is comparable to
SpiNeMap++. For these applications, the cluster-to-tile
mapping of SpiNeMap is already optimal in terms of the
effective lifetime. For other applications, eSpine is able to
find a better mapping, which improves the effective lifetime
(by average 38 percent compared to SpiNeMap++).

8.2 Energy Consumption

Fig. 16 reports the energy consumption of SpiNeMap and
eSpine on DYNAP-SE, distributed into 1) dynamic energy,
which is consumed in crossbars to generate spikes
(dynamic), 2) communication energy, which is consumed
on the shared interconnect to communicate spikes between
crossbars (comm), and 3) static energy, which is consumed
in crossbars due to the leakage current through the access
transistor of each memristor cell (static). We make the
following four key observations.

First, the dynamic energy, communication energy, and
static energy constitute respectively, 52.6, 39.4, and 8 percent
of the total energy consumption. Second, eSpine does not
alter spike generation, and therefore, the dynamic energy
consumption of eSpine is similar to SpiNeMap. Third,
eSpine’s cluster-to-tile mapping strategy is to optimize the
effective lifetime, while SpiNeMap allocates clusters to tiles
minimizing the energy consumption on the shared intercon-
nect. Therefore, the communication energy of SpiNeMap is
lower than eSpine by an average of 21.4 percent. Finally,
eSpine reduces the average temperature of each crossbar by
implementing synapses with higher activation on longer
current paths where memristors have lower self-heating
temperature. Therefore, the leakage power consumption of
eSpine is on average 52 percent lower than SpiNeMap.

8.3 Energy Tradeoffs

Fig. 17 shows the normalized effective lifetime and the nor-
malized energy of the mappings explored using the PSO
algorithm for LeNet. The figure shows the mappings that
are Pareto optimal with respect to lifetime and energy.

Fig. 18 reports the energy consumption of SpiNeMap,
SpiNeMap++, and eSpine on DYNAP-SE for each evaluated
application. We make the following two key observations.

First, the energy consumption of SpiNeMap++ is lower
than SpiNeMap by an average of 4 percent. This reduction
is due to the reduction of leakage current, which is achieved
by using memristors with lower self-heating temperature.
The energy consumption of eSpine is higher than both
SpiNeMap and SpiNeMap++ by an average of 7.5 and 11.6
percent, respectively. Although eSpine, like SpiNeMap++,
lowers the static energy consumption by its intelligent syn-
apse-to-memristor mapping, the higher energy consump-
tion of eSpine is due to the increase in the energy
consumption on the shared interconnect of the hardware.
However, by using an energy-aware clustering technique to
begin with, eSpine ensures that the energy consumption is
not excessively higher. From the results of Sections 8.1 and
8.3, we make the following two key conclusions. First,
SpiNeMap++, which is SpiNeMap combined with the pro-
posed synapse-to-memristor mapping, is best in terms of
energy, achieving 2.7x higher lifetime than SpiNeMap. Sec-
ond, eSpine, which is our proposed cluster-to-tile and

Fig. 15. Effective lifetime for the evaluated applications.

Fig. 16. Energy distribution for the evaluated applications.

Fig. 17. Mapping explorations for LeNet.

Fig. 18. Energy consumption for the evaluated applications.
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synapse-to-memristor mappings combined, is best in terms
of lifetime, achieving 3.5x higher lifetime than SpiNeMap.

8.4 Performance

Table 4 reports the performance of the evaluated applica-
tions using eSpine (Column 3). Results are compared
against Baseline, which uses PyCARL [45] to estimate the
accuracy of these applications on hardware assuming that
the current injected in each memristor is what is needed for
its synaptic weight update (Column 2). The table also
reports the accuracy using eSpine, where the synaptic
weights are scaled as proposed in [40] to compensate for the
accuracy loss due to the current imbalance in a crossbar
(Column 4). We make the following two key observations.

First, the Baseline has the highest accuracy of all. This is
because, the PyCARL framework of Baseline assumes that
the current through all memristors in a crossbar are the
same. Second, current imbalance can lead to a difference
between the expected and actual synaptic plasticity based
on the specific memristor being accessed. Therefore, we see
an average 3 percent reduction in accuracy using eSpine.
However, the current imbalance-aware synapse update
strategy, when combined with eSpine can solve this prob-
lem. In fact, we estimate that the accuracy of machine learn-
ing applications using this synaptic update strategy is on
average 2 percent higher than eSpine and only 1 percent
lower than the Baseline.

8.5 Average Temperature

Fig. 19 plots the average self-heating temperature of the
PCM cells in four crossbars in DYNAP-SE executing LeNet
workload using SpiNeMap and eSpine. We make the fol-
lowing two observations.

First, eSpine maps active memristive synapses towards
the top right corner of a crossbar. However, such mapping
does not lead to a significant change in the ambient temper-
ature. This is because of the the chalcogenide alloy (e.g.,
Ge2Sb2Te5 [70]) used to build a PCM cell, which keeps the
self-heating temperature of the cell concentrated at the
interface between the heating element and the amorphous
dome (see Fig. 2), with only a negligible spatial heat flow to
the surrounding [71].

Second, the average self-heating temperature of eSpine is
lower than SpiNeMap. This is because of the synapse-to-
memristor mapping technique of eSpine, which places syn-
apses with higher activation on longer current paths, where
the self-heating temperature of a memristor is lower. By

TABLE 4
Accuracy of Baseline (PyCARL [45]), eSpine, and eSpine Combined with [40] for the Evaluated Applications

Application Accuracy (%) Application Accuracy (%)

Baseline eSpine eSpine + [40] Baseline eSpine eSpine + [40]

LeNet 85.1 84.2 85.0 AlexNet 90.7 88.7 89.8
VGG16 69.8 64.4 67.8 HeartClass 63.7 59.2 62.4
MLP-MNIST 91.6 91.3 91.6 EdgeDet 100 86 96.8
ImgSmooth 100 100 100.0 HeartEstm 67.9 67.9 67.9
VisualPursuit 47.3 47.3 47.3 R-DigitRecog 83.6 81.5 83.6

Fig. 19. Average temperature of the four crossbars in DYNAP-SE executing LeNet workload using SpiNeMap and eSpine.

Fig. 20. Lifetime normalized to SpiNeMap for the evaluated applications
on DYNAP-SE with 4, 16, and 32 tiles.
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reducing the average temperature, eSpine lowers the leak-
age current through the access transistor of a memristor,
which we discussed in Section 8.2.

8.6 Resource Scaling

Fig. 20 compares the lifetime normalized to SpiNeMap for
each evaluated application on DYNAP-SE with 4-tile (4
crossbars), 16-tile (16 crossbars), and 32-tile (32 crossbars).

We observe that with 4, 16, and 32 tiles in the system,
eSpine provides an average 3.5x, 5.3x, and 6.4x lifetime
improvement, respectively for the evaluated applications
compared to SpiNeMap. This is because with more tiles in
the system, the workload gets distributed across the avail-
able crossbars of the hardware, resulting in lower average
utilization of memristors, improving their lifetime.

8.7 Compilation Time

Table 5 reports eSpine’s compilation time and the effective
lifetime normalized to SpiNeMap for three different settings
of PSO iterations. We observe that as the number of PSO
iterations is increased, the effective lifetime increases for all
applications. This is because with increase in the number of
iterations, the PSO is able to find a better solution. However,
the compilation time also increases. We observe that the
compilation time is significantly large for larger applications
like VGG16 with 100 PSO iterations. However, we note that
the PSO-based optimization is performed once at design-
time. Furthermore, the PSO-iterations is a user-defined
parameter, and therefore, it can be set to a lower value to
generate a faster mapping solution, albeit a lower lifetime
improvement. Finally, we observe that increasing the PSO
iterations beyond 100 leads to a significant increase in the
compilation time for all applications with minimal improve-
ment of their effective lifetime.

9 CONCLUSION

In this work, we present eSpine, a simple, yet powerful tech-
nique to improve the effective lifetime of memristor-based
neuromorphic hardware in executing SNN-based machine
learning workloads. eSpine is based on detailed circuit sim-
ulations at different process, voltage, and temperature cor-
ners to estimate parasitic voltage drops on different current

paths in a memristive crossbar. The circuit parameters are
used in a compact endurance model to estimate the endur-
ance variability in a crossbar. This endurance variability is
then used within a design-space exploration framework for
mapping neurons and synapses of a workload to crossbars
of a hardware, ensuring that synapses with higher activa-
tion are implemented on memristors with higher endur-
ance, and vice versa. The mapping is explored using an
instance of the Particle Swarm Optimization (PSO). We
evaluate eSpine using 10 SNN workloads representing com-
monly-used machine learning approaches. Our results for
DYNAP-SE, a state-of-the-art neuromorphic hardware dem-
onstrate the significant improvement of effective lifetime of
memristors in a neuromorphic hardware.
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