
CARLsim 3: A User-Friendly and Highly Optimized

Library for the Creation of Neurobiologically

Detailed Spiking Neural Networks

Michael Beyeler*, Kristofor D. Carlson*, Ting-Shuo Chou*, Nikil Dutt, Jeffrey L. Krichmar

Department of Cognitive Sciences and Department of Computer Science

University of California, Irvine

Irvine, CA, 92697 USA

{mbeyeler, tingshuc, kdcarlso, dutt, jkrichma}@uci.edu

*Authors contributed equally to this work

Abstract—Spiking neural network (SNN) models describe key

aspects of neural function in a computationally efficient manner

and have been used to construct large-scale brain models. Large-

scale SNNs are challenging to implement, as they demand high-

bandwidth communication, a large amount of memory, and are

computationally intensive. Additionally, tuning parameters of

these models becomes more difficult and time-consuming with

the addition of biologically accurate descriptions. To meet these

challenges, we have developed CARLsim 3, a user-friendly, GPU-

accelerated SNN library written in C/C++ that is capable of

simulating biologically detailed neural models. The present

release of CARLsim provides a number of improvements over

our prior SNN library to allow the user to easily analyze

simulation data, explore synaptic plasticity rules, and automate

parameter tuning. In the present paper, we provide examples

and performance benchmarks highlighting the library’s features.

Keywords—spiking neural networks; simulation tools; GPU

computing; large-scale brain models; neuromorphic engineering

I. INTRODUCTION

Spiking neural network (SNN) models play an important role

in understanding brain function [1] and in designing

neuromorphic devices with the energy efficiency,

computational power, and fault-tolerance of the brain [2].

These models represent a compromise between execution time

and biological fidelity by capturing essential aspects of neural

communication, such as spike dynamics, synaptic

conductance, and plasticity, while foregoing computationally

expensive descriptions of spatial voltage propagation found in

compartmental models [3]. However, developing efficient

simulation environments for SNN models is challenging due

to the required memory to store the neuronal/synaptic state

variables and the time needed to solve the dynamical

equations describing these models. A number of simulators

are already available to the public [4], each providing their

own unique qualities and trade-offs based on the employed

abstraction level and supported computer hardware (see Table

I). Given the considerable potential for parallelization of

artificial neural networks [5], it is not surprising that most

simulators today offer implementations on parallel

architectures, such as computer clusters or graphics processing

units (GPUs). However, in order to be of practical use to the

computational modeling community, an SNN simulator

should not only be fast, but also freely available, capable of

running on affordable hardware, have a user-friendly

interface, include complete documentation, and provide tools

to easily design, construct, and analyze SNN models.

In this paper we present CARLsim 3, an efficient, easy-to-

use, GPU-accelerated library for simulating large-scale SNN

models with a high degree of biological detail. Due to its

efficient GPU implementation, CARLsim 3 is useful for

designing large-scale SNN models that have real-time

constraints (e.g., interacting with neuromorphic sensors or

controlling neurorobotics platforms).

Building on the demonstrated efficiency and scalability of

earlier releases [6], [7], the present release improves the

usability of our software by means of platform compatibility

(Linux, Mac OS X, and Windows), rigorous code

documentation (including an extensive user guide and

tutorials), a test suite for functional code verification, and a

MATLAB toolbox for the visualization and analysis of

neuronal, synaptic, and network information. In addition,

CARLsim 3 provides native support for a range of spike-based

synaptic plasticity mechanisms and topographic synaptic

projections, as well as being among the first to provide

support for a network-level parameter tuning interface.
To promote its use among the computational neuroscience

and neuromorphic engineering communities, CARLsim is
provided as an open-source C++ package, which can be freely
obtained from: www.socsci.uci.edu/~jkrichma/CARLsim.

II. CARLSIM

CARLsim is a C/C++ based SNN simulator that allows

execution of networks of Izhikevich spiking neurons [8] with

realistic synaptic dynamics on both generic x86 CPUs and

standard off-the-shelf GPUs. The simulator provides a PyNN-

like programming interface [9], which allows for details to be

specified at the synapse, neuron, and network level.

This work was supported by National Science Foundation (NSF) Award No. IIS-1302125 and an award from Qualcomm Technologies Incorporated.

978-1-4799-1959-8/15/$31.00 cO2015 IEEE

1

Fig. 1. A diagram showing the possible states the CARLsim simulation can occupy. The user specifies neuronal and network details in the CONFIG state and

moves to the SETUP state, where data monitors can be set, by running setupNetwork. Next, the user calls runNetwork to move to the RUN state where the

input stimuli are set and the simulation is executed. The user can optionally start and stop data monitors during the simulation or use the offline analysis toolbox

(OAT) with MATLAB to analyze data written to files.

The simulator was first introduced in 2009 (now referred to

as CARLsim 1), where it demonstrated near real-time

performance for 100,000 spiking neurons on a single NVIDIA

GTX 280 GPU [6]. CARLsim 2 added basic support for

synaptic conductances, spike-timing dependent plasticity

(STDP) and short-term plasticity (STP) [7]. The present

release, CARLsim 3, greatly expands the functionality of the

simulator by adding a number of features that enable and

simplify the creation, tuning, and simulation of complex

networks with spatial structure. These features include: 1)

real-time and offline data analysis tools, 2) a more complete

STDP implementation that includes dopaminergic neuro-

modulation, and 3) an automated parameter tuning interface.

In addition, several software engineering techniques and more

complete documentation are introduced in the present release

to ensure the integrity of the current code base and to lay the

groundwork for the success of future releases. The following

subsections will explain these achievements in detail.

A. CARLsim API: General Workflow

The workflow of a typical CARLsim 3 simulation is organized

into three distinct, consecutive states (see Fig. 1): the

configuration state (CONFIG), the set up state (SETUP), and the

run state (RUN). User functions in the C++ API are grouped

according to these stages, which streamline the process and

prevent race conditions. State transitions are handled by

special user functions such as setupNetwork and runNetwork.

The first step in using CARLsim 3 (libCARLsim) imports the

library and instantiates the main simulation object:

This prepares the simulation for execution in either CPU_MODE
or GPU_MODE, and specifies the verbosity of the status reporting
mechanism (SILENT indicating that no console output will be
produced). From then on, the simulation is in CONFIG state,
allowing the properties of the neural network to be specified.

Similar to PyNN [9] and many other simulation
environments, CARLsim uses groups of neurons and

connections as an abstraction to aid defining synaptic
connectivity. Different groups of neurons can be created from a
one-dimensional array to a three-dimensional grid via
createSpikeGeneratorGroup or createGroup, and
connections can be specified depending on the relative
placement of neurons via connect. This allows for the creation
of networks with complex spatial structure. For a selective list
of available function calls in CONFIG state please refer to the
left-hand side of Fig. 1.

Izhikevich spiking neurons [8] with either current-based or

conductance-based synapses are currently supported, but more

neuron types are planned for the future. The following code

snippet creates a group of 500 excitatory neurons arranged on

a 10x10x5 three-dimensional grid:

Here, “output” is an arbitrary name for the group while

EXCITATORY_NEURON denotes that all neurons in the group have

glutamatergic synapses. Neurons with GABAergic synapses

are supported with the INHIBITORY_NEURON keyword. Neurons

with dopaminergic synapses are supported with the

DOPAMINGERIC_NEURON keyword and can be used to modulate

STDP learning curves (see below). To refer to this group in

later method calls, the createGroup method returns a group

ID, gOut. Next, the Izhikevich parameters are specified, in this

case for class 1 excitability regular spiking neurons:

where 0.02f, 0.2f, -65.0f, and 8.0f correspond respectively to

the a, b, c, and d parameters of the Izhikevich neuron.

To create a group of neurons that generate Poissonian spike

trains, the user specifies a name, size, and type. These neurons

are used to input activity into the network and can be driven

by sensory stimuli.

The following statement then creates a random connection

pattern from group gIn to group gOut with weight 0.1f, 10%

connection probability, a synaptic delay uniformly distributed

sim.setNeuronParameters(gOut,0.02f,0.2f,-65.0f,8.0f);

int gIn = sim.createSpikeGeneratorGroup(“input”,

 Grid3D(10,10,5), EXCITATORY_NEURON);

int gOut = sim.createGroup(“output”, Grid3D(10,10,5),

 EXCITATORY_NEURON);

#include <carlsim.h>

CARLsim sim(“example”, GPU_MODE, SILENT);

2

between 1 ms and 20 ms, a specific receptive field size, and

fixed synapses (SYN_FIXED):

Here, the RangeWeight struct usually takes three parameters

specifying the minimum, initial, and maximum weights, or

just one parameter if all values are identical (as is the case for

fixed synapses). The (optional) RadiusRF struct specifies the

x, y, and z dimensions of a radial receptive field, following the

topographic organization of the Grid3D struct. For example,

the above snippet creates a spherical receptive field that only

connects neurons in gIn to neurons in gOut if the distance

between their locations on the three-dimensional grid is less

than 3 (arbitrary units). Plastic connections are created simply

by replacing the keyword SYN_FIXED with SYN_PLASTIC. If one

is not satisfied with the built-in connection types (“one-to-

one”, “full”, “random”, and “gaussian”), a callback

mechanism is available for user-specified connectivity.

The present release allows users to choose from a number of

synaptic plasticity mechanisms. These include standard

equations for STP [10], [11], various forms of additive

nearest-neighbor STDP [12], and homeostatic plasticity in the

form of synaptic scaling [13]. STDP is a paradigm that

modulates the weight of synapses according to their degree of

causality. Many different variants of STDP seem to exist in

the brain, the functional roles of which are still largely

unknown. CARLsim now provides an efficient

implementation of a number of experimentally validated

STDP curves (see Fig. 2), which may greatly enhance the

study of STDP’s functional role in computational models of

brain function. STDP can either apply to glutamatergic

synapses (E-STDP; see Fig. 2(a), (b)) or GABAergic synapses

(I-STDP; see Fig. 2(a), (c)), and is specified post-synaptically.

In addition, CARLsim 3 supports dopamine-modulated

STDP (DA-STDP) [14]. In the following code example, 100

dopaminergic neurons (gDA) project to a group of ten regular

spiking neurons (gRS) with exponential DA-STDP:

Once the spiking network has been specified, the function

setupNetwork optimizes the network state for the chosen

back-end (CPU or GPU) and moves the simulation into SETUP

state (see Fig. 1). In this state, a number of monitors can be set

to record variables of interest (e.g., spikes, weights, state

variables) in binary files for off-line analysis. New in

CARLsim 3 is a means to make these data available at run-

time (without the computational overhead of writing data to

disk), which can be queried for data in the RUN state.

The first call to runNetwork will take the simulation into RUN

state. The simulation can be repeatedly run (or “stepped”) for

an arbitrary number of sec*1000+msec milliseconds:

Input can be generated via current injection or spike

injection (the latter using Poisson spike generators, or a

callback mechanism to specify arbitrary spike trains). We also

provide plug-in code to generate Poisson spike trains from

animated visual stimuli such as sinusoidal gratings, plaids, and

random dot fields created via the VisualStimulus toolbox.

Monitors allow users to selectively record variables of

interest during a subset of the simulation, and provide a

number of metrics useful for real-time analysis:

Here, spike events (spike times and neuron IDs) from

“group0” with ID g0 are recorded exclusively during the first

call to runNetwork. Hence metrics (e.g. the average firing rate

for “group0”) returned by the SpikeMonitor object will

typically refer to the last recording period, although it is

possible to concatenate independent recording periods using

PersistentMode. Analogously, one could set up a

ConnectionMonitor to analyze the average weight change

during a training session to infer when learning has saturated.

Fig. 2: Possible STDP curves in CARLsim (weight change for a pair of pre-

post spikes; pre-before-post: +, pre-after-post: –). Green curves can be applied

to glutamatergic synapses, red curves can be applied to GABAergic synapses,
and blue curves can be applied to both. (a) Exponential curve. (b) Timing-

based curve. (c) Pulsed curve.

sim.runNetwork(sec, msec);

// create network

int g0=sim.createGroup(“group0”, ... // etc.

sim.setupNetwork();

// set spike monitor for g0, record to “default” file

// “./results/spk_group0.dat”

SpikeMonitor* SM = sim.setSpikeMonitor(g0, ”default”);

// in addition, record data to object for 1 sec

SM.startRecording();

sim.runNetwork(1,0);

SM.stopRecording();

// after calling stopRecording, SpikeMonitor object can

// be queried for spike stats

// e.g.: get the mean firing rate of neurons in group g0

float rate = SM.getPopMeanFiringRate();

// run some more w/o recording to SpikeMonitor object

sim.runNetwork(10,0); // etc.

// create groups

int gDA = sim.createSpikeGeneratorGroup("DA input", 100,

 DOPAMINERGIC_NEURON);

int gRS = sim.createGroup(“RS”, 10, EXCITATORY_NEURON);

sim.setNeuronParameters(gRS, 0.02f, 0.2f, -65.0f, 8.0f);

// “all-to-all” connectivity with plastic synapses

// weights initialized to 0.01f, range is [0.0f, 0.1f]

// receptive field struct is ignored

sim.connect(gDA, gRS, “full”,

 RangeWeight(0.0f, 0.01f, 0.1f), 1.0f,

 RangeDelay(1,10), RadiusRF(-1), SYN_PLASTIC);

// set DA-STDP on all plastic synapses to gRS

float alpha_plus = 0.001f, tau_plus = 20.0f;

float alpha_minus = -0.0015f, tau_minus = 20.0f;

sim.setESTDP(gRS, DA_MOD, ExpCurve(alpha_plus, tau_plus,

 alpha_minus, tau_minus));

sim.connect(gIn, gOut, ”random”, RangeWeight(0.1f),

 0.1f, RangeDelay(1,20), RadiusRF(3,3,3), SYN_FIXED);

3

Fig. 3: Example output generated from the Offline Analysis Toolbox. (a)

Visualization of the mean firing rate of a single input group of 100 neurons

with an average firing rate of 30 Hz. (b) A raster plot of the same spiking data
shown in (a).

In addition to the real-time monitors, CARLsim 3 provides a

versatile Offline Analysis Toolbox (OAT) written in

MATLAB. Assuming the corresponding binary files exist,

visualizing network activity is achieved by simply passing the

name of the neuron group to a GroupMonitor in MATLAB:

The code snippet above generated the plots shown in Fig. 3.

We first select the group named input, change the plot type to

histogram, and plot the firing rate data shown in Fig. 3(a). We

then change the plot type to rasterplot to generate Fig. 3(b).

This allows users to quickly visualize and easily analyze their

network simulations.

B. CARLsim Kernel: Simulation Engine

An important feature of CARLsim is the ability to run spiking

networks not only on CPUs, but also on off-the-shelf NVIDIA

GPUs. The GPU implementation of CARLsim was written to

optimize four main performance metrics: parallelism, memory

bandwidth, memory usage, and thread divergence [6]. The

simulation is broken into steps that update neuronal state

variables in parallel (N-parallelism) and steps that update

synaptic state variables in parallel (S-parallelism). Sparse

representation techniques for spiking events and neuronal

firing decrease both memory and memory bandwidth usage.

Buffering data helps decrease thread divergence and enables

efficient run-time access of recorded variables (e.g., via

SpikeMonitor) that are stored on the GPU.
The CARLsim 3 kernel introduces a number of software

engineering techniques to assure the integrity of the current
code base and to enable successful growth of the project in the
future. For example, the pointer to implementation (pImpl)
idiom is used to programmatically separate user interface from
implementation, which will simplify the addition of different
front-ends and back-ends in the future. Regression testing, via
Google Test, is used to ensure that the development of new
functionality did not compromise the existing code base, and
new features are validated using functional and unit testing.
The full test suite is visible to the user for automatic quality
assurance after the installation.

C. Parameter Tuning with Evolutionary Algorithms

CARLsim 3 introduces a software interface to an evolutionary

computation system written in Java (ECJ) [15] to provide an

automated parameter tuning framework (Linux). As more

complex biological features are integrated into SNN models, it

becomes increasingly important to provide users with a

method of tuning the large number of open parameters.

Evolutionary Algorithms (EAs) enable flexible parameter

tuning by means of optimizing a generic fitness function. The

effectiveness of this approach was previously demonstrated by

tuning an SNN to produce V1-like tuning curve responses

with self-organizing receptive fields using an EA library

called Evolving Objects (EO) [16]. ECJ was chosen to replace

EO because it is under active development, supports multi-

threading, has excellent documentation, and implements a

variety of EAs [15].

Fig. 4 shows the general approach of the automated

parameter tuning framework. ECJ implements an EA with a

parameter file that includes: EA parameters, the number of

individuals per generation, and parameter ranges. Every step

of the EA is executed by ECJ except for the evaluation of the

fitness function, which is completed by CARLsim. CARLsim

evaluates the fitness function in parallel by running multiple

SNN individuals concurrently on the GPU, where the bulk of

the computations occur. ECJ is written in Java, which is

slower than C, but the majority of the execution time is spent

running CARLsim’s optimized C++/CUDA code. At the

beginning of every generation, the parameters to be tuned are

passed from ECJ to CARLsim using standard input/output

streams. CARLsim evaluates individuals in parallel and

returns the resulting fitness values to ECJ via standard

streams. The tuning framework allows users to tune virtually

any SNN parameter, while the fitness functions can be written

to depend on the neuronal activity or synaptic weights of the

SNN. This allows users to explore a variety of plasticity rules,

firing activities, and functionally relevant SNN behaviors.

Fig. 4: General approach to parameter tuning (adapted from [16]). ECJ
performs the Evolutionary Algorithm (EA) and passes the current generation

of parameters (red arrow) to CARLsim for evaluation using the parameter

tuning interface (PTI) code. CARLsim assigns each parameter set to an SNN
and evaluates all the individuals in parallel, passing the fitness values back to

ECJ for selection of individuals in the next generation (black arrow).

GM = GroupMonitor(‘input’); % group is named ‘input’

GM.plot(‘histogram’); % plots the data as a histogram

GM.plot(‘rasterplot’); % plots the data as a raster plot

4

III. RESULTS

A. Existing Models Using CARLsim

Previous CARLsim versions have been used to implement a

broad range of computational models on the order 10k–100k

neurons and millions of synapses, with examples that include

models of visual processing [7], [17], neuromodulation [18],

synaptic plasticity [13], and attention [19], [20]. In these SNN

implementations, CARLsim allowed modelers to quickly and

efficiently simulate large-scale networks to examine the role

biophysical mechanisms play in behavioral tasks. In one such

study, a digit categorization SNN used low-level memory

encoding mechanisms to classify handwritten digits with 92%

accuracy in real-time while quantitatively and qualitatively

reproducing psychophysical experimental data [21]. In another

study, a novel homeostatic synaptic plasticity model was

shown to stabilize STDP and play an important role in the

production of self-organizing receptive fields [13].

B. Example of New CARLsim 3 Functionality

CARLsim 3 has increased functionality to support the added

complexity of future SNN models. For example, Connection

Monitors can be used to easily determine when learning has

saturated and a training session should be ended, whereas real-

time Spike Monitors allow for the integration of CARLsim

with robotics and neuromorphic platforms. To showcase new

CARLsim 3 functionality, we next reproduce results from a

study on instrumental conditioning using DA-STDP [14].

Fig. 5: Replicated instrumental conditioning simulation results (adapted from

[14]). (a) Experimental setup. (b) Plot of probability of network response

versus trial number. Pink shaded areas denote reward applied to response A
while green shaded areas denote reward applied to response B. (c) Plot of

average number of spikes from groups A and B versus trial number.

We reproduced findings from a computational study that

used spike firing patterns and a global diffusive reinforcement

signal (dopamine) to learn associations between cues and

rewards [14]. Our simulations used DA-STDP with the

experimental setup shown in Fig. 5(a). For each trial, a

stimulus was delivered to group S resulting in the firing of a

majority of the neurons in the group. The firing activity from

group S evoked a small number of spikes in groups A and B,

which represented the response of the network to the stimulus.

As in [14], the network response state consisted of 3 possible

states: A, B, or no response. If group A had more spikes than

group B, the network response was said to be in state A, with

the opposite being true for state B, and the no response state

occurring when both groups A and B had the same number of

spikes.

An increase in the dopamine concentration in the network

represented reward in the simulation. In the first 250 trials, the

network was rewarded only if it produced response A. After

250 trials, the reward condition changed and the network was

rewarded only if it produced response B. Fig. 5(b) and (c)

show simulation results that replicate previous work [14].

During the initial stage (i.e., trials 1 ~ 100), the firing rates in

both groups A and B increased but the network response was

random. After 100 trials, the network had response A with

significant higher probability. At trial 250 the reward

condition was changed to response B, triggering the network

to change its response to B after trial 360. An interesting

phenomenon is that the network spent time (trial 250 ~ 360)

re-associating reward with a different response, which was not

obvious in previous work [14]. With the DA-STDP feature in

CARLsim 3, users can easily implement reinforcement

learning applications. The reproduced instrumental

conditioning example consumed less than 300 lines of C++

code. For code examples using DA-STDP please see

Subsection II-A.

C. Computational Peformance

In order to demonstrate the efficiency and scalability of

CARLsim 3, we ran simulations consisting of various sized

SNNs and measured their execution time. GPU simulations

were run on a single NVIDIA GTX 780 (3 GB of memory)

using CUDA, and CPU simulations were run on an Intel Core

i7 CPU 920 operating at 2.67 GHz.

The results of these benchmarks are summarized in Fig. 6.
Networks consisted of 80% excitatory and 20% inhibitory
neurons, with an additional 10% of neurons being Poisson
spike generators that drove network activity. The two neuronal
populations were randomly connected with a fixed connection
probability, and E-STDP was used to generate sustained
irregular activity as described by Vogels and Abbott [22]. The
number of synapses per neuron ranged from 100 to 300
connections, and the overall network activity was ~10 Hz.

GPU simulation speed, given as the ratio of GPU execution
time over real-time, is plotted in Fig. 6(a). Execution time
scaled linear with workload, both in terms of number of
neurons as well as number of synapses. In an earlier paper [7]
we reported that networks with 110,000 neurons and 100
synaptic connections per neuron took roughly two seconds of

5

clock time for every second of simulation time (CARLsim 2).
The current release (CARLsim 3) was slightly slower in this
scenario, taking roughly 2.5 seconds of clock time for every
second of simulation time, which is not surprising given the
large number of additional features in the present release. On
the other hand, GPU mode still significantly outperformed
CPU mode (see Fig. 6(b)). GPU execution time was up to 60
times faster than the CPU. This result is due to a combination
of newer hardware (GTX 780) as well as code-level
optimization that allowed the effective use of S-parallelism [6]
for new features such as synaptic receptor ratios and different
shaped STDP curves, which are not possible in a single-
threaded CPU simulation. In summary, despite the additional
features and new programming interface, CARLsim 3 is
similar in performance to our previous releases and highly
optimized for SNNs on the order of 10

5
 neurons and 10

7

synapses.

Fig. 6 (a) Ratio of execution time to simulation time versus number of neurons
for simulations with 100, 200, and 300 synapses/neuron. The dotted line
represents simulations running in real-time. (b) Simulation speedup versus
number of neurons. Speedups increase with neuron number. Models with 50k
neurons or more will have the most dramatic speedup.

IV. RELATED WORK

Today, a wide variety of simulation environments are

available to the computational neuroscience community that

allow for the simulation of SNNs. Although many simulators

share similar approaches and features, most have unique

qualities that distinguish them from the others. In an effort to

identify and highlight these qualities, we compared a list of

features provided by a number of other SNN simulators with

CARLsim 3. We limited this comparison to large-scale SNN

simulators that are most common to CARLsim in that they: (i)

are open source, (ii) support the clock-driven and parallelized

simulation of point neurons, such as LIF, Izhikevich or aIF

neurons, (iii) have conductance-based synapses, and (iv)

provide some form of synaptic plasticity. Specifically, we

chose (in alphabetical order) Brian 2 [23], GeNN 2 [24], NCS

6 [25], NeMo 0.7 [26], Nengo 2 [27], NEST 2.6 [28] and

PCSIM 0.5 [29].

Table I compares different simulation environments with

respect to features of both biological realism and technical

capability. A specific feature is indicated as either fully

implemented (‘ X ’) or absent (blank, ‘ ’). A ‘ / ’ denotes a

feature that is only partially implemented (e.g.,

neuromodulation in NEST), requires substantial user efforts to

implement (e.g., DA-STDP in Brian), or is reportedly untested

(e.g., Windows support for PCSIM). Although we tried to be

as objective as possible in assigning labels, categorization

remains subjective in nature. In addition, some of these

features were not well-documented; but we were still able to

verify their existence by reading through the actual source

code and reaching out to the authors for clarification. Overall,

we believe that the table accurately and fairly reflects the

development status for each of the listed SNN simulators at

the time of this publication.

All of the simulators listed in Table I offer many features

that allow the simulation of complex neural networks on

several back-ends. In addition, if users are interested in

modeling certain details of the biological model that are not

natively supported, all of the simulators offer ways to extend

the code base, either by ways of plug-in code, implementation

inheritance, or dynamic code generation. For example, both

Brian and GeNN offer ways for the user to formulate any

neuronal, synaptic, or learning model they please. This fact

makes the simulators invaluable for power-users, but may be

difficult for less-experienced programmers and may prohibit

code-level optimizations for certain user-defined functionality.

Nengo provides flexibility through its scripting interface, and

also provides a graphical user interface to construct SNNs at

different levels of abstraction. In Nengo, large-scale functional

networks can be achieved using the Neural Engineering

Framework (NEF), which is a theoretical framework that can

use anatomical constraints, functional objectives, and control

theory to find the set of weights that approximate some

desired functionality [30].

6

TABLE I. FEATURE COMPARISON FOR SOME COMMON OPEN-SOURCE SNN SIMULATORS (NON-EXHAUSTIVE LIST)

 Neuron

model
Synapse model Synaptic plasticity Input Tools

Integration

methods

Front-

ends
Back-ends Platforms

L

ea
k

y
 i

n
te

g
ra

te
-a

n
d

-f
ir

e
(L

IF
)

Iz
h

ik
ev

ic
h

 4
-p

ar
am

H
o

d
g
k

in
-H

u
x

le
y

C
u

rr
en

t-
b

sa
ed

 (
C

U
B

A
)

C
o
n
d

u
ct

an
ce

-b
as

ed
 (

C
O

B
A

)

A
M

P
A

,
N

M
D

A
,

G
A

B
A

N
eu

ro
m

o
d
u

la
ti

o
n

S
h

o
rt

-t
er

m
 p

la
st

ic
it

y
 (

S
T

P
)

E
-S

T
D

P

I-
S

T
D

P
a

D
A

-S
T

D
P

S
y

n
ap

ti
c

sc
al

in
g

 /
 h

o
m

eo
st

as
is

C
u

rr
en

t
in

je
ct

io
n

S
p

ik
e

in
je

ct
io

n

P
ar

am
et

er
 t

u
n

in
g

A
n

al
y

si
s

an
d

 v
is

u
al

iz
at

io
n

R
eg

re
ss

io
n

 s
u

it
e

F
o

rw
ar

d
 /

 e
x
p
o

n
en

ti
al

 E
u
le

r

E
x

ac
t

in
te

g
ra

ti
o
n

b

R
u
n
g

e-
K

u
tt

a

P
y

th
o
n

 /
 P

y
N

N

C
 /

 C
+

+

Ja
v
a

S
in

g
le

-t
h

re
ad

ed

M
u
lt

i-
th

re
ad

ed

d
is

tr
ib

u
te

d

S
in

g
le

 G
P

U

M
u
lt

i-
G

P
U

L
in

u
x

M
ac

 O
S

 X

W
in

d
o

w
s

CARLsim 3 X X X X / X X X X X X X X X X X X X X / X X X

CARLsim 2 X X X X X X X / X X X X X /

Brian 2 X X X X X X / X X X / X X X / / X X X X X X X X / X X X

GeNN 2 X X X X X / / X / X / X X X X X X X

NCS 6 X X X X X / X X X X / X X X X X X X X X

NeMo 0.7 X X / X X X X X X X X X X X X X X X X

Nengo 2 X X X X X X X X / X X X X X X X X X X X X X X

NEST 2.6 X X X X X X / X X X X X X X X X X X X X X X X

PCSIM 0.5 X X X X X X / X X X X X X / X X X / X X X X X X /

a. such as anti-Hebbian or constant symmetric STDP on GABAergic synapses

b. as described in [31]

Given the massive potential for parallelization of artificial

neural networks [5], it is not surprising that all of the

presented simulators offer implementations on at least one

parallel architecture. In order to efficiently run large-scale

SNNs, simulators such as NCS, NEST, and PCSIM use

distributed computing across standard computer clusters,

whereas simulators such as CARLsim, GeNN, NCS, and

NeMo leverage the parallel processing capability of NVIDIA

GPUs. Currently, NCS 6 seems to be the only open-source

SNN simulator to support execution on heterogeneous clusters

of CPUs and GPUs. CARLsim 3 currently has partial multi-

GPU support as the tuning framework can utilize multiple

GPUs. However, full multi-GPU support is reportedly under

development for a number of platforms, including a near-

future release of CARLsim.

Few simulators have provided a means to automatically

tune open parameters of large-scale SNNs. Brian has support

for tuning parameters of individual neurons, which has been

used to match individual neuron models to electrophysiologi-

cal data [32]. However, this framework does not easily extend

to networks of neurons. Nengo uses the NEF [30] to find

synaptic weights between two neuronal populations that

approximate a desired non-linear function. The potential of

this approach has been demonstrated in Spaun, a 2.5 million

neuron simulation that performed eight diverse cognitive

tasks [1]. However, in order for the NEF to be effective, the

modeler has to know the desired functionality of the neuronal

population a priori (i.e., the mathematical function to be

approximated). On the other hand, the parameter tuning

framework supported by CARLsim 3 does not require this

information to be known beforehand, but rather assigns a

fitness value to an SNN based on parameters that could relate

to anything from synaptic weights over plasticity rules to

connection topologies or any other number of biologically or

behaviorally relevant parameters. The problem of finding

parameter values that maximize fitness is then formulated as

an optimization problem, which can be solved with a suitable

search method, such as the evolutionary algorithm provided

by CARLsim 3’s ECJ plug-in. In the future, this framework in

combination with CARLsim’s GPU implementation could

significantly reduce the time researchers spend constructing

and tuning large-scale SNNs.

Although all of the simulation environments listed in

Table I have their own pros and cons, we believe that

CARLsim 3 has advantages when it comes to efficiently

simulating large-scale SNNs without having to sacrifice

biological realism. In particular, we have made serious efforts

to improve the usability of our platform by means of platform

compatibility (Linux, Mac OS X, and Windows), rigorous

code documentation (including an extensive user guide and

tutorials), a regression suite for functional code verification,

and a MATLAB toolbox for the visualization and analysis of

neuronal, synaptic, and network information. CARLsim 3

provides native support for a range of spike-based synaptic

7

plasticity mechanisms and topographic synaptic projections,

as well as being among the first to provide support for a

network-level parameter tuning interface. Additionally, the

PyNN-like interface, flexible visualization tools, and much

improved documentation make CARLsim 3 easy to use.

V. CONCLUSION

CARLsim 3 is an open-source, C/C++ based SNN simulator

that allows the execution of networks of Izhikevich spiking

neurons with realistic synaptic dynamics on both generic x86

CPUs and standard off-the-shelf GPUs. The simulation library

has minimal external dependencies and provides users with a

PyNN-like programming interface. Additionally, CARLsim 3

provides online and offline data analysis tools as well as

support for an automated parameter tuning framework. The

library, documentation, tutorials and examples can be obtained

from: www.socsci.uci.edu/~jkrichma/CARLsim.

CARLsim 3 is well-suited to run SNN models that require a

high degree of biological detail without sacrificing perfor-

mance, which might be potentially useful in real-time systems

that combine large-scale SNN models with neuromorphic

sensors and neurorobotics platforms. The simulation library

can output user-selected neuronal group firing rates on the

millisecond time-scale and can thus interact with real-time

neuromorphic hardware devices and robotics platforms. In the

near future, we plan to add support for a number of different

neuron models, integration methods, and back-ends, including

the ability to run simulations on multiple GPUs.

REFERENCES

[1] C. Eliasmith, et al., “A Large-Scale Model of the Functioning Brain,”
Science, vol. 338, no. 6111, pp. 1202–1205, Nov. 2012.

[2] K. Minkovich, C. M. Thibeault, M. J. O’Brien, A. Nogin, Y. Cho, and
N. Srinivasa, “HRLSim: A High Performance Spiking Neural Network
Simulator for GPGPU Clusters,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. Early Access Online, 2013.

[3] C. Koch, Biophysics of computation: information processing in single
neurons. Oxford university press, 2004.

[4] R. Brette, et al., “Simulation of networks of spiking neurons: a review of
tools and strategies,” J. Comput. Neurosci., vol. 23, no. 3, pp. 349–398,
Dec. 2007.

[5] T. Nordström and B. Svensson, “Using and designing massively parallel
computers for artificial neural networks,” J. Parallel Distrib. Comput.,
vol. 14, no. 3, pp. 260–285, Mar. 1992.

[6] J. M. Nageswaran, N. Dutt, J. L. Krichmar, A. Nicolau, and A. V.
Veidenbaum, “A configurable simulation environment for the efficient
simulation of large-scale spiking neural networks on graphics
processors,” Neural Netw. Off. J. Int. Neural Netw. Soc., vol. 22, no. 5–
6, pp. 791–800, Aug. 2009.

[7] M. Richert, J. M. Nageswaran, N. Dutt, and J. L. Krichmar, “An
efficient simulation environment for modeling large-scale cortical
processing,” Front. Neuroinformatics, vol. 5, no. 19, 2011.

[8] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Trans.
Neural Netw., vol. 14, no. 6, pp. 1569 – 1572, Nov. 2003.

[9] A. P. Davison, et al., “PyNN: A Common Interface for Neuronal
Network Simulators,” Front. Neuroinformatics, vol. 2, Jan. 2009.

[10] M. Tsodyks, K. Pawelzik, and H. Markram, “Neural Networks with
Dynamic Synapses,” Neural Comput., vol. 10, no. 4, pp. 821–835, May
1998.

[11] Senn, W., Markram, H., and Tsodyks, M., “An algorithm for modifying
neurotransmitter release probability based on pre- and post-synaptic
spike timing”, Neural Comput., vol. 13, no. 1, pp. 35-67, Jan. 2001.

[12] E. M. Izhikevich and N. S. Desai, “Relating STDP to BCM,” Neural
Comput., vol. 15, no. 7, pp. 1511–1523, Jul. 2003.

[13] K. D. Carlson, M. Richert, N. Dutt, and J. L. Krichmar, “Biologically
Plausible Models of Homeostasis and STDP: Stability and Learning in
Spiking Neural Networks,” in Proceedings of the 2013 International
Joint Conference on Neural Networks (IJCNN), Dallas, Texas, USA,
2013, pp. 1 – 8.

[14] E. M. Izhikevich, “Solving the distal reward problem through linkage of
STDP and dopamine signaling,” Cereb. Cortex N. Y. N 1991, vol. 17,
no. 10, pp. 2443–2452, Oct. 2007.

[15] S. Luke, L. Panait, G. Balan, S. Paus, Z. Skolicki, J. Bassett, R. Hubley,
and A. Chircop, “ECJ: A java-based evolutionary computation research
system,” http://cs. gmu. edu/eclab/projects/ecj, 2006.

[16] K. D. Carlson, J. M. Nageswaran, N. Dutt, and J. L. Krichmar, “An
efficient automated parameter tuning framework for spiking neural
networks,” Front. Neurosci., vol. 8, no. 10, 2014.

[17] M. Beyeler, M. Richert, N. D. Dutt, and J. L. Krichmar, “Efficient
Spiking Neural Network Model of Pattern Motion Selectivity in Visual
Cortex,” Neuroinformatics, vol. 12, no. 3, pp. 435–454, Jul. 2014.

[18] M. C. Avery, N. Dutt, and J. L. Krichmar, “A large-scale neural network
model of the influence of neuromodulatory levels on working memory
and behavior,” Front. Comput. Neurosci., vol. 7, p. 133, 2013.

[19] M. Avery, J. L. Krichmar, and N. Dutt, “Spiking neuron model of basal
forebrain enhancement of visual attention,” in Proccedings of the 2012
International Joint Conference on Neural Networks (IJCNN), Brisbane,
Australia, 2012, pp. 1–8.

[20] M. C. Avery, N. Dutt, and J. L. Krichmar, “Mechanisms underlying the
basal forebrain enhancement of top-down and bottom-up attention,”
Eur. J. Neurosci., vol. 39, no. 5, pp. 852–865, Mar. 2014.

[21] M. Beyeler, N. D. Dutt, and J. L. Krichmar, “Categorization and
decision-making in a neurobiologically plausible spiking network using
a STDP-like learning rule,” Neural Netw. Off. J. Int. Neural Netw. Soc.,
vol. 48C, pp. 109–124, Aug. 2013.

[22] T. P. Vogels and L. Abbott, “Signal propagation and logic gating in
networks of integrate-and-fire neurons,” J. Neurosci., vol. 25, no. 46, pp.
10786–10795, 2005.

[23] D. Goodman and R. Brette, “Brian: a simulator for spiking neural
networks in Python,” Front. Neuroinformatics, vol. 2, p. 5, 2008.

[24] T. Nowotny, “Flexible neuronal network simulation framework using
code generation for NVidia(R) CUDATM,” BMC Neurosci., vol. 12, no.
Suppl 1, p. P239, 2011.

[25] R. V. Hoang, D. Tanna, L. C. Jayet Bray, S. M. Dascalu, and F. C. J.
Harris, “A novel CPU/GPU simulation environment for large-scale
biologically realistic neural modeling,” Front. Neuroinformatics, vol. 7,
p. 19, 2013.

[26] A. K. Fidjeland, E. B. Roesch, M. P. Shanahan, and W. Luk, “NeMo: A
Platform for Neural Modelling of Spiking Neurons Using GPUs,” in
Application-specific Systems, Architectures and Processors, 2009. ASAP
2009. 20th IEEE International Conference on, Boston, Massachusetts,
USA, 2009, pp. 137–144.

[27] T. Bekolay, et al., “Nengo: a Python tool for building large-scale
functional brain models,” Front. Neuroinformatics, vol. 7, p. 48, 2014.

[28] M.-O. Gewaltig and M. Diesmann, “NEST (NEural Simulation Tool),”
Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

[29] D. Pecevski, T. Natschläger, and K. Schuch, “PCSIM: A Parallel
Simulation Environment for Neural Circuits Fully Integrated with
Python,” Front. Neuroinformatics, vol. 3, p. 11, 2009.

[30] C. Eliasmith and C. H. Anderson, Neural Engineering (Computational
Neuroscience Series): Computational, Representation, and Dynamics in
Neurobiological Systems. Cambridge, MA, USA: MIT Press, 2002.

[31] S. Rotter and M. Diesmann, “Exact digital simulation of time-invariant
linear systems with applications to neuronal modeling,” Biol. Cybern.,
vol. 81, no. 5–6, pp. 381–402, Nov. 1999.

[32] C. Rossant, D. F. M. Goodman, B. Fontaine, J. Platkiewicz, A. K.
Magnusson, and R. Brette, “Fitting neuron models to spike trains,”
Front. Neurosci., vol. 5, p. 9, 2011.

8

