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Abstract—Spiking neural network (SNN) models describe key 

aspects of neural function in a computationally efficient manner 

and have been used to construct large-scale brain models. Large-

scale SNNs are challenging to implement, as they demand high-

bandwidth communication, a large amount of memory, and are 

computationally intensive. Additionally, tuning parameters of 

these models becomes more difficult and time-consuming with 

the addition of biologically accurate descriptions. To meet these 

challenges, we have developed CARLsim 3, a user-friendly, GPU-

accelerated SNN library written in C/C++ that is capable of 

simulating biologically detailed neural models. The present 

release of CARLsim provides a number of improvements over 

our prior SNN library to allow the user to easily analyze 

simulation data, explore synaptic plasticity rules, and automate 

parameter tuning. In the present paper, we provide examples 

and performance benchmarks highlighting the library’s features. 

Keywords—spiking neural networks; simulation tools; GPU 

computing; large-scale brain models; neuromorphic engineering 

I. INTRODUCTION 

Spiking neural network (SNN) models play an important role 

in understanding brain function [1] and in designing 

neuromorphic devices with the energy efficiency, 

computational power, and fault-tolerance of the brain [2]. 

These models represent a compromise between execution time 

and biological fidelity by capturing essential aspects of neural 

communication, such as spike dynamics, synaptic 

conductance, and plasticity, while foregoing computationally 

expensive descriptions of spatial voltage propagation found in 

compartmental models [3]. However, developing efficient 

simulation environments for SNN models is challenging due 

to the required memory to store the neuronal/synaptic state 

variables and the time needed to solve the dynamical 

equations describing these models. A number of simulators 

are already available to the public [4], each providing their 

own unique qualities and trade-offs based on the employed 

abstraction level and supported computer hardware (see Table 

I). Given the considerable potential for parallelization of 

artificial neural networks [5], it is not surprising that most 

simulators today offer implementations on parallel 

architectures, such as computer clusters or graphics processing 

units (GPUs). However, in order to be of practical use to the 

computational modeling community, an SNN simulator 

should not only be fast, but also freely available, capable of 

running on affordable hardware, have a user-friendly 

interface, include complete documentation, and provide tools 

to easily design, construct, and analyze SNN models. 

In this paper we present CARLsim 3, an efficient, easy-to-

use, GPU-accelerated library for simulating large-scale SNN 

models with a high degree of biological detail. Due to its 

efficient GPU implementation, CARLsim 3 is useful for 

designing large-scale SNN models that have real-time 

constraints (e.g., interacting with neuromorphic sensors or 

controlling neurorobotics platforms). 

Building on the demonstrated efficiency and scalability of 

earlier releases [6], [7], the present release improves the 

usability of our software by means of platform compatibility 

(Linux, Mac OS X, and Windows), rigorous code 

documentation (including an extensive user guide and 

tutorials), a test suite for functional code verification, and a 

MATLAB toolbox for the visualization and analysis of 

neuronal, synaptic, and network information. In addition, 

CARLsim 3 provides native support for a range of spike-based 

synaptic plasticity mechanisms and topographic synaptic 

projections, as well as being among the first to provide 

support for a network-level parameter tuning interface.  
To promote its use among the computational neuroscience 

and neuromorphic engineering communities, CARLsim is 
provided as an open-source C++ package, which can be freely 
obtained from: www.socsci.uci.edu/~jkrichma/CARLsim. 

II. CARLSIM 

CARLsim is a C/C++ based SNN simulator that allows 

execution of networks of Izhikevich spiking neurons [8] with 

realistic synaptic dynamics on both generic x86 CPUs and 

standard off-the-shelf GPUs. The simulator provides a PyNN-

like programming interface [9], which allows for details to be 

specified at the synapse, neuron, and network level.  
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Fig. 1.  A diagram showing the possible states the CARLsim simulation can occupy. The user specifies neuronal and network details in the CONFIG state and 

moves to the SETUP state, where data monitors can be set, by running setupNetwork. Next, the user calls runNetwork to move to the RUN state where the 

input stimuli are set and the simulation is executed. The user can optionally start and stop data monitors during the simulation or use the offline analysis toolbox 

(OAT) with MATLAB to analyze data written to files. 

 

The simulator was first introduced in 2009 (now referred to 

as CARLsim 1), where it demonstrated near real-time 

performance for 100,000 spiking neurons on a single NVIDIA 

GTX 280 GPU [6]. CARLsim 2 added basic support for 

synaptic conductances, spike-timing dependent plasticity 

(STDP) and short-term plasticity (STP) [7]. The present 

release, CARLsim 3, greatly expands the functionality of the 

simulator by adding a number of features that enable and 

simplify the creation, tuning, and simulation of complex 

networks with spatial structure. These features include: 1) 

real-time and offline data analysis tools, 2) a more complete 

STDP implementation that includes dopaminergic neuro-

modulation, and 3) an automated parameter tuning interface. 

In addition, several software engineering techniques and more 

complete documentation are introduced in the present release 

to ensure the integrity of the current code base and to lay the 

groundwork for the success of future releases. The following 

subsections will explain these achievements in detail. 

A. CARLsim API: General Workflow 

The workflow of a typical CARLsim 3 simulation is organized 

into three distinct, consecutive states (see Fig. 1): the 

configuration state (CONFIG), the set up state (SETUP), and the 

run state (RUN). User functions in the C++ API are grouped 

according to these stages, which streamline the process and 

prevent race conditions. State transitions are handled by 

special user functions such as setupNetwork and runNetwork. 

The first step in using CARLsim 3 (libCARLsim) imports the 

library and instantiates the main simulation object: 

 
This prepares the simulation for execution in either CPU_MODE 
or GPU_MODE, and specifies the verbosity of the status reporting 
mechanism (SILENT indicating that no console output will be 
produced). From then on, the simulation is in CONFIG state, 
allowing the properties of the neural network to be specified. 

Similar to PyNN [9] and many other simulation 
environments, CARLsim uses groups of neurons and 

connections as an abstraction to aid defining synaptic 
connectivity. Different groups of neurons can be created from a 
one-dimensional array to a three-dimensional grid via 
createSpikeGeneratorGroup or createGroup, and 
connections can be specified depending on the relative 
placement of neurons via connect. This allows for the creation 
of networks with complex spatial structure. For a selective list 
of available function calls in CONFIG state please refer to the 
left-hand side of Fig. 1. 

Izhikevich spiking neurons [8] with either current-based or 

conductance-based synapses are currently supported, but more 

neuron types are planned for the future. The following code 

snippet creates a group of 500 excitatory neurons arranged on 

a 10x10x5 three-dimensional grid: 

 
Here, “output” is an arbitrary name for the group while 

EXCITATORY_NEURON denotes that all neurons in the group have 

glutamatergic synapses. Neurons with GABAergic synapses 

are supported with the INHIBITORY_NEURON keyword. Neurons 

with dopaminergic synapses are supported with the 

DOPAMINGERIC_NEURON keyword and can be used to modulate 

STDP learning curves (see below). To refer to this group in 

later method calls, the createGroup method returns a group 

ID, gOut. Next, the Izhikevich parameters are specified, in this 

case for class 1 excitability regular spiking neurons: 

 
where 0.02f, 0.2f, -65.0f, and 8.0f correspond respectively to 

the a, b, c, and d parameters of the Izhikevich neuron. 

To create a group of neurons that generate Poissonian spike 

trains, the user specifies a name, size, and type. These neurons 

are used to input activity into the network and can be driven 

by sensory stimuli.  

 
The following statement then creates a random connection 

pattern from group gIn to group gOut with weight 0.1f, 10% 

connection probability, a synaptic delay uniformly distributed 

sim.setNeuronParameters(gOut,0.02f,0.2f,-65.0f,8.0f); 

int gIn = sim.createSpikeGeneratorGroup(“input”, 

    Grid3D(10,10,5), EXCITATORY_NEURON); 

int gOut = sim.createGroup(“output”, Grid3D(10,10,5), 

    EXCITATORY_NEURON); 

#include <carlsim.h> 

CARLsim sim(“example”, GPU_MODE, SILENT); 
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between 1 ms and 20 ms, a specific receptive field size, and 

fixed synapses (SYN_FIXED): 

 
Here, the RangeWeight struct usually takes three parameters 

specifying the minimum, initial, and maximum weights, or 

just one parameter if all values are identical (as is the case for 

fixed synapses). The (optional) RadiusRF struct specifies the 

x, y, and z dimensions of a radial receptive field, following the 

topographic organization of the Grid3D struct. For example, 

the above snippet creates a spherical receptive field that only 

connects neurons in gIn to neurons in gOut if the distance 

between their locations on the three-dimensional grid is less 

than 3 (arbitrary units). Plastic connections are created simply 

by replacing the keyword SYN_FIXED with SYN_PLASTIC. If one 

is not satisfied with the built-in connection types (“one-to-

one”, “full”, “random”, and “gaussian”), a callback 

mechanism is available for user-specified connectivity.  

The present release allows users to choose from a number of 

synaptic plasticity mechanisms. These include standard 

equations for STP [10], [11], various forms of additive 

nearest-neighbor STDP [12], and homeostatic plasticity in the 

form of synaptic scaling [13]. STDP is a paradigm that 

modulates the weight of synapses according to their degree of 

causality. Many different variants of STDP seem to exist in 

the brain, the functional roles of which are still largely 

unknown. CARLsim now provides an efficient 

implementation of a number of experimentally validated 

STDP curves (see Fig. 2), which may greatly enhance the 

study of STDP’s functional role in computational models of 

brain function. STDP can either apply to glutamatergic 

synapses (E-STDP; see Fig. 2(a), (b)) or GABAergic synapses 

(I-STDP; see Fig. 2(a), (c)), and is specified post-synaptically.  

In addition, CARLsim 3 supports dopamine-modulated 

STDP (DA-STDP) [14]. In the following code example, 100 

dopaminergic neurons (gDA) project to a group of ten regular 

spiking neurons (gRS) with exponential DA-STDP: 

 
Once the spiking network has been specified, the function 

setupNetwork optimizes the network state for the chosen 

back-end (CPU or GPU) and moves the simulation into SETUP 

state (see Fig. 1). In this state, a number of monitors can be set 

to record variables of interest (e.g., spikes, weights, state 

variables) in binary files for off-line analysis. New in 

CARLsim 3 is a means to make these data available at run-

time (without the computational overhead of writing data to 

disk), which can be queried for data in the RUN state.  

The first call to runNetwork will take the simulation into RUN 

state. The simulation can be repeatedly run (or “stepped”) for 

an arbitrary number of sec*1000+msec milliseconds: 

 
Input can be generated via current injection or spike 

injection (the latter using Poisson spike generators, or a 

callback mechanism to specify arbitrary spike trains). We also 

provide plug-in code to generate Poisson spike trains from 

animated visual stimuli such as sinusoidal gratings, plaids, and 

random dot fields created via the VisualStimulus toolbox.  

Monitors allow users to selectively record variables of 

interest during a subset of the simulation, and provide a 

number of metrics useful for real-time analysis: 

 
Here, spike events (spike times and neuron IDs) from 

“group0” with ID g0 are recorded exclusively during the first 

call to runNetwork. Hence metrics (e.g. the average firing rate 

for “group0”) returned by the SpikeMonitor object will 

typically refer to the last recording period, although it is 

possible to concatenate independent recording periods using 

PersistentMode. Analogously, one could set up a 

ConnectionMonitor to analyze the average weight change 

during a training session to infer when learning has saturated. 

 
 
Fig. 2: Possible STDP curves in CARLsim (weight change for a pair of pre-

post spikes; pre-before-post: +, pre-after-post: –). Green curves can be applied 

to glutamatergic synapses, red curves can be applied to GABAergic synapses, 
and blue curves can be applied to both. (a) Exponential curve. (b) Timing-

based curve. (c) Pulsed curve. 

sim.runNetwork(sec, msec); 

// create network 

int g0=sim.createGroup(“group0”, ... // etc. 

sim.setupNetwork(); 

 

// set spike monitor for g0, record to “default” file 

// “./results/spk_group0.dat” 

SpikeMonitor* SM = sim.setSpikeMonitor(g0, ”default”); 

 

// in addition, record data to object for 1 sec 

SM.startRecording(); 

sim.runNetwork(1,0); 

SM.stopRecording(); 

 

// after calling stopRecording, SpikeMonitor object can 

// be queried for spike stats 

// e.g.: get the mean firing rate of neurons in group g0 

float rate = SM.getPopMeanFiringRate(); 

 

// run some more w/o recording to SpikeMonitor object 

sim.runNetwork(10,0); // etc. 

// create groups 

int gDA = sim.createSpikeGeneratorGroup("DA input", 100, 

    DOPAMINERGIC_NEURON); 

int gRS = sim.createGroup(“RS”, 10, EXCITATORY_NEURON); 

sim.setNeuronParameters(gRS, 0.02f, 0.2f, -65.0f, 8.0f); 
 

// “all-to-all” connectivity with plastic synapses 

// weights initialized to 0.01f, range is [0.0f, 0.1f] 

// receptive field struct is ignored 

sim.connect(gDA, gRS, “full”, 

    RangeWeight(0.0f, 0.01f, 0.1f), 1.0f, 

    RangeDelay(1,10), RadiusRF(-1), SYN_PLASTIC); 

 

// set DA-STDP on all plastic synapses to gRS 

float alpha_plus  =  0.001f,  tau_plus  = 20.0f; 

float alpha_minus = -0.0015f, tau_minus = 20.0f; 

sim.setESTDP(gRS, DA_MOD, ExpCurve(alpha_plus, tau_plus, 

    alpha_minus, tau_minus)); 

sim.connect(gIn, gOut, ”random”, RangeWeight(0.1f), 

    0.1f, RangeDelay(1,20), RadiusRF(3,3,3), SYN_FIXED); 
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Fig. 3: Example output generated from the Offline Analysis Toolbox. (a) 

Visualization of the mean firing rate of a single input group of 100 neurons 

with an average firing rate of 30 Hz. (b) A raster plot of the same spiking data 
shown in (a). 

  

In addition to the real-time monitors, CARLsim 3 provides a 

versatile Offline Analysis Toolbox (OAT) written in 

MATLAB. Assuming the corresponding binary files exist, 

visualizing network activity is achieved by simply passing the 

name of the neuron group to a GroupMonitor in MATLAB: 

 
The code snippet above generated the plots shown in Fig. 3. 

We first select the group named input, change the plot type to 

histogram, and plot the firing rate data shown in Fig. 3(a). We 

then change the plot type to rasterplot to generate Fig. 3(b). 

This allows users to quickly visualize and easily analyze their 

network simulations. 

B. CARLsim Kernel: Simulation Engine 

An important feature of CARLsim is the ability to run spiking 

networks not only on CPUs, but also on off-the-shelf NVIDIA 

GPUs. The GPU implementation of CARLsim was written to 

optimize four main performance metrics: parallelism, memory 

bandwidth, memory usage, and thread divergence [6]. The 

simulation is broken into steps that update neuronal state 

variables in parallel (N-parallelism) and steps that update 

synaptic state variables in parallel (S-parallelism). Sparse 

representation techniques for spiking events and neuronal 

firing decrease both memory and memory bandwidth usage. 

Buffering data helps decrease thread divergence and enables 

efficient run-time access of recorded variables (e.g., via 

SpikeMonitor) that are stored on the GPU.  
The CARLsim 3 kernel introduces a number of software 

engineering techniques to assure the integrity of the current 
code base and to enable successful growth of the project in the 
future. For example, the pointer to implementation (pImpl) 
idiom is used to programmatically separate user interface from 
implementation, which will simplify the addition of different 
front-ends and back-ends in the future. Regression testing, via 
Google Test, is used to ensure that the development of new 
functionality did not compromise the existing code base, and 
new features are validated using functional and unit testing. 
The full test suite is visible to the user for automatic quality 
assurance after the installation. 

C. Parameter Tuning with Evolutionary Algorithms 

CARLsim 3 introduces a software interface to an evolutionary 

computation system written in Java (ECJ) [15] to provide an 

automated parameter tuning framework (Linux). As more 

complex biological features are integrated into SNN models, it 

becomes increasingly important to provide users with a 

method of tuning the large number of open parameters. 

Evolutionary Algorithms (EAs) enable flexible parameter 

tuning by means of optimizing a generic fitness function. The 

effectiveness of this approach was previously demonstrated by 

tuning an SNN to produce V1-like tuning curve responses 

with self-organizing receptive fields using an EA library 

called Evolving Objects (EO) [16]. ECJ was chosen to replace 

EO because it is under active development, supports multi-

threading, has excellent documentation, and implements a 

variety of EAs [15]. 

Fig. 4 shows the general approach of the automated 

parameter tuning framework. ECJ implements an EA with a 

parameter file that includes: EA parameters, the number of 

individuals per generation, and parameter ranges. Every step 

of the EA is executed by ECJ except for the evaluation of the 

fitness function, which is completed by CARLsim. CARLsim 

evaluates the fitness function in parallel by running multiple 

SNN individuals concurrently on the GPU, where the bulk of 

the computations occur. ECJ is written in Java, which is 

slower than C, but the majority of the execution time is spent 

running CARLsim’s optimized C++/CUDA code. At the 

beginning of every generation, the parameters to be tuned are 

passed from ECJ to CARLsim using standard input/output 

streams. CARLsim evaluates individuals in parallel and 

returns the resulting fitness values to ECJ via standard 

streams. The tuning framework allows users to tune virtually 

any SNN parameter, while the fitness functions can be written 

to depend on the neuronal activity or synaptic weights of the 

SNN. This allows users to explore a variety of plasticity rules, 

firing activities, and functionally relevant SNN behaviors.  

 

 
Fig. 4: General approach to parameter tuning (adapted from [16]). ECJ 
performs the Evolutionary Algorithm (EA) and passes the current generation 

of parameters (red arrow) to CARLsim for evaluation using the parameter 

tuning interface (PTI) code. CARLsim assigns each parameter set to an SNN 
and evaluates all the individuals in parallel, passing the fitness values back to 

ECJ for selection of individuals in the next generation (black arrow). 

GM = GroupMonitor(‘input’); % group is named ‘input’ 

GM.plot(‘histogram’); % plots the data as a histogram 

GM.plot(‘rasterplot’); % plots the data as a raster plot 
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III. RESULTS 

A. Existing Models Using CARLsim 

Previous CARLsim versions have been used to implement a 

broad range of computational models on the order 10k–100k 

neurons and millions of synapses, with examples that include 

models of visual processing [7], [17], neuromodulation [18], 

synaptic plasticity [13], and attention [19], [20]. In these SNN 

implementations, CARLsim allowed modelers to quickly and 

efficiently simulate large-scale networks to examine the role 

biophysical mechanisms play in behavioral tasks. In one such 

study, a digit categorization SNN used low-level memory 

encoding mechanisms to classify handwritten digits with 92% 

accuracy in real-time while quantitatively and qualitatively 

reproducing psychophysical experimental data [21]. In another 

study, a novel homeostatic synaptic plasticity model was 

shown to stabilize STDP and play an important role in the 

production of self-organizing receptive fields [13]. 

B. Example of New CARLsim 3 Functionality 

CARLsim 3 has increased functionality to support the added 

complexity of future SNN models. For example, Connection 

Monitors can be used to easily determine when learning has 

saturated and a training session should be ended, whereas real-

time Spike Monitors allow for the integration of CARLsim 

with robotics and neuromorphic platforms. To showcase new 

CARLsim 3 functionality, we next reproduce results from a 

study on instrumental conditioning using DA-STDP [14]. 

 

 
Fig. 5: Replicated instrumental conditioning simulation results (adapted from 

[14]). (a) Experimental setup. (b) Plot of probability of network response 

versus trial number. Pink shaded areas denote reward applied to response A 
while green shaded areas denote reward applied to response B. (c) Plot of 

average number of spikes from groups A and B versus trial number. 

 

We reproduced findings from a computational study that 

used spike firing patterns and a global diffusive reinforcement 

signal (dopamine) to learn associations between cues and 

rewards [14]. Our simulations used DA-STDP with the 

experimental setup shown in Fig. 5(a). For each trial, a 

stimulus was delivered to group S resulting in the firing of a 

majority of the neurons in the group. The firing activity from 

group S evoked a small number of spikes in groups A and B, 

which represented the response of the network to the stimulus. 

As in [14], the network response state consisted of 3 possible 

states: A, B, or no response. If group A had more spikes than 

group B, the network response was said to be in state A, with 

the opposite being true for state B, and the no response state 

occurring when both groups A and B had the same number of 

spikes. 

An increase in the dopamine concentration in the network 

represented reward in the simulation. In the first 250 trials, the 

network was rewarded only if it produced response A. After 

250 trials, the reward condition changed and the network was 

rewarded only if it produced response B. Fig. 5(b) and (c) 

show simulation results that replicate previous work [14]. 

During the initial stage (i.e., trials 1 ~ 100), the firing rates in 

both groups A and B increased but the network response was 

random. After 100 trials, the network had response A with 

significant higher probability. At trial 250 the reward 

condition was changed to response B, triggering the network 

to change its response to B after trial 360. An interesting 

phenomenon is that the network spent time (trial 250 ~ 360) 

re-associating reward with a different response, which was not 

obvious in previous work [14]. With the DA-STDP feature in 

CARLsim 3, users can easily implement reinforcement 

learning applications. The reproduced instrumental 

conditioning example consumed less than 300 lines of C++ 

code. For code examples using DA-STDP please see 

Subsection II-A. 

C. Computational Peformance 

In order to demonstrate the efficiency and scalability of 

CARLsim 3, we ran simulations consisting of various sized 

SNNs and measured their execution time. GPU simulations 

were run on a single NVIDIA GTX 780 (3 GB of memory) 

using CUDA, and CPU simulations were run on an Intel Core 

i7 CPU 920 operating at 2.67 GHz. 

The results of these benchmarks are summarized in Fig. 6. 
Networks consisted of 80% excitatory and 20% inhibitory 
neurons, with an additional 10% of neurons being Poisson 
spike generators that drove network activity. The two neuronal 
populations were randomly connected with a fixed connection 
probability, and E-STDP was used to generate sustained 
irregular activity as described by Vogels and Abbott [22]. The 
number of synapses per neuron ranged from 100 to 300 
connections, and the overall network activity was ~10 Hz.  

GPU simulation speed, given as the ratio of GPU execution 
time over real-time, is plotted in Fig. 6(a). Execution time 
scaled linear with workload, both in terms of number of 
neurons as well as number of synapses. In an earlier paper [7] 
we reported that networks with 110,000 neurons and 100 
synaptic connections per neuron took roughly two seconds of 
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clock time for every second of simulation time (CARLsim 2). 
The current release (CARLsim 3) was slightly slower in this 
scenario, taking roughly 2.5 seconds of clock time for every 
second of simulation time, which is not surprising given the 
large number of additional features in the present release. On 
the other hand, GPU mode still significantly outperformed 
CPU mode (see Fig. 6(b)). GPU execution time was up to 60 
times faster than the CPU. This result is due to a combination 
of newer hardware (GTX 780) as well as code-level 
optimization that allowed the effective use of S-parallelism [6] 
for new features such as synaptic receptor ratios and different 
shaped STDP curves, which are not possible in a single-
threaded CPU simulation. In summary, despite the additional 
features and new programming interface, CARLsim 3 is 
similar in performance to our previous releases and highly 
optimized for SNNs on the order of 10

5
 neurons and 10

7
 

synapses. 

 

 

Fig. 6 (a) Ratio of execution time to simulation time versus number of neurons 
for simulations with 100, 200, and 300 synapses/neuron. The dotted line 
represents simulations running in real-time. (b) Simulation speedup versus 
number of neurons. Speedups increase with neuron number. Models with 50k 
neurons or more will have the most dramatic speedup. 

IV. RELATED WORK 

Today, a wide variety of simulation environments are 

available to the computational neuroscience community that 

allow for the simulation of SNNs. Although many simulators 

share similar approaches and features, most have unique 

qualities that distinguish them from the others. In an effort to 

identify and highlight these qualities, we compared a list of 

features provided by a number of other SNN simulators with 

CARLsim 3. We limited this comparison to large-scale SNN 

simulators that are most common to CARLsim in that they: (i) 

are open source, (ii) support the clock-driven and parallelized 

simulation of point neurons, such as LIF, Izhikevich or aIF 

neurons, (iii) have conductance-based synapses, and (iv) 

provide some form of synaptic plasticity. Specifically, we 

chose (in alphabetical order) Brian 2 [23], GeNN 2 [24], NCS 

6 [25], NeMo 0.7 [26], Nengo 2 [27], NEST 2.6 [28] and 

PCSIM 0.5 [29]. 

Table I compares different simulation environments with 

respect to features of both biological realism and technical 

capability. A specific feature is indicated as either fully 

implemented (‘ X ’) or absent (blank, ‘   ’). A ‘ / ’ denotes a 

feature that is only partially implemented (e.g., 

neuromodulation in NEST), requires substantial user efforts to 

implement (e.g., DA-STDP in Brian), or is reportedly untested 

(e.g., Windows support for PCSIM). Although we tried to be 

as objective as possible in assigning labels, categorization 

remains subjective in nature. In addition, some of these 

features were not well-documented; but we were still able to 

verify their existence by reading through the actual source 

code and reaching out to the authors for clarification. Overall, 

we believe that the table accurately and fairly reflects the 

development status for each of the listed SNN simulators at 

the time of this publication. 

All of the simulators listed in Table I offer many features 

that allow the simulation of complex neural networks on 

several back-ends. In addition, if users are interested in 

modeling certain details of the biological model that are not 

natively supported, all of the simulators offer ways to extend 

the code base, either by ways of plug-in code, implementation 

inheritance, or dynamic code generation. For example, both 

Brian and GeNN offer ways for the user to formulate any 

neuronal, synaptic, or learning model they please. This fact 

makes the simulators invaluable for power-users, but may be 

difficult for less-experienced programmers and may prohibit 

code-level optimizations for certain user-defined functionality. 

Nengo provides flexibility through its scripting interface, and 

also provides a graphical user interface to construct SNNs at 

different levels of abstraction. In Nengo, large-scale functional 

networks can be achieved using the Neural Engineering 

Framework (NEF), which is a theoretical framework that can 

use anatomical constraints, functional objectives, and control 

theory to find the set of weights that approximate some 

desired functionality [30]. 
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TABLE I.  FEATURE COMPARISON FOR SOME COMMON OPEN-SOURCE SNN SIMULATORS (NON-EXHAUSTIVE LIST) 

 Neuron 

model 
Synapse model Synaptic plasticity Input Tools 

Integration 

methods 
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CARLsim 3  X  X X X / X X X X X X X X X X X    X  X   X / X X X 

CARLsim 2  X  X X X  X X     X  /  X    X  X   X  X  / 

Brian 2 X X X X X X / X X X / X X X / / X X X X X X  X X /   X X X 

GeNN 2  X X X X X / / X   / X /    X    X  X   X  X X X 

NCS 6 X X X X X /  X X    X X  /  X   X X  X X X X X X   

NeMo 0.7  X   X  / X X X   X X  X X X   X X  X X  X  X X X 

Nengo 2 X X X X X X X X /   X X  X X X   X X  X X X  X  X X X 

NEST 2.6 X X X X X X / X X  X X X X   X X X X X   X X X   X X  

PCSIM 0.5 X X X X X X / X X  X X X X  / X X   X / X X X X   X X / 

a. such as anti-Hebbian or constant symmetric STDP on GABAergic synapses 

b. as described in [31] 

Given the massive potential for parallelization of artificial 

neural networks [5], it is not surprising that all of the 

presented simulators offer implementations on at least one 

parallel architecture. In order to efficiently run large-scale 

SNNs, simulators such as NCS, NEST, and PCSIM use 

distributed computing across standard computer clusters, 

whereas simulators such as CARLsim, GeNN, NCS, and 

NeMo leverage the parallel processing capability of NVIDIA 

GPUs. Currently, NCS 6 seems to be the only open-source 

SNN simulator to support execution on heterogeneous clusters 

of CPUs and GPUs. CARLsim 3 currently has partial multi-

GPU support as the tuning framework can utilize multiple 

GPUs. However, full multi-GPU support is reportedly under 

development for a number of platforms, including a near-

future release of CARLsim.  

Few simulators have provided a means to automatically 

tune open parameters of large-scale SNNs. Brian has support 

for tuning parameters of individual neurons, which has been 

used to match individual neuron models to electrophysiologi-

cal data [32]. However, this framework does not easily extend 

to networks of neurons. Nengo uses the NEF [30] to find 

synaptic weights between two neuronal populations that 

approximate a desired non-linear function. The potential of 

this approach has been demonstrated in Spaun, a 2.5 million 

neuron simulation that performed eight diverse cognitive 

tasks [1]. However, in order for the NEF to be effective, the 

modeler has to know the desired functionality of the neuronal 

population a priori (i.e., the mathematical function to be 

approximated). On the other hand, the parameter tuning 

framework supported by CARLsim 3 does not require this 

information to be known beforehand, but rather assigns a 

fitness value to an SNN based on parameters that could relate 

to anything from synaptic weights over plasticity rules to 

connection topologies or any other number of biologically or 

behaviorally relevant parameters. The problem of finding 

parameter values that maximize fitness is then formulated as 

an optimization problem, which can be solved with a suitable 

search method, such as the evolutionary algorithm provided 

by CARLsim 3’s ECJ plug-in. In the future, this framework in 

combination with CARLsim’s GPU implementation could 

significantly reduce the time researchers spend constructing 

and tuning large-scale SNNs.  

Although all of the simulation environments listed in 

Table I have their own pros and cons, we believe that 

CARLsim 3 has advantages when it comes to efficiently 

simulating large-scale SNNs without having to sacrifice 

biological realism. In particular, we have made serious efforts 

to improve the usability of our platform by means of platform 

compatibility (Linux, Mac OS X, and Windows), rigorous 

code documentation (including an extensive user guide and 

tutorials), a regression suite for functional code verification, 

and a MATLAB toolbox for the visualization and analysis of 

neuronal, synaptic, and network information. CARLsim 3 

provides native support for a range of spike-based synaptic 
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plasticity mechanisms and topographic synaptic projections, 

as well as being among the first to provide support for a 

network-level parameter tuning interface. Additionally, the 

PyNN-like interface, flexible visualization tools, and much 

improved documentation make CARLsim 3 easy to use.  

V. CONCLUSION 

CARLsim 3 is an open-source, C/C++ based SNN simulator 

that allows the execution of networks of Izhikevich spiking 

neurons with realistic synaptic dynamics on both generic x86 

CPUs and standard off-the-shelf GPUs. The simulation library 

has minimal external dependencies and provides users with a 

PyNN-like programming interface. Additionally, CARLsim 3 

provides online and offline data analysis tools as well as 

support for an automated parameter tuning framework. The 

library, documentation, tutorials and examples can be obtained 

from: www.socsci.uci.edu/~jkrichma/CARLsim. 

CARLsim 3 is well-suited to run SNN models that require a 

high degree of biological detail without sacrificing perfor-

mance, which might be potentially useful in real-time systems 

that combine large-scale SNN models with neuromorphic 

sensors and neurorobotics platforms. The simulation library 

can output user-selected neuronal group firing rates on the 

millisecond time-scale and can thus interact with real-time 

neuromorphic hardware devices and robotics platforms. In the 

near future, we plan to add support for a number of different 

neuron models, integration methods, and back-ends, including 

the ability to run simulations on multiple GPUs.   
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