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Abstract 

The paper presents a simulation of the dynamics of impersonal trust. It shows how a 
“trust and reciprocate” norm can emerge and stabilize in populations of conditional 
cooperators. The norm, or behavioral regularity, is not to be identified with a single 
strategy. It is instead supported by several conditional strategies that vary in the 
frequency and intensity of sanctions.  
 

Introduction  

Social exchanges often involve a time lag between promise and delivery.  This is 

not just common to market exchanges, but to political exchanges as well.  Markets often 

involve anonymous, one-shot transactions, and the working of democracies presupposes 

that when a citizen gives her vote she expects the representative to fulfill his part of an 

informal, tacit ‘contract’.  Both sides can benefit from an honest exchange, yet there is 

the potential for cheating.  The motivations of those we interact with cannot be known 

directly, and the quality of goods and services we are offered is often unknown.  If we 

trust, we make ourselves vulnerable to exploitation, since others’ behavior is not under 

 
1 We wish to thank Jason Alexander and two anonymous referees for their comments ans suggestions.  
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our control.  By trust we thus mean a disposition to engage in social exchanges that 

involve uncertainty and vulnerability, but that are also potentially rewarding.  This 

disposition may be grounded upon a belief in the trustworthiness of the specific agents 

with whom we interact, either because we directly or indirectly know about their past 

behavior, or else because we see that it might be in their long-term interest to reward our 

trust, even if their short-term interests militate against rewarding it.  The most interesting 

cases, however, are those in which it may not be in another’s self-interest (however 

defined) to be trustworthy, we do not have personal experience with this person, group or 

organization, but entering into a relation (commercial, political, etc.) with it may prove 

extremely profitable.  In situations in which we have little information and little time to 

gather more, trust might be better described as a disposition to engage in impersonal 

social exchanges, hence the name ‘impersonal trust’.  People may of course have 

expectations of trustworthiness also in these situations, but these expectations will not be 

grounded upon the recognition that it is in the other party’s interest to be perceived as 

trustworthy.2  Expectations in this case may be adaptive, meaning that past experiences 

will loom large in one’s willingness to trust and/or reciprocate in impersonal, even 

anonymous exchanges.  What we are modeling here, however, is not the emergence of 

expectations about the trustworthiness of other parties or institutions.  We are rather 

interested in the emergence of a behavioral pattern of trusting/reciprocating.  

Note that the problem of impersonal trust is a classical case of a one-sided social 

dilemma3.  The standard solution to “social dilemmas” is to introduce some form of 

formal or informal social control.  Formal controls involve the existence of ‘impartial’ 

                                                 
2 For an exhaustive discussion of trust, its meaning, and its economic and political consequences, see P. 
Dasgupta (1988), K. Cook (2001).  
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agencies that monitor and sanction compliance with agreements we enter into.  

Institutional protection, however, can be costly.  Monitoring and sanctioning require a 

complex organization, and often the very existence of such formal controls can be 

counterproductive (Fehr, Gachter and Kirchsteiger 1997), in that it creates an atmosphere 

of distrust.  Informal controls instead rest on the possibility of repeated, non-anonymous 

interactions.  The repetition itself, with its possibilities for signaling, retaliation and 

reputation formation, becomes an enforcement mechanism.  Thus a network of stable 

exchange relationships is a source of trust, since people will prefer to transact with 

individuals or organizations that have a known reputation for honesty.  The drawback of 

this solution is that transactions will be limited to a restricted network.  Patron-client 

political exchanges, as well as the common business practice of shunning better deals in 

favor of established suppliers (Yamagishi and Yamagishi 1994) are examples of 

parochial tendencies that may ultimately backfire, if the opportunity cost of avoiding the 

open market becomes too great.  The problem of how impersonal trust can emerge and 

persist is thus intertwined with the possibility of the transient and anonymous social 

exchanges that are the foundation of market economies and democratic systems.4  When 

there is an occasion for cheating, there is often the promise of great gain, and though the 

incidence of dishonesty may be higher among strangers than among neighbors, it is by no 

means a universal phenomenon.5   

                                                                                                                                                 
3 It is one-sided because the brunt of risk and possible loss is borne only by the truster.  
4 Social capital refers to the norms and networks that enable collective action.  A persistent problem in the 
social capital literature is precisely to explain how ‘local’ trust borne out of social networks can extend to 
interactions with large, anonymous groups.  Cf. R. Putnam (1993, 2000). 
5 The experimental literature on “trust games” reveals a wide variety of behavior when subjects play in 
fixed pairs, in groups and/or with strangers. See Camerer (2003) for a survey. 



  4 

Our goal is to model how a behavioral pattern of trusting and reciprocating may 

develop among boundedly rational agents in a complex environment in the absence of 

formal or informal controls.   To do that, we abandon the traditional assumptions of 

perfect rationality, unlimited calculating capabilities and extensive knowledge that are the 

backbone of classical game-theoretic models.  In the complex environments we consider, 

computing an optimal strategy is a daunting task.  What we instead model is the process 

through which different strategies interact and how their mix evolves. In an evolutionary 

model, strategies that have been relatively effective in a population become more 

widespread, and strategies that have been less effective become less common in the 

population.  There is by now a vast literature on the evolution of cooperative strategies in 

Prisoner’s dilemma games (Axelrod 1984).  The kind of interaction we study is called a 

Trust game, and is like an alternating, one-sided Prisoner’s dilemma, in that players have 

asymmetric roles and move sequentially, and only one of them is given the chance of 

cooperating or defecting at any time.  Another difference between our model and those 

that study the emergence of cooperation in evolutionary games is that in our model 

strategies are not just history-contingent:  They are also role-contingent, in the sense that 

a player must have a plan of action for each of the roles (truster or trustee) in which she 

may be cast.     

6

The paper shows the results of deterministic and stochastic simulations in both 

one-shot and repeated versions of the Trust game.  The present results show how trust 

and reciprocity can emerge in a population of strangers and examine whether these 

behaviors remain robust to a change in the size of the strategy space and/or the length of 

                                                 
6 By bounded rationality we mean that agents follow simple, not necessarily optimal rules of behavior, and 
this reflects limited understanding of the environment in which they operate.  
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the game.  An interesting result of both simulations is that many of the conditional pure 

strategies support trusting/reciprocating or ‘cooperative’ behavior, but none of them is an 

evolutionarily stable strategy.  In fact, the concept of evolutionarily stable strategy is not 

the relevant analytic concept here.  The relevant analytic concept here is that of an 

evolutionarily stable state, which means a stable mix of strategies appearing in different 

proportions in the population.7  What we have is a vector of strategies, or a polymorphic 

population, in which each player uses a pure strategy and different players may use 

different strategies.  These populations are made of a stable majority of conditional 

trusting/reciprocating types; interestingly, unconditional trusting/reciprocating types can 

survive as a small minority only in those populations where the majority is made of 

conditional types. 

In our model, though the underlying strategies are heterogeneous, observable 

actions are homogenous, i.e. trusting/reciprocating behavior is widespread.  This means 

that an external observer would detect a behavioral regularity, and might be misled into 

thinking that players use the same strategy, possibly an unconditional one.  A social norm 

is, among other things, a regular behavioral pattern.  The behavior dictated by a norm, 

however, is usually conditional.8  Indeed, an important difference between a social norm 

and an unconditional rule or imperative is precisely the fact that a social norm is 

conditional.  An unconditional imperative might tell us to “trust, no matter what”, or 

“always reciprocate”.  A social norm instead tells us to trust/reciprocate under various 

conditions, and to stop trusting/reciprocating if these conditions are not met.  In this sense 

we may think of a norm as subsuming several different strategies that produce the same 

                                                 
7 If the dynamics were to lead to the survival of a single strategy, we would have a monomorphic 
population, and the concept of an evolutionarily stable strategy would apply.  
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behavior under the right circumstances.  Even more important, we show that the same 

social norm may be supported by different types of strategy combinations, where the 

exact polymorphism will depend upon the initial set of basic strategies.  

As Brian Skyrms (1996, 1997) has repeatedly argued, a crucial element in the 

study of norms is an analysis of their emergence.  Only a dynamic model allows us to see 

the history of the emergence of a norm, and the reasons for its change or persistence.  In 

our case, the dynamics are driven by payoff-relevant information, and the use of a 

simulation lets us see what happens along the path, or how strategies evolve over time. 

There are advantages to using simulations instead of calculating the limit of the process 

using a set of difference equations.  A simulation eases the process of testing alternative 

hypotheses that is crucial for understanding how and why different strategies, in different 

proportions, may converge to a fixed point, or an invariant distribution of strategies.  In 

addition, stochastic difference equation systems are notoriously hard to analyze and the 

difficulty is compounded – in the case of our model – by the existence of a large strategy 

space.  

9

It is important to notice that the results obtained in our deterministic simulation 

are confirmed in the stochastic one.  In the latter simulation, the dependence on initial 

conditions (the initial population proportions) is removed; hence the stable long-run 

equilibria we observe are a function of the length of the iterated game and the given 

strategy mix only.  In both kinds of simulations, the final stable mix of conditionally 

                                                                                                                                                 
8 For a precise definition of social norm, cf. C. Bicchieri (forthcoming).  
9 We use non-linear difference equations (see for example equation (2)) because of discrete time intervals.   
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cooperative strategies will depend upon the strategies that are currently being played.10  

However, even in environments in which more diverse and complex conditional 

strategies are present, the final result will be a mix of conditionally cooperative strategies, 

and unconditional noncooperators will tend to die out, whereas unconditional cooperators 

will find a niche within the population.  We may conclude that, in the long run, norms of 

trust and reciprocity tend to emerge, provided the initial population contains some 

conditionally cooperative strategies, irrespective of the specific methods used by these 

strategies to elicit reciprocity and punish transgressions.    11

 

The Trust game  

In an interaction, a player can be either in the role of the truster (sender), or in the 

role of the trustee (receiver).  To model the fact that a player has no control over which 

role he will be cast in, we use an extensive form game (Figure 1) in which Nature moves 

first.  With probability p, Nature assigns to player i the role of sender and to player j the 

role of receiver, and the reverse with probability (1-p).  This game is a version of the 

‘investment’ or ‘trust’ game studied by Kreps (1990), Bicchieri (1993), and Berg et al. 

(1995).  After the players’ roles have been assigned, the sender moves first and must 

decide whether or not to ‘trust’ the receiver with her endowment of x dollars.  If the 

sender chooses to trust (invest), the size of her endowment is tripled to 3x, and the 

receiver must then decide whether to reciprocate, returning 3x/2 to the sender and 

                                                 
10 As we explain later on, there are several different definitions of stability for dynamical systems. Whereas 
in the deterministic case we obtain asymptotically stable states, in the stochastic case we obtain 
‘stochastically stable’ states (see also footnote 27).  
11 By ‘long run’ we refer both to the number of rounds per game, that must be big enough to support 
cooperation, and to the number of simulations. In our case, with 1000 time-steps there is convergence to a 
generalized trusting/reciprocating behavior. 
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keeping 3x/2 for himself, or to not reciprocate and keep all 3x for himself.  The action set 

for the sender is to trust or not to trust, a = {T, nT }, and the action set for the receiver is 

to reciprocate or not reciprocate, b = {R, nR }.  

 

[Figure 1] 

 

Once a role has been assigned, each player faces a simple 2x2-payoff matrix, 

depicted in Figures 2a and 2b.  In Figure 2a, the sender is the row player, and clearly has 

no dominant strategy.  In Figure 2b the receiver is the row player, and he has a weakly 

dominant strategy: nR.   

[Figures 2a and 2b] 

Players, however, have to choose a strategy before knowing which role they will 

be assigned by nature.  In the simplest case, which we examine first, each player has four 

strategies to choose from: {TR, TnR, nTR, nTnR}.  Let us call this set of strategies the 

minimal strategy space.   These strategies are role-contingent, in that they dictate how the 

player should play the game when he finds himself in each role: 

TR:  when in the sender position, always trust.  When in the receiver position, 

always reciprocate. 

TnR:  trust as sender, do not reciprocate as receiver. 

nTR:  do not trust as sender, but always reciprocate as receiver 

nTnR:  when sender, do not trust. When receiver, do not reciprocate. 

Notice that these strategies, while role-contingent, are not conditional on a player’s past 

history of play. In this sense, this set of strategies may be regarded as unconditional, but 
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role-contingent imperatives.  For example, TR may be interpreted as the imperative of 

being unconditionally cooperative, no matter what.  Later on we will enlarge the strategy 

space to include both the minimal strategy space as well as strategies that are conditional 

on a player’s past history of play. 

In the remainder of the paper, we shall assume for simplicity that the probability 

of being cast in either role (sender/receiver) is p = 1/2; this will allow us to construct a 

single, symmetric payoff matrix for the trust game.  In the game of Figure 1, then, each 

player is facing the following 4x4 payoff matrix (Figure 3), which takes the weighted 

average of playing sender or receiver with probability 1/2.   

[Figure 3] 

As in Figure 2b, where nR weakly dominated R, here nTnR weakly dominates nTR and 

TnR weakly dominates TR.  

In what follows we consider a sequence g = 1, 2,…, n, of both one-shot (OS) and 

repeated (R) games represented by a symmetric payoff matrix A, such as that given in 

Figure 3.  In OS games, the game number g, and round number t = 1,2,.. will be 

synonymous, while in R games, the round number t will start anew, t = 1,2,... for each 

new R, “supergame” number g.  The main difference between the two environments is in 

the realization of payoffs; in the OS game, payoffs are realized after a single round, 

whereas in the R game, the sum of payoffs from all rounds played is realized at the end of 

each supergame, consisting of a sequence of rounds. 

In both environments, each player plays a single pure strategy from the given set 

of strategies in all rounds of a game.  As explained in further detail below, the payoff to 

using a particular strategy does not depend on the strategy adopted by a player’s 
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opponent or sequence of opponents.  Rather, we consider how each strategy fares against 

the population of strategies as a whole - what Maynard Smith calls “playing the field.”     12

If g ≤ n, then following the completion of each OS or R game, the fitness of each 

strategy is evaluated.  The fitness of a strategy in the OS game is its weighted average 

payoff against the population of strategies in the one-round game. The fitness of a 

strategy in the R game is its weighted average payoff against the population in all rounds 

of the R game.  These fitness values are used to adjust the proportion of the population 

that is playing each of the pure strategies in the subsequent OS or R game, as explained in 

further detail below.  In the repeated game, we imagine that players discount future 

earnings by the factor 1-δ per round, where δ ∈  (0, 1) can be interpreted as the constant 

probability that the game ends from one round to the next.  Thus, the mean number of 

rounds in each of the n repeated games is r = 1/δ.13 

 

Equilibria in OS or R games 

In the OS game, the unique subgame perfect Nash equilibrium is for receivers to 

play nR, and therefore for senders to play nT, i.e. in the symmetric game, all players play 

the strategy nTnR.  In the repeated game, it is possible for players to cooperate with each 

other, and thus do better.  Indeed, the folk theorem for repeated games states that, for a 

low enough discounting of future payoffs, there are many equilibria in which the players 

behave cooperatively towards each other (Fudenberg and Maskin 1986).  For example, a 

                                                 
12 Cf. Maynard Smith, 1982, p. 23. 
13 If we were to take players to be rational, forward-looking agents, it would make sense to describe r as the 
expected number of rounds.  However, since we will only deal with adaptive, or boundedly rational, agents, 
in all our simulations we will take r to be the mean number of rounds per game for a given δ.  Also note 
that our adaptive agents cannot distinguish between a finitely and indefinitely repeated game.  However, 
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trusting-reciprocating behavioral pattern can be supported as an equilibrium if pairs of 

players adopt a “grim-trigger” strategy.  Suppose a player in the role of sender initially 

plays T, and keeps playing T if the receiver plays R, but after the first defection (nR), she 

switches to nT forever.  Similarly, the player in the role of the receiver responds with R 

to T, but if nT is played once, he plays nR forever after.  This grim trigger strategy can be 

supported as an equilibrium as long as δ ≤ 1/2.14  Other trigger strategies can be used to 

support a cooperative, trust/reciprocate equilibrium under similar restrictions on δ.  These 

cooperative equilibria exist also in the population game environment that we examine, 

where players’ strategies are judged by how well they fare against the population of 

strategies (against the field).  In the latter case, the initial proportions of the various 

strategies in the population may also be a factor (in addition to δ) in whether trust and 

reciprocity can be sustained (as is shown in our simulations, discussed below). 

In sum, as traditional game theory predicts, if players are rational, trust and 

reciprocity are not sustainable in the one-shot game.  However, trust and reciprocity can 

emerge as stable behaviors when interaction is repeated if players do not discount their 

future earnings too much, or if they believe with a high enough probability that they are 

going to meet again.   

There are several drawbacks to traditional game-theoretic models.  For one, in the 

repeated game there can be multiple equilibria, and no way to predict which one will 

occur.  To play a particular cooperative equilibrium, players must have common priors 

about all the possible strategies each of them may use, and this fact must be common 

                                                                                                                                                 
rather than simulating a sequence of finite games of varying length, we chose to use the mean number of 
rounds per game in all our simulations. 
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knowledge.  Thus traditional game-theoretic models impose rather heavy informational 

and computational requirements upon the players.   

Furthermore, rationality alone cannot explain how players learn to play a Nash 

equilibrium, nor can rationality arguments be used to select from among multiple 

equilibria.   Researchers have therefore turned to bounded rationality approaches to 

model the adoption and selection of Nash equilibria.  Bounded rationality approaches in 

game theory can be divided into two types, depending on whether the focus is on 

individual behavior or on population dynamics instead.  Individual learning theories, for 

example, assume some exogenous process for matching players, and describe the manner 

by which individual players update their beliefs, e.g. the “fictitious play” learning model 

(see, e.g., Skyrms 1990).  Individuals are assumed to play best responses to their most 

recent beliefs.  By contrast, evolutionary theories are inspired by population biology (e.g. 

Maynard Smith and Price 1973). These theories dispense with the notion of the 

individual, as well as with best responses/optimization, and use in their place a natural 

selection, `survival-of-the-fittest’ process together with mutations to model the 

frequencies with which various strategies are represented in the population over time. We 

have chosen to pursue an evolutionary learning approach using computer simulations to 

obtain our main findings.  

15

In the following simulations, players are identified with a strategy, and the 

relative frequency of a strategy in a population is simply the proportion of players in that 

                                                                                                                                                 
14  The receiver will choose nR if 3x + (1/δ − 1) 0 > 3x/2 (1/δ), where δ is the constant probability that the 
game ends from one round to the next and the expected number of rounds after the first is 1/δ − 1.  For him 
to choose nR, δ must be greater than 1/2.   
15 The literature on refinements of Nash equilibrium seeks to solve the equilibrium selection problem by 
appealing to various rationality arguments (Van Damme, 1991).  Bicchieri (1993, ch. 3) discusses some of 
the reasons why such attempts have had little success. 
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population who adopt it.  The relative frequency of each strategy in the population at 

round t is a function of its payoff relative to the population average.  In our deterministic 

evolutionary model, inferior strategies die out, but it is difficult to keep this interpretation 

whenever a player is identified with a strategy.16  Players do not necessarily die out.  

Instead we can suppose that they may simply change their strategies.  Thus a more 

complete model of how a trusting/reciprocating behavioral pattern could emerge as the 

dominant one would include a description of how adaptive players change their strategies 

on the basis of previous outcomes.   

The main solution concept used in evolutionary game theory is the evolutionarily 

stable strategy (ESS) introduced by Maynard Smith and Price (1973), or the 

evolutionarily stable state (ESSt) for population-wide frequencies of strategies (see, e.g. 

Hofbauer and Sigmund,1998).   

Since we are examining behavior in a population game in which each player plays 

a pure strategy, we shall adopt the latter concept.17  Suppose there are N pure strategies 

for the trust game, with an NxN symmetric payoff matrix A = (aij)  (Figure 3 gives A for 

                                                 
16  Note that, using the deterministic replicator dynamics, strategies can become extinct in finite time since 
we are using a finite population with renormalization.  The fact that all strategies earn a non-negative 
payoff is not relevant. The updating procedure associated with the replicator dynamic (our equation 1) is 
such that strategies increase in the population only if their fitness value is above average. Strategies with 
below-average fitness values are displaced.  A strictly dominated strategy will have below average fitness 
in every round. Over successive periods, its proportion in the population will steadily decrease, and can 
indeed become zero in the finite population environments that we consider (see Foster and Young, 1990). 
Figure 5 illustrates the possibility of extinction in the four-strategy case.  To prevent extinction, we need to 
add noise to the replicator dynamics.   
  
17 Of course, a population can play an evolutionarily stable strategy.  If we allow mixtures then, as Maynard 
Smith showed, a certain mixed strategy, e.g. where all players play hawk (dove) according to a certain 
fixed probability, can be an ESS.  We do not allow mixtures, as we adopt the biological convention that 
each player is a particular phenotype, and can be thought of as having a single, pure strategy (either a fixed 
or a conditional rule). One could further argue that mixtures across such pure strategies are difficult to 
interpret. With only pure strategies, the relevant solution concept is the “evolutionary stable polymorphic 
state”, the limit or rest point of an evolutionary process. Cf. Maynard Smith (1982, p. 11, and also 
Appendix D).   
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the case where N = 4).  Each member of the continuum of players initially commits to 

playing exactly one of the N pure strategies (we do not allow mixtures).  Let p be the 

vector denoting the population-wide proportion of each of the N strategies (player 

types) in the population. Let  

1×N

∑ ==
j

ijiji pApapf )(  

denote the fitness of strategy i.  The population-wide weighted average fitness value is 

.  We say that is an evolutionarily stable state (ESSt) if, for any  

 

AppT p̂ p

pAppAp TT ˆˆˆ ≥

and if  then 

 

The first inequality is just the definition of a Nash equilibrium.  The second inequality is 

a further refinement that guarantees that  is not invadable; that is, fares better against 

than fares against itself. 

The definition of an ESSt does not refer to a specific dynamic, but biologists and 

evolutionary game theorists frequently use a replicator dynamic, which in its 

deterministic form can be written as:  

,ˆˆˆ and ˆ pAppAppp TT =≠

AppApp TT >ˆ

p̂ p̂

p p

                                                    ,                                                 (1) 

where  denotes the population-wide proportion as of time t.  Hence strategies with 

above average fitness see their proportions increase, and those with below average fitness 

see their proportions decrease.18 
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18 It should be noted that in the rest of the paper we use a discrete replicator dynamics (since we assume the 
population is finite).  
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It is well known that (ESSt) are asymptotically stable fixed points of this 

replicator dynamic, though the converse of this statement need not be true (see, e.g. 

Samuelson (1997)). 19  A similar relationship holds between the replicator dynamic and 

Nash equilibria: if  is a Nash equilibrium of the symmetric game A, then  is a 

stationary state of the replicator dynamic.  

 

p̂ p̂

The Evolutionary Model 

We use both a deterministic and stochastic discrete-time replicator dynamic to 

characterize the distribution of strategies in the population over time.  The system has an 

evolutionary flavor in the sense that each strategy’s share in the population increases or 

decreases with increases or decreases in that strategy’s payoff performance relative to the 

population average payoff. Furthermore, in the stochastic version of the model, mutations 

in the proportions of the various strategies in the population insure that no strategy 

becomes extinct.20 This simple, dynamical model is based on one used in population 

biology and was imported into game theory by Foster and Young (1990), Young and 

Foster (1991), who introduced the idea of a stochastically stable equilibrium. 

                                                 
19 A similar point was made by Maynard Smith (1982, Appendix D). Suppose P is an evolutionarily stable mixed 
strategy used by an individual player who can use all the pure strategies in the given strategy set (e.g., in the hawk-dove 
game, the mixture might be hawk with probability .60 and dove with probability .40).  Now suppose we rule out such 
mixed strategies, and let p be the frequency of pure strategy types (or phenotypes) in a polymorphic population.  What 
Maynard Smith shows is that if there are just two pure strategies, and P is an ESS mixed strategy, then if players play 
only pure strategies we will have P = p, that is, the population of pure strategy players will converge to a polymorphism 
where 60% are hawks and 40% are doves, the population analogue of the mixed ESS.  More generally, if there are 
more than two pure strategies, and P is an ESS mixed strategy, then the corresponding polymorphism p = P will be 
stable.  However, when there are more than two strategies a stable polymorphism p does not imply that the 
corresponding mixed strategy P is an ESS, as we note in the paper.  The reason is that stable polymorphisms (in pure 
strategies) might be invaded by mixed strategies.  
20 In most versions of the deterministic model, if a strategy does not survive the iterated elimination of strictly 
dominated strategies, then that strategy also does not survive under most versions of the replicator dynamics.  This 
theorem is proved in Samuelson and Zhang (1992), but the logic is intuitive. Suppose there are just 2 strategies, and 
one strictly dominates the other. The dominant strategy will have a higher relative fitness value and so will increase its 
proportion in the population, while the dominated strategy will decrease its proportion and die out. This generalizes to 
more than 2 strategies.   
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Deterministic Version  

The deterministic version is as described above.  There are N strategies for the 

trust game and vector denoting the proportion of each of the N strategies 

in the population at time t.  For example, in the simplest population we examine, where 

N=4,  and there is no population growth, i.e. 

  The N  matrix of payoff values for either the one shot or the 

repeated game is denoted by A.  This matrix summarizes the expected payoff earned by 

each strategy when matched against each of the other strategies in the population, 

including itself.  The deterministic version of the evolutionary model has the proportion 

of the population using strategy i evolve according to the simple replicator dynamic given 

in (1). 

Stochastic Version 

Foster and Young (1990) pointed out that the deterministic system (1) allows 

some strategies to become extinct, in the sense that .  The 

possibility of extinction runs counter to the (biological) notion that populations are 

subject to invasion and strategies (species) that are near extinction may thrive once again 

when environmental conditions change in their favor.  Furthermore, there is the 

possibility of new strategies (species) as well, however we do not consider this possibility 

here.  To prevent extinction, we can add mutation to the model in several ways.  For 

example, we can perturb the payoff matrix A slightly each period as in Fudenberg and 

Harris (1992), or we can add noise to the deterministic updating of the proportion vector 

p(t) as in Foster and Young (1990), or we can do both.  Perturbing the payoff matrix can 

1  theis )( ×Ntp

pTR(    p (t) = ( t),pTnR(t),pnTR(t),pnTnR(t))

t) =1  ∀ tpi(i∑ . × N

  
pi(t) = 0 for some i,  t
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be interpreted as uncertainty concerning the expected payoffs, while perturbations to the 

proportion vector can be interpreted as persistent experimentation (or non-extinction).  

We propose, as our stochastic model, the latter type of mutation. Specifically, let 

the proportions now evolve according to: 

,                                         (2) 

where is a draw from a standard normal distribution, and s is a tuning parameter. 

The algorithm we used is implemented as follows. In each period, we calculate the 

proportions according to (2). We then rebalance these proportions, by dividing each 

 by the sum  Our interest is in the evolution of the proportion vector 

p (t) over time for “small” values of s.  Foster and Young showed that the behavior of the 

stochastic system can be quite different from the behavior of the deterministic system.  In 

particular, the stochastic system removes the possibility of absorbing states at the 

boundary of the N-1 dimensional simplex that characterizes the distribution of strategies 

in the population, and under certain conditions, can result in a unique, “stochastically 

stable” equilibrium proportion vector.   

    
pi (t + 1) =

p i(t)Aip(t )
p(t)T Ap(t)

+ s ε i (t + 1)
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)1( +tpi .)1(
1
∑
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Because we are interested in examining the emergence of a behavioral regularity 

in a relatively large strategy space (later on we will examine up to 16 strategies), analytic 

results are difficult to achieve. We therefore make use of numerical simulations as 

described in the next section.  
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Simulations21 

One-shot game 

In the one-shot game, A is the 4x4 symmetric matrix depicted in Figure 3.  In the 

simulations, we set x = 1, so the actual matrix used is given in Figure 4.  All of the 

simulation experiments reported in this section were conducted using the simple 

deterministic replicator dynamic (1).22  The initial proportions of strategies were varied 

according to what we thought were interesting initial conditions, and the simulations 

were carried out for a sufficiently large number of periods (1,000 iterations for each 

initial condition) to insure that the limiting, stationary proportions of the replicator 

dynamic had obtained.  Each round in a simulation corresponds to the play of a single 

one-shot game. Our results consider the proportion of the various strategies observed in 

the population at the end of 1,000 iterations. 

 

[Figure 4] 

Results: 

The main results can be summarized as follows.  First, as long as there is initially some 

positive proportion of the population playing nR, the proportion of players playing R 

(either as TR or nTR) will disappear.23  If the initial proportion playing nR is zero, then T 

will come to dominate nT, as long as there is some positive proportion of players initially 

playing T.   

[Table 1] 

 

                                                 
21 The Mathematica code used to carry out our simulations is available at http://www.pitt.edu/~jduffy/trust/ 



  19 

Table 1 shows 27 initial frequencies (conditions) for the basic four strategy 

version of our game, and what happens to these frequencies following 1000 iterations of 

the deterministic replicator dynamic. Note that in a simulation where the initial 

population has any positive proportion of the nTnR strategy, the final result will be a 

population dominated by nTnR players (but see condition 13 below for an exception).  

For example, if the initial vector p = (.25, .25, .25, .25), which corresponds to condition 

21 in Table 1, the limiting proportion vector as illustrated in Figure 5 is:  .0 TR, .0 TnR, 

0.121 nTR and 0.879 nTnR.  This is the limiting vector because the boundary is an 

absorbing state.  As Figure 5 illustrates, the convergence in the deterministic case 

happens after about 10 iterations, so 1000 iterations is plenty.  

 

[Figure 5] 

 

Similarly, if the initial population is composed only of nTR players and nTnR 

players, then both strategies will survive, because if no players trust, then the receiver’s 

strategy does not matter.  For example, if p (0) = (.0, .0, .99, .01), as in condition 13 of 

Table 1, the system does not move away at all from this initial condition, where we have 

.99 nTR and .01 nTnR.  This can happen because, if almost everyone is playing nTR, 

there is never an opportunity for nR to spread, as receivers never get to make any choice.  

In general, many initial conditions will end up on the boundary between nTR and nTnR, 

though far closer to NTNR.  These anomalous results disappear once we add a stochastic 

element to the population updating procedure.   

                                                                                                                                                 
22 We ran 6 simulations that differed in the initial proportion of players playing the different strategies.  
23 In the deterministic case, extinction is possible for the reasons outlined in footnote 18.   
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The conclusion of our simulation exercise for the one-shot game is that we get 

stable polymorphic equilibria.  However, any population vector composed entirely of 

non-trusting strategies will not change over time, hence we may consider this vector an 

evolutionarily stable state.  

 

Repeated game 

In the repeated game setting, each game consists of a number of rounds, r.  In 

each round, each player type (defined by its strategy) plays its strategy against all player 

types (including itself) according to their proportions in the population, yielding a certain 

population-weighted payoff for each strategy for each round.  The strategy proportions do 

not change until the end of the r-rounds.  At the end of each repeated game, the 

proportions of the various types of players are updated according to the replicator 

dynamic given in equation (1), where the fitness of strategy i is based on its performance 

over all r rounds of the game.  

Recall that the value of r = 1/ δ, where δ can be interpreted as the constant 

probability that the game ends from one round to the next (alternatively, 1- δ is the 

constant discount factor for payoffs).  Thus, r increases as δ decreases.  In all our 

repeated game simulations, we varied δ from 1 to .0333, so that r varied from 1 (one-shot 

game) to 30 rounds of play.24 

                                                 
24 Alternatively, we could have considered a true indefinitely repeated game, in which case the mean number of rounds 
in each game would be given by r = 1/δ.  In this case, there would be considerable variation from this mean number of 
rounds across games. Indeed, there would also be the (slight) possibility that the game would continue indefinitely, so 
that some kind of truncation or upper bound on the number of rounds played would be necessary. As the strategies 
adopted by our agents were not forward-looking (so they could not use backward induction) we chose to forego the 
complications associated with an indefinitely repeated game, and we simply varied the finite length of the repeated 
game, r, as described above.  
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In the repeated game setting we introduce conditional strategies, since repetition 

allows for more complex behavior.  In what follows, we consider a minimum number of 

conditional strategies to better understand their individual contribution to the 

establishment of a cooperative behavioral pattern.  There are four sending and four 

receiving strategies: 

Sender 

1. Always trust (T) 

2. Never trust (nT) 

3. Grim trigger (G) – Trust until you are not reciprocated and then do not trust for 

the rest of the interaction. 

4. Hopeful (H) – Trust, and then if you are not reciprocated, retaliate by not 

trusting in the next round.  The round after that, trust again, as a sign of your 

willingness to trust.  If you are still not reciprocated, do not trust for the rest of the 

interaction.  If you are reciprocated, return to the beginning of this strategy.  

 

The Hopeful strategy is one of many possible retaliatory strategies.  When playing 

Hopeful, a player stops signaling her willingness to trust after she gets a non-

reciprocating response for two rounds, but one can build other strategies in which a 

player keeps signaling her willingness to trust in the face of several defections.  In fact, 

one could make “hopefulness” a function of the stopping probability, i.e. the lower the 

probability the game will end soon, the more likely it is that a player “tries again” to 

signal her willingness to trust.  As we shall explain subsequently (in footnote 23), we 

tried other, more complicated ‘hopeful’ strategies that employ more rounds of 



  22 

punishment.  However, we found that these alternative strategies always did marginally 

worse that the standard Hopeful one.  

 Receiver 

1. Always reciprocate (R) 

2. Never reciprocate (nR) 

3. Grim trigger (G) – Reciprocate until you are not trusted, then do not reciprocate 

for the rest of the interaction. 

4. Selfish (S) – Start by not reciprocating if you are trusted.  If you are not trusted 

in one round, switch to reciprocating in future rounds in which you are trusted.25 

 

The Selfish strategy is one in which the receiver “tests” the sender.  If the sender 

retaliates, the receiver switches to cooperative behavior.  

Given the four sender and receiver strategies, there are 16 possible combinations 

of strategies for players in the repeated game. These are: 

TR, TnR, TG, TS, nTR, nTnR, nTG, nTS, GR, GnR, GG, GS HR, HnR, HG, and HS 

Figure 6a and Figure 6b represent, respectively, the 4x4 payoff matrices for sender and 

receiver.  

[Figures 6a and 6b] 

 
                                                 
25 Another strategy we considered in the present simulation is a Hopeful strategy for the receiver.  It would start by 
reciprocating if trusted, and if not trusted in one round, it would punish the sender who subsequently trusts by not 
reciprocating once, but switching to reciprocating again if trusted in subsequent rounds.  This strategy, when combined 
with our current strategies, would never have a chance to show that it was different.  To trigger this strategy’s 
retaliation, a truster would have at some point not to trust, and then trust again. Two of our strategies either trust 
unconditionally, or do not trust unconditionally.  The hopeful sending strategy would not trigger retaliatory behavior, as 
the hopeful responder would always reciprocate. We would have to introduce a strategy that delays trusting, perhaps 
starting off with not trusting before attempting to trust, but as no information can be gained from not trusting initially, 
this strategy will always lose out to one that trusts.  In essence, if you are going to trust at all, there's no reason to not do 
it immediately. 
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Each element of the matrix is the cumulative payoff obtained at the end of r rounds of 

play between the column strategy and the row strategy.  These matrices are expanded into 

16x16 matrices, as before, and then averaged to represent the equal probability of being 

cast in the role of sender or receiver.  Some payoffs have been expressed as piecewise 

functions.  For example, in the sender’s matrix, we have that 

HnR (1) = 0 

HnR (2) = 1 

HnR (x) = x - 2 

HS (1) = 0 

HS (x) = 1.5x – 2 

In the receiver’s matrix, the values would be 

nRH (1) = 3 

nRH (2) = 3   

nRH (x) = 6 

SH (1) = 3 

SH (x) = 1.5x  

We use the same deterministic replicator dynamic (1) as before. However, the 

payoff matrix A is now the larger 16x16 payoff matrix.26  In the simulation exercises 

                                                 
26  As mentioned before, we tried to expand the set of “hopeful” strategies.  We wondered whether a round 
of punishment was optimal, and whether more rounds of punishment would be any better.  We created two 
new strategies, termed H2 and HII.  The H2 strategy punishes for two rounds before trying to trust again. 
But if not reciprocated again, it will not trust anymore.  The HII strategy will trusts initially, and if not 
reciprocated it punishes by not trusting in the next round. As distinct from the Hopeful strategy, HII will 
give another chance to the receiver by trusting again and, if not reciprocated again, will again punish for a 
single round. The third time, it will punish forever the receiver that violates her third attempt to trust.  The 
piecewise cumulative payoff functions are listed below: 
 
In the sender’s matrix, when the sender adopts H2, we have that  
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reported below, we varied r, the number of rounds played (equivalently, the inverse of 

the discount factor) from 1 to 30.  We also experimented with different initial proportions 

of strategies in the population. For each set of initial proportions and value of r, we 

                                                                                                                                                 
H2nR [1] = 0; 
H2nR [2] = 1; 
H2nR [3] = 2; 
H2nR [x_] = x - 2; 
 
H2S [1] = 0; 
H2S [2] = 1; 
H2S [x_] = 1.5x - 2.5; 
 
In the receiver’s matrix, the values would be 
 
nRH2 [1] = 3; 
nRH2 [2] = 3; 
nRH2 [3] = 3; 
nRH2 [x_] = 6; 
 
SH2 [1] = 3; 
SH2 [2] = 3; 
SH2 [x_] = 1.5(x - 1); 
 
 
In the sender’s matrix, when the sender adopts HII, we have 
 
HIInR [1] = 0; 
HIInR [2] = 1; 
HIInR [3] = 1; 
HIInR [4] = 2; 
HIInR[r_] = r - 3; 
 
HIIS [1] = 0; 
HIIS [2] = 1; 
HIIS[r_] = 1.5*(r - 2) + 1; 
 
And in the receiver’s matrix, the values would be as follows 
 
nRHII [1] = 3; 
nRHII [2] = 3; 
nRHII [3] = 6; 
nRHII [4] = 6; 
nRHII[r_] = 9; 
 
SHII [1] = 3; 
SHII [2] = 3; 
SHII[r_] = 1.5 (r - 2) + 3; 
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simulated the deterministic replicator dynamic for a sufficiently long time (1000 periods) 

to ensure that the limiting stationary proportions obtained. 

 

Results  

The deterministic model  
 
The results of our simulation exercises involving the deterministic replicator dynamic in 

the repeated game setting depend on the value of r and the initial proportions of strategies 

in the population. These results can be summarized as follows.  In the case where there 

are equal initial proportions of the 16 strategies, the long-run outcome is a function of the 

discount factor, or the number of rounds played in each interaction, r (see Figure 7).  On 

the horizontal axis of Figure 7 (and subsequent figures) is the number of rounds per 

game.  The strategy proportions, represented as bars, are average proportions over 1,000 

simulated games, always starting with the same initial condition (equal proportions) but 

different game lengths.  

 

[Figure 7] 

 

It is interesting to note that several contingent strategies support cooperative behavior, 

but none of them is an ESS.    

Notice that when r = 1, regardless of the initial population proportions, the long-

run outcome is mainly composed of nTnR and nTS in equal proportions, with a small 

                                                                                                                                                 
Over many simulation runs, with different mixes, we found that these two strategies always did marginally 
(<.001) worse than the standard one-try one-round Hopeful strategy. On the basis of this result, we are only 
including the standard hopeful strategy in our simulations. 
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number of players playing nTR and nTG.  Exceptions occur when nTnR initially 

dominates the population, as Figure 10 illustrates.  In this case, nTnR remains the most 

prevalent strategy.  This result is not too surprising, since when players in our simulation 

play a one-shot game 1000 times, non-trusting, non-reciprocating strategies dominate as 

in the simple one-shot game.  In short, impersonal trust does not emerge when the length 

of interactions is short.  These conditions are generally true in the case of r = 2 as well, 

but with a larger proportion of players playing the reciprocating strategies R and G, and 

fewer playing nR and S.   

However, when r = 3, we observe a dramatic shift in favor of players playing GG 

and GR.  It is at this game length that the simple learning strategy embedded in the Grim 

strategy shows some strength.  We also observe a small number of players playing HR 

and HG.  For r >3, we increasingly observe players playing HR and HG, while the 

proportion of players playing GG and GR declines.  In most cases, the limiting 

distribution is a mixture of strategies, with about 60% of the players split between HR 

and HG, 30% split between GR and GG, and 10% playing TR and TG.  In short, the only 

strategies that survive as r grows large are the contingent strategies that favor trust and 

reciprocation.  As the number of rounds increases, a population composed only of these 

strategies is stable, as all players trust and reciprocate.  In addition, a population mainly 

composed of smart trusters can support a small number of unconditional, “dumb” 

trusters.  It is important to stress that non-contingent strategies such as TR can only 

survive because of the presence of contingent cooperative strategies. 

 

Some exceptions 
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The results above were for the case of a uniform initial distribution of the 16 

strategies in the population.  In a population initially dominated by players playing one of 

the four non-contingent T strategies (TR, TnR, TG, or TS), as r gets large, the long-run 

outcome is made up of 60% HS and 40% HR/HG.  For example, in Figure 8, the 

population is initially composed of 85% TR and equal proportions of the other 15 

strategies.   

[Figure 8] 

 

It appears that the reciprocating strategy that gains the most from the existence of a large 

initial proportion of unconditional trusters is the Selfish strategy.  It gains from 

unconditional trusters by not reciprocating, but learns to reciprocate when faced with 

players that do retaliate. 

A second exception arises when one of  the grim or hopeful sender strategies (GR, 

GG, HR, HG, and HS) makes up a large proportion of the initial population. For example, 

Figure 9 illustrates the case where 85% of the initial population plays GR, though the 

same results would hold if any of the other strategies GG, HR, HG or HS initially 

dominated to the same degree.  In the one-shot, r =1 game, the result is a distribution of 

non-trusting strategies.  But for r >1, the dominant initial strategy (GR) remains 

dominant.  When these five strategies are played against each other, HS dominates when 

r  = 1, remains stable when r  = 2, and disappears entirely for larger values of r.  

 

[Figure 9] 
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When nTnR is initially the most frequent strategy, we still observe a shift to the mix of 

strategies outcome described earlier, but not until r  = 10 (see Figure 10, and compare it 

with Figure 7).  nTnR, the fittest strategy in the one-shot game, remains strong for low 

values of r, but once r equals or exceeds 10, this strategy becomes extinct based on the 

distribution of results from 1000 r-round games.  

 

[Figure 10] 

 

Notice that in Figures 7-10, it appears as though r = 2 or 3 is usually the indifference 

point, or tipping point.  Before that, non-trusters dominate, and after that, conditional 

trusters dominate the population. 

 

The stochastic model  

The stochastic version of the simulation models the evolution of strategies using 

the stochastic replicator dynamic, equation (2).  Computation of the strategy proportions 

at time t+1 at first proceeds according to the standard deterministic population equation.  

The new equation then adds a noise term, composed of the absolute value of a draw from 

a standard normal distribution, multiplied by the tuning parameter s.  This has the effect 

of adding a small, individual, random positive value to each population proportion.  After 

each population proportion has been computed, the values are renormalized, dividing 

each one by the sum of the new proportions.  This ensures that all the values continue to 

sum to one, and as some values have had larger random modifications than others, the 

overall effect is that some strategies will gain from the random element, and some will 
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lose. Another consequence of the stochastic model is that all strategies will survive in the 

population in some measure, bounded below by the mutation rate. 

We begin by examining the behavior of the original four unconditional strategies 

under this new stochastic model.  For all the simulations below, we are using a tuning 

parameter s = .01, so as not to introduce large amounts of randomness into the results. 

 

Unconditional strategies 

As none of these strategies will perform any differently in a one-shot game as 

compared to an iterated game, the value of r will not make a difference in the final 

outcome.  Regardless of the initial conditions, we see a convergence (with small 

fluctuations) to a population vector with mean values: TR = .01, TnR = .01, nTR = .12, 

nTnR = .86.  An illustration with two different initial proportions is provided in Figures 

11a-11b.  These results are qualitatively similar to the deterministic case (compare 

Figures 11a-b to Figure 5). Again, note that we report the average proportions following 

1000 games with r-rounds each, where fitness is evaluated at the end of each game. 
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[Figures 11a, 11b] 

 

The main difference is the greater volatility in the proportions over time due to the 

stochastic replicator dynamic. Also, two strategies, TR and TnR are kept from becoming 

extinct in the stochastic model by the presence of the error term in equation (2) 

 

Conditional strategies 
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When conditional strategies are considered, for small values of r, (i.e. r <3), the 

unconditional non-trusters and non-reciprocators dominate the population, as we would 

expect. However, the results are quite different, as r gets large. Here we report results 

from an experiment where we add conditional strategies, one at a time, into a population 

with unconditional strategies.  As before, we have removed all dependence on initial 

conditions, and we observe convergence to a stochastically stable mix of strategies based 

on the initial mix and on r.28  The first case we consider consists of five strategies, the 

basic four unconditional strategies B4={TR, TnR, nTR, nTnR} and the conditional 

strategy GG. This case is illustrated in Figure 12.  

 

[Figure 12] 

 

For r > 3, the mean proportions (over all r) after 1000 periods are:  TR = .23, TnR = .04, 

nTR = .04, nTnR = .02, GG = .66.  The simple addition of a conditional learning 

Grim/Grim strategy to the mix completely alters the final equilibrium for large r.  The 

GG strategy dominates the population, and the trusting TR strategy is allowed a second 

place, due to the existence of the conditional GG strategy.  The proportions of the other 3 

strategies are due to the stochastic replicator dynamic, which prevents these strategies 

from dying out.  We observe a similar finding when we consider the basic four strategies, 

B4, either combined with GR or with GS.  In the latter case, however, we see a new mean 

proportion mix: TR = .08, TnR = .03, nTR = .50, nTnR = .04, GS = .34.  It seems that the 

                                                                                                                                                 
27 These proportions represent a stochastically stable state of the population, given our choice of noise. 
28 In the limit, as the noise goes to zero, we would have convergence to a unique equilibrium. 
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selfish strategy, which feeds on unconditional trusters, allows the non-trusting strategy to 

gain.  In addition, the nTR strategy gains from its own unconditional responses to the 

other trusting strategies in the population. 

Consider next the case where the initial strategies are B4 (the basic four) together 

with GG and HR. In this case, GG and HR share 66% of the population, but GG does a 

bit better, most likely due to the absence of the Selfish responding strategy, from which 

the Hopeful trusting strategy can benefit.  However, with B4+GG+GS, GG comes to 

dominate again and reduces GS to less than 5% of the population.  The Selfish strategy 

only seems to work whenever it is possible to take advantage of unconditional trusters. 

The next case to consider is an initial population made up of nTnR, GR, GS, HR, 

and HS.  In this case the final mix of strategies in the population, for large r, is 

nTnR = .01, GR = .27, GS = .04, HR = .61, HS = .05.  We see that the reciprocating 

strategy does better across the board than the selfish strategy, as most of the conditional 

trusting strategies end up punishing the selfish strategy.  The uncooperative strategy 

nTnR does not fare well at all. 

Finally, we introduced all 16 strategies together in the stochastic model.  The 

result, illustrated in Figure 13a, is a final mix dominated by HR and HG in roughly equal 

proportions of 20% each. GR/GG come in second place, at about 10% each. Next we see 

GS/HS at about 6% each.  Most other strategies stay around 4-5%, with non-

reciprocating strategies doing worse at around 2%, and finally nTnR doing the worst at 

about 1%, however these last few strategies survive only due to the stochastic nature of 

the replicator dynamic, which does not let them disappear.  In Figure 13b, we observe  

[Figures 13a, 13b] 
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that this same distribution continues to hold if one of the two the most successful 

strategies from the previous experiment, HG, dominates the initial population of 

strategies. 

The most important result we obtain is that regardless of the initial population 

proportions, in the long run we converge to a stationary equilibrium consisting of a 

polymorphic population of strategies.29 Each value of r may result in a different 

equilibrium outcome but the equilibrium is stable, and is a function only of the initial 

strategy mix and the value of r, the length of the iterated game.  As in the case of the 

deterministic simulation, as r gets large, conditional strategies come to dominate the 

population.  The unconditional trusting/reciprocating strategies continue to exist, though 

in small numbers, due to the presence of large numbers of conditionally “nice” strategies. 

It thus seems that the very existence of a rigid rule that demands unconditional 

cooperation depends upon the presence of conditionally cooperative practices.    As r gets 

large, non-trusting/non reciprocating strategies invariably recede to a mere subsistence 

level.  The tuning parameter s represents the weight cast on the stochastic term. Any 

positive value of s will lead, irrespective of the initial proportions of strategies, to the 

same equilibrium mix of strategies.  For smaller values of s, the system will take more 

time to converge to an equilibrium mix of strategies, and larger values of s will create 

more fluctuations in the actual proportions.  It will still be the case, however, that the 

strategies that are dominant in an environment in which there is low variability remain 

dominant in a high-variability environment.    

                                                 
29 There are several different definitions of stationarity for dynamical systems. One is asymptotic stability, wherein a 
dynamical system converges to a fixed point.  But a stationary state need not be asymptotically stable; it can just be 
Lyapunov stable, or in our case “stochastically stable”, by which we mean that after some period t, we reach a 
stationary distribution of strategies, having some mean p and support (or bounds) [p -ε, p + ε], so that in every period 
after t, the system never leaves those bounds. 
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Conclusions: 

Our goal in this paper was to explicate the development of a social norm of trust 

and reciprocation.  We show that when impersonal trust/reciprocation becomes the 

dominant observed behavior, it is the outcome of the interaction of several different 

strategies.  It would therefore be a mistake to identify a social norm of trust and 

reciprocation with a particular strategy, since such a norm is supported by several 

different strategies.  Moreover, such strategies are conditional ones.  In fact, many pure 

strategies support trust/reciprocating behavior, but none of them is an unconditional rule 

telling a player to trust/reciprocate no matter what.  Rather, generalized, impersonal trust 

only develops as a consequence of the interaction of several conditional strategies that 

differ in the severity with which they punish transgressions, as well as in their willingness 

to give other players further chances.  Their differences, however, cancel out in our 

evolutionary model. 

For impersonal trust to emerge, interactions between players must go on for 

extended periods of time.  When interactions are only one-shot, players who take what 

they can and leave do the best.  When interactions are repeated, in the presence of 

conditionally cooperative strategies, anonymous, impersonal trusting/reciprocating 

behavior can emerge and dominate in this evolutionary model.  The resulting stable 

behavioral pattern (or norm) is thus supported by a polymorphic population of strategies.  

Regardless of the proportions in which our strategies initially appear in the population, a 

resulting evolutionarily stable state is reached in which trusting/reciprocating behavior is 

the norm.  Since in our stochastic model no strategy goes extinct, we have a very robust 

test of a norm’s emergence.  We hasten to add that, consistent with our interpretation of 
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the results, our conclusions are also conditional.  That is, they depend upon the strategy 

set we have considered.  Given our strategy set, there is no unique evolutionarily stable 

strategy.  Rather, we have a polymorphic population of strategies that uphold generalized 

trust and reciprocation.   
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Figure 3: 
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 Figure 4: 
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T a b le  1 :
In itia l In itia l F ina l In itia l In itia l F ina l
C o nd itio n  # S tra tegy F req uency F req uency* C o nd itio n  # S tra tegy F req uency F req uency*

1 T R 1 1 1 5 T R 0
T nR 0 0 T nR 0 .0 1 0
nT R 0 0 nT R 0 0
nT nR 0 0 nT nR 0 .9 9 1

2 T R 0 0 1 6 T R 0
T nR 1 1 T nR 0 0
nT R 0 0 nT R 0 .0 1 0 .0 1
nT nR 0 0 nT nR 0 .9 9 0 .9 9

3 T R 0 0 1 7 T R 0 .9 7
T nR 0 0 T nR 0 .0 1 0
nT R 1 1 nT R 0 .0 1 0 .0 0 0 5 7 7 4 2 8
nT nR 0 0 nT nR 0 .0 1 0 .9 9 9 4 2 3

4 T R 0 0 1 8 T R 0 .0 1
T nR 0 0 T nR 0 .9 7 0
nT R 0 0 nT R 0 .0 1 0 .0 0 0 5 7 7 4 2 8
nT nR 1 1 nT nR 0 .0 1 0 .9 9 9 4 2 3

5 T R 0 .9 9 0 1 9 T R 0 .0 1 0
T nR 0 .0 1 1 T nR 0 .0 1
nT R 0 0 nT R 0 .9 7 0 .0 6 7 3 1 1 8
nT nR 0 0 nT nR 0 .0 1 0 .9 3 2 6 8 8

6 T R 0 .9 9 1 2 0 T R 0 .0 1 0
T nR 0 0 T nR 0 .0 1 0
nT R 0 .0 1 0 nT R 0 .0 1 0 .0 0 9 8 9 6 5 9
nT nR 0 0 nT nR 0 .9 7 0 .9 9 0 1 0 3

7 T R 0 .9 9 0 2 1 T R 0 .2 5 0
T nR 0 0 T nR 0 .2 5 0
nT R 0 0 nT R 0 .2 5 0 .1 2 1 0 0 4
nT nR 0 .0 1 1 nT nR 0 .2 5 0 .8 7 8 9 9 6

8 T R 0 .0 1 0 2 2 T R 0 .2 5 0
T nR 0 .9 9 1 T nR 0 .2 5
nT R 0 0 nT R 0 .0 1 0 .0 0 6 6 6 5 3 6
nT nR 0 0 nT nR 0 .4 9 0 .9 9 3 3 3 5

9 T R 0 0 2 3 T R 0 .2 5
T nR 0 .9 9 1 T nR 0 .2 5
nT R 0 .0 1 0 nT R 0 .4 9 0 .0 3 0 3 4 2 8
nT nR 0 0 nT nR 0 .0 1 0 .9 6 9 6 5 7

1 0 T R 0 0 2 4 T R 0 .5 1
T nR 0 .9 9 0 T nR 0 0
nT R 0 0 nT R 0 .5 0
nT nR 0 .0 1 1 nT nR 0 0

1 1 T R 0 .0 1 1 2 5 T R 0 .4 8 0
T nR 0 0 T nR 0 .0 2 1
nT R 0 .9 9 0 nT R 0 .4 8
nT nR 0 0 nT nR 0 0

1 2 T R 0 0 2 6 T R 0 .4 8 0
T nR 0 .0 1 1 T nR 0 0
nT R 0 .9 9 0 nT R 0 .4 8 0 .0 4 8 2 2 4 3
nT nR 0 0 nT nR 0 .0 2 0 .9 5 1 7 7 6

1 3 T R 0 0 2 7 T R 0 .4 8 0
T nR 0 0 T nR 0 .0 1 0
nT R 0 .9 9 0 .9 9 nT R 0 .4 8 0 .0 3 0 7 2 7 9
nT nR 0 .0 1 0 .0 1 nT nR 0 .0 1 0 .9 6 9 2 7 2

1 4 T R 0 .0 1 0
T nR 0 0
nT R 0 0
nT nR 0 .9 9 1

0

0

0

0

0

0

0
0

0
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Figure 5: 
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Figure 6a: 
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Figure 6b: 
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Figure 7: 
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Figure 8: 
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Figure 9: 
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Figure 11a: 
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Figure 12: 
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Figure 13a: 
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Figure 13b: 
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