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Abstract
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money. The behavioral rules of the arti�cial agents are modeled on the basis of prior evidence

from human subject experiments. Simulations of the arti�cial agent{based model are conducted

in two new versions of the Kiyotaki{Wright environment and yield some testable predictions.

These predictions are examined using data from new, human subject experiments. The results

are encouraging and suggest that arti�cial agent{based modeling may be a useful device for

both understanding and designing human subject experiments.
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1 Introduction

Monetary theorists have long struggled to understand why individuals choose to hold money when

it is dominated in rate of return by other assets, for example, by interest bearing securities. Hicks,

in his seminal (1935) paper, argued that understanding the rate of return dominance of money is

\the central issue in the pure theory of money," and suggested that the necessary \frictions" that

might help to explain this puzzle should be explicitly incorporated into the standard competitive

general equilibrium model. Subsequently, researchers have proposed a number of departures from

the standard model which allow money to be dominated in rate of return, for example, the inclusion

of real money balances in the utility function, the requirement of cash in advance for purchases or

the recognition of legal restrictions that force individuals to hold some amount of money (e.g. to

pay taxes). However, the question remains as to how these devices arose in the �rst place. More

fundamentally, one might ask how individuals came to accept or learned to adopt a convention in

which the money asset is dominated in rate of return by other assets.

A promising environment in which to explore this important question is the decentralized,

search{theoretic approach to monetary economics pioneered by Kiyotaki and Wright (1989) and

extended by many others. Unlike the other modeling approaches mentioned above, search{friction

models do not single out any special role to be played by a money good (as emphasized by Wallace

(1998)) and allow for the endogenous determination of the good(s) that serve as media of exchange.

Moreover, in the Kiyotaki{Wright (1989) model, it is possible for the goods that serve as media of

exchange to be dominated in rate of return by other goods.

The essence of the Kiyotaki{Wright (1989) model is what Jevons termed the \absence of double

coincidence of wants." In such environments, individuals must, of necessity, make investment

decisions among competing goods since they cannot trade the good they produce directly for a good

that yields them an immediate positive utility payo�. The game{theoretic aspect of the investment

decisions embedded in this model is identical to that faced by investors in environments with

network externalities when there is more than one convention or standard that might be adopted.

In these situations, the relative expected discounted present values of the investment options facing

any particular player at any point in time depend upon the current and future investment strategies

adopted by all players. In certain circumstances, it may \pay" to make investments in goods that

are relatively more costly to acquire today, as they provide a higher probability of a positive utility
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payo� tomorrow. It is in this sense that goods that are dominated in rate of return (are more

costly to acquire) may nevertheless serve as media of exchange in the Kiyotaki{Wright environment.

While monetary theorists have been attracted to the search{theoretic, dynamic game approach as

a microfoundation for a general equilibrium model that explains the medium of exchange role of

money in a natural way, an understanding of how a convention evolves when people are placed in

a dynamic framework is of much greater general interest (See, e.g. Young (1998)).

Kiyotaki and Wright (1989) only provide a characterization of the equilibrium properties of

their model. They do not attempt to describe the process by which an equilibrium is achieved,

or equivalently, give an account of how one or more commodities might emerge as conventional

media of exchange. Since agents almost certainly do not begin a process of social interaction with

equilibrium beliefs but must adjust their strategies to their evolving historical experiences within

a given trading regime, the relevant question is whether the comparative static predictions of the

theory are actually informative of how play evolves when agents are placed in the Kiyotaki-Wright

environment.

The evolution of behavior in the Kiyotaki{Wright (1989) environment has attracted the at-

tention of many researchers, perhaps because the trade{o�s that agents face in this environment

appear simple enough that agents might be expected to learn the strategies that arise from solving

a dynamic programming problem in a reasonable amount of time. The Nash equilibrium predic-

tions of the model have been tested using populations of arti�cial, boundedly rational agents{the

\agent{based computational approach"{by Marimon, McGrattan and Sargent (1990), Ba�s�ci (1999)

and Staudinger (1998). The model's predictions have also been examined in a number of controlled

laboratory experiments with paid human subjects (\real" agents) as reported in Brown (1996) and

Du�y and Ochs (1999a, 1999b).

The major �nding that emerges from all of these studies is the failure of both the arti�cial and

real agents to engage in \speculative" behavior in certain though not all parameterizations of the

model where speculative behavior constitutes a best response on the part of certain agent types.1

An agent speculates when he accepts a good in trade that is more costly to store than the good

he is currently storing with the expectation that this more costly{to{store good will enable him

to more quickly trade for the good he desires to consume. Thus, speculation is necessary for the

1In particular, Ba�s�ci (1999) and Staudinger (1998) �nd some parameterizations of the Kiyotaki{Wright model in
which arti�cial agents do learn to play speculative strategies. The play of speculative strategies has not been observed
human subject studies of the Kiyotaki{Wright environment described in this paper.
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rate{of{return dominance feature of a medium of exchange.

While the \lack{of{speculation" �nding is common to both the agent{based and human subject

experiments, the design of these various experiments di�er considerably. For example, all of the

agent{based studies cited above involve many more arti�cial agents than are possible in a controlled

laboratory environment with human subjects and these agent{based environments are run for many

more periods than are possible in human subject experiments. Furthermore, all of the agent{based

simulations allow for direct or indirect communication among agents (e.g. via their use of a genetic

algorithm to update strategies) { a feature that is simply not present in human subject experiments.

These di�erences make it di�cult to directly compare the results from agent{based simulations with

human subject experiments. Perhaps as a consequence, researchers have overlooked the possibility

that agent{based simulations might serve as a tool for the design of human subject experiments,

or that the results of human subject experiments might inform the modeling of agent behavior in

arti�cial, agent{based economies. This paper takes a �rst step toward integration of the agent{based

and human subject experimental approaches in the context of the much{studied Kiyotaki{Wright

model.

We begin in the next section by brie
y describing the Kiyotaki{ Wright model. In section 3,

we develop a simple, agent{based model and show that this model can match some of the features

of the human subject experiments reported in Du�y and Ochs (1999a). The agent{based model

is designed to be quite similar to the human subject experimental environment. Furthermore, the

manner in which the arti�cial agents learn over time is based on �ndings from human subject

experiments. In section 4, we use simulations of this agent{based model to predict what may

happen in two previously unexplored versions of the Kiyotaki{Wright model that are designed to

encourage greater speculative behavior by certain player types. In one new version of the model,

agents who should speculate in the unique Nash equilibrium are given more frequent encounters

with situations where playing the speculative strategy would result in higher expected utility.

In the other new version of the model, two of the three agent types are constrained to playing

deterministic strategies consistent with the Nash equilibrium where the best response of the other

agent type is to speculate. The agent{based simulations predict di�erent outcomes in these two

model environments. The predictions of the agent{based simulations are then compared in section

5 with some human subject experiments conducted in the two new environments. The results

are encouraging; the �ndings from the human subject experiments are roughly similar to those
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predicted by the agent{based simulations. Finally, section six o�ers some concluding remarks.

2 The Kiyotaki{Wright Environment

The discrete{time environment consists of a �nite population of N players.2 There are three player

types, type i = 1, 2 or 3, with an equal number (N=3) of each type. Type i desires to consume good

i, but produces good i+ 1 modulo 3. Notice that with this speci�cation, in the absence of trade,

there can be no double coincidence of wants. There are no production costs however consumption

of good i is a necessary prerequisite to production of good i+ 1 modulo 3. Goods are indivisible,

and each agent has one unit of storage capacity in every period. The per period cost of storing

a unit of good j is cj and it is assumed that 0 < c1 < c2 < c3. This particular speci�cation for

storage costs, which we use throughout this paper, is referred to as \Model A" in Kiyotaki and

Wright (1989).3 All agents are assumed to receive the same utility from consumption, u > c3, and

to have a common discount factor, � 2 (0; 1).

In every period, all N agents are randomly paired with one another. Each pair may engage in

bilateral exchange if such an exchange is mutually agreeable. An exchange consists of a one{for{one

swap of the goods the matched pair of players holds in storage when they enter the trading period.

When an agent successfully trades for his consumption good i, he consumes that good, receiving

utility u, and immediately produces a unit of his production good which he then stores until the

next period, paying the per period storage cost for storing that good. Consequently, agent i is never

storing a unit of good i; he enters each trading period with either good i + 1 or i + 2 in storage.

We can therefore summarize the proportion of type i players who are storing their production good

i + 1 in period t by pi(t), with 1 � pi(t) representing the proportion of type i players storing the

other non{consumption good i + 2, and let p(t) = [p1(t); p2(t); p3(t)] denote the vector of such

proportions.

When an agent is unsuccessful in trading for his consumption good or does not face the oppor-

tunity to trade for his consumption good, his net payo� for the round is negative, corresponding to

the storage cost of the good he holds in storage after any trading has occurred. Restrictions on the

model's parameters imply that it is always a dominant strategy for player type i to o�er to trade

2Kiyotaki and Wright (1989) assume an in�nite continuum of players, but for our arti�cial and real subject
experiments we must be content with a �nite population approximation.

3An alternative speci�cation, \Model B" (which is not isomorphic) reorders storage costs so that 0 < c1 < c3 < c2,
or equivalently, changes the production speci�cation so that type i produces good i� 1.
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whatever good he has in storage for his consumption good i as he receives a positive net payo�

from such trades. The more interesting trading decisions arise in situations where a player type i

with production good i+ 1 in storage, is randomly paired with a player storing good i+2. Denote

the strategy of player i, who stores good i+ 1 and who meets good i+ 2 in period t by si(t). Let

si(t) = 0 if type i refuses to trade good i+1 for good i+2 and let si(t) = 1 if type i o�ers to trade

good i+ 1 for good i+ 2. These strategies are assumed to be symmetric: if si(t) = 0 so that type

i refuses to trade good i + 1 for good i+ 2 at time t then 1 � si(t) = 1, and type i o�ers to trade

good i+ 2 for good i+ 1 at time t.

Kiyotaki and Wright assume that each agent type solves a dynamic programming problem in

which they maximize the expected present value of discounted utility from consumption net of

storage costs over an in�nite horizon by choice of optimal trading strategies in all possible trading

situations. They focus attention on pure strategies (si(t) 2 f0; 1g 8 i, t) and characterize the

steady state equilibria that result from this optimization problem. A steady state, pure strategy

Nash equilibrium consists of stationary vectors p and s such that the play of s results in the

inventory distribution p and si is optimal for each player type i given p and s. For the case we

study here, \Model A" where 0 < c1 < c2 < c3, Kiyotaki and Wright (1989) prove that there exists

a unique, steady state pure strategy Nash equilibrium characterized by the strategy pro�le:

s = (s1; s2; s3) =

(
(0; 1; 0) if (c3 � c2) > [p3 � (1� p2)]=3�u = [1=6]�u;

(1; 1; 0) if (c3 � c2) < [p3 � (1� p2)]=3�u = [(
p
2� 1)=3]�u:

The equalities on the right hand side of the above expressions follow from the steady state vectors

p = (1; :5; 1) and p = (:5
p
2;
p
2 � 1; 1), respectively. For (c3 � c2) 2

�
[(
p
2� 1)=3]�u; [1=6]�u

�
there is no steady state pure strategy Nash equilibrium (though there do exist mixed strategy Nash

equilibria).

Notice that, regardless of the parameter values chosen, the unique pure strategy Nash equilib-

rium calls for type 2 players to always o�er to trade their high storage cost good 3 for the less{costly

{to store good 1 (s2 = 1), and for type 3 players to always refuse to o�er to trade their low storage

cost good 1 for the more costly{to{store good 2 (s3 = 0). These trading strategies, in which players

trade high storage cost goods for lower storage cost goods or refuse to trade low storage cost goods

for higher storage cost goods, are referred to as fundamental trading strategies, since fundamental

factors, i.e. storage cost considerations, govern the trading decisions.

By contrast, type 1 players' optimal pure strategy depends on the choice of model parameter
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values. Under certain parameterizations the optimal pure strategy for type 1 players, s1 = 0, is the

fundamental strategy in which type 1 players refuse to trade their lower cost production good 2 for

the more costly to store good 3. However, there exist parameterizations for which type 1 player's

optimal pure strategy is the speculative strategy, s1 = 1, of trading their production good 2 for the

more costly to store good 3. This speculative strategy is optimal whenever the di�erence in costs

from storing good 3 rather than good 2 (c3� c2) is less than the discounted expected utility bene�t

of storing good 3 rather than good 2, which is given by [p3 � (1 � p2)]=3�u. Intuitively, type 1

players are better o� speculating in good 3 (rather than good 2) if storing good 3 makes it more

likely that they will be able to successfully trade for their desired consumption good { good 1 {

and the additional likelihood of this event more than outweighs the additional cost of storing good

3 rather than good 2.

Our focus in this paper will be on parameterizations of the model that give rise to the unique

strategy pro�le s = (1; 1; 0). In such versions of the model, there are two media of exchange de�ned

as goods that are accepted in trade but not desired for consumption purposes. Good 1 ful�lls this

role, as type 2 players trade for good 1, but desire good 2. Good 3 also ful�lls this role as type 1

players trade for good 3 but desire good 1. Since good 3 is the most costly{to{store good, yet is

accepted in trade by certain player types it serves as an example of an endogenously determined

medium of exchange that is dominated in rate of return.

3 Arti�cial agent behavior in the Kiyotaki{Wright model

3.1 Prior analyses

Kiyotaki and Wright (1989) only characterize the steady state pure strategy Nash equilibria of their

model. They do not provide an analysis of the process by which a population of inexperienced or

boundedly rational agents might learn over time to coordinate on this equilibrium. A number of

researchers have sought to explore this follow{up question in the context of the Kiyotaki{Wright

model using either agent{based computer simulations or controlled laboratory studies with paid

human subjects, but not both.

The earliest study, by Marimon, McGrattan and Sargent (1990), used a version of Holland's

(1986) classi�er system to model the behavior of a population of 150 arti�cial agents in various

versions of the Kiyotaki{Wright (1989) model (with 50 agents per type). Each arti�cial agent,
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of a given player type, has a collection of state{contingent \if{then" rules for both trading and

consumption decisions. Each rule is assigned a strength according to its contribution to past realized

utility using Holland's \bucket brigade" credit assignment procedure; this algorithm distributes

strengths to the sequence of all rules that contributed to the utility gain or loss, rather than to

the single rule that actually induced a change in the agent's utility. Periodically, new if{then rules

are generated using a genetic algorithm; these rules replace poorly performing rules. The classi�er

rules with the highest strengths are the ones chosen to represent each agent's state{contingent

behavior. Marimon et al. (1990) report that when the model environment is parameterized so

that the unique strategy pro�le across the three agent types is s = (0; 1; 0), so that all types play

fundamental strategies in the steady state, the classi�er system has no trouble achieving the unique

pure strategy "fundamental" equilibrium. However, when the model is parameterized so that the

unique strategy pro�le is s = (1; 1; 0), the arti�cial type 1 agents fail to learn to play the required

speculative strategy of trading their production good 2 for the more costly{to{store good 3 at the

end of 1,000 periods.

More recently, Ba�s�ci (1999) has conducted further classi�er system simulations in the Kiyotaki{

Wright (1989) model using populations of size 60 (20 agents per type). Ba�s�ci considers two main

modi�cations to the Kiyotaki{Wright environment in an e�ort to induce a greater percentage of

type 1 players to adopt the speculative strategy: 1) reducing the di�erential in storage cost between

goods 3 and 2, (c3 � c2) and 2) allowing a certain fraction of agents to choose strategies according

to their social i.e. population{wide values, which Ba�s�ci refers to as \imitation." Ba�s�ci �nds that

neither modi�cation by itself results in a signi�cant increase in the speed of convergence to the

speculative strategy pro�le, s = (1; 1; 0), but that the combination of these two modi�cations does

enable the classi�er system to achieve convergence on this steady state with a high frequency, (as

great as 89 % of all runs) at the end 1,000 iterations. Staudinger (1998) uses a pure genetic algorithm

implementation (as opposed to a classi�er system) to model the behavior of a population of 150

agents (50 per type) in the Kiyotaki{Wright model. Like Ba�s�ci, Staudinger varies the storage cost

di�erential, c3�c2, and �nds that for small enough di�erentials, the genetic algorithm is always able

to achieve the speculative strategy pro�le s = (1; 1; 0), by the end of 5,000 generations (periods).

These studies, while informative, are not easily compared with laboratory studies, e.g. by

Brown (1996) or Du�y and Ochs (1999a, 1999b), where relatively smaller population sizes of 18{

30 agents (6, 8 or 10 players of each type) are used in each experimental session. Moreover, the
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arti�cial agent simulations are conducted for many more periods (rounds) than are possible in

controlled laboratory studies, where concerns about subject boredom limit the amount of time

that can be spent in the laboratory. Finally, we note that the various algorithms used to model

learning in the arti�cial agent simulations are not easily implementable or feasible in laboratory

environments. For example, all three studies discussed above make use of a genetic algorithm.

The interpretation of the reproduction and crossover operations of the genetic algorithms is that

agents somehow communicate with one another about which strategies are relatively more �t (yield

higher payo�s), and in the \crossover" operation, (the main operator of a genetic algorithm) parts

of these highly �t strategies (e.g. if{then rules) may be combined with other strategy components

to achieve new classi�ers or strategies. In laboratory experimental environments it is di�cult to

control communication among agents in the same manner as prescribed by a genetic algorithm or in

a manner that leads to a clear understanding of what is going on. For these reasons, communication

among agents is typically not allowed in human subject experiments though it is possible to provide

subjects with aggregate, population{wide information.

Clearly what is needed is to design arti�cial agent environments in a manner that allows them

to be tested in laboratory environments with paid human subjects. While this approach will

certainly limit the kinds of behavior and information processing that are possible in arti�cial agent

simulations, the reward is a more disciplined and empirically{grounded approach to the modeling of

arti�cial agent behavior as well as the use of such agent{based models to design better experimental

environments for human subject experiments. We now turn our attention to developing such an

arti�cial agent model for the Kiyotaki{Wright environment.

3.2 An arti�cial agent model based on experimental �ndings

The arti�cial agent environment is very similar to the human subject environment examined by

Du�y and Ochs (1999a).4 In particular, there is a total of just 24 or 18 arti�cial agents. These

agents are divided up equally among the three player types, so that there are 8 or 6 players of

each type. Each arti�cial agent simulation (or \run") is conducted in the same manner as a

single experimental session with human subjects; the simulation consists of a number of games,

and each game consists of a number of rounds. While each human subject experiment involved

4For the complete details of this environment including the experimental design and instructions, the reader is
referred to Du�y and Ochs (1999a).

9



a di�erent group of 18 or 24 inexperienced subjects, in each arti�cial agent simulation we use a

di�erent random seed for the pseudo{random number generator that decides the outcome of the

probabilistic decisions made by agents (as discussed below).5

In every round of a game, players are randomly paired with one another. They then decide

whether to o�er to trade the goods they have in storage. As in the human subject experiment, there

is a .90 probability that the game continues from one round to the next, and a .10 probability that

the current round will be the last round of the game. This stochastic end to a game was designed to

implement a discount factor, � of 0.90, while simultaneously implementing the stationarity that is

associated with the model's in�nite horizon. By contrast, in the arti�cial agent world, stationarity

issues are of little concern as long as agents are not conditioning their decisions explicitly on

time. However, to facilitate comparison with the experimental data, we have adopted the same

probabilistic procedure for ending a game in the arti�cial agent simulations.6 We also follow the

Du�y{Ochs experimental protocol and end each arti�cial agent simulation after approximately 100

rounds of play, or an average of about 10 games.

As our aim is to develop an agent{basedmodel to design further experiments, it seems reasonable

to let earlier experimental �ndings aid in the design of the agent{based model. We followed the

design and �ndings from the human subject experiments in constructing and simplifying the decision

rules followed by the arti�cial agents in our agent{based model. First, as in the human subject

experiments, but in contrast to the classi�er system used by Marimon et al. (1990), our arti�cial

agents do not make consumption decisions; if a type i player succeeds in trading for good i that

agent immediately consumes good i and produces a unit of his production good, i + 2 modulo

3. Second, the experimental evidence suggests that players nearly always (97% of the time) o�er

to trade for their consumption good whenever they are paired with another agent who is storing

this good. This is not surprising given that such behavior is a dominant strategy; agents receive

a positive net payo� only when they consume. In our arti�cial agent simulations, we therefore

chose to make the decision of a type i agent who is facing the opportunity to trade for good i

deterministic: the type i agent always o�ers to trade for good i. Finally, we note that the random

matching technology allows two agents to meet who both have the same type of good in storage.

5It is also the case that a di�erent random seed is used to generate the sequence of random pairings of agents in
both the arti�cial simulations and human subject experiments.

6One feature of this design that may be important is that at the start of each new game, subjects begin with some
good in storage that may di�er from the good they held in the last round of the just completed game.
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Since storage costs are the same across agent types, there is no reason for such a pair to engage

in trade; there is absolutely no e�ect on either agent's utility if a trade occurs or fails to occur.

Therefore, in such cases, we impose the deterministic rule that the two players both refuse to

engage in trade. While this last restriction would seem to be straightforward we note that in the

simulations of Marimon et al. (1990), no such restriction is made.

A type i player's critical decision is whether or not to trade his production good i + 1 for the

other possible non{consumption good i+2. Consider a player type i who is storing good i+1 at the

end of period t. Suppose also that the random draw is such that the game \continues" into period

t+1 and our player meets another player who is storing good i. As noted above, our arti�cial player

type i will always o�er to trade whatever good he has in storage for good i. Suppose that trade

is mutually agreed upon; the player type i trades for and consumes good i earning utility u. Let

the type i player's utility gain from storing good i+ 1 at time t be denoted by 
i+1 = �ci+1 + �u.

Similarly, if player i is storing the other non{consumption good i + 2 at the end of period t and

successfully trades this good for the desired consumption good in the following period t+1 his gain

from storing good i+ 2 at time t is denoted 
i+2 = �ci+2 + �u.

On the other hand, suppose the type i player is storing good i + 1 when he meets good i in

trade, but is unsuccessful in trading for good i. The only explanation for this failure is a refusal

to trade on the part of the other player. Since strategies in our learning model are assumed to be

symmetric, we infer that this other player would have o�ered to trade good i to our player type

i if our type i player was storing his other non{consumption good, good i + 2. Accordingly, the

opportunity cost to our player type i of storing good i + 1 and failing to trade for good i in the

following round is 
i+2, the utility gain he would have experienced had he held the other good i+2

in storage.

We use these utility gains and opportunity costs to determine the probability that each player of

type i o�ers to trade good i+1 for good i+ 2. The modeling of this probabilistic decision is based

on the experimental �ndings of Du�y and Ochs (1999a), in particular, by their logit regression

model speci�cation for individual subject behavior, which they found to provide a reasonably good

�t to the experimental data. Let the net payo� in period t to individual agent j, of type i, from

storing good i+ 1 be denoted by

�j
i+1(t) =

t�1X
�=1

Is(�)
i+1 �
t�1X
�=1

If (�)
i+2;
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where Is(�) is an indicator function that is equal to 1 if player j was storing good i + 1 in period

� and was successful in trading it for good i, and is equal to zero otherwise. Similarly If(�) is an

indicator function that is equal to 1 if player j was storing good i+1 in period i and failed to trade

it for good i, and is equal to zero otherwise. The net payo� in period t to individual j of type i from

storing good i + 2, denoted �j
i+2(t), is similarly de�ned. Notice that these net payo�s will di�er

over time for each individual agent j due to both the random matching technology and di�erences

in the goods held in inventory among agents of the same type. Note also that the payo� to storing

good i+ 1 or good i+ 2 gets reinforced by the actual net utility gain in the event that the agent is

successful in trading either of these two goods for good i. However, when the agent fails to trade

either good i+ 1 or good i+ 2 for good i, the payo� to storing that good is negative and equal to

the foregone net utility gain the agent would have received had he held the other good in storage.

This \hypothetical reinforcement" approach di�ers from a strict reinforcement learning approach,

e.g Roth and Erev (1995), but is consistent with other learning approaches, for example stochastic

�ctitious play (as described e.g. in Fudenberg and Levine (1998)).

The relative bene�t to individual agent j of type i from storing good i + 1 rather than good

i + 2 is de�ned by the di�erence, x
j
i (t) = �

j
i+1(t) � �

j
i+2(t). Using this di�erence, we de�ne the

probability that agent j of type i plays strategy si = 0 by:7

Pr[sji (t) = 0] =
ex

j
i (t)

1 + ex
j
i
(t)

Recall that the strategy si = 0 is the strategy of refusing to trade the type i agent's produced good

i+ 1 for good i+ 2. The probability that agent j of type i plays strategy si = 1 (trades good i+ 1

for i+ 2) is then given by 1� Pr[sji (t) = 0].

This logistic speci�cation was chosen because it provided a good �t to the behavior of human

subjects facing the decision to trade good i+1 for good i+2 as reported in Du�y and Ochs (1999a).

Similar speci�cations for probabilistic choice models have become popular among researchers seek-

ing to understand polarized outcomes at an aggregate level that arise from localized interaction,

(e.g. the statistical mechanics approach to understanding socioeconomic heterogeneity advocated

by Durlauf (1997) and others).

In the human subject experiments conducted by Du�y and Ochs (1999a) as well as those

7More generally, we could add parameter values to this probabilistic strategy model, for example we could multiply
the di�erence x

j
i (t) by a parameter for scaling purposes and we could also add a constant term to the di�erence. For

simplicity, we avoid such complications.
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described below, subjects were able to see on their computer screens the total number of points

they had received from all trading rounds within a game as well as the e�ect of the decisions made

in each trading round on these point totals. Subjects earned a positive number of points equal to

u only when they successfully traded for their consumption good. They lost points every round

according to the �xed storage cost (c) of the good they held in storage at the end of the trading

round. At the end of an experimental session, subjects' end{of{game point totals from one game,

chosen at random from all the games played in that session, were converted into a probability of

winning a $10 prize (which was in addition to a $10 participation payment). Each additional point

that subjects earned in the game chosen increased their probability of winning the $10 prize by the

same amount. Since the game chosen to determine this probability was not known in advance, the

\real" agents had the incentive to obtain as many points as possible in every round of every game.

Analogously, the arti�cial agents' reinforcements, as described above, depend on the decisions they

make in every round of every game.

3.3 Comparison of Simulation Results with Experimental Results

In all of the simulation exercises reported in this paper we use the parameterization of the model

that is given in Table 1. This parameterization of the model was also used by Du�y and Ochs

(1999a) in one of their main experimental treatments, thereby facilitating a direct comparison.8

Table 1: Model Parameters

u 1.00
c1 0.01
c2 0.04
c3 0.09
� 0.90

These parameter choices imply that s = (1; 1; 0) is the unique Nash equilibrium strategy pro�le.

Hence, type 1 players are called upon to play speculative trading strategies, trading the good they

produce, good 2, for the more costly to store good 3 whenever they have the opportunity, whereas

type 2 and 3 players are called upon to play fundamental strategies. The resulting steady state

8The values for u, c1, c2 and c3 in Table 1 di�er only in magnitude from the values used by Du�y and Ochs
(1999a) by a scale factor of 100. There are no consequences of this rescaling for the predictions of the model.
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vector for the proportion of each type storing their production good is p = (:71; :59; 1:0).

Du�y and Ochs'(1999a) experiments were conducted under two di�erent schemes for the initial-

ization of goods across player types at the start of each new game. Here we adopt the initialization

scheme in which the initial distribution of goods i + 1 and i + 2 over players of type i was made

as close as possible (with a �nite population) to the steady state proportions of these two goods;

this is the most severe test of the stability of the steady state. We will compare our simulation

results using this initialization scheme with human subject experimental results that used this same

initialization scheme.

Our �rst set of 5 arti�cial agent simulations were conducted with 24 arti�cial agents per simu-

lation run. These agents were divided up equally across the three player types (8 players of each

type). These simulations are compared with the results of 5 human subject experimental sessions

with 24 or 18 subjects as reported in Du�y and Ochs (1999a). In each of the human subject

experiments there were equal numbers of each of the three player types (8 or 6).

Some aggregate statistics from the Du�y-Ochs (DO) human subject experiments and the arti-

�cial agent (A) simulation runs are provided in Table 2 below. This table reports the frequency

with which each player type i = 1; 2; 3 played strategy si = 1 over each half of an experimental

session or arti�cial simulation approximately 50 rounds per half).

Table 2: O�er Frequencies Over Each Half of 5 Sessions with Real or Arti�cial Agents

Real Session Number of Type 1 O�ers 2 for 3 Type 2 O�ers 3 for 1 Type 3 O�ers 1 for 2
Number Subjects First Half Second Half First Half Second Half First Half Second Half
DO1 24 .13 .18 .98 .97 .29 .29
DO2 24 .38 .65 .95 .95 .17 .14
DO3 24 .48 .57 .96 1.00 .13 .14
DO4 18 .08 .24 .92 .98 .12 .02
DO5 18 .06 .32 .93 .97 .25 .18
All 108 .23 .37 .95 .96 .20 .16

Arti�cial Number of Type 1 O�ers 2 for 3 Type 2 O�ers 3 for 1 Type 3 O�ers 1 for 2
Session No. Subjects First Half Second Half First Half Second Half First Half Second Half

A1 24 .06 .15 .73 1.00 .37 .07
A2 24 .23 .31 .88 .98 .20 .07
A3 24 .33 .50 .78 .98 .15 .00
A4 24 .18 .42 .81 1.00 .17 .00
A5 24 .10 .18 .67 .98 .23 .07

All 120 .19 .32 .77 .99 .22 .04

The simulated sessions yield aggregate o�er frequencies that are similar to those of the exper-
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imental sessions. In particular, we �nd that in the �rst half of each human subject session, the

average frequency with which type 1 players o�er to trade good 2 for good 3 across 5 sessions is

19%; in the simulations the comparable frequency is 23%. This average o�er frequency increases

to 32% in the second half of the human subject experiments as compared with an average o�er

frequency of 37% in the simulated sessions. Recall that in this parameterization, type 1 players

are expected to play the speculative strategy of always o�ering to trade good 2 for good 3. It

appears our agent{based model does a reasonable job capturing the reluctance of type 1 players

to engage in such speculative behavior. Furthermore, the aggregate o�er frequency statistics for

the other two player types as generated by our agent{based learning model also compare favorably

with those of the human subject experiments, though there are some di�erences. Indeed, it appears

that the arti�cial type 2 players take longer on average to learn to trade their production good

3 for the lower cost good 1 as compared with experimental subjects. Also, speculative behavior

by the arti�cial type 3 agents dies out in the second half of sessions at a faster rate than in the

experimental data. Nevertheless, qualitatively, the \�t" of the arti�cial agent simulation statistics

to those of from the experimental data appears to be quite good.

In addition to tracking the aggregate behavior of agents in the Kiyotaki{Wright model, our

agent{based learning model is also able to capture individual agent behavior. For example, one

might ask whether the o�er frequencies reported for type 1 players in Table 2 suggest that all type

1 players are playing mixed strategies, or that some type 1 players are \fundamentalists" playing

the fundamental strategy of refusing to trade good 2 for good 3, while other type 1 players are

\speculators" o�ering to trade good 2 for the more costly to store good 3. In both the human

subject experiment and in the arti�cial agent environment the answer is the same: some type 1

players are strict fundamentalists, never experimenting with the speculative strategy and there are

also some type 1 players who learn to play the speculative strategy early on, and tend to stick with

this strategy over much of the remainder of the session (run). There does not appear to be much

evidence of any arti�cial or real player playing a mixed strategy by the end of a session or run.

[Insert Figures 1a{1b here.]

Figure 1a shows the trading behavior over all rounds of a session for each of the eight type 1

players in a representative human subject experimental session and Figure 1b does the same for a

representative agent{based simulation run. In these �gures a \1" indicates a decision by each type
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1 player to trade good 2 for good 3, and \-1" indicates a refusal to o�er to make such a trade; a

\0" indicates that the type 1 player with good 2 was not facing the opportunity to trade for good

3. Each type 1 player's action choices, separated by vertical bars, are shown in sequence from the

�rst to the last round of the session. The �gure clearly reveals that there is heterogeneity among

both the real and arti�cial type 1 players, who appear to be mainly playing one or the other of the

two possible pure strategies.

The logistic model used in the arti�cial agent simulations can account for this kind of polarized

division of agents between fundamentalists and speculators, as early di�erences in reinforcements

move individual agents in the direction of one of the two pure strategies. These di�erences in

the reinforcements that agents attach to the two pure strategies need not disappear over time, as

agents' trading incentives are in turn altered by the heterogenity in strategic behavior. Indeed,

early adoptions of pure strategies appear to get reinforced and are frequently adhered to for the

duration of a run. Hence it is initial experience with a certain pure strategy, which di�ers across

agents due to the random matching process as well as the probabilistic trading rules, that largely

accounts for the observed heterogeneity across individual agents in the arti�cial agent simulations.

4 Two New Treatments

While Du�y and Ochs' (1999a) �ndings called into question the plausibility of Kiyotaki and Wright's

speculative pure strategy Nash equilibrium, Du�y and Ochs were careful to note that there might

exist di�erent ways of \framing" or presenting the problem to subjects that would make the bene�ts

of the speculative strategy relatively more transparent, thereby increasing the likelihood that type

1 players adopted this strategy. Du�y and Ochs did assess the robustness of their results to changes

in the parameterization of the model and to di�erent information conditions, but did not consider

more substantial changes in the experimental design as budget and time limitations prevented

such an endeavor. Nevertheless, it is important to consider whether there exist changes in the

experimental design that might lead to greater adoption of the speculative strategy in order to

properly assess the generality of Du�y and Ochs' �ndings. Rather than pursue such a search with

further human subject experiments, a more cost{e�ective approach might be to use simulations

of agent{based models to test experimental designs prior to implementing those designs in the

laboratory with paid human subjects.
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Since the arti�cial agent{based model we developed in the last section appears to replicate some

of the aggregate and individual �ndings of the Du�y{Ochs (1999a) experiment, it seems reasonable

to use simulations of this model to forecast the consequences of changes in the experimental design

on human subject behavior. In considering alternative designs, the aim was to �nd a design that

might hasten convergence toward the unique pure strategy Nash equilibrium where type 1 players

are called on to play speculative strategies, within the length of time (approximately 100 rounds)

of a human subject session. Two new designs were considered, and we now turn our attention to

describing these designs and the predictions of our agent{based learning model.

4.1 The Role of Experience: An Unequal Distribution of Players Across Types

The �rst new experimental design is based on Wright (1995), who modi�ed the original Kiyotaki{

Wright environment to allow an unequal distribution of players across types. In particular, the

total population of players remains �xed at size N , but the fraction of type 2 players is reduced

below 1/3 while the fraction of type 3 players is increased above 1/3. The fraction of type 1 players

is assumed to remain constant at 1/3. This unequal distribution of players across types implies that

type 1 players will have more frequent encounters with type 3 players relative to the case in which

players are equally distributed across types and thus type 1 players will gain greater experience with

situations in which the speculative strategy might yield more frequent opportunities to trade for and

consume good 1 (therefore reinforcing speculative play). Wright (1995) found that this distribution

of players across types was the limiting distribution obtained when agents were allowed to choose

their type and storage costs were such that c1 < c2 < c3 (as assumed here).9

The parameterization used in the agent{based simulation involved a population size of N = 18

agents, as we planned to conduct the human subject experiments using just 18 subjects. Consistent

with prior experiments, one{third of the players (a total of 6) were assigned the role of type 1

agents. The remaining 12 players were either type 2 or type 3 players. We chose to have 4 type 2

players (2/9) and 8 type 3 players (4/9) as this distribution of players across types was a close as

possible with a �nite population to the limiting distribution of players across types that emerges

from Wright's simulations where agents can choose their type. In all other respects, the model

environment is unchanged. In particular, the model parameterization is the same as in the earlier

9In particular, Wright allowed the fraction of agents assigned to the role of type 2 or 3 players to evolve according
to a simple replicator dynamic. He reports the limiting distribution of players over types from many simulations of
this replicator dynamic.
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set of experiments and it is easily shown that the unique Nash equilibrium strategy vector remains

s = (1; 1; 0).

We performed 5 simulation runs using the arti�cial agent economy. The only di�erence between

this arti�cial environment and the one used in the simulations reported in Table 2 was in the number

of agents assigned to play the role of each player type. The aggregate statistics on the frequency

with which each type o�ers to trade good i+ 1 for good i+ 2 are reported in Table 3.

Table 3: O�er Frequencies Over Each Half of 5 Arti�cial Agent Sessions with Unequal
Division of Players Across Types.

Session Number of Type 1 O�ers 2 for 3 Type 2 O�ers 3 for 1 Type 3 O�ers 1 for 2
Number Subjects First Half Second Half First Half Second Half First Half Second Half

A6 18 .53 .70 .84 1.00 .12 .00
A7 18 .28 .65 .85 .96 .15 .00
A8 18 .44 .47 .66 .97 .15 .00
A9 18 .12 .65 .80 1.00 .23 .00
A10 18 .59 .92 .90 1.00 .20 .00
All 90 .40 .67 .81 .98 .17 .00

A comparison of the simulation results in Table 3 with those given in Table 2 reveals that the

treatment in which players are unequally distributed across types does appear to have an e�ect

on the aggregate o�er frequencies. In particular, we see that by the second half of each session a

majority of type 1 players are playing speculative trading strategies, trading good 2 for good 3, and

all type 3 players are adhering to the fundamental strategy of refusing to trade good 1 for good 2.

However, we still do not see perfect coordination on the predicted Nash equilibrium strategy vector

in any session by the end of the approximately 100 rounds of play per simulation run.

4.2 EliminatingNoise: Automating the Decisions of Type 2 and Type 3 Players

In an e�ort to further hasten convergence to the unique Nash equilibrium in which type 1 players

speculate while type 2 and 3 players play fundamental strategies, we considered a second treatment

in which we eliminate learning behavior on the part of type 2 and 3 players. Instead, the decisions of

type 2 and 3 players are automated { that is, they are made independent of these player's personal

histories of play. We modeled type 2 and 3 players as always playing according to their predicted

(i.e. steady state) fundamental trading strategies. In particular, we suppose that type 2 players

always o�er to trade their production good 3 for the less costly to store good 1 and that type 3
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players always refuse to trade their production good 1 for the more costly to store good 2. By

eliminating \noisy" trading behavior on the part of type 2 and 3 players we hoped to reduce the

time it takes type 1 players to learn to play the speculative strategy of trading good 2 for good 3,

and thus hasten convergence to the unique Nash equilibrium of the model environment. In essence,

this treatment transforms the experiment from a group decision making problem to an individual

decision one, in the sense that only type 1 players have to learn the equilibrium strategy to play.

We again performed 5 simulation runs using our arti�cial agent economy. In this new treatment,

the behavior of type 2 and 3 players was deterministic, as described above, while the behavior of

type 1 players was governed by the same history{dependent probabilistic rule used in the previous

simulations. Here, we returned to the case of having equal numbers of the three agent types. In

particular, we assumed a population size of 24 agents, with 8 players assigned to play the role of

each player type, as we planned to conduct experiments with 8 type 1 subjects. The aggregate

statistics on the frequency with which each type o�ers to trade good i+1 for good i+2 are reported

in Table 4.

Table 4: O�er Frequencies Over Each Half of 5 Arti�cial Agent Sessions with Deterministic
Type 2 and 3 Players

Session Number of Type 1 O�ers 2 for 3 Type 2 O�ers 3 for 1 Type 3 O�ers 1 for 2
Number Subjects First Half Second Half First Half Second Half First Half Second Half
A11 24 .57 .73 1.00 1.00 .00 .00
A12 24 .54 .62 1.00 1.00 .00 .00
A13 24 .60 .74 1.00 1.00 .00 .00
A14 24 .71 1.00 1.00 1.00 .00 .00
A15 24 .70 .74 1.00 1.00 .00 .00
All 120 .62 .73 1.00 1.00 .00 .00

The interesting o�er frequencies in Table 4 are those for type 1 players, as in this treatment,

type 2 and 3 players are always playing according to the fundamental trading strategy. We see

that the elimination of noisy trading behavior on the part of type 2 and 3 players has an e�ect

that is qualitatively similar to our treatment with an unequal division of players across types; the

frequency with which type 1 players play the speculative strategy of trading good 2 for good 3

is higher than in the treatment where type 2 and 3 players' strategies are probabilistic (compare

the o�er frequencies in Table 4 with those in Table 2). In fact, the simulated type 1 player o�er
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frequencies in Table 4 are slightly higher, on average over the �rst and second halves of a session,

than those in Table 3 where players were unequally divided up among the three player types. In

one of the �ve simulations reported in Table 4, A14, the arti�cial agent economy actually achieves

convergence to the steady state Nash equilibrium of the model within the alloted number of trading

rounds (again approximately 100 rounds per session).

4.3 Discussion

Taken together, the results of these two sets of agent{based simulations suggest that it may be dif-

�cult, though not impossible, to achieve convergence to the unique \speculative" Nash equilibrium

within the short amount of time that is allowed in economic decision making experiments. Since

the second new treatment, where type 2 and 3 players are automated, yielded somewhat faster

progress toward convergence, on average, than the �rst new treatment, it would be reasonable to

choose this design as the one to pursue for further experimental testing with paid human subjects.

However, as our aim is to evaluate the predictive power of this agent{based model for purposes of

experimental design, we chose to conduct experimental tests with paid human subjects using both

of the new experimental treatments. The agent{based simulations predict that 1) both of the new

treatments lead to higher frequencies of the play of speculative strategies by type 1 players relative

to the baseline, Du�y{Ochs (1999a) treatment and 2) convergence is slightly faster on average in

the treatment with automated type 2 and 3 players as compared to the treatment with an unequal

division of players across types.

5 Experiments with real agents

The human subject experiments were conducted in the same manner as in Du�y and Ochs (1999a),

as brie
y described above. However, as the two new treatments studied in this paper involve

modi�cations to the Kiyotaki{Wright environment, some changes were required in the design of

the human subject experiments relative to the design used by Du�y and Ochs.

The number of human subjects in each experimental session was made equal to number of

arti�cial agents in each run of the agent{based learning model, as indicated in Tables 3 and 4. As

in Du�y and Ochs, the human subjects had no prior experience with the Kiyotaki-Wright model.

Each subject participated in only one session. Subjects were randomly assigned to play the role

of a single player type for the entire session. In the �rst treatment, with an unequal division of
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players across types, a total of 18 subjects were used in each of two experimental sessions. As in

the arti�cial agent simulations, six of these human subjects were assigned to play the role of type

1 players, 4 subjects were assigned to play the role of type 2 players, and 8 subjects were assigned

to play the role of type 3 players. In the second treatment with automated type 2 and 3 players,

8 human subjects were recruited per session (two sessions were conducted) and all 8 subjects were

assigned to play the role of type 1 players. In these sessions there were 8 automated type 2 players

and 8 automated type 3 players for a total of 24 \subjects" per session. The human subjects in this

second treatment were informed that the type 2 and 3 players they encountered through random

matches were automated and the subjects were also informed of the strategies these automated

players were playing, e.g. which goods the automated players would o�er and refuse to trade for.10

The type 2 and 3 players were programmed to always play the fundamental strategies predicted by

the unique, pure strategy Nash equilibrium.

In all other respects, the experimental design was the same as in Du�y and Ochs (1999a).

Subjects began each game with 100 points and either their production good, or their other non{

consumption good in storage. The initial distribution of goods over player types was the same

one used in the arti�cial agent simulations. This distribution was made as close as possible to the

unique steady state distribution of goods over player types. The model parameters used in the

human subject experiments were the same as those used in the arti�cial agent experiments (Table

1) but multiplied by a scale factor of 100. Thus, for instance, a type 1 player who successfully

traded for good 1 received 100 points less the cost of 4 points for storing a unit of his production

good, good 2, for a net gain of 96 points. Subjects lost points in accordance with the per round

storage cost of the good they were holding at the end of any round in which they failed to trade

for their consumption good, or traded for some good other than their consumption good. Thus, as

noted earlier, subjects received or lost the same point amounts in each period as the arti�cial agents

(adjusting for the scale factor). Following the Du�y{Ochs design, at the end of each human subject

session, one of the games that subjects played in the session was chosen at random. The subjects'

point totals from that game were converted into a probability of winning a $10 prize (which was in

addition to a $10 participation payment) The probability of winning this prize was an increasing,

10Note that the arti�cial agents do not make use of such information. This information concerning the strategies
played by the automated type 2 and 3 players was provided to the human subjects playing the role of type 1 players
to convince these subjects that they were playing automated players. Revealing information about the strategic
behavior of type 2 and 3 players is also in keeping with the idea of eliminating noisy information about type 2 and 3
player's decisions.
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linear function of the number of points that subjects earned in the game chosen. Since subjects did

not know in advance the game that would be chosen, they had the same incentive as the arti�cial

agents to earn as many points as they could in every round of every game.

As in prior experiments and the arti�cial agent simulations each game ended randomly, with a

constant probability of termination of .10 from one round of a game to the next. Subjects in each

session played around 100 rounds, or approximately 10 games per session. The subjects were paid

a $10 participation fee. In addition, one of the games the subjects played was chosen at random.

Subjects' point totals from that game were converted into a probability of winning an additional

$10 prize. The more points subjects earned in each game, the greater was their probability of

winning this additional prize if the game was chosen at the end. Thus subjects had the incentive

to get as many points as possible in each round of each game.

5.1 Unequal Distribution of Players Across Types

Table 5 reports results from the �rst two \real" human subject experimental sessions, R1 and R2,

of the treatment with an unequal division of players across types. This table gives the aggregate

frequencies with which each player type o�ered to trade his production good for the good he

neither produces nor consumes over the �rst and second half of each session (approximately 50

rounds each) and over both sessions combined. We see that, consistent with the predictions of the

arti�cial agent simulations, there is some increase in the frequency with which type 1 players in

both sessions play speculative strategies in the �rst and second half of both sessions as compared

with earlier experimental �ndings reported in Table 2. Moreover, we �nd that the increase in the

frequency of speculative play by type 1 players, though slight, is similar in magnitude to the average

frequencies of speculative play across the �ve simulated sessions involving arti�cial agents.

Table 5: O�er Frequencies Over Each Half of 2 Human Subject Sessions with Unequal
Division of Players Across Types.

Session Number of Type 1 O�ers 2 for 3 Type 2 O�ers 3 for 1 Type 3 O�ers 1 for 2
Number Subjects First Half Second Half First Half Second Half First Half Second Half

R1 18 .33 .48 .98 1.00 .29 .13
R2 18 .60 .79 .96 .97 .21 .20
Both 36 .46 .64 .97 .98 .25 .16
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However, some caution seems warranted in interpreting these �ndings as support for the notion

that this new treatment hastens convergence toward the unique speculative equilibrium. There

is simply not enough evidence yet (with just two sessions) to conclude that the treatment with

an unequal division of players across types yields o�er frequencies for type 1 players that are

signi�cantly di�erent from those reported in Table 2 for an equal division of players across types.

The results reported in Table 5, however, are encouraging.

5.2 Automated Type 2 and 3 Players

The aggregate o�er frequencies from the real human subject sessions, R3 and R4, where the deci-

sions of type 2 and 3 players were automated, are reported in Table 6. Despite the fact that type

2 and 3 players were always playing according to their steady state strategies, and type 1 players

were made aware of this fact, we still do not �nd successful coordination on the speculative strategy

by all type 1 players, even by the second half of the two sessions. Nevertheless, the average type 1

player o�er frequencies over these two sessions are higher than in both the treatment with an un-

equal distribution of players across types, and in the baseline Du�y{Ochs (1999a) experiment. This

�nding is again consistent with the predictions of the agent{based model. Indeed, these frequencies

of speculative play by type 1 players are the highest ever reported for this parameterization of the

model.

Table 6: O�er Frequencies Over Each Half of 2 Human Subject Sessions with Automated
Type 2 & 3 Players

Session Number of Type 1 O�ers 2 for 3 Type 2 O�ers 3 for 1 Type 3 O�ers 1 for 2
Number Subjects First Half Second Half First Half Second Half First Half Second Half

R3 24 0.84 0.83 1.00 1.00 0.00 0.00
R4 24 0.52 0.53 1.00 1.00 0.00 0.00
Both 48 0.69 0.71 1.00 1.00 0.00 0.00

Notice however, that there is some variance in the aggregate frequencies reported in these two

sessions. The frequencies with which type 1 players play the speculative strategy in session R4

are somewhat lower than in session R3. Furthermore, the aggregate frequencies of speculative

play in one session of the treatment with an unequal distribution of players across types, session

R2 (as reported in Table 5), is higher than in session R4. (A similar variance in aggregate o�er
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frequencies was found in the arti�cial agent simulations). Clearly, further experiments with paid

human subjects are needed to determine whether there is a signi�cant di�erence between the two

new treatments. However, these preliminary experimental results, as reported in Tables 5 and 6

are generally supportive of the predictions of the arti�cial agent model concerning the e�ect of the

new treatments on the adoption of speculative strategies.

6 Conclusion

Understanding why individuals demand money even though it is dominated in rate of return by

other stores of value is a problem that has challenged monetary theorists. The search{theoretic

approach to money, as pioneered by Kiyotaki and Wright (1989), o�ers a possible resolution to this

modeling problem. Under certain parameterizations of this model, it is optimal for certain agent

types to trade a relatively less costly{to{store good for a relatively more costly{to{store good if these

agents have the rational expectation that they will be able to trade the more costly{to{store good

relatively more quickly for the good they desire to consume. Previous experiments with real and

arti�cial agents have shown that agents have di�culty learning to adopt such \speculative" trading

strategies. In this paper we have used arti�cial, agent{based simulations to explore some simple

modi�cations to the basic Kiyotaki{Wright environment that might make it easier for subjects to

learn to play speculative trading strategies. The behavior of the arti�cial agents was constructed on

the basis of observed characteristics of human subject behavior in a prior experimental study of the

Kiyotaki{Wright model. The two modi�cations to the Kiyotaki{Wright model were: 1) an unequal

distribution of players across types and 2) automating the decisions of all player types who are not

called upon to play speculative strategies in equilibrium. The arti�cial agent simulations suggest

that both of these modi�cations serve to increase the speed with which players learn to adopt

speculative strategies, by comparison with earlier experimental Kiyotaki{Wright environments,

and that the second new treatment has the relatively greater impact on the speed of learning.

Preliminary experiments with human subjects seem to con�rm the predictions of these arti�cial

agent simulations.

One of the purposes of conducting this exercise was to suggest ways in which the agent{based

computational modeling approach might be usefully combined with the methodology of controlled

laboratory experiments with human subjects. I have suggested how prior experimental �ndings
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might serve to inform the modeling of arti�cial agent behavior, and how the restrictions of a

laboratory environment need to be imposed on arti�cial agent{based models before comparisons

can be made between the two approaches. Once such restrictions are in place, agent{based models

can be a very useful instrument in both understanding and designing economic{decision making

experiments, as suggested by the �ndings reported in this paper.
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Figure 1a: Action Choices by Type 1 Players Who Face
Opportunity to Trade Good 2 for Good 3, Human Subject

D02 (8 Type 1 Subjects)
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Figure 1b: Action Choices by Type 1 Players Who Face
Opportunity to Trade Good 2 for Good 3, Artificial Agent
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