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data.
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F1 Additional Information on Experiment

F1.1 Screenshots of the Experiment

Fig. F.1 reproduces information from the instructions that was projected on a large

screen in the lab for the duration of each experimental session (with appropriate

changes for the different treatments). Figs. F.2 to F.5 show computer screenshots for

different stages of the experiment. All examples are from the SaddlePos treatment.

Order of Moves in a Period
1. Choose an A-number and a B-number each in [0,100]
2. The Average of all A-numbers and of all B-numbers is computed.
3. Target A* and B* numbers are computed as follows:

A* = 30 + (2/3) x Average of all “A-numbers”
B* = 35 – (1/2) x Average of all “A-numbers” + (3/2) x Average of all “B-numbers”.

4.   Your points are determined by

Points =
500

5 + your “A−number” − A∗ + |your “B−number” − B∗|

1 point = 1 cent

Figure F.1: The slide projected on the large screen in the lab during the experiment.

Calculator
Button

Figure F.2: Decision screen in period 1.
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Figure F.3: Calculator display illustration.

History of play in 
prior periods

Figure F.4: Decision screen in period 2, showing the history of play in the table.
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Figure F.5: Results screen displayed between the rounds.

F2 Additional Results of the Experiment

F2.1 Dynamics in all experimental sessions

Figs. F.6 to F.9 show the dynamics of average guesses for each session in treatments

Sink, SaddleNeg, SaddlePos, Source, respectively. The left panels show the

evolution over time of ā (thick red line) and b̄ (thin blue line). The dashed lines

in these figures indicate the levels of the PONE, aE = 90 and bE = 20. The middle

and right panels show the same evolution as in the phase diagram (i.e., X-Y plots of

the a number versus b number over time), with the right panel showing a zoomed-in

version of the middle panel.

F2.2 Choices in the first period

In the first period of our experiment, all participants had the same information as in

the standard, one-shot beauty contest game. Specifically, since the first equation is

decoupled from the second, guessing the a-number is exactly equivalent to playing the

standard game with the target given by m11ā + d1. For this reason, it is interesting

to look at subjects’ choices in the first period alone.

Figure F.10 presents histograms of individual guesses for the a-number in period

1. The left panel combines all groups from 3 treatments Sink, SaddleNeg and
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Figure F.6: Dynamics of the average values, ā and b̄, in the Sink treatment of the ex-
periment. Left: Time series. Middle: Phase diagrams. Right: Phase diagrams (zoomed
version).
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Figure F.7: Dynamics of the average values, ā and b̄, in the SaddleNeg treatment of the
experiment. Left: Time series. Middle: Phase diagrams. Right: Phase diagrams (zoomed
version).
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Figure F.8: Dynamics of the average values, ā and b̄, in the SaddlePos treatment of the
experiment. Left: Time series. Middle: Phase diagrams. Right: Phase diagrams (zoomed
version).
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Figure F.9: Dynamics of the average values, ā and b̄, in the Source treatment of the
experiment. Left: Time series. Middle: Phase diagrams. Right: Phase diagrams (zoomed
version).
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Figure F.10: Frequencies of Period 1 a-choices and levels of reasoning (different dashed
lines) and the PONE (solid red line). Left: combined choices from Sink, SaddleNeg and
SaddlePos treatments. Right: Source treatment.

SaddlePos, and the right panel shows the histogram for the Source treatment.1

We observe that first period guesses are heterogeneous with a large spike around the

middle of the [0, 100] guessing interval. The remaining choices are concentrated in

the right half of the interval for the first three treatments, and in the left half for

the Source treatment. A few participants in the first three treatments submitted

the PONE quantity, aE = 90, as represented by the thick vertical line. Figure F.11

shows histograms for b-number choices for the four different treatments. As with the

a-numbers, guesses are heterogeneous, there are spikes at 50 in all four treatments,

and some participants again submit the PONE quantity, bE = 20. The choices are

skewed to the left in all treatments, except for the SaddlePos treatment where there

are also many choices to the right of the mid-point of the guessing interval.

A standard approach to systematize the choices employs level-k reasoning. Ac-

cording to this classification (see, e.g., Nagel, 1995), level-0 subjects submit guesses

distributed uniformly over the guessing interval, having a mean of (0 + 100)/2 = 50,

whereas other types iteratively play the best response.2 For the a-number, it means

that subjects of level-1 submit 50m11 + d1, subjects of level-2 best respond to this,

and so on. For the b-number, to extend this approach, we make the “lock-step” as-

sumption, that subjects at level-k (with k > 0) play a best response to others at the

1The first three treatments have an identical target for the a-number, (2/3)ā+30. In the Source
treatment, the target is (3/2)ā−45. The test for differences between group means rejects the null of
equal means for a-guesses between the Source and the other 3 treatments (p-value 0.002), but fails
to reject the null of equal means for a-numbers across the first three treatments (p-value 0.871).

2When the best responses fall outside of the interval of strategies [0, 100], they are truncated to
the closest boundary. An alternative specification for level-0 types has them guessing m11×100 +d,
as 100 is the upper bound of the guessing interval.
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Figure F.11: Frequencies of Period 1 b-choices and levels of reasoning (different dashed
lines) and the PONE (red line) for four treatments.

same level k − 1 for both the a and b numbers.3 This means that subjects of level-1

best respond to a choice of 50 for both the a and b numbers and thus submit for their

b-number guess m2150+m2250+d2; subjects of level-2 best respond to level-1 guesses

for both a and b numbers, and so on.

To illustrate this approach, we superimpose on the histograms in Figs. F.10

and F.11 three vertical lines, corresponding to the levels of 0, 1, and 2 (the leg-

end specifies the corresponding values for these levels and level 3 as well). Note that

for the a-number, the sequence of levels is monotonic. It increases and converges to

aE = 90 in the three treatments with m11 = 2/3, and decreases to 0 (staying there

for any k ≥ 2) in the Source treatment.4 For the b-number, the levels converge

to bE = 20 only in the Sink treatment. The convergence is oscillatory, making it

3The lockstep assumption is equivalent to a recursive definition of levels given by Eq. (9) in the
main paper.

4If the average a-guess in the Source treatment is 0, the target will be −45. The closest possible
guess to this target, i.e., the best response, is ai = 0.
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difficult to identify the actual levels played by subjects, but we do observe spikes

around level-1 and level-2 predictions. In the SaddleNeg and Source treatments,

the level-1 choice is 0 (after truncation), where we also see a spike in our data. The

level-2 choice is above 50, and the level-3 choice is 0 again, and so on.5

Comparing this level-k model with the data for b-choices, we conclude that the

presence of a coupled variable in the 2DBC game leads to an even further decrease in

the level of rationality for the b-number. Looking back at statistics for the first period

choices in Table 2 of the paper, note that in 14 out of 16 sessions, the average a-guess

is shifted from the mid-point of 50 towards the first level of rationality, whereas for

b-guesses this happens in only 11 out of 16 sessions.6

Fig. F.12 shows a scatter plot of individual choices in period 1. The four panels

correspond to our four treatments. Every point corresponds to one or more individuals

submitting an a-guess as shown on the horizontal axis and a b-guess as shown on the

vertical axis. The frequencies of the choices are indicated by the size of the circles: the

larger the circle, the more individuals submitted the corresponding pair of guesses.

On top of this scatter plot (a sort of two-dimensional histogram), we superimpose

lines indicating various levels of rationality. The thick red lines correspond to the

PONE, (aE, bE). The other thinner lines indicate various levels of rationality: level-0,

is indicated by the dashed lines intersecting at (50, 50), level-1 by the dashed-dotted

lines, and level-2 by the dotted line. The choice on the intersection of two lines

corresponding to the same level of rationality would indicate an individual consistency

in levels of rationality for a and b numbers. Inspection of Fig. F.12 shows that even

if the choices are quite dispersed, there are a few clear cases of consistency where

participants apply levels 0 or 1 to both of their choices or are able to derive the

PONE. For other levels of rationality, we do not observe such consistency.

F2.3 Speed of convergence

In Section 3 of the main paper, we observe that the dynamics converge in the Sink and

SaddleNeg treatments and that the a-guesses converge in the SaddlePos treatment.

There are some further dynamic features of our experimental data.

5This process converges to a two-cycle between 0 and 50 in the SaddleNeg and to a two-
cycle between 0 and 95 in the Source treatment. In the SaddlePos treatment, the levels increase
monotonically to 100.

6The only two exceptions for the a-number are Session 3 of the Sink treatment, where the
average, 49.8, is just to the left of 50 and Session 1 of the Source treatment, where the average,
50.8, is just to the right of 50. For the b-number, the five exceptions come from all four sessions of
the SaddlePos treatment and session 2 of Source treatment.
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Figure F.12: Frequencies of individual pairs of guesses in period 1 and levels of reasoning
(different dashed lines) and the PONE (red thick line) for the four experimental treatments.

First, there is a clear difference in the type of convergence observed. The a-

number converges almost monotonically from below in all three treatments. The b-

number, however, converges almost monotonically in the Sink treatment and through

oscillations in the SaddleNeg treatments.7

7There is one exception, Session 4, of the Sink treatment, see Fig. F.6. The oscillations in both
numbers of that session are due to a single subject.
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Sink SaddleNeg
ε Sess. 1 Sess. 2 Sess. 3 Sess. 4 Sess. 1 Sess. 2 Sess. 3 Sess. 4

20 5 8 4 4 5 2 4 3
10 7 11 6 11 9 5 5 5
5 8 - 8 - 11 6 8 7
1 10 - 14 - - 12 12 9

0.5 10 - - - - 14 13 9

Table F.1: The first period when the trajectory enters the ε-neighborhood of the PONE.
Cases where the trajectory never reached the neighborhood are indicated by the ‘-’ symbol.

Sink SaddleNeg
ε Sess. 1 Sess. 2 Sess. 3 Sess. 4 Sess. 1 Sess. 2 Sess. 3 Sess. 4

20 5 8 4 4 5 2 4 3
10 7 - 6 15 9 5 5 5
5 8 - - - 11 6 8 7
1 10 - - - - 12 12 9

0.5 15 - - - - 14 13 14

Table F.2: The latest period when a trajectory enters the ε-neighborhood of the PONE
irreversibly, i.e., to stay there until the end of the experiment. Cases where the trajectory
was outside of the ε-neighborhood in the last period of the experiment are indicated by the
‘-’ symbol.

Second, there is a difference in the speed of convergence. We illustrate this differ-

ence in Table F.1 by comparing the “first hit time”, i.e., the first instance in which

the trajectories for the average a and b numbers enter some ε-neighborhood of the

PONE, in each of the four sessions of the Sink and SaddleNeg treatments. Let us

fix ε > 0 and define the neighborhood as an open square around the equilibrium,

Uε =
{

(a, b) : |a− aE| < ε and |b− bE| < ε
}
.

Let t(ε) denote the period when the trajectory for the average values of the a and b

numbers belong to the ε-neighborhood of the equilibrium for the first time. Formally,

t(ε) is such that (āt(ε), b̄t(ε)) ∈ Uε and (āt, b̄t) /∈ Uε for any t < t(ε). Table F.1 shows

the first periods defined in this way for all sessions of the Sink and SaddleNeg

treatments8 for five different values of ε. Cases where the trajectory never reached

the neighborhood during the experiment are indicated by the ‘-’ symbol.

In addition to the “first hit time”, we made an across treatment comparison of the

8In the four sessions of SaddlePos and Source treatments, the trajectories for the average a
and b numbers never entered the Uε neighborhoods for ε ≤ 20.
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latest experimental period when the trajectory entered the ε-neighborhood of PONE

to stay there until the end of the experiment (so to say, the period of “irreversible

entry”). These statistics are only relevant for those sessions where the trajectory

entered the neighborhood at least once. Formally, given ε > 0, the latest time to

irreversibly enter the ε-neighborhood, τ(ε), is the period such that (āτ(ε)−1, b̄τ(ε)−1) /∈
Uε and (āt, b̄t) ∈ Uε for any t ≥ τ(ε).

Tables F.1 and F.2 suggest that the quickest convergence was in the SaddleNeg

treatment. Indeed, for any ε, the values of the first hit times over 4 sessions are

smaller for this treatment than for the other convergent Sink treatment.9

F3 Additional Analysis of Behavioral Models

F3.1 The mixed levels 0-1 model

Section 4.2 presented results for the mixed levels 0-1 model. Here we illustrate and

discuss the dynamics of this model. The results are presented in Table 4 of the main

text. The dynamics of the mixed levels 0-1 model is written in (11) as

z̄t = (λM + (1− λ)I)z̄t−1 + λd . (F.1)

Proposition F3.1. Let us assume that matrix I−M is not invertible and that λ 6= 0.

Then there exists a unique steady state for the dynamics (F.1) given by (I−M)−1d.

Proof. Denote the steady state of the system as z∗. Then at the steady state we have

z∗ = (λM + (1− λ)I)z∗ + λd ⇔ 0 = −λ(I−M)z∗ + λd .

As λ 6= 0, we can simplify the last equality to

(I−M)z∗ = d ⇔ z∗ = (I−M)−1d .

This proves the statement.

Thus, the system (F.1) has a unique steady state coinciding with the PONE. The

9For instance, two sessions of the Sink treatment did not converge to a 5-neighborhood of
equilibrium in 15 periods, whereas in all four sessions of the SaddleNeg treatment such convergence
occurred (within 8 periods, on average). Only one session of the Sink treatment converged to a
0.5-neighborhood while 3 of the 4 SaddleNeg treatment sessions achieved this convergence criterion.
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stability properties of the model depend on the eigensystem of matrix M̃ = λM +

(1− λ)I. For the case of a triangular M we have the following result.

Proposition F3.2. Consider the dynamics of the mixed levels 0-1 model as given by

(F.1) and assume that matrix M is lower triangular. The steady state of this model,

zE = (I−M)−1d, is globally stable if and only if the following conditions are satisfied

−2 < λ(m11 − 1) < 0 and − 2 < λ(m22 − 1) < 0 , (F.2)

where m11 and m22 are the diagonal elements of matrix M. Matrix M̃ has the same

eigenvectors as matrix M for any λ.

Proof. The stability of the steady state depends on the eigenvalues of matrix

M̃ =

(
1− λ+ λm11 λm12

λm21 1− λ+ λm22

)
.

Since matrix M is lower triangular, m12 = 0. Then, the matrix above is also lower

triangular and its eigenvalues are

µ1 = 1− λ+ λm11 and µ2 = 1− λ+ λm22

The standard condition for local stability is that both eigenvalues are less than 1

in absolute value. As our system is linear, these conditions are also necessary and

sufficient for global stability of the steady state. This proves conditions (F.2).

Let us assume that v1 is the eigenvector of λM + (1 − λ)I, associated with the

eigenvalue µ1. Then (λM + (1 − λ)I)v1 = µ1v1 = (1 − λ + λm11)v1. Simplifying,

λMv1 = λm11v1, leading to Mv1 = m11v1. Thus, v1 is the eigenvector of M as-

sociated with the eigenvalue m11. A similar statement can be proven for the vector

v2.

These statements lead to the results reported in Section 4.1 of the paper for the

homogeneous level-1 model, see Table 3. Indeed, this model is a special case of the

model above where λ = 1 so that M̃ = M. We also obtain the results in Section 4.2

of the paper for the mixed levels 0-1 model and, in particular, Table 4.

Fig. F.13 compares the dynamics for the mixed levels 0-1 model in all four treat-

ments, when λ = 0.1, λ = 0.5, and λ = 0.9, in the left, middle, and right panels,

respectively. For each simulation, we take the average values in period t = 1 of all

groups in the corresponding treatment (these average values are reported in Table 2

of the main text) as initial conditions.
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Figure F.13: Phase diagrams of zt-dynamics in the mixed levels 0-1 model for different
λ’s: λ = 0.1 (left panels), λ = 0.5 (middle panels), and λ = 0.9 (right panels). For
all three models, 15 periods are simulated with the initial point given by the a and
b-averages of all first period guesses in the corresponding treatment. The black lines
are the eigenvectors, stable (solid) and unstable (dashed).
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Treatment
Eigenvalues Attractor and dynamics type Data

µ1 µ2 for a for b for a for b

Sink f1
2

3
+ f2

4

9
−f1

1

2
+ f2

1

4

aE

monotone
bE

oscillates for f1 > 1/3
4 4

SaddleNeg f1
2

3
+ f2

4

9
−f1

3

2
+ f2

9

4

aE

monotone
bE for 1/3 < f1 < 13/15
oscillates for f1 > 3/5

4
4 f1 ∈ (3

5
, 13
15

)
8 otherwise

SaddlePos f1
2

3
+ f2

4

9
f1

3

2
+ f2

9

4

aE

monotone
0 or 100†

monotone
4 4

Source f1
3

2
+ f2

9

4
−f1

3

2
+ f2

9

4

0 or 100†

monotone
38‡ for 1/3 < f1 < 13/15,

oscillates for f1 > 3/5
4

4 f1 ∈ (1
3
, 13
15

)
8 otherwise

† depending on the initial conditions
‡ assuming that the a-number dynamics converges to 0

Table F.3: Properties of the mixed levels 1-2 models for four experimental treatments. We
report two eigenvalues, the attractor of the model when guesses are truncated as in Eq. (10)
of the paper, and the type of dynamics (monotone or oscillatory). The last two columns
verify whether the dynamics match the experimental data (4) or not (8).

We observe that, as λ increases, three changes in the dynamics of the model occur.

First, the dynamics in the SaddleNeg treatment change from converging (for λ = 0.1

and λ = 0.5) to diverging. Relatedly, the dynamics in the Source treatment become

diverging along the vertical dimension corresponding to the b-number. Thus, for a

high value of λ (such as λ = 0.9), the dynamics in these treatments are inconsistent

with the experimental data. Second, the speed of convergence in the Sink treatment

and the speed of divergence in the SaddlePos and Source treatments) increases

with increases in λ. In fact, for small λ = 0.1 the model is clearly too slow when

compared with the experimental data. Third, the dynamics in the Sink, SaddleNeg

and Source treatments change from monotone to oscillating as λ increases. In the

data, these oscillations are clearly seen in the SaddleNeg treatment.

Taken together, these three observations suggest that the mixed level 0-1 model

is consistent with our data only for intermediate values of λ, as Result 2 of the paper

establishes.

F3.2 Mixed level-k models

In the main text, we introduced the mixed level-k model that generalizes the mixed

levels 0-1 model. The eigenvalues, µ1 and µ2, of the mixed level-k model are the

convex combinations of the k-th powers of the eigenvalues of matrix M, weighted by

the corresponding fractions, fk, as follows from Eq. (12) of the paper.

To illustrate Result 3 of the paper, Table F.3 presents the properties of the mixed
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Treatment
Eigenvalues Attractor and dynamics type Data
µ1 µ2 for a for b for a for b

Sink f0 +
2f1
3

f0 −
f1
2

aE

monotone
bE

osc. for λ > 2/3
4 4

SaddleNeg f0 +
2f1
3

f0 −
3f1
2

aE

monotone
bE for λ <

2

5
· 2− fE

1− fE
osc. for λ > 2/5

4
4 λ ∈

(
2

5
,
2

5
· 2− fE

1− fE

)
8 otherwise

SaddlePos f0 +
2f1
3

f0 +
3f1
2

aE

monotone

0 or 100† for
λ > 2fE/(1− fE);

monotone
4

4 λ >
2fE

1− fE
8 otherwise

Source f0 +
3f1
2

f0 −
3f1
2

0 or 100† for
λ > 2fE/(1− fE);

monotone

38‡ for λ <
2

5
· 2− fE

1− fE
osc. for λ > 2/5

4 λ >
2fE

1− fE
8 otherwise

4 λ <
2

5
· 2− fE

1− fE
8 otherwise

† depending on the initial conditions
‡ assuming that the a-number dynamics converges to 0

Table F.4: Properties of the mixed levels 0-1-E model with fractions f0, f1 and fE . The
conditions are written using the re-parametrization, f1 = λ(1−fE) and f0 = (1−λ)(1−fE).
See the caption of Table F.3 for details.

levels 1-2 model, with agents of levels 1 and 2 present in proportions f1 and 1 − f1,
respectively. In the SaddleNeg treatment, µ2 is the convex combination of −3/2

and (−3/2)2 = 9/4. For 3/5 < f1 < 13/15, we have −1 < µ2 < 0 and the dynamics

of the model converges to the PONE via oscillations.

Table F.4 presents the properties of the mixed levels 0-1-E model, where the

equilibrium type is added to the mixed levels 0-1 model. We include it here as that

model, when estimated against the actual experimental data, turned out to be the

winner of the models contest, see Section 5 of the paper.

To facilitate a comparison between the 0-1 and 0-1-E models, we re-introduce

parameter λ, the fraction of level-1 types among all non-equilibrium agents, and we

reparametrize the 0-1-E model by f0 = (1− λ)(1− fE) and f1 = λ(1− fE). We find

that all features of the experimental data are reproduced when

max

{
2

5
,

2fE
1− fE

}
< λ <

2

5
· 2− fE

1− fE
. (F.3)

This is a generalization of Result 2 of the paper, as inequality (F.3) reduces, when

fE = 0, to λ ∈ (2
5
, 4
5
). When the fraction of the equilibrium type increases, the

interval in (F.3) shifts to the right and the condition to match the data becomes

more stringent. The intuition is that the equilibrium type pushes the system to the

PONE faster. Thus, to reproduce both the oscillatory and diverging dynamics, it

is necessary to counteract the equilibrium types with a relatively high frequency of

level-1 types, i.e., with a higher value for λ.
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F3.3 Average Models

In this section, we discuss models that average past information that was available

to the participants in the experiment. The mixed levels 0-1 model (adaptive expec-

tations) effectively takes into account all past target values. By rewriting Eq. (11) of

the paper recursively, we obtain for any t ≥ 2:

z̄t = λ
(
z∗t−1 + (1− λ)z∗t−2 + . . .+ (1− λ)t−2z∗1

)
+ (1− λ)t−1z̄1 . (F.4)

Model (F.4) is called the exponentially weighted moving average (EWMA) model,

because the past target values have exponentially declining weights. Result 2 of the

main text establishes the λ’s for which the EWMA is consistent with our experimental

data.

An alternative model, the moving average model MAve(L), averages the previous

L targets with equal weights.10 When t > L, the average guesses given by this model

are11

z̄t =
1

L

(
z∗t−1 + . . .+ z∗t−L

)
. (F.5)

When L = 1, this model coincides with the homogeneous level-1 model. Result 1

of the paper states that the model dynamics are not consistent with the features of

the experimental data. In general, the dimensionality of the system governing the

dynamics is 2L to account for the both a and b-lagged variables. As this dimension

grows with L, we have to rely on numerical computations to establish the model

properties for larger L. For L = 2 and L = 3, we derive general functional forms for

the eigenvalues of the system and compute their absolute values in each treatment.

Based on these computations, convergence is achieved in the Sink and SaddleNeg

treatments only, as in the experimental data. For L > 3 we simulate the MAve(L)

model and find that the converging properties are consistent with the data.

Further, the case L→∞, is studied analytically, using the principle of E-stability

(see Evans and Honkapohja, 2001). The guesses of the MAve(L) model are given

by vector z̄t =
∑L

s=1 z
∗
t−s/L. As L → ∞, we can re-index the model to have z̄t =

10In the so-called “econometric learning” approach in macroeconomics, as advocated by Evans
and Honkapohja (2001), this model is presented as a less restrictive alternative to Rational Expec-
tations, with agents learning parameters of their perceived model by means of statistical inference
from past observations. Both the EWMA and the MAve(L) models belong to this literature. The
EWMA model is known as a constant gain model because the weight attached to the latest available
observation is the same in every period t, see Eq. (F.4). The MAve(L) model assigns smaller and
smaller weights to the most recent observation, see Eq. (F.5), and so this model is known as the
model with decreasing gain, which approximates recursive least squares learning.

11If the window L is larger than the available data at a given time period, then the average is
computed over a shorter window of all available observations at the time period.
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∑t−1
s=1 z

∗
t−s/t, and study the case of t→∞. The following recursive relation holds

z̄t = z̄t−1 +
1

t
(z∗t−1 − z̄t−1) = z̄t−1 +

1

t

(
(M− I) z̄t−1 + d

)
.

Asymptotically, when t → ∞, this system can be approximated by dynamics in the

notional time of a continuous linear system (see Ljung, 1977 for technical details):

d

dτ
z̄τ = F (z̄τ ) = (M− I) z̄τ + d .

The local stability conditions of this system depend on the Jacobian matrix of map

F at the fixed point, which is the PONE. This Jacobian matrix is M − I and its

eigenvalues are m11 − 1 and m22 − 1. This system is asymptotically stable if both of

these values are negative. This holds only in two treatments, Sink and SaddleNeg.

Thus the MAve(L) model with large L is consistent with the major features of our

experimental data.

We illustrate the MAve(L) model dynamics via simulations performed for this

model for L = 2, L = 3 and L = 14; see the left, middle and right panels in

Fig. F.14, respectively. The simulations are initialized by the values for the first period

only, and we take the averages in the first period of all groups in the corresponding

treatment as these initial values. For the later periods, when t > L equation (F.5)

is used, whereas when t ≤ L, all available observations are equally weighted, i.e.,

z̄t = (z∗t−1 + · · ·+ z∗1)/(t− 1).

There is a visible discrepancy in the dynamics between the data and the model.

When L = 2 and L = 3, convergence in the Sink and SaddleNeg treatments occurs

in the model more quickly than in the experiment and in a more orderly way (e.g.,

without the regular oscillations in the SaddleNeg treatment). This is especially

visible during the first 5 periods. Divergence in the SaddlePos and Source cases

is also quicker, i.e., the dynamics reach the boundary in fewer steps in the model as

compared with the data. When L = 14, the convergence path is even less similar to

the data. Notice that despite a quick start, the simulations do not reach the PONE

in the Sink and SaddleNeg treatments in the 15 periods of the experiment. The

convergence turns out to be very slow for high L, because of the decreasing gain of

the MAve(L) model. New observations get lower weight as time goes on and this

delays the incorporation of new information. This analysis and simulations lead to

the following conclusion.

Result 5. The MAve(L) model with L ≥ 2 reproduces features 2-5 of the data.

However, with larger L convergence becomes much slower in the model than in the

experiment.
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Figure F.14: Phase diagrams of zt-dynamics in the average models with 2 lags (left
panels), 3 lags (middle panels) and 14 lags (right panels). For all three models, 15
periods are simulated with the initial point given by the a and b-averages of all first
period guesses in the corresponding treatment. The dotted lines are the eigenvectors
from the homogeneous level-1 model.
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The fact that averaging of past targets generates convergence in the SaddleNeg

but not in the SaddlePos treatment is intuitive. In the SaddleNeg treatment, the

dynamics for the b-number are initially oscillating around the PONE, and averaging

dampens these oscillations, leading to convergence. By contrast, in the SaddlePos

treatment, deviations from PONE are all in the same direction, so that past averaging

does not work.

F4 Additional Specifications and Estimation Re-

sults

F4.1 Quantal Response Equilibrium

The quantal response equilibrium (QRE) model introduced by McKelvey and Palfrey

(1995) is a popular model to describe agents’ actions in unrepeated games (Crawford

et al., 2013). The model assumes that each subject has a noisy best response to the

actions of others that are noisy as well.

We estimate the ‘logit QRE’, that is, the QRE model where noise is from a logistic

distribution. Similarly to Camerer et al. (2004), we estimate the model separately

on data for the first period only, and then on the pooled data for the rest of the

periods. We suppress index t of a time period and consider an agent i playing the

strategy sji = (aji , b
j
i ), where j is used as a counter of all possible strategies. In our

experiment, participants choose both a and b numbers between 0 and 100 with up to

2 digits, resulting in 10, 001 strategies for each number and 10, 001×10, 001 strategies

in total. According to (3), the profit of strategy sji , given the strategies played by the

others s−i, is

π(sji |s−i) =
500

5 + |aji − a∗|+ |b
j
i − b∗|

, (F.6)

where the targets a∗ and b∗ are treatment-specific linear functions of the averages of

all a and b guesses that depend on s−i.

Let us define the (logit) quantal best response of player i, QBRi(p−i;λ) as a mixed

strategy, pi, with the probability of playing sji given by

pi(s
j
i ) =

exp[λ · π̄(sji |p−i)]∑
s′i

exp[λ · π̄(s′i|p−i)]
, (F.7)

where λ ≥ 0 is the so-called precision parameter and π̄ is the expected payoff of
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playing sji . The logit QRE is a mixed strategy profile p∗ such that p∗i = QBRi(p
∗
−i;λ).

Similar to Breitmoser (2012), we focus on the “principal” branch of the QRE. We

start the numerical computation with the λ = 0 case, where the unique QRE is the

uniform distribution over all strategies. At each step, we increase λ by 0.001 and

compute the QRE distribution starting from the QRE p∗ of the previous λ. Since the

size of the strategy space is 106, to make the computations feasible, in computing the

expected profit π̄, we assume that the targets are derived from the expected values

of the a and b numbers based on the distribution p. This assumption is reasonable

for a sufficiently large number of players.

Parameter λ is estimated by maximizing the log-likelihood
∑

i

∑
t log p∗i,t(zi,t),

where zi,t is the vector of actual a and b guesses by individual i in period t in the

experiment. To make the estimation computationally viable, we use a grid search for

parameter λ.

F4.2 Noisy Introspection

The noisy introspection (NI) model introduced by Goeree and Holt (2004) combines

the idea of iterative reasoning with noisy beliefs. Players believe that their opponents

have noisier strategies, the opponents of opponents have even noisier strategies and

so on. After several such iterations, the process converges to fully uninformed beliefs,

i.e., to a uniform distribution over the strategy space. To model the increasing level

of noise, let us define λm = λ ·µm, where 0 ≤ µ < 1 is the ‘telescoping’ parameter de-

termining how fast the noise is increasing with each iteration of reasoning m. The NI

model involves a mixed strategy p0 defined iteratively from pm = QBRm(pm+1;λm),

which is the right side of (F.7), where π̄ is computed in the same way as for the QRE.

The maximum m is set to 100.

Parameters λ and µ are estimated by maximizing the log-likelihood function∑
i

∑
t log p0,i,t(zi,t), where as before zi,t is the vector of actual individual guesses

in the experiment. We again use a grid search for λ with a step size of 0.001 as well

as for µ with a step size of 0.05.

F4.3 Experience-Weighted Attraction Model

Camerer and Ho (1999) proposed the Experience-Weighted Attraction (EWA) learn-

ing model. In this model, strategies are associated with attractions that reflect initial

predispositions that are updated over time based on experience. The model incorpo-

23



rates both reinforcement and belief-based learning and has been widely used in the

literature for modeling human behavior across a number of different games, including

the BC game.

As there are 10, 001 strategies for each number in our 2DBC, for computational

feasibility, we shall assume that the participants assess strategies for the a and b

numbers separately. Let si,t = (ai,t, bi,t) be the actual strategy that participant i

played in period t. When hypothetical strategies for the a-number are assessed in

period t, we take sji = (aji , bi,t) where aji is indexed by j (with j = 1, . . . , 10, 001).

Similarly, when hypothetical strategies for the b-number are assessed, sji = (ai,t, b
j
i ).

Let Aji,t be an attraction level assigned by individual i to strategy sji in period t.

We adopt the parametrization from Camerer et al. (2002).12 For any t ≥ 2, the

attraction level is defined recursively

Aji,t =
φ ·Nt−1 · Aji,t−1

Nt

+
[δ + (1− δ) · I(sji , si,t)] · πi(s

j
i |s−i,t)

Nt

,

Nt = (1− κ) · φ ·Nt−1 + 1 ,

where the indicator I takes the value of 1 when sji is actually played at t, and 0

otherwise. Parameter δ determines the relative weight of the hypothetical payoff

with respect to the actual payoff, φ is the decay rate of past observations, and κ

is the accumulation rate of attractions that determines how fast strategies lock-in.13

The payoff πi(s
j
i |s−i,t) is calculated according to (F.6) with s−i,t being the actual

strategy profile played by the other players at t, and where, e.g., bji ≡ bi,t, if strategy

sji is about the a-number guess. Strategy sji is then played by individual i in period

t+ 1 with probability

pi,t+1(s
j
i ) =

exp[λ · Aji,t]∑
k exp[λ · Aki,t]

, (F.8)

where λ is the sensitivity or precision parameter.

We initialize the attractions from the experimental data of period 1 separately for

each session, following the approach of Camerer et al. (2002), p. 154, Eqs. (7) and

12This parametrization for the EWA model became more common in the literature. It differs from
the original parametrization in Camerer and Ho (1999). In that paper, the authors use parameters
δ and φ as we do here, but instead of parameter κ, they have ρ = (1 − κ)φ measuring the rate of
decay for experience.

13The parameter estimates for this model using our experimental data (Table 6 in Section 5)
indicate the following. Participants weight their actual experiences higher than the hypothetical
payoffs (δ = 0.65) reflecting a higher reliance on reinforcement learning relative to belief-based
learning. They forget past information relatively fast (φ = 0.33), and they average past attractions
instead of cumulating them (κ = 0), avoiding in this way, the lock-in effect.
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(8). That is, we assign all strategies observed in period 1 with zero frequencies, the

attractions Aji,1 = 0. Then we match the actual frequencies of the played strategies

with the initial attractions, Aji,1 so that (F.8) is satisfied.

The parameters are estimated by maximizing log likelihood∑
i

∑
t

(
log pai,t(ai,t) + log pbi,t(bi,t)

)
,

where pi,t for a and b-number are in (F.8) and ai,t and bi,t are the actual guesses in

the experiment.

F4.4 Gill and Prowse model

Gill and Prowse (2016) propose a structural mixed level-k learning model. The model

assumes the fixed level-k types, who maintain their level throughout the experiment,

as well as the learning types, who increase their levels with experience. The individual

first period choices in the experiment are used as the initial conditions of the model.

A learning type k → k + 1 plays, at each period from t = 2 to 15, a mixed strategy

assigning probability 15−t
13

to the level-k choice and probability t−2
13

to the level-k + 1

choice.

In what follows x denotes one of 10, 001 possible permissible values (from 0 to

100 with up to 2 digits) either for the a or for b-number. The Gill-Prowse model

explicitly specifies the error structure so that the choices are sampled from discretized

and truncated Student’s t distributions. The probability of a specific choice x by

participant i using level-k in period t is given by14

pi,t(x|k) =
T(x;µi,t(k), σt(µ), ν)∑10,000

s=0 T(s;µi,t(k), σt(µ), ν)
,

where T is the CDF of the Student’s t distribution with mean µi,t(k) equal to the

deterministic homogeneous level-k choice for the a or b-number as in Eq. (9) in Sec-

tion 4.1 of the paper. Parameter ν denotes the degrees of freedom of this distribution,

whereas the scale parameter is specified as

σt(µ) = exp

(
α + β · IPONE − δ ·

t− 2

13

)
,

14The Gill-Prowse model treats choices x = 100 as special cases outside of level-k model. We do
not need this since in our divergent treatments, choices of 100 may be consistent with the model.
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where I is indicator showing whether µi,t(k) is within ± 1 of the PONE value. The

time and choice-dependent variance allows us to model convergence in the experimen-

tal data. The variance tends to reduce over time and to be smaller near the PONE

(i.e., δ > 0, β < 0).

Let fk and fk→k+1 denote the probabilities (fractions) of the fixed level-k types

and the learning level-k → k+ 1 types, respectively, and K is the highest level. Note

that in some specifications we also include a fraction fE of equilibrium players as a

fixed type. The fractions of types as well as the parameters α, β, δ and ν are estimated

by maximizing the log-likelihood15

∑
i

log

[∑
k

fk

15∏
t=2

pi,t(ai,t, bi,t|k)+

+
∑
k<K

fk→k+1

15∏
t=2

(15− t
13

pi,t(ai,t, bi,t|k) +
t− 2

13
pi,t(ai,t, bi,t|k + 1)

)]
,

where the joint density pi,t(ai,t, bi,t|k) = pi,t(ai,t|k)pi,t(bi,t|k). This way the structural

model assumes that any individual i uses the same level for making both the a and

b-guesses in period t.

We report the parameter estimates for various Gill-Prowse model specifications in

Table F.5.

F4.5 Models estimated for the first period choices

First period choices in our experiment are of special interest. We estimate the appli-

cable models separately on period 1 data and compare their fit. All learning models

are excluded since they require conditioning on the previous period data. The results

of this analysis is shown in Table F.6 and the parameter estimates in Table F.7.

15To avoid numerical instabilities in estimation we set ν ≥ 0.5.
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Specifications Parameter Estimates

f0 f1 f2 f3 f4 fE

0-1 Learning 0.11 (0.04) 0.56 (0.05)
0-2 Learning 0.11 (0.02) 0.23 (0.05) 0.07 (0.05)
0-3 Learning 0.11 (0.02) 0.23 (0.05) 0.06 (0.05) 0.00 (0.00)
0-4 Learning 0.11 (0.02) 0.23 (0.06) 0.06 (0.05) 0.00 (0.00) 0.00 (0.00)
0-1 E Learning 0.11 (0.04) 0.54 (0.05) 0.01 (0.01)
0-2 E Learning 0.11 (0.02) 0.22 (0.05) 0.07 (0.05) 0.02 (0.01)
0-3 E Learning 0.11 (0.02) 0.21 (0.05) 0.06 (0.05) 0.00 (0.00) 0.02 (0.01)
0-4 E Learning 0.11 (0.02) 0.21 (0.05) 0.06 (0.04) 0.00 (0.00) 0.00 (0.00) 0.02 (0.01)

f0→1 f1→2 f2→3 f3→4

0-1 Learning 0.33 (0.03)
0-2 Learning 0.23 (0.06) 0.36 (0.04)
0-3 Learning 0.22 (0.06) 0.36 (0.05) 0.02 (0.01)
0-4 Learning 0.22 (0.07) 0.36 (0.05) 0.02 (0.02) 0.00 (0.00)
0-1 E Learning 0.33 (0.04)
0-2 E Learning 0.23 (0.06) 0.35 (0.04)
0-3 E Learning 0.23 (0.07) 0.35 (0.05) 0.02 (0.01)
0-4 E Learning 0.23 (0.06) 0.35 (0.04) 0.02 (0.02) 0.00 (0.00)

α β δ ν

0-1 Learning 1.97 (0.17) −0.63 (0.45) 3.38 (0.33) 0.50 (0.00)
0-2 Learning 1.85 (0.17) −0.58 (0.44) 3.39 (0.37) 0.50 (0.00)
0-3 Learning 1.83 (0.17) −0.59 (0.44) 3.39 (0.37) 0.50 (0.00)
0-4 Learning 1.84 (0.19) −0.59 (0.34) 3.39 (0.37) 0.50 (0.00)
0-1 E Learning 1.89 (0.19) −0.87 (1.47) 3.20 (0.32) 0.50 (0.00)
0-2 E Learning 1.76 (0.19) −0.91 (1.03) 3.21 (0.34) 0.50 (0.00)
0-3 E Learning 1.75 (0.19) −0.91 (1.02) 3.20 (0.34) 0.50 (0.00)
0-4 E Learning 1.75 (0.17) −0.91 (0.81) 3.20 (0.36) 0.50 (0.00)

Table F.5: Parameter estimates of the Gill-Prowse model for various specifications.
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Models Out-of-sample RMSEs
Sink SadNeg SadPos Source Overall

PONE 31.48 33.76 36.06 41.45 35.88

QRE 20.71 24.16 23.50 22.18 22.68

NI 19.59 23.65 25.23 21.90 22.69

Level-k

0 22.08 25.66 22.61 23.06 23.39
1 20.37 31.36 37.08 37.73 32.39
2 21.59 33.69 47.12 47.36 38.94
3 25.08 34.88 48.30 48.13 40.30
4 26.66 33.80 49.26 54.24 42.49

Mixed

0 1 19.97 22.40 24.51 22.11 22.31
0 1 2 19.97 22.40 24.51 22.11 22.31
0 1 2 3 19.97 22.40 24.51 22.11 22.31
0 1 2 3 4 19.97 22.40 24.51 22.11 22.31
1 2 20.49 24.23 40.54 29.87 29.76
0 E 19.74 23.61 21.70 24.03 22.34
1 E 23.87 30.24 27.52 32.63 28.75
0 1 E 19.22 22.28 22.84 22.92 21.87
0 1 2 E 19.22 22.33 22.89 22.92 21.89
0 1 2 3 E 19.26 22.42 22.88 22.92 21.92
0 1 2 3 4 E 19.25 22.41 22.99 22.92 21.95
1 2 E 24.27 26.76 30.57 23.00 26.31

CH-Poisson

0 1 19.97 22.40 24.51 22.11 22.31
0 1 2 20.02 22.48 24.57 22.03 22.33
0 1 2 3 20.03 22.49 24.57 22.03 22.34
0 1 2 3 4 20.03 22.49 24.57 22.02 22.34

Table F.6: Performance of the different models using individual data for period 1 only. This
table includes only those models from Table 5 of the paper that do not require conditioning
on the previous period data. The models are compared in terms of the out-of-sample
RMSE using the leave-one-out procedure. The smallest RMSE for each treatment and
overall is shown in boldface. Parameter estimates for models with parameters are reported
in Table F.7.
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Models Parameter Estimates

λ

QRE 0.03 (0.00)

λ µ

NI 0.06 (0.00) 0.05 (0.00)

f0 f1 f2 f3 f4 fE

Mixed

0 1 0.76 (0.04) 0.24 (0.04)
0 1 2 0.76 (0.04) 0.24 (0.04) 0.00 (0.00)
0 1 2 3 0.76 (0.04) 0.23 (0.05) 0.00 (0.00) 0.01 (0.02)
0 1 2 3 4 0.76 (0.03) 0.24 (0.04) 0.00 (0.00) 0.00 (0.01) 0.00 (0.01)
1 2 0.66 (0.03) 0.34 (0.03)
0 E 0.80 (0.02) 0.20 (0.02)
1 E 0.59 (0.03) 0.41 (0.03)
0 1 E 0.68 (0.04) 0.18 (0.04) 0.14 (0.02)
0 1 2 E 0.67 (0.03) 0.18 (0.04) 0.01 (0.01) 0.15 (0.03)
0 1 2 3 E 0.68 (0.03) 0.15 (0.06) 0.00 (0.01) 0.02 (0.03) 0.14 (0.03)
0 1 2 3 4 E 0.68 (0.03) 0.16 (0.06) 0.00 (0.00) 0.02 (0.03) 0.01 (0.01) 0.14 (0.03)
1 2 E 0.30 (0.04) 0.32 (0.03) 0.39 (0.03)

τ

CH-Poisson

0 1 0.32 (0.08)
0 1 2 0.27 (0.05)
0 1 2 3 0.27 (0.04)
0 1 2 3 4 0.27 (0.04)

Table F.7: Parameter estimates of the models for period 1 guesses. Standard errors are
reported in parentheses. The parameters of the model with the smallest overall RMSE are
shown in boldface.
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