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Abstract
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1 Introduction

Evans and Honkapohja (2003ab, 2006) examine the stability, under adaptive learning dy-

namics, of rational expectations equilibrium (REE) in the standard New Keynesian model

of the monetary transmission mechanism1 when the policy rule of the central bank is op-

timally derived.2 Specifically, they suppose that the central bank minimizes a quadratic

loss function that penalizes deviations of inflation and output from certain exogenous target

values. The result of this minimization problem is an optimal interest rate rule which is used

together with equations describing private sector behavior to characterize the equilibrium of

the economy.

Evans and Honkapohja report that, regardless of whether the central bank operates under

commitment or discretion, the REE of the system is always expectationally unstable when

the policy rule is derived under the incorrect assumption that the private sector has rational

expectations — Evans and Honkapohja call the policy rule in this case the “fundamentals—

based” policy rule. While the private sector is assumed to use a correctly specified model to

form expectations, it does not initially possess knowledge of the REE parameterization of the

model; instead it updates the parameters of its model in real time using all relevant data.

However, the central bank’s fundamentals—based interest rate policy causes this adaptive

learning process to diverge away from the REE, and for this reason, the fundamentals—based

policy rule is considered undesirable— it is expectationally unstable.3 Evans and Honkapohja

(2003) found this instability of optimal policy “deeply worrying,” and suggest that the central

bank might do well to assume that the private sector does not (initially) possess rational

expectations. Indeed, Evans and Honkapohja show that if the central bank does not assume

rational expectations on the part of the private sector, the resulting, optimally derived,

“expectations—based” interest rate rule, which conditions on the private sector’s expectations

of inflation and output, results in a REE that is always expectationally stable.

In this paper, we consider an alternative approach to optimal monetary policy under

learning using the same New Keynesian framework and maintaining the assumption that

the private sector does not have rational expectations. We show that it is possible for the

central bank to use an optimally derived policy rule that does not condition on private sector

expectations and which results in a REE that is stable under adaptive learning dynamics

in contrast to the findings of Evans and Honkapohja (2003ab, 2006). What is needed to
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obtain our result is for the central bank to expand its loss function to include interest rate

stabilization as a third objective, in addition to the traditional twin objectives of inflation

and output stabilization. Our result concerning the stability of REE under adaptive learning

holds for a wide range of empirically plausible parameter values across all calibrations found

in the literature and regardless of whether the central bank operates under discretion or

commitment.

There are several advantages to studying optimal policy using a loss function that gives

weight to interest rate stabilization. First, as Woodford (2003) shows, if there are transac-

tions frictions of the type that would give rise to a demand for money then an appropriate

welfare-theoretic loss function for the central bank is one that includes interest rate sta-

bilization as a third objective in addition to the standard two objectives of inflation and

output stabilization. Second, there is substantial empirical evidence that central banks ad-

just their interest rate targets only gradually over time — consistent with having interest

rate stabilization as a goal (see, e.g., Goodhart (1997)). Finally, as Giannoni and Woodford

(2003) note, the optimal policy rules derived under the three-element loss function resem-

ble the much-studied Taylor instrument rule, while rules derived under the more typical

two—element (inflation and output stabilization) objective function do not.

Evans and Honkapohja’s proposed resolution to the monetary policy instability problem

— conditioning policy on private sector expectations — strikes us as problematic for several

reasons. First, operationally speaking, the private sector’s expectations may not be observ-

able, or may be heterogeneous; figuring out which expectations to use is a complicated task.

Second, as Honkapohja and Mitra (2005) point out, if the central bank is known to be condi-

tioning policy on private sector expectations, the private sector might choose to be strategic

about its expectations. Third, in certain environments, conditioning on private sector ex-

pectations may increase the likelihood that the REE becomes indeterminate, as shown by

Bernanke and Woodford (1997).4 Our approach, which does not require the use of private

sector expectations, avoids these problems.

2 The model

The model of the private sector is the standard, “cashless” New Keynesian model used in

analyses of the monetary policy transmission mechanism (as set forth, e.g., in Clarida et al.
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(1999) or Woodford (2003)) and consists of the following equations:

xt = −ϕ(it − Êtπt+1) + Êtxt+1 + gt, (1)

πt = λxt + βÊtπt+1 + ut, (2)

vt = (gt, ut)
0 = Fvt−1 + et, F =

"
μ 0
0 ρ

#
, (3)

where |μ|, |ρ| ∈ (0, 1), et = (egt, eut) and eit ∼ i.i.d.(0,σ2i ), i = g, u. The parameters ϕ

and λ are assumed to be positive, as is the discount factor, 0 < β < 1. The intertemporal

IS equation (1) relates the output gap xt, to its expected future value Êtxt+1, and to the

real interest rate; it is the short-term (one-period) nominal interest rate and Êtπt+1 is the

expected inflation rate between t and t + 1. The aggregate supply equation (2) relates the

current inflation rate πt to expected future inflation and the current output gap. Both

equations can be derived from explicit microfounded models. Note that Êt here refers to

expectations of future endogenous variables that are not necessarily rational.5 The last

equation (3) characterizes how the demand and supply shock processes, gt and ut, evolve

over time.

This model is closed by specifying how the central bank determines the short-term nom-

inal interest rate, it. Suppose the central bank’s objective is to minimize:

E0
∞X
t=0

βt
h
(πt − π)2 + αx(xt − x)2 + αi(it − i)2

i
, (4)

where π, x and i represent target values for inflation, the output gap and the interest rate. For

simplicity, we henceforth set π = x = 0, though our results would not change if we assumed

nonzero values for these targets. The relative weights assigned to output and interest rate

stabilization are αx > 0 and αi > 0.

The loss function differs from the one considered by Evans and Honkapohja (2003ab,

2006) by the inclusion of the third, interest rate stabilization element; Evans and Honkapohja

have αi = 0. The three-element loss function we use has been given a microfounded welfare-

economic justification by Woodford (1999). He shows that when there are non-negligible

transaction frictions, as would rationalize a demand for money, the three-element version of

the loss function objective represents a quadratic approximation to the optimal, expected

utility realized by the representative household in the same optimizing model that gives rise

to the structural equations (1)—(2); in the absence of such transaction costs, the two-element
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version (αi = 0) is the relevant approximation. Woodford (2003) further rationalizes the

inclusion of the third term as a quadratic approximation to the implicit penalty on interest

rate variability the central bank faces due to the existence of a zero lower bound on nominal

interest rates; the two-element version of the loss function does not take this constraint into

account. For these reasons, the three-element loss function can be viewed as the more general

form of the central bank’s objective function.

3 Discretionary Policy

We first consider the case where the central bank cannot commit to future policies. Optimal

monetary policy in this discretionary case amounts to minimization of (4) subject to versions

of equations (1)—(2) modified to take account of the central bank’s lack of commitment:

xt = −ϕit, (5)

πt = λxt. (6)

The three first order conditions can be combined to yield the optimality condition:

λπt + αxxt − αiϕ
−1(it − i) = 0. (7)

Equation (7) can be rearranged to yield the optimal interest rate rule:

it = i+
ϕλ

αi
πt +

ϕαx
αi
xt. (8)

The rule (8) is of the same general form as Taylor’s instrument rule, though in this case it has

been optimally derived.6 The optimal rule (8) requires knowledge of the contemporaneous

values of inflation and output, and for this reason we will refer to it as a “data-based” rule.

The system under discretionary policy thus consists of equations (1), (2) and (8). Letting

yt = (xt, πt)
0, this system can be further reduced and written as:

yt = δ0 + δyÊtyt+1 + δvvt, (9)

where δ0, δy and δv represent comformable vectors or matrices with elements that are com-

binations of structural model parameters and objective function weights.

To study the stability of REE under adaptive learning, we follow Evans and Honkapohja

(2001, section 10.3) and suppose that agents have a perceived law of motion for yt that
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corresponds to the minimal state variable (MSV) representation of the REE solution to the

system (9). This perceived law of motion may be written as:

yt = d0 + dvvt. (10)

Using this perceived law of motion (PLM), agents form expectations of yt+1:

Êtyt+1 = d0 + dvFvt.

Substituting these expectations into (9) (in lieu of rational expectations) yields a T—mapping

from the PLM to the actual law of motion (ALM):

yt = Td0(d0) + Tdv(dv)vt.

The rational expectations solution consists of values d0 = Td0(d0) and dv = Tdv(dv).

Expectational (E)—stability of (d0, dv) is governed by local asymptotic stability of the

matrix differential equation:

d

dτ
(d0, dv) = T (d0, dv)− (d0, dv),

, evaluated at the REE solution values. Specifically, the REE solution to the system (9) is

E-stable if the eigenvalues of

DTd0 = δy,

DTdv = δyF,

have real parts less than unity. As Evans and Honkapohja (2003) point out, these conditions

correspond closely to whether or not the rational expectations equilibrium of the system (9)

is determinate; the condition for determinacy is that the eigenvalues of δy are all less than

unity. Indeed, given the restrictions imposed on the matrix F it is clear that in this case

of discretionary policy, the determinacy and the E—stability conditions exactly coincide. As

Duffy (2003) shows, in the case of discretionary policy we have:

δy =
1

ξ

"
αi ϕ(αi − λϕβ)
λαi ϕ(λαi + βϕαx) + βαi

#
, (11)

where ξ = αi + ϕ2(αx + λ2). Whether or not the eigenvalues of this matrix are all less than

unity depends on the calibration of the structural parameters of the model and the weights
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chosen for the objective function, and so we turn to a numerical analysis later on in section

5. Duffy (2003) investigated the eigenvalues of this matrix for one calibration of the model,

due to Woodford (1999), but in this paper, we provide a more general analysis, considering

several different calibrations that have appeared in the literature and allowing the values of

the two weights, αx and αi in the central bank’s objective function to vary over a grid of

plausible values. In addition, Duffy (2003) did not consider the more interesting case where

the central bank operates under commitment, which we address in the next section.

The difference between the optimal “data-based” interest rate rule (8) we derive un-

der discretionary policy and the optimal “fundamentals-based” rule derived by Evans and

Honkapohja (2003a) under discretionary policy is the key to understanding our different

stability findings under adaptive learning. In Evans and Honkapohja’s model, αi = 0, so the

optimality condition we derived above (7) reduces to:7

λπt + αxxt = 0. (12)

Since this optimality condition does not involve the interest rate, it, Evans and Honkapohja

proceed to derive an optimal interest rate rule under the assumption that the private sector

has rational expectations. They suppose that the private sector forms expectations of future

output and inflation using an MSV solution of the form given by (10), i.e., the same solution

class we consider. Using this perceived law of motion to form expectations in (1), (2) and

using (12), they solve for the REE coefficient values of the MSV solution and further obtain

an optimal interest rate rule of the form:

it = ψi + ψggt + ψuut, (13)

where ψi, ψg and ψu are precisely defined coefficient values under the maintained assumption

that the private sector has rational expectations. They call this a “fundamentals-based”

ruled because it is a function only of exogenous fundamentals, i.e., the two shocks. Evans

and Honkapohja use (13) to eliminate it in (1) and write the system (1)—(2) in the form (9),

where, in particular, they have that:

δy =

"
ϕ 1

β + λϕ λ

#
. (14)

Their matrix for δy, (14), which is critical to their E-stability analysis, is different from

the matrix (11) we derive using the data-based rule, and this difference is the reason for
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our different stability findings, as detailed later. We note that we could have proceeded

in the same manner as Evans and Honkapohja (2003a), using the optimality condition (7)

(our data-based interest rate rule) to substitute out for it in equation (1) and then finding

the MSV REE solution for πt and xt as functions of the shocks gt and ut. We could have

then substituted the REE solutions for πt and xt back into our optimal data-based interest

rate rule (8) to get a “fundamentals-based” rule of the same form (13) used by Evans and

Honkapohja; the ψ coefficients would differ from those in Evans and Honkapohja (2003a)

due to our different objective function, but the functional form of the rule would be the

same. However, we already know, from Proposition 2 of Evans and Honkapohja (2003a),

that any interest rate rule of the form (13) will result in an E-unstable REE, irrespective

of the coefficient values of that rule; that finding is unaffected by our use of a different loss

function.

Our contribution is to note that the addition of interest-rate stabilization to the central

banks’ policy objective allows for an optimal interest rate rule that is “data-based,” and

quite distinct from the fundamentals-based rule of Evans and Honkapohja. This rule is

not obtainable if αi = 0 in the loss function objective of the central bank as in Evans and

Honkapohja’s analysis.8 As noted above, a further important difference is that Evans and

Honkapohja (2003a) need to assume that the central bank acts as though the private sector

has rational expectations in order to derive the central bank’s optimal, fundamentals-based

interest rate rule. In our approach, we do not need to make such an assumption in order

to derive the optimal interest rate rule as this rule (8) follows immediately from combining

the first order conditions from the central bank’s optimization problem. Finally, we wish

to emphasize that data-based rules seem more plausible as candidates for optimal policy

rules than fundamental-based rules that condition policy on exogenous shocks; despite the

assumption that shock “fundamentals” are known, in practice, such shocks are hard to

identify and it seems that central bankers do use endogenously determined variables (πt,

xt) in formulating their policy decisions. The same logic which we have just given for

the difference in our findings from those of Evans and Honkapohja (2003ab, 2006) under

discretionary policy also extends to the case of policy under commitment. We now turn to

an analysis of that case.
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4 Policy Under Commitment

If the central bank can credibly commit to future policies, the problem it faces changes to

reflect this possibility. In particular, we follow Woodford (2003) in adopting the “timeless

perspective” to optimal policy under commitment. This perspective requires that the central

bank minimizes (4) subject to the original private sector equations, (1)—(2). The first order

conditions can be manipulated to obtain the optimal interest rate rule under commitment:

it = −ϕλi
β
+
ϕλ

αi
πt +

αxϕ

αi
(xt − xt−1) + ϕλ+ β + 1

β
it−1 − 1

β
it−2. (15)

As noted by Giannoni andWoodford (2003), the optimal rule (15) closely resembles a “policy-

smoothing” version of the Taylor instrument rule, though (15) involves greater history de-

pendence (via the variables xt−1, it−2) than is typically assumed in policy smoothing versions

of Taylor rules. We note further that the rule (15) differs from the optimal “fundamentals-

based” rule under commitment studied by Evans and Honkapohja (2003b, 2006).9 The

reason for this difference in the commitment case is analogous to the reason we provided

in the discretionary policy case; the use of the two—element objective function does not im-

mediately give rise to an optimal interest rate rule and so Evans and Honkapohja (2006)

need to assume rational expectations on the part of the private sector in order to derive the

optimal policy rule. With the three-element objective function (4), we do not need to make

such an assumption.

Using the optimal rule (15) to substitute out for it in (1), we can reduce the system to

two equations in xt and πt. Defining yt = (xt,πt)
0 and wt = (it, it−1)0, the system under

commitment can be written as:

yt = δ0 + δy1Êtyt+1 + δy2yt−1 + δwwt−1 + δvvt. (16)

The interest rate rule (15) can also be written in matrix notation as

wt = a0 + a1yt + a2yt−1 + a3wt−1. (17)

The perceived law of motion (PLM) consistent with a MSV-REE solution in this case is:

yt = d0 + dyyt−1 + dwwt−1 + dvvt. (18)

Given (18), (3) and (17), we obtain the expected value of yt+1 as:

Êtyt+1 = d0 + dyyt + dw(a0 + a1yt + a2yt−1 + a3wt−1) + dvFvt.
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Since there are two yt terms in this equation, we need to apply (18) one more time to

eliminate them. Doing this yields:

Êtyt+1 = ψ0 + ψyyt−1 + ψwwt−1 + ψvvt.

Substituting these expectations into (16), we get a T-mapping from the PLM to the ALM:

yt = T (d0) + T (dy)yt−1 + T (dw)wt−1 + T (dv)vt.

Rather than calculate all possible REE solutions—there can be several fixed points to the

T-mapping in this case—we focus on the unique, saddle path stable solution found using

the Blanchard-Kahn technique (see e.g., Evans and Honkapohja (2001, Section 10.8)). This

unique determinate equilibrium is the one relevant to policy discussions and, as Giannoni

and Woodford (2003) show, it is the optimal equilibrium from the timeless perspective.

The conditions for E-stability of the REE solution to the system (16) are given in Evans

and Honkapohja (2001, section 10.3) The conditions are that the eigenvalues of the matrices

DTdj , j = 0, y, w, v, all have real parts less than unity. The relevant matrices are:

DTd0 = δy1(I + dy + dwa1),

DTdy = d0y ⊗ δy1 + I ⊗ (δy1dy + δy1dwa1),

DTdw = d0w ⊗ δy1a1 + I
0 ⊗ δy1(dy + a1dw + a3),

DTdv = δy1dy + δy1dwa1 + δy1F.

In the case of optimal policy under commitment, it is no longer the case that determinacy

and stability of equilibrium under adaptive learning are inextricably linked; while we focus on

the unique determinate REE, this equilibria may or may not satisfy the E-stability conditions

given above. Again, it is not possible to obtain analytic results, so we must resort to

numerical methods to assess whether the REE in the commitment case are stable under

adaptive learning. We now turn to this numerical exercise.

5 Numerical Analysis

The calibrated values of the structural model parameters we consider in our numerical ex-

ercise are due to Woodford (W) (1999), Clarida, Gali, and Gertler (CGG) (1999), and

McCallum and Nelson (MN) (2000) and are given in Table 1.
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[Insert Table 1 here.]

We further assume that ρ = μ = .35 in (3) for all three model calibrations. We consider

whether the REE is E-stable or not for each of the three structural model calibrations and

for both discretionary and commitment regimes — a total of 6 numerical exercises. For each

exercise, we vary each of the loss function weights αi and αx, over a fine grid of values,

ranging from .001 to 2, with a step size of .04.10

5.1 Numerical Findings Under Discretionary Policy

Figures 1-3 show our numerical findings under discretionary policy for the three calibrations

given in Table 1 for various (αx, αi) weight pairs. For each weight pair, our numerical routine

checks the eigenvalues of the matrix δy, (11), to determine whether either eigenvalue has real

part less than unity. Regions where all eigenvalues have real parts less than unity are shown

in black; in this case, the REE is both E—stable and determinate. Regions where at least

one eigenvalue has a real part greater than unity are left blank; these are the regions where

the REE is both E—unstable and indeterminate.

[Insert Figures 1—3 here.]

The figures reveal that for all three calibrations there always exist (αx,αi) combinations

for which the REE solution is E-stable and determinate. This finding stands in contrast

to Evans and Honkapohja’s finding of E—instability for the fundamentals-based rule under

discretion derived under the assumption that αi = 0. Of course, Evans and Honkapohja’s

result holds for any choice of weights/calibration of the model and our finding applies only

for certain weight choices that are not independent of the model calibration.

Woodford (1999) proposes the weights αx = .047 and αi = .233. With these choices,

and the Woodford (W) calibration of the structural parameters, Figure 1 reveals that the

REE is both E—stable and determinate. Woodford (2003, Table 6.1) proposes somewhat

different weights of αx = .048 and αi = .077 under the same W calibration of the structural

parameters. In that case the REE is again found to be both E—stable and determinate. As

Figure 1 reveals, determinacy and E-stability obtain for all values of αx so long as αi is not

too great. This same conclusion holds for the other two calibrations (CGG, MN) as seen in

Figures 2—3. The range of (αx, αi) pairs for which E-stability obtains is greatest in the W
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calibration, and smallest in the MN calibration. However, there is always some (αx, αi) pair

for which the REE is E—stable and determinate.

5.2 Numerical Findings Under Commitment

Figures 4-6 show comparable results for the case of optimal policy under commitment.11 To

assess E—stability, we again used a fine grid of values for the weight pairs (αx, αi), allowing

each weight to vary over the range [0, 2].

[Insert Figures 4—6 here.]

However, for the Clarida et al. and McCallum-Nelson parameterizations, we had to

extend the range of admissible weights so we can illustrate regions where E-stability fails to

hold. In particular, for those two calibrations, we search for values of αx over [0, 7] and we

search for values of αi over [0, 5], where again, the step size is .04. For each weight pair, we

assess whether all the eigenvalues of the matrices DTdj , j = 0, y, w, v, have real parts less

than unity so that the REE is E—stable; such regions are shown in black. Regions where one

or more eigenvalue has a real part greater than unity are left blank, indicating regions where

the REE is E-unstable.

Figures 4—6 confirm that in the commitment case, there always exist (αx,αi) pairs such

that the REE is E—stable. Moreover, for the Clarida et al. and McCallum-Nelson calibra-

tions, the set of policy weight pairs for which E—stability holds is much less restrictive under

commitment than under discretion. For the Woodford (W) calibration, Figure 4 reveals that

the weights proposed by Woodford (1999) αx = .047 and αi = .233, are consistent with an

E—stable REE. This finding also holds for Woodford’s (2003) alternative weights, αx = .048

and αi = .077.

However, like Figures 1—3, Figures 4—6 reveal that there exist (αx, αi) pairs for which

the REE is E-unstable; the precise regions depend on the calibration of the structural model

parameters. These E—unstable regions do not appear to be empirically relevant, though

the literature is not so clear about empirically plausible weight choices. Nevertheless, our

finding is not a strong the one found in Evans and Honkapohja (2006); they show that an

optimally derived, expectation-based interest rate rule that has the central bank condition

on private sector expectations always implements an E—stable REE, regardless of parameter

values. Still, our finding that there exist parameter regions under which an optimal interest
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rate rule that does not condition on private sector expectations can nevertheless implement

an E-stable REE is of interest, as Evans and Honkapohja are unable to show such a result

using the two—element loss function objective.

6 Conclusions

We have show that if central bankers give some weight to interest rate stabilization, the

resulting optimal policy rule implements a REE that is E-stable for several calibrations

found in the literature under either discretionary or commitment policy regimes. This result

obtains without the assumption that the private sector has rational expectations or that the

central bank conditions its policy on private sector expectations, in contrast to the findings

of Evans and Honkapohja (2003ab, 2006). While Evans and Hokapohja called the instability

under learning of their optimal, fundamentals-based rule “deeply worrying,” our findings

suggest that learnability of REE need not conflict with optimization of an appropriately

defined policy objective function. Indeed, Evans and Honkapohja’s proposed solution — the

conditioning of policy on private sector expectations — is problematic, as such expectations

are likely to be unobservable or heterogeneous and such conditioning might lead to gaming

on the part of the private sector or indeterminacy of the REE.

Our finding differs from Evans and Honkapohja’s because the optimal interest rate rule

derived under the assumption that αi > 0 closely resembles Taylor—type, “instrument rules,”

where, the interest rate responds to contemporaneous and/or lagged values of the endogenous

variables (inflation, the output gap, interest rates), and not to exogenous disturbance terms

as in Evans and Honkapohja (2003ab, 2006). Bullard and Mitra (2002) have shown that,

under certain conditions, Taylor-type instrument rules can implement E-stable REE, and it

seems this finding carries over to optimally derived policy rules that resemble Taylor rules.

We conclude that the value of interest rate stabilization as a central bank objective is that it

may aid private sector learning of the rational expectations equilibrium relative to the case

where this objective is absent.
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Notes

1See Clarida et al. (1999) for a presentation of this model.

2Other authors, e.g., Bullard and Mitra (2002, 2003), Carlstrom and Fuerst (2004), have

studied the stability of REE under learning for non-optimal, Taylor-type instrument rules.

Honkapohja and Mitra (2004) study the stability of REE under learning using both optimal

and non-optimal policy rules.

3See Evans and Honkapohja (2001) for a complete treatment of the notion of expectational

(in)stability.

4Evans and Honkapohja (2003ab) are careful to show that indeterminacy of REE is not

a problem when the central bank uses the optimally derived, expectations-based interest

rate rules that condition on private sector expectations. Berardi (2004) reconciles Evans and

Honkapohja’s (2003ab) findings with those of Bernanke and Woodford (1997).

5There is some dispute in the literature as to whether equations (1)—(2) represent the cor-

rect, microfounded structural equations of the model under this assumption of non-rational

expectations (there is no dispute in the case where agents do have rational expectations)— see

the debate between Preston (2004) and Honkapohja Mitra and Evans (2003) for the details.

As our aim is to contrast our findings with those of Evans and Honkapohja (2003ab, 2006),

we chose to work with the same system of structural equations (1)—(2) that they used.

6It is in this sense that our analysis differs from that of Bullard and Mitra (2002).

7c.f. equation (6), p. 809 in Evans and Honkapohja (2003a).

8If one does not start by setting αi = 0 in the objective function, one could consider a

version of the optimal data-based rule we derive (8) in the limiting case where the weight on

interest rate smoothing, αi → 0:

it = i+ lim
αi→0

"
ϕλ

αi
πt +

ϕαx
αi
xt

#
.

However, in this case the coefficients on the endogenous variables tend to infinity, so this

version of the rule is of little practical importance, though our simulations findings (discussed

below) suggest that such a rule would be E-stable.
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9Evans and Honkapohja’s (2006) optimal, “fundamentals-based” rule under commitment

is it = ψxxt−1+ψggt+ψuut,where the ψ coefficients are precisely defined under the maintained

assumption of private sector rational expectations.

10We conducted a further numerical analysis (not illustrated here), where we searched

over all combinations of the two weights in the interval [.001, .01] using a step size of .01; the

results are equivalent to those illustrated below when each weight is set equal to .01, i.e., in

all of these cases, the REE is E—stable.

11Recall that for this case, we restricted attention to the unique, determinate, saddlepath

stable REE since, in the commitment case, the conditions for E—stability and determinacy

of equilibrium need not coincide.

14



References

Bernanke, Ben S., and Michael Woodford. (1997). “Inflation Forecasts and Monetary

Policy.” Journal of Money, Credit, and Banking 29, 653—684.

Berardi, Michele. (2004). “Should Monetary Policy Respond to Private Expectations?”

working paper.

Bullard, James, and Kaushik Mitra. (2002). “Learning About Monetary Policy Rules.”

Journal of Monetary Economics 49, 1105-1129.

Bullard, James, and Kaushik Mitra. (2003). “Determinacy, Learnability, and Monetary

Policy Inertia.” Working paper No. 2000-030, Federal Reserve Bank of St. Louis.

Carlstrom, Charles T., and Timothy S. Fuerst. (2004). “Learning and the Central Bank.”

Journal of Monetary Economics 51, 327-338.

Clarida, Richard, Jordi Gali, and Mark Gertler. (1999). “The Science of Monetary Policy:

A New Keynesian Perspective.” Journal of Economic Literature 37, 1661—1707.

Duffy, John. (2003). “Comment on ‘Adaptive Learning and Monetary Policy Design’.”

Journal of Money, Credit and Banking 35, 1073-1079.

Evans, George W., and Seppo Honkapohja. (2001). Learning and Expectations in Macro-

economics. Princeton: Princeton University Press.

Evans, George W., and Seppo Honkapohja. (2003a). “Expectations and the Stability

Problem for Optimal Monetary Policies.” Review of Economic Studies 70, 807—824.

Evans, George W., and Seppo Honkapohja. (2003b). “Adaptive Learning and Monetary

Policy Design.” Journal of Money, Credit, and Banking 35, 1045-1072.

Evans, George W., and Seppo Honkapohja. (2006). “Monetary Policy, Expectations and

Commitment.” The Scandinavian Journal of Economics 108, 15—38.

Giannoni, Marc P., and Michael Woodford. (2003). “How Forward-Looking is Optimal

Monetary Policy?” Journal of Money, Credit, and Banking 35, 1425-1469.

15



Goodhart, Charles A.E. (1997). “Why Do the Monetary Authorities Smooth Interest

Rates?” In European Monetary Policy, edited by S. Collignon, pp. 119-174. Washing-

ton, DC: Pinter.

Honkapohja, Seppo, and Kaushik Mitra. (2004). “Are Non-Fundamental Equilibria Learn-

able in Models of Monetary Policy?” Journal of Monetary Economics 51, 1743-1770.

Honkapohja, Seppo, and Kaushik Mitra. (2005). “Performance of Monetary Policy with

Internal Central Bank Forecasting.” Journal of Economic Dynamics and Control 29,

627—658.

Honkapohja, Seppo, Kaushik Mitra, and George W. Evans. (2003). “Notes on Agents’

Behavioral Rules Under Adaptive Learning and Recent Studies of Monetary Policy.”

working paper.

McCallum, Bennett T., and Edward Nelson. (2000). “Timeless Perspective vs. Discre-

tionary Monetary Policy in Forward—Looking Models.” working paper.

Preston, Bruce. (2004). “Adaptive Learning and the Use of Forecasts in Monetary Policy.”

working paper.

Woodford, Michael. (1999). “Optimal Monetary Policy Inertia.” working paper.

Woodford, Michael. (2003). Interest and Prices, Princeton: Princeton University Press.

16



Author ϕ λ
W 1/0.157 0.024
CGG 1 0.3
MN 0.164 0.3

Table 1: Three values of the structural parameters of the model
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Figure 1: Discretionary policy, Woodford calibration
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Figure 2: Discretionary policy, Clarida et al. calibration
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Figure 3: Discretionary policy, McCallum-Nelson calibration
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Figure 4: Commitment policy, Woodford calibration.
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Figure 5: Commitment policy, Clarida et al. calibration.
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Figure 6: Commitment policy, McCallum-Nelson calibration.
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