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Abstract. This paper presents experimental results from an analysis of two
similar games, the repeated ultimatum game and the repeated best-shot game.
The experiment examines whether the amount and content of information
given to players a¨ects the evolution of play in the two games. In one
experimental treatment, subjects in both games observe not only their own
actions and payo¨s, but also those of one randomly chosen pair of players in
the just-completed round of play. In the other treatment, subjects in both
games observe only their own actions and payo¨s. We present evidence sug-
gesting that observation of other players' actions and payo¨s may a¨ect the
evolution of play relative to the case of no observation.

Key words: Social learning, observation, reinforcement, ultimatum game, best-
shot game, information.

1. Introduction

There is now a large experimental literature that examines learning behavior
in repeated non-cooperative games. The kind of learning behavior that has
been examined in these experiments has been mainly limited to cases where
individuals learn on the basis of their own past experience. A more general
analysis of learning behavior would consider whether providing players with
additional information a¨ects the evolution of play over time. In particular,
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one might ask whether changes in the content and quantity of information
available to players a¨ects the rate at which they learn to play equilibrium
strategies. This paper takes a ®rst step toward addressing these kinds of
questions.

We examine the e¨ect of additional information on learning in an experi-
ment involving two similar games, the repeated ``ultimatum game'' and the
repeated ``best-shot game.'' An experimental comparison of these two games
was previously conducted by Prasnikar and Roth (1992). Our experiment con-
sists of two treatments. In the ®rst treatment, subjects are informed of only their
own actions and payo¨s. This treatment is similar to one found in the Prasnikar
and Roth (1992) study as well as in many other experimental implementations
of repeated non-cooperative games. The second treatment is more novel. In
this treatment, subjects are informed of their own actions and payo¨s as well
as the actions and payo¨s of one randomly chosen pair of players in the just-
completed round of play. We use these two treatments to examine whether
observation of other players' actions and payo¨s a¨ects the evolution of play
relative to the (standard) case where observation of others is not possible.

From a game-theoretic perspective, allowing for observation of how
another pair of players play the game is a step in the direction of satisfying
the ``mutual knowledge of the strategy choices'' condition, which, given
that players play rationally according to the payo¨ structure of the game, is
su½cient to ensure that players play according to the equilibrium predictions
of game theory (Aumann and Brandenburger (1995)). Thus, one might
suppose that when players are allowed to observe the actions and payo¨s of
others, they will learn more quickly to play in accordance with the game's
equilibrium predictions relative to the case where players do not get to observe
the actions and payo¨s of others.

The notion that individuals may learn by observing the actions of others is
one that economists have only recently begun to recognize.1 Anthropologists,
however, have long noted that in many cultures, observation is the primary
method through which individuals learn. Reichard (1938), for example, has
observed that in many languages ``the word for `teach' is the same as the word
for `show,' and the synonymity is literal.''2 Among behavioral psychologists,
the hypothesis that individuals learn through observation of others is also
well established. Bandura and Walters (1963), summarizing a large body
of experimental research, conclude that there are three main e¨ects of
observation on learning behavior. First, the observer may learn through
observation to play new strategies that were previously unknown. Second, the
observer may learn through observation to become less phobic about playing
certain inhibitory strategies. Third, observation of others may facilitate the
play of strategies the observer already knows, but has a low probability of
playing.

1 Selten and Stoecker (1986) and Selten (1991), for example, have suggested how individuals
might learn through observation of population averages or distributions. Banerjee (1992), Bane-
rjee and Fudenberg (1995), Bikhchandani, Hirshleifer and Welch (1992), Conlisk (1980), Ellison
and Fudenberg (1993, 1995), Jackson and Kalai (1997) and Vives (1996) have modeled how in-
dividuals might learn through social networks of neighbors or by word-of-mouth. Many of these
theories, while informative, are not easily implemented in laboratory settings with small groups of
subjects.
2 Reichard (1938) p. 47, as quoted in Bandura and Walters (1963).
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In this study, we focus on this third e¨ect of observation. We imagine that
when players observe strategies resulting in high payo¨s, they are more likely
to adopt the observed strategy in subsequent rounds of play. We develop an
adaptive learning algorithm based on one proposed by Roth and Erev (1995)
that incorporates our assumption about how players use the additional
information they receive about other players. We use this algorithm to simu-
late how play might evolve in our experimental treatments with and without
observation. The simulations suggest that the e¨ect of observation on learning
behavior is di¨erent in the two games. In the ultimatum game, players who
observe the actions and payo¨s of other players tend to move further from the
subgame perfect equilibrium prediction over time, relative to players who do
not observe the actions and payo¨s of others. In the best-shot game, players
who observe the actions and payo¨s of others tend to move closer toward the
subgame perfect equilibrium prediction over time relative to players who do
not observe the actions and payo¨s of others.

The predictions of our adaptive learning model are tested in an experiment
with human subjects. We ®nd that in the ultimatum game, players who
observe the actions and payo¨s of other players do indeed tend to move
further away from the subgame perfect equilibrium relative to players who do
not observe the actions and payo¨s of others. By contrast, in the best-shot
game, players who observe the actions and payo¨s of other players are only
slightly, though not signi®cantly, closer to the subgame perfect equilibrium
prediction relative to players who do not observe the actions and payo¨s of
others. Thus our results concerning the e¨ect of observation on learning are
mixed and appear to be dependent upon the game played.

2. The games

The ®rst game we consider is the ultimatum bargaining game in which two
players attempt to divide $10. Player 1 moves ®rst by proposing to keep a
nonnegative integer amount $y < $10 for herself, leaving Player 2 the residual
amount $10ÿ y.3 Player 2 must then decide whether to accept or reject Player
1's o¨er. If Player 2 accepts Player 1's o¨er, Player 2 receives the proposed
o¨er of $10ÿ y, while Player 1 receives $y. If Player 2 rejects Player 1's o¨er,
both players receive zero. While this game has many Nash equilibria, the
unique subgame perfect equilibrium is for Player 1 to demand $9 and for
Player 2 to accept this demand, thereby earning $1.

The second game we consider is the ``best-shot'' public good game of
Harrison and Hirshleifer (1989). Player 1 moves ®rst by choosing an integer
investment amount i1 A �0; 9�.4 Player 2 observes the investment amount

3 Note that these rules di¨er from the rules of other ultimatum game experiments in two respects.
First, Player 1 proposals must be in discrete, even-dollar amounts. Second, Player 1s are not al-
lowed to demand the entire $10 prize. We restrict Player 1s to making even-dollar demands as a
means of narrowing the strategy space and making it comparable to the discrete strategy space of
the best-shot game; the same restricted strategy space was used in our simulations. We do not
allow Player 1's to demand the entire $10 prize to ensure that the subgame perfect equilibrium is
unique.
4 In Harrison and Hirshleifer (1989), and Prasnikar and Roth (1992) the integer interval for in-
vestment choices was [0, 21]. We chose a shorter investment interval to make the Player 1 strategy
space as similar as possible to that in our treatment of the ultimatum game and to reduce the
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chosen by Player 1, and then also chooses an integer investment amount
i2 A �0; 9�. The project level (the amount of the public good actually furnished)
is Q � max�i1; i2�. Once the project level is determined, each player k receives
payo¨ Q�41ÿQ�=20ÿ 1:65� ik.5 Note that Player 2's best response to a zero
investment by Player 1 is an investment of 4, and Player 2's best response to a
nonzero investment by Player 1 is an investment of 0. There are two Nash
equilibrium outcomes: a subgame perfect equilibrium outcome in which Player
1 chooses to invest 0 and Player 2 chooses to invest 4, and a non-subgame
perfect equilibrium outcome in which Player 1 chooses to invest 4 and Player
2 chooses to invest 0.

2.1. Previous experimental results

In a number of controlled laboratory experiments of the ultimatum game, the
subgame perfect equilibrium prediction has been soundly rejected.6 A typical
®nding is that Player 1s propose to split the money prize nearly equally and
that Player 2s accept this proposal. Player 1s who propose to keep the bulk of
the money prize for themselves ®nd that their proposals are often rejected by
Player 2s, even though Player 2s always receive a higher monetary payo¨
by accepting any positive o¨er from Player 1s. One explanation for the
inconsistency of the experimental results with the theory is that players begin
play with a prior disposition to play fairly; given some experience and/or
additional information they might learn to play the subgame perfect outcome.
This explanation, while appealing, is not completely satisfying; it does not
o¨er much guidance as to what kind of experience or knowledge players must
acquire or how long it will take players to become experienced or knowl-
edgeable enough to play the subgame perfect equilibrium strategy. Harrison
and McCabe (1996), for example, have noted that experimental tests of
the ultimatum game ignore the theoretical assumption that players have
``common knowledge'' of the beliefs, motives and strategies of all other play-
ers. However, their implementation of the common knowledge assumption
comes at the cost of substantially altering the experimental design. Evidence
from other experiments suggests that greater or more varied experience in
playing the ultimatum game does not greatly a¨ect players' tendencies to
deviate from the subgame perfect equilibrium (see, e.g. GuÈth, Schmittberger,
and Schwarz (1982), Bolton (1991), or Roth et al. (1991)).

In contrast, the Harrison and Hirshleifer (1989) best-shot game experiment
yielded results that were largely consistent with the subgame perfect outcome
(cf. Harrison and Hirshleifer's experiment SQ-3). Prasnikar and Roth (1992)

likelihood of negative payo¨s in the stage game. In both the Harrison-Hirshleifer payo¨ tables
and those we used, investment amounts above 8 are very likely to result in negative payo¨s. Since
both Harrison-Hirshleifer and Prasnikar-Roth report few, if any, investment choices above 8, we
conjectured that removing some of these choices would not signi®cantly alter the play of this
game.
5 These parameters di¨er somewhat from those used by Harrison and Hirshleifer (1989); for given
investment levels, payo¨s are roughly twice what they would be in Harrison and Hirshleifer. We
chose these numbers so that equilibrium payo¨s in the ultimatum game and best-shot game are of
approximately the same magnitude. The numbers we use preserve both the Nash equilibria and
the best-response correspondence of Harrison and Hirshleifer.
6 See Roth (1995) or GuÈth and Tietz (1990) for surveys.
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repeated the Harrison-Hirshleifer best-shot game experiment, but gave players
``full information'' about each other's payo¨ functions, in contrast to
Harrison and Hirshleifer, who did not explicitly tell subjects that they shared
the same payo¨ function. Prasnikar and Roth found that this change in
available information did not signi®cantly a¨ect the outcome of the game;
players with full information also chose actions that were very close to the
subgame perfect equilibrium prediction.

Prasnikar and Roth concluded that the di¨erence in outcomes between
the best-shot and ultimatum games could be attributed to di¨erences in o¨-
the-equilibrium-path incentives. They observed that Player 1s in the ultimatum
game do better in terms of expected payo¨ (given the observed distribution of
Player 2 responses to particular Player 1 actions) by deviating further from the
subgame perfect equilibrium (up to a point). In contrast, in the best-shot
game, Player 1s do worse in terms of expected payo¨ by deviating further
from the subgame perfect equilibrium. Hence, convergence to equilibrium is
much more likely in the best-shot game than in the ultimatum game, regard-
less of whether players in the best-shot game have full information about
payo¨s.

3. Observation of others

With the exception of the study by Harrison and McCabe (1996), the
experimental studies that we have discussed all envision that players learn
using only their own past history of play. We now consider the possibility that
players can observe the actions and payo¨s of another pair of players. In
particular, we want to consider versions of the ultimatum and best-shot games
where, after seeing their own actions and payo¨s, each matched pair of play-
ers is able to observe the actions and payo¨s of one randomly chosen pair of
players in the just-completed round of play. We refer to these versions of the
ultimatum and best-shot games as versions with observation. Games in which
players observe only their own history of play will be referred to as versions
without observation.

The restriction on observation to a single pair of players is intended to
minimize the potential for strategic actions aimed at reputation-building. In
particular, Player 2s in both games may seek to form ``tough'' reputations as a
means of obtaining more favorable treatment from Player 1s, who move ®rst.
In the ultimatum game, Player 2s build reputations by rejecting proposals that
give them low payo¨s. In the best-shot game, Player 2s build reputations by
responding to low Player 1 investment amounts with low investment amounts
of their own. Reputation-building in both games is a consequence of the
repeated nature of the games and of the information that players receive.
While reputation-building is possible in both treatments, it may be more
prevalent in sessions with observation since in these sessions, Player 2s know
that their actions can be observed by two Player 1s rather than only one.

We begin our inquiry into the e¨ect of observation on learning behavior by
conducting simulations using a version of Roth and Erev's (1995) reinforce-
ment learning model in versions of the ultimatum and best-shot games with
and without observation. The learning algorithm was modi®ed so that it was
capable of processing information on observed actions and payo¨s as well as
on player's own actions and payo¨s. We use the simulation results from this
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model to formulate some hypotheses that we later test in our experiment. We
chose to use the Roth-Erev model because it has been successful in tracking
the qualitative features of the behavior of subjects in experimental versions of
the ultimatum and best-shot games without observation (Roth and Erev
(1995)) as well as for other games (Erev and Roth (1998), Feltovich (1998)),
and also because it is the only learning model that has thus far been used for
tracking behavior in these two games.

3.1. The learning model

The learning model can be described as follows. In round t, player i has a
propensity qij�t�V 0 to play her j th pure strategy from a set of n possible
pure strategies. The probability that she plays the j th pure strategy in round
tV 1, pij�t�, is determined by these propensities:

pij�t� �
qij�t�Pn
j�1 qij�t� :

In every round t, each player is randomly matched with a player of the
opposite type and chooses a strategy according to his or her probabilities.
When observation of other players is allowed, each pair of players is
randomly matched with another pair of players, with all pairings being
equally likely. The strategies of a player and her opponent determine their
payo¨s, and these payo¨s are used to update the players' propensities for
round t� 1. When there is observation, players also update their propensities
to play the strategies of the players they have observed.

Suppose in round t, the ith Player 1 plays strategy j resulting in payo¨
oi�t� and observes that the i 0th Player 1 plays strategy j 0 resulting in payo¨
oi 0 �t�. Her propensities are updated as follows:

qij�t� 1� � qij�t� � oi�t� and qi j 0 �t� 1� � qi j 0 �t� � boi 0 �t�;

where b V 0 is the weight placed on observed payo¨s. Thus Player 1s treat
observed outcomes similarly to own outcomes, but give them b times as much
weight. This is meant to capture the idea that ®rsthand experience usually
takes precedence over secondhand experience. There is no updating of pro-
pensities to play strategies that were neither chosen nor observed in round t.
Initial (t � 0) propensities are assumed to be exogenously given.

In modeling how Player 2s update their propensities, we must make
assumptions as to how strategies are inferred from observed actions. When a
Player 2 observes the action a2 of another Player 2, he also observes the action
a1 of the Player 1 matched to that Player 2. Thus, each Player 2 knows the set
of strategies that could possibly have been played by the observed Player 2,
given the observed action pro®le a � �a1; a2�. Let f j 01; j 02; . . . ; j 0ng be the set of
possible strategies given a. We assume that

Pr� j 0mja� �
pij 0m�t�Pn
m�1 pij 0m�t�

:
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This inference technique is consistent with Bayes' rule combined with the
assumption that simulated Player 2s act as though they all have the same
mixed strategy.

Now suppose that in round t the ith Player 2 plays strategy j resulting in
payo¨ oi�t� and observes that the action pro®le a results in the payo¨ oi 0 �t�.
His propensities are updated as follows:

qij�t� 1� � qij�t� � oi�t� and qi j 0 �t� 1� � qi j 0 �t� � boi 0 �t�Pr� j 0 j a�

for all j 0 that are possible given a.
Setting b � 0 gives us the learning model for the no-observation case,

which is the one originally proposed by Roth and Erev (1995).

3.2. Application to the ultimatum and best-shot games

For our ultimatum game simulations, we use the set f0; . . . ; 9g of possible
demands as the pure strategy set for Player 1s. Theoretically, the Player 2
strategy set in the ultimatum game is the set of all functions mapping the set of
demands into the set of responses {Accept, Reject}, but we follow Roth and
Erev (1995) in limiting the Player 2 strategy set to ``threshold'' strategies of the
form: ``accept demands of j or less, and reject demands of more than j,'' for
some integer j A f0; . . . ; 9g. The subgame perfect equilibrium is �9; 9�. Given
an observed outcome of ( j, Accept), the set of possible Player 2 strategies is
fk j k V jg, and given an observed outcome of ( j, Reject), the set of possible
Player 2 strategies is fk j k < jg.

For our best-shot game simulations, we use the set of investment levels
f0; . . . ; 4g as the pure strategy set for Player 1s. In our experiment with human
subjects we allow Player 1s to choose investment amounts greater than 4.
However, we noted that in both the Prasnikar-Roth and Harrison-Hirshleifer
best-shot experiments, players very rarely chose investment amounts greater
than 4. Because the Player 2 strategy set is large, even after we reduce the
number of Player 1 strategies to just 5, we reduce the number of Player 2
strategies by restricting investment choices to the set f0; . . . ; 4g and by further
restricting Player 2 strategies so that a pure strategy is characterized by how it
responds to a Player 1 investment of 0 and how it responds to Player 1
investment amounts that are greater than 0. This results in Player 2s having 25
available pure strategies of the form ``Respond to 0 with k1 and to 1, 2, 3, or 4
with k2.'' Given an observed outcome of �0;m�, the set of Player 2 strategies is
f�m; k�j k A f0; . . . ; 4gg, and given an observed outcome of � j;m� for j V 1,
the set of Player 2 strategies is f�k;m�j k A f0; . . . ; 4gg.

3.3. Simulation results

We conducted 400 simulations, 100 each of the ultimatum game with and
without observation and 100 each of the best-shot game with and without
observation. Each simulation was run for 200 rounds and corresponds to an
experimental session involving 6 Player 1s and 6 Player 2s. We estimated ini-
tial propensities from observed actions in previous experiments: we used the
®rst-round play reported in Prasnikar and Roth's (1992) best-shot game with
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complete information for all of our best-shot simulations and we used the
®rst-round play reported in Roth et al.'s (1991) (Pittsburgh) ultimatum game
for all of our ultimatum game simulations. We set b � 0:5 in all of our simu-
lations involving observation.

Figure 1 shows mean Player 1 demands in the two ultimatum cells (left
panel) and mean Player 1 investment amounts in the two best-shot cells (right
panel), in both cases averaged over all 100 simulations. We see that observa-
tion has opposite e¨ects in the two games. In the ultimatum game, mean
Player 1 demands are further from the subgame perfect equilibrium with
observation than without observation, while in the best-shot game, mean
Player 1 investment amounts are closer to the subgame perfect equilibrium
with observation than without observation. Moreover, the di¨erences in play
between the observation and no-observation treatments persist over many
rounds, particularly in the ultimatum game.7

The di¨erence that we observe between the e¨ect of observation in the
ultimatum game simulations and in the best-shot game simulations is due
to di¨erences in incentive structures o¨ the equilibrium path. Recall that
Prasnikar and Roth (1992) found that for ``typical'' distributions of Player 2
responses in ultimatum game experiments, o¨-the-equilibrium-path payo¨s
are such that Player 1s earn higher payo¨s by deviating from subgame perfect
play, while in best-shot game experiments, o¨-the-equilibrium-path payo¨s
are such that Player 1s earn higher payo¨s by playing more in line with
subgame perfect play. Since we initialized the learning algorithm using ``typi-
cal'' Player 2 play, the o¨-the-equilibrium-path incentive structure is main-

Fig. 1. Simulation predictions

7 Our simulation results are robust to changes in the value of our imitation parameter, b, which
we set equal to .5. We can think of our simulation results for games without observation as cor-
responding to a choice of b � 0. In some further simulations (not reported above) we considered
10 additional values of b; 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9, 1.0, and 1.5. We found that in the
ultimatum game, as b increases, mean demands move away from the subgame perfect equilibrium
more quickly. Similarly, for the best-shot game, as b increases, mean Player 1 investments move
closer to the subgame perfect equilibrium more quickly. Thus we conclude that our simulation
predictions are robust to changes in the value of b, the imitation parameter.
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tained in our simulations, and thus deviations from subgame perfect play
result in higher payo¨s (and more reinforcement) in the ultimatum game than
subgame perfect play, while they result in lower payo¨s (and less reinforce-
ment) in the best-shot game than subgame perfect play. In ultimatum game
simulations with observation, deviations from subgame perfect play are
rewarded not only for the player who deviated, but also for the observing
player. Thus, the probability and extent of deviation from subgame perfect
play become higher even more quickly when we allow for observation
of others. In best-shot game simulations with observation, deviations from
subgame perfect play are punished not only for the player who deviated, but
also for the observing player. Thus, the probability and extent of deviation
from subgame perfect play become lower even more quickly when we allow
for observation of others.

3.4. Hypotheses

Based on our simulations, we hypothesize that allowing observation of the
actions and payo¨s of another pair of players will have opposite e¨ects on
behavior over time in the ultimatum and best-shot games. We focus on the
behavior of Player 1s, as their strategies are readily observable from their
actions. We hypothesize that: (1) Player 1 demands in the ultimatum game
with observation will be further from subgame perfect equilibrium demands
(i.e., lower) than Player 1 demands in the ultimatum game without observa-
tion; (2) Player 1 investment amounts in the best-shot game with observation
will be closer to subgame perfect equilibrium investment amounts (i.e., lower)
than Player 1 investment amounts in the best-shot game without observation.

Our ®rst hypothesis runs counter to the claim that deviations from
subgame perfect equilibrium behavior are due to players' lack of information.
Here we predict that giving players in the ultimatum game more information
± a step in the direction of satisfying the mutual knowledge assumption
discussed in the introduction ± actually increases the degree of deviation from
the subgame perfect equilibrium prediction! On the other hand, our second
hypothesis re¯ects the common (game-theoretic) wisdom that giving players
more information in the best-shot game leads to play closer to the subgame
perfect equilibrium prediction.

4. Experimental design

We used a 2� 2 experimental design. The two treatment variables were 1) the
game played, ultimatum or best-shot, and 2) observation or no observation.
We ran three sessions of each of the four experimental cells. Subjects were
recruited from the undergraduate population at the University of Pittsburgh.
Copies of the instructions used in the experiment are available from the
authors upon request.

At the beginning of an experimental session, subjects were randomly
assigned the role of Player 1 or Player 2; roles remained unchanged for the
duration of the session. In each round of a game, each player was randomly
and anonymously paired with a player of the opposite type. After players were
paired, Player 1s made and veri®ed their moves. Player 2s observed the moves
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of their opponents and then made and veri®ed their moves. Then all players
were shown their own moves, their opponents' moves, their own payo¨s, and
their opponents' payo¨s. In cells without observation, the next round would
begin after all players had pressed a key to continue. In cells with observation,
after all players had pressed the key, each pair of players was shown the
actions and payo¨s of another pair of players, where the observed pairs were
assigned as described in section 3.1. After observing these actions and payo¨s,
players were prompted to press a key to continue. When all players had
pressed this key, the next round of play began.

Sessions consisted of 40 rounds of the ultimatum game, or 30 rounds of the
best-shot game. (Best-shot games proceeded more slowly). Subjects were not
told how many rounds would be played, but they did know that the session
would not exceed 90 minutes. Following the last round, one round was ran-
domly chosen by the computer program, and subjects were paid their earnings
in that round in addition to a $10.00 participation fee. Average total earnings
for subjects in the ultimatum cells were $14.52 for Player 1s and $13.34 for
Player 2s; average total earnings for subjects in the best-shot cells were $13.02
for Player 1s and $12.56 for Player 2s.

5. Experimental results

5.1. Ultimatum game results ± player 1 behavior

Figure 2 shows mean demands of all Player 1s in the ultimatum cells over 5-
round intervals. Mean demands in the ®rst 5 rounds are about $6.00 in both
cells.8 In the no-observation sessions, mean demands increase by about 30
cents from the ®rst 5 to the second 5 rounds and then remain relatively
constant while in the observation sessions, mean demands decrease steadily
over time to just over $5.25 in the last 5 rounds. The mean demands illustrated
in Figure 2 are also reported in the second and third columns of Table 2. The
last two columns of this table report 1-sided robust rank-order test statistics
(denoted by UÁ ) and p-values for di¨erences in the distributions of demands
between the observation and no-observation sessions for each group of 5

Table 1. Experimental session information

Session Game Observe
Others?

Number of
Subjects

Session Game Observe
Others?

Number of
Subjects

1 Ultimatum Yes 16 7 Ultimatum Yes 10
2 Best-Shot No 8 8 Ultimatum No 6
3 Best-Shot Yes 12 9 Best-Shot No 14
4 Ultimatum No 12 10 Ultimatum Yes 14
5 Best-Shot No 12 11 Ultimatum No 14
6 Best-Shot Yes 12 12 Best-Shot Yes 18

8 This mean is similar to mean initial demands found in many ultimatum game experiments; see
e.g. Roth (1995).
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rounds and for all 40 rounds.9 Looking at the tests, we see that with the
exception of the ®rst and fourth 5-round periods, we can reject the null
hypothesis of no di¨erence between the observation and no-observation
sessions in favor of the alternative that Player 1 demands are lower in the
observation sessions. Thus we ®nd support for our hypothesis regarding the
e¨ect of observation on behavior in the ultimatum game.

We further ®nd that we cannot reject the null hypothesis of no change over
time in mean demands in the no-observation cell, but we can reject this same
null hypothesis for mean demands in the observation cell, in favor of the

Table 2. Ultimatum game ± player 1 demands

Rounds Mean Demand ±
Observation Sessions

Mean Demand ±
No-Observation Sessions

UÁ p-value
(if pU :10)

1±5 5.85 6.09 ÿ0.39 ±
6±10 5.85 6.46 ÿy .05
11±15 5.68 6.34 ÿ2.35 .10
16±20 5.66 6.32 ÿ1.13 ±
21±25 5.62 6.54 ÿ4.46 .10
26±30 5.60 6.26 ÿ2.35 .10
31±35 5.39 6.40 ÿy .05
36±40 5.27 6.36 ÿy .05
All 5.62 6.35 ÿ2.35 .10

Fig. 2. Ultimatum game ± mean player 1 demands

9 We use the robust rank-order test instead of the more commonly used Mann-Whitney test be-
cause the Mann-Whitney test assumes that the samples come from distributions with identical
second (dispersion) and higher-order moments, whereas the robust rank-order test makes no such
assumption. See Siegel and Castellan (1988). Because the session-level data consist of only six
observations for each test, we must use the small-sample distribution of UÁ rather than the normal
approximation. We are thus constrained to using only two signi®cance levels ± .10 and .05 ±
rather than the near-continuum available for the normal approximation (see Fligner and Policello
(1981)). Of course, more session level data would help to alleviate this problem. Our session-level
tests can therefore be viewed as rather severe tests for di¨erences between treatments.
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alternative hypothesis that mean demands do change over time (Page test for
ordered alternatives, pA :01).

In addition to examining di¨erences between treatments using pooled
session-level data, we also made use of the individual-level data consisting of
the unpooled individual observations on Player 1 demands in all sessions.
Using this individual level data from all sessions, we estimated an OLS re-
gression model for Player 1 demands.10 The estimated equation is:

Player 1 Demand� 6:7624
�0:0801�

ÿ 0:52354
�0:1100�

�Obs: Dummy� � 0:00375
�0:0030�

Round

ÿ 0:0194
�0:0040�

�Round�Obs: Dummy��
X4
i�1

Session Dummyi

and the adjusted R2 was 0.2567. The Observation dummy is 1 in sessions with
observation and 0 otherwise. Round is the current round number in the ses-
sion (1±40). The Round � Observation Dummy variable is just the product of
the round variable and the observation dummy; this variable is intended
to capture time-varying e¨ects of allowing for observation of other players.
Finally, we included session dummies to control for possible di¨erences across
sessions; to save space we have suppressed the coe½cient estimates on these
session dummies. One can see from the standard errors on the coe½cient
estimates (given in parentheses) that with the exception of the coe½cient on
Round, all of the coe½cient estimates in the above regression model are
signi®cantly di¨erent from zero at the .01 level. We conclude that there is
support for the notion that observation of others a¨ects the evolution of
Player 1 demands.

Finally, we examine the e¨ect that observation has on disaggregated Player
1 behavior. Recall that in our simulations, we assumed that players updated
their propensities for playing observed actions as well as own actions based on
the payo¨s they received and the payo¨s they observed. We now examine
whether Player 1s in the experimental sessions used the extra information
given them in the observation cell, and if so, how they used it. To assess the
e¨ect of observation on individual play, we categorize our sample of Player 1s
according to their own outcomes and then examine whether their next-round
actions vary with the outcomes they observed in the previous round. In par-
ticular, we focus on Player 1 actions in rounds following own outcomes of (1)
an accepted 50±50 split, (2) an accepted 60±40 split, and (3) a rejected 60±40
split. These outcomes account for approximately 87% of all outcomes in all
rounds of the ultimatum sessions with observation. For each own outcome,
we then examine the extent to which Player 1 actions in the following round

10 We acknowledge that our use of econometric methods to analyze individual-level data may not
be completely valid due to the lack of independence among the individual data; within a particular
session, the play of di¨erent individuals in a particular round cannot be regarded as consisting of
independent observations because the individuals may have interacted with one another before, or
may have interacted with the same other players in previous rounds. This problem is further
exacerbated in our observation cells. The lack of independence greatly increases the likelihood of
Type I error in our hypothesis tests. Thus, our econometric results must be viewed with some
caution. We note, however, that in all cases, our regression results using individual-level data serve
only to con®rm (and do not detract from) the ®ndings of our nonparametric tests based on
session-level data which do consist of independent observations.
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are correlated with observed outcomes. We consider observed outcomes of (a)
an accepted 60±40 split, and (b) a rejected 60±40 split. Table 3a reports, for
each possible pairing of these own and observed outcomes, the relative fre-
quency of Player 1s who chose to demand 60% or more of the prize in the next
round of play. We see that Player 1s whose demand of 60% was accepted in
the current round are substantially more likely to demand 60% or more of the
prize in the next round after observing an accepted 60±40 split than after
observing a rejected 60±40 split in the current round. That is, Player 1s appear
to be taking the observed information into account when choosing actions in
later periods.

One may wonder whether the apparent correlation between observed
outcomes and future actions in Table 3a is due to the additional information
players receive, or to some other phenomenon. We sought to determine
whether the correlations were spurious by examining similar relative frequen-
cies for the ultimatum game sessions without observation. We randomly
assigned all Player 1s in each round of each session without observation
to another Player 1 in the same round of the same session. We used the
same assignment algorithm that we used in our experimental sessions with
observation. We then treated the assigned Player 1s as if they were ``observed''
Player 1s. In Table 3b, we report the mean and standard error of the proba-
bilities (corresponding to those in Table 3a) that we obtained from repeating

Table 3a. Use of observed outcomes by player 1s:
Probability of demanding 60% or more in the next
round given own and observed outcomes in the cur-
rent round

Own
Outcome

Observed Outcome

60% Accepted 60% Rejected

50% Accepted .58 .51

60% Accepted .82 .42

60% Rejected .44 .32

Table 3b. Player 1s in sessions without observa-
tion randomly assigned to other player 1s: mean (std.
error) probability of demanding 60% or more in the
next round given own and assigned outcomes in the
current round (100 simulations)

Own
Outcome

Outcome of Assigned Player 1

60% Accepted 60% Rejected

50% Accepted .78 (.05) .89 (.11)

60% Accepted .77 (.02) .81 (.09)

60% Rejected .83 (.07) .78 (.13)
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this exercise 100 times. If the correlations observed in Table 3a are due to
some phenomenon unrelated to the presence of observation, we would expect
to see similar correlations in Table 3b. Similar correlations are not observed;
there are no substantial di¨erences between elements in each row of Table 3b.
Thus it appears that the correlations seen in Table 3a really are due to Player
1s taking the observed information into account when choosing strategies for
the next round.

5.2. Ultimatum game results ± player 2 behavior

We have suggested that the di¨erences in behavior between Player 1s in the
observation and no-observation cells may be explained by the presence of
observation in the former. An alternative explanation is that Player 1s are
merely reacting to the actions of Player 2s who are behaving di¨erently in the
two cells. Many experimenters have sought to explain Player 1 behavior in the
ultimatum game by examining how well Player 1 actions correspond to best
responses to the historical frequency distribution of Player 2 actions.11 Figure
3 shows, for both ultimatum game cells, the relative frequencies with which
Player 2s accept Player 1 demands of 50%, 60%, and 70% of the prize over 5
round intervals.12 The principal di¨erence in Player 2 behavior between
the two cells appears to be in their responses to proposed 70±30 splits. In the
no-observation cell, proposals for 70±30 splits are accepted more than half the
time in the ®rst 5 rounds, and the frequency of acceptance increases to over
80% in the last 30 rounds. Nevertheless, using robust rank order tests on fre-
quency data at the session level, we are unable to ®nd statistically signi®cant
di¨erences in acceptance rates for Player 2s facing 70±30 proposals between
the observation and no-observation treatments. The same ®nding also
holds for Player 2s facing 50±50 and 60±40 proposals, again using robust
rank-order tests on frequency data at the session level.

11 See, e.g., Roth et al. (1991).
12 In the third panel of Figure 3, frequency values of 0 for a given 5-round period do not imply
the absence of Player 1 demands of 70%. Rather, they indicate that Player 2s rejected all 70±30
proposals they faced.

Fig. 3. Ultimatum game ± player 2 frequencies of acceptance
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Since the session level data do not reveal any signi®cant di¨erences in
Player 2 behavior across treatments, we also examined the individual-level
Player 2 data using probit analysis. The dependent variable, Accept, is the
Player 2's decision of whether to accept �� 1� or reject �� 0� a particular
Player 1 proposal. We considered Player 2 responses to all Player 1 demands
as well as to Player 1 demands of 60% and 70%. The model we estimated is:

Accept � b0 � b1 Round� b2 Observation Dummy� b3 Round

�Observation Dummy �
X4
i�1

b3�i Session Dummyi

� b8 Player 1 Demand:

Here, the Round variable, the Observation dummy, the Round � Observation
variable and the Session dummies are the same as in the Player 1 regressions
reported in section 5.1. The Player 1 Demand variable is the proposal that the
Player 2 faced. In those cases where we focus on a particular type of Player 1
proposal, this variable is omitted as a regressor. The regression results are
presented in Table 4.13 We see that in all cases, the coe½cient estimate on the
Round � Observation Dummy term is negative and signi®cant at the .10 level
suggesting that over time, the probability that Player 2s accept Player 1
demands is decreasing in the observation treatments as compared with the no
observation treatments. We also see that the coe½cient estimate on the
observation dummy by itself is also negative and signi®cant at the .10 level for
the regressions involving all Player 1 demands and Player 1 demands of 70%.
Thus we ®nd some evidence that the probability a Player 2 accepts a given

13 To save space we have again suppressed the coe½cient estimates on the dummy terms.

Table 4. Probit estimates: Probability that player 2 accepts the demand of
player 1

Regressor All Player 1 Player 1 Player 1
Demandsa Demands $6 Demands $7

Constant 8.579*** 2.031*** 1.106***
(0.535) (0.429) (0.282)

Round ÿ0.007 ÿ0.002 0.016
(0.006) (0.008) (0.011)

Observation Dummy ÿ0.391* ÿ0.012 ÿ0.889*
(0.228) (0.492) (0.481)

Round � Obs. Dummy ÿ0.017* ÿ0.019* ÿ0.075*
(0.008) (0.011) (0.031)

Player 1 Demand ÿ1.100*** ± ±
(0.069)

Pr > w2 0.000 0.000 0.000
Number of Observations 1,440 636 236

a Standard errors in parentheses. Coe½cient estimates with a *(**, ***) are
signi®cantly di¨erent from zero at the .10 (.01,.001) level of signi®cance.
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Player 1 demand is lower in certain cases in the observation treatment com-
pared with the no-observation treatment.

This lower probability of acceptance in the observation treatment may
have a¨ected Player 1 demands. Given the frequencies with which Player 1
proposals are accepted by Player 2s the optimal Player 1 demand ± the
demand that maximizes expected monetary payo¨ ± is typically lower in the
observation cells than in the no-observation cells.14 Since there is essentially
no di¨erence between Player 2 initial behavior (in the ®rst 5 rounds) in the
observation and no-observation cells, we conclude that changes over time in
Player 2 behavior di¨er between the observation and no-observation cells,
and that this di¨erence may help explain the di¨erences in Player 1 learning
behavior.15

5.3. Best-shot game ± player 1 results

Figure 4 shows mean Player 1 investment amounts in the best-shot game cells
over 5-round periods. We see that these investment amounts follow similar
paths, both starting above 3, dropping o¨ quickly over the ®rst 10 rounds,

14 In two of the three ultimatum sessions with observation, the optimal demand is 5 in all 5-round
periods; in the other session, the optimal demand is 6 in all 5-round periods. In two of the three
sessions without observation, the optimal demand varies between 5 and 6; in the other session, the
optimal demand is 6 in the ®rst two 5-round periods and 7 in the last six 5-round periods. In all
sessions, Player 1 expected revenues decline weakly monotonically as demands move in either
direction from the optimum.
15 It is also of interest to consider whether Player 2s in our ultimatum game experiments are
foregoing signi®cant payo¨ amounts in their rejection of positive o¨ers by Player 1s. If Player 2s
perceive that the monetary stakes are low, they may (rationally) refuse to employ much e¨ort in
assessing how to play the game. (For a further discussion of this subject, see e.g. Harstad and
Marrese (1982) for public good games, or Ho¨man, McCabe and Smith (1996) for ultimatum
games.) In our ultimatum games without observation, the total amount foregone each round by
Player 2s averaged 15.7% of expected earnings per round (given Player 1 proposals) while in ses-
sions with observation the total amount foregone each round averaged 19% of expected earnings
per round (given Player 1 proposals).

Fig. 4. Best-shot game ± mean player 1 investments
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and then remaining approximately constant over the last 15 rounds, near the
subgame perfect equilibrium prediction of 0.16 In fact, the modal Player 1
investment amount is 0 in all 5-round periods of the observation cell, and in
all 5-round periods except the ®rst in the no-observation cell. We also observe
that in every 5-round period, Player 1 investment amounts are somewhat
closer to the subgame perfect equilibrium prediction of 0 in the observation
cell than in the no-observation cell, consistent with our hypothesis regarding
behavior in the best-shot game.

However, according to robust rank-order tests reported in Table 5, the
observed di¨erences in investment amounts between the two treatments are
not signi®cant �p > :10�, except in the ®rst 5 rounds. The observed decrease
over time in mean Player 1 investment amounts in the no-observation cell is
signi®cant (Page test for ordered alternatives, pA :005); however, it is only
marginally signi®cant in the observation cell (Page test for ordered alter-
natives, pA :1). We conclude that Player 1s in both cells quickly learn to play
close to the subgame perfect equilibrium and that there is little support for our
hypothesis that observation leads Player 1s in the best-shot game to adopt
strategies closer to the subgame perfect prediction.

An OLS regression serves to con®rm that observation of others does
not signi®cantly a¨ect Player 1 behavior. Our estimated model of Player 1
investment is:

Player 1 Investment � 4:2568
�0:3101�

ÿ 0:6662
�0:4163�

�Obs:Dummy� ÿ 0:3456
�0:0432�

�Round�

ÿ 0:0042
�0:0581�

�Round�Obs:Dummy�� 0:0082
�0:0014�

Round2

0:0008
�0:0040�

�Round2�Obs:Dummy�

�
X4
i�1

Session Dummyi

16 These initial investment levels are almost twice as high as those found by Harrison and
Hirschleifer (1989) and by Prasnikar and Roth (1992). This di¨erence may be due to the repeated
nature of our game versus the one-shot nature of the earlier experiments. It is also worth noting
that Harrison and Hirschleifer conducted only one sequential best-shot session and Prasnikar and
Roth conducted only two; therefore, it may not yet be clear what initial conditions one should
expect to ®nd in a best-shot experiment.

Table 5. Best-shot game ± player 1 investment amounts

Rounds Mean Investment ± Mean Investment ± p-value
Observation Sessions No-Observation Sessions UÁ (if pU :10)

1±5 3.14 3.94 ÿy .05
6±10 1.43 1.81 ÿ0.18 ±
11±15 0.77 1.47 ÿ1.13 ±
16±20 0.92 1.19 ÿ1.13 ±
21±25 1.21 1.31 ÿ0.18 ±
26±30 0.88 1.14 ÿ0.53 ±
All 1.39 1.81 ÿ1.13 ±
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The adjusted R2 is 0.1893. Here the Round and Observation variables are as
in the ultimatum game regressions. We have also included variables based on
a quadratic trend term, Round2 to account for the possibility of nonlinear
changes in Player 1 investment levels over time. We see from the standard
errors on the coe½cient estimates (given in parentheses), that the coe½cients
on variables involving the observation dummy are never signi®cantly di¨erent
from zero. On the other hand, the Round and Round2 terms are signi®cantly
di¨erent from zero; the negative coe½cient on Round and the positive
coe½cient on Round2 indicate that Player 1 investment levels decrease over
time at a decreasing rate. We conclude that there is no support for our
hypothesis that observation a¨ects the evolution of Player 1 investments.
Player 1s in both treatments learn at about the same rate to play near the
subgame perfect strategy.

Furthermore, Player 1s in the best-shot game do not appear to be in¯u-
enced by di¨erences in payo¨s between own and observed actions. In contrast
to the ultimatum game, we ®nd no strong correlation between best-shot game
payo¨s (own or observed) and next-round actions using an analysis similar to
the one we conducted for the ultimatum game (as reported in Tables 3a±
3b).17 Since we assumed in our simulations that Player 1s are in¯uenced by
such di¨erences in payo¨s, it is not surprising that the predictions of our best-
shot simulations were not borne out in the experimental data.

5.4. Best-shot game ± player 2 behavior

Figure 5 illustrates the evolution of Player 2 behavior in the best-shot game
over 5-round periods. The left panel shows Player 2s' mean response to non-
zero investments by Player 1s. While Player 2s do not initially recognize that 0
is a best response to any nonzero investment by Player 1s, they begin to rec-
ognize this strategy after the ®rst few rounds, as the mean response to nonzero

17 We have therefore chosen not to report this analysis here. See Du¨y and Feltovich (1996) for
details.

Fig. 5. Best-shot game ± mean player 2 responses
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investment drops sharply from rounds 1±5 to rounds 6±10, and stays low
throughout the last 20 rounds.18 In the right panel, we see that Player 2s
initially respond to a Player 1 investment of zero with 3 on average in both
cells. Then, instead of increasing toward the monetary best response of 4,
Player 2 responses actually decline slightly in both cells.

Robust rank-order tests show no signi®cant di¨erences between cells in
Player 2 responses to either zero or nonzero investment levels by Player 1s
using session level data. Therefore, we again turned to an examination of the
individual level Player 2 data using probit analysis. The dependent variable,
Player 2 Investment, is the Player 2's decision of whether to invest a positive
amount �� 1� or zero �� 0� in response to a particular Player 1 investment
level. As in the aggregate data analysis, we considered responses to all Player
1 investment levels and to Player 1 investment levels of zero and nonzero
amounts. The model we estimated is given as:

Player 2 Investment � b0 � b1 Round� b2 � b3 Round2

� b4 Observation Dummy� b5 Round

�Observation Dummy � b6 Round2

�Observation Dummy

�
X4
i�1

b6�i Session Dummyi

� b11 Player 1 Investment:

The round and observation variables are similar to those used in the ultima-
tum game probit analysis. Note that in these regressions, we also include var-
iables involving the square of the round number, Round2; the purpose is to
capture the possibility of very rapid, nonlinear changes in behavior over time.
The Player 1 investment variable is the amount invested by the Player 1 that is
matched with the Player 2. The regression results are presented in Table 6.19

We see from this table that in all three cases, the variables involving the
observation dummies are never signi®cant; this ®nding is consistent with our
tests for di¨erences in Player 2 behavior using the session-level data. Like the
Player 1 regressions, we also see that the only signi®cant coe½cient estimates
are associated with the round and round2 terms; the negative sign on the
round coe½cient and the positive sign on the round2 coe½cient imply that
Player 2's probability of investing a positive amount decreases over time at a
decreasing rate. The deviation from subgame perfect play (in response to zero
Player 1 investments) might be explained by reputation-building on the part of
Player 2s.20

We note that our Player 2 responses to zero investment amounts di¨er

18 The apparent increase in the last few rounds of the sessions with observation is the result of a
few outliers; the median and modal responses are 0 in every 5-round period but the ®rst in both
treatments.
19 To save space we have again suppressed the coe½cient estimates on the dummy terms.
20 See section 5.5.
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from the game-theoretic best response of 4 and also from the mean responses
observed by Harrison and Hirshleifer (1989) and Prasnikar and Roth (1992)
that were close to 4. These di¨erences might be explained by the repeated-
game nature of our experiment and the resulting incentives for reputation-
building that are not present in the experiments of Harrison-Hirshleifer and
Prasnikar-Roth. However, while Player 2s do not always respond optimally
(in terms of monetary payo¨ ) to Player 1 actions, they do play close enough
to their monetary best responses that the optimal Player 1 investment in
almost every 5-round period is zero.21 Given this Player 2 behavior, a Player
1's payo¨ from investing zero is always much greater than her payo¨ from
investing a positive amount. Thus, even in the early rounds, Player 1s face a
strong incentive to play the subgame perfect strategy.22

5.5. Reputation-building

We have noted that the e¨ect of increased information on Player 1 behavior
may be complicated by the fact that Player 2s know that this information is

21 In one of the sessions with observation, the optimal Player 1 investment is 4 in three of the six
5-round periods. In one of the sessions without observation, the optimal Player 1 investment is 1
in one 5-round period and 3 in another. In all other 5-round periods (31 out of 36), the optimal
Player 1 investment is zero. Unlike the ultimatum game sessions, a Player 1's expected revenues do
not decrease monotonically as investments move away from the optimum. In particular, as Player
1s increase their investments up from zero, their expected revenues decline sharply, but then rise to
a local maximum around 4, before declining once again for investment levels in excess of 4.
22 We note again (cf. footnote 15) the amounts foregone on average each round by Player 2s were
21.7% of expected earnings per round in sessions without observation and 24% of expected earn-
ings per round in sessions with observation (given Player 1 investment levels).

Table 6. Probit estimates: Probability that player 2 invests a positive amount, given
player 1 investment

Regressor All Player 1 Player 1 Player 1
Investmentsa Investment � 0 Investment > 0

Constant 1.657*** 2.703*** 0.504*
(0.224) (0.551) (0.298)

Observation 0.053 ÿ0.007 ÿ0.490
(0.273) (0.701) (0.339)

Round ÿ0.134*** ÿ0.193** ÿ0.190***
(0.029) (0.621) (0.044)

Round2 0.004*** 0.005** 0.005***
(0.001) (0.002) (0.002)

Round � Obs. Dummy 0.029 0.057 0.048
(0.038) (0.080) (0.059)

Round2 � Obs. Dummy ÿ0.001 ÿ0.002 ÿ0.001
(0.001) (0.002) (0.002)

Player 1 Investment ÿ0.175*** ± 0.067*
(0.021) (0.033)

Pr > w2 0.000 0.000 0.000
Number of Observations 1,140 663 477

a Standard errors in parentheses. Coe½cient estimates with a * (**, ***) are sig-
ni®cantly di¨erent from zero at the .10 (.01, .001) level of signi®cance.
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being provided, and may recognize and act upon the increased incentive to
establish a reputation of ``toughness'' in treatments with observation relative
to those without observation. In Du¨y and Feltovich (1996), we look for evi-
dence of such reputation building by examining certain types of behavior by
Player 2s in observation and no observation cells. While we ®nd evidence that
suggests Player 2s seek to build tough reputations in both cells, the evidence
also suggests that there is not much of a di¨erence in the incidence of reputa-
tion-building by Player 2s in the observation cells as compared with the no-
observation cells. This ®nding is not too surprising, since the incentives for
reputation building in the observation cells are not all that much greater than
in the no-observation cells; players in the observation cells only get to observe
the actions and payo¨s of one pair of players.

6. Conclusion

In this paper we have examined the e¨ect of additional information on learn-
ing in the ultimatum and best-shot games. In one treatment we allowed pairs
of players to observe, prior to choosing their own actions, the actions and
payo¨s of one other pair of players in the just completed round of play. We
have compared and contrasted the results from this treatment with results
from the standard treatment in which observation of other players is not
allowed, and found that there were some di¨erences in the results.

Our main ®nding is that increasing the quantity of information available
to players need not hasten the rate at which players learn to play subgame
perfect equilibrium strategies. In the ultimatum game, giving players addi-
tional information leads to play that is signi®cantly further from the subgame
perfect equilibrium prediction relative to the case where players do not receive
this additional information. In contrast, in the best-shot game, giving players
additional information does not signi®cantly a¨ect the rate at which players
learn to play subgame perfect equilibrium strategies. The reason for these
di¨erent results lies in di¨erences in the content of the additional information
that players receive. In the case of the ultimatum game with observation,
Player 1s see that other Player 1s get higher payo¨s by deviating further from
the subgame perfect strategy, and hence observation only reinforces this type
of behavior. In the case of the best-shot game, the o¨-the-equilibrium path
incentives are such that players do better by moving closer to subgame perfect
equilibrium strategies. The incentive to play the equilibrium strategy in both
treatments is so strong that players quickly react to this incentive on their
own, so that additional information on how other players play the game is
not as useful as it is in the ultimatum game, and does not signi®cantly a¨ect
the manner in which players play the best-shot game. We conclude that the
e¨ect of additional information on the evolution of play cannot be ascertained
a priori; one must consider the content of the additional information as well.
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