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Abstract:  We report results from an experiment that examines play in an indefinitely repeated, 
two-player Prisoner’s Dilemma game. Each experimental session involves N subjects and a 
sequence of indefinitely repeated games. The main treatment consists of whether agents are 
matched in fixed pairings or matched randomly in each indefinitely repeated game. Within the 
random matching treatment, we elicit player’s strategies and beliefs or vary the information that 
players have about their opponents. Contrary to a theoretical possibility suggested by Kandori 
(1992), a cooperative norm does not emerge in the treatments where players are matched 
randomly. On the other hand, in the fixed pairings treatment, the evidence suggests that a 
cooperative norm does emerge as players gain more experience.     
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“Sometimes cooperation emerges where it is least expected.”  -Robert Axelrod, The Evolution of 
Cooperation (1984, p. 73). 
 
 
1. Introduction  
 
Cooperative behavior can expose individuals to possible exploitation by others who are willing 

to act opportunistically.   Nevertheless, cooperation can be sustained if opportunistic behavior 

triggers a punishment that makes ‘cheating’ unattractive.   Much cooperative behavior is 

sustained by decentralized, informal enforcement mechanisms.  These mechanisms rely on 

individuals having an interest in how their current actions affect future social interactions.  As 

Kandori (1992) notes, there are two general classes of informal mechanisms:  Personal 

enforcement, where opportunistic behavior today destroys the possible benefits of future 

cooperation between the individual who has been cheated and the cheater; Community 

enforcement, where a cheater is sanctioned by other members of the community who have not 

themselves been victims of that cheater, but nevertheless refuse to engage in cooperative 

endeavors with any cheater.  The Folk Theorem holds for personal enforcement when a 

particular pair of agents has an indefinite number of future interactions with one another and the 

discount factor is sufficiently large.  Kandori shows that public observability is sufficient for the 

folk theorem to hold for community enforcement mechanisms as well.  If the identity of the 

cheater is common knowledge then it does not make any difference if the cheater will have 

repeated future interactions with any particular member of the community or if the cheater will 

simply have an indefinite number of future interactions with various members of the community.  

That is, regardless of matching protocol, with public observability, there exist equilibrium 

strategy profiles that will support the same payoffs as are attainable under a fixed matching 

protocol.1 More remarkably, Kandori shows that for groups of any fixed size there exist payoff 

                                                 
1 Under public observability, an individual who has been labeled a ‘cheater’ has no incentive to act cooperatively in 
any particular interaction, as long as s/he believes that others will not cooperate with a known ‘cheater’.  Non-
cheaters, in turn, will have little incentive to risk taking a cooperative action with a known ‘cheater’, if they also 
believe that others will not cooperate with this particular individual in the future. Kandori provides two different 
ways of making individual deviations from cooperation unprofitable.  One way depends upon individuals having 
group labels, independent of their actions. Individuals of one group are always matched with individuals of another 
group and once any member of a given group deviates, all members of that group are treated as ‘cheaters’, by all 
members of the other group.  Alternatively, individuals need not have group labels and only ‘cheaters’ are labeled.  
To prevent those who have not yet been labeled as a ‘cheater’ from finding it profitable to avoid acquiring this label, 
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functions such that there is a community enforcement mechanism that will sustain cooperation in 

an indefinitely repeated number of plays of a Prisoner’s Dilemma stage game even when 

individual histories are purely private, individuals are anonymous, and the matching mechanism 

for each stage game is purely random. 

In the anonymous, random matching case, it is the threat that one deviation from 

cooperation will trigger a contagious process of future defections by all who have experienced a 

defection – rather than the threat of being branded a ‘cheater’ – that acts as a deterrent.  For this 

threat to be credible, an individual who has experienced a defection must find it more profitable 

to defect at the next opportunity, even though this will keep the contagious process going, than to 

continue to act cooperatively and stop the process.  Of course, if only a small fraction of the 

population has already been infected, an individual may lose a considerable amount of future 

benefit from the eventual destruction of the cooperative norm.  Therefore, for large groups, the 

threat of starting a contagious process will not be a credible unless either the one time gain from 

cheating is very large, or there is some means of stopping the contagious process thereby limiting 

the loss from the destruction of the social norm.  Ellison (1994) shows how the availability of a 

publicly observable randomization device may be used as a correlation device to signal the end 

of a punishment phase and resumption of a potentially new cooperative phase.2  

While Kandori shows that a social norm of cooperation can be sustained as a non-

cooperative equilibrium even when individual pairings are both random and anonymous, whether 

or not such norms are likely to emerge under such conditions is clearly an empirical question.  

The experiment described below was specifically designed to address that question. 

 Kandori’s (1992) theorem applies to indefinitely repeated two-person games with 

minimal observation of the past actions of the individuals with whom a player is currently paired 

to play a stage game.  Our experiment is designed, therefore, to study the behavior of individuals 

drawn from a fixed population who play an indefinite sequence of two-person Prisoner’s 

                                                                                                                                                             
it must be the case that a non-cheater can expect to meet other non-cheaters sufficiently frequently in the future to 
make it profitable to give up the one time gain from cheating.  This can be assured with strategies in which a 
cheater’s label is removed after some finite number of stage games.           
 
2  As Ellison shows, it is not necessary to have a public randomization device to limit the period in which a 
contagion process is operating.  But such a device does serve as a signal upon which all individuals can coordinate 
their departure from a punishment phase. 
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Dilemma games under different matching protocols and different amounts of information 

transmission.  The objective of varying the matching protocol (fixed pairings versus random 

matching) is to determine empirically how much difference in the level of cooperative play is 

associated with these different matching protocols.  The objective of varying the information 

transmitted to players (under the random matching protocol only) is to determine whether 

information on the payoff or action history of a player’s opponent, prior to play of the stage 

game, has any effect on the level of cooperative play.  The design also incorporates a randomly 

generated, publicly observable signal that could be used by agents as a device to coordinate the 

end of a punishment phase, if they were to choose strategies of the type described by Ellison 

(1994). 

To foreshadow our experimental results, we find that the initial play of subjects is quite 

similar under both fixed and random matching protocols.  With experience, under fixed pairings,  

cooperation emerges as a norm.  However, under random pairings, non-cooperation is quickly 

established as a norm, despite the presence of some conditional cooperators. Indeed, we provide 

direct evidence in one random pairings treatment of the presence of such conditional cooperators 

using a procedure introduced by Fischbacher and Gächter (2006) that builds upon the strategy 

method for identifying player types introduced by Fischbacher, Gächter and Fehr (2001).  Under 

random pairings, there is also evidence that some individuals attempt to coax members of their 

group to break out of a non-cooperative norm, as Ellison suggests.  However, under random 

pairings, efforts to establish a social norm of cooperation prove futile, despite the presence of a 

number of conditional cooperators.  We further find that a social norm of cooperation that is 

established under fixed pairings will be immediately broken when the matching protocol is 

switched to random pairings, while a social norm of non-cooperation under random pairings is 

also easily displaced when the same group is switched to fixed pairings.  Finally, we find little 

evidence that smaller group sizes or the provision of information about an opponent’s payoff 

history or past actions increases the likelihood of a cooperative social norm developing under a 

random matching protocol.      

 

2.  Related Work 

2.1  Indefinitely Repeated Stage Games 
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By definition, indefinitely repeated stage games have no (predictable) last stage. Therefore, if 

cooperative play is reciprocated in the early stages, a belief in future reciprocity will be 

reinforced and cooperative behavior may be sustained indefinitely.  The concept of an 

indefinitely repeated stage game is implemented experimentally by use of a randomization 

device to determine after each stage game is played whether the game has ended or another stage 

game is to be played. The probability of continuation determines whether or not there exists a 

cooperative equilibrium in the supergame.  This device was introduced by Roth and Murnighan 

(1978).3  There are surprisingly few experiments that have been conducted with indefinitely 

repeated stage games.4  Van Huyck et al. (2002) report an experiment conducted with 

supergames constructed of an indefinite sequence of repetitions of dominance solvable stage 

games, followed by a small fixed number of repetitions of the same stage game. They observed 

that during the probabilistic continuation phase of a supergame whose stage game has an 

equilibrium in strictly dominant strategies, the cooperation level rose dramatically with 

experience. In the Van Huyck et al experiment, all observations were made under a fixed 

pairings protocol.5  To our knowledge, the only other experiment with an indefinitely repeated 

game played under different matching protocols is reported in Palfrey and Rosenthal (1994).  

They conducted an experiment using an indefinitely repeated N-person provision point voluntary 
                                                 
3  In their experiments subjects played an indefinitely repeated Prisoners’ Dilemma stage game against a pre-
programmed strategy, either tit-for tat, or grim response.  They were interested in testing how responsive 
cooperative play was to variations in the continuation probability. While they found the rate of cooperative play to 
be positively related to the continuation probability, the levels of cooperation they observed were quite far from 
100%.       
 
4  Dal Bó (2005) considers whether the responsiveness of cooperation to an increase in the continuation probability 
observed by Roth and Murnighan is simply a reflection of the increase in the expected number of repetitions of the 
stage game before a relationship is terminated, or whether behavior in games of indefinite length is fundamentally 
different from behavior in games of finite repetitions of a prisoners’ dilemma stage game.  He finds that the 
percentage of cooperative play in finitely repeated games of a given length is lower than indefinitely repeated games 
of the same expected length. 
   
5 Holt (1985) also reports an experiment with an indefinitely repeated duopoly game conducted under fixed 
pairings. Like Van Huyck et al, a basic treatment variable was whether the game was an indefinitely repeated 
supergame or a finitely repeated game. In the supergame treatment, the median of the distribution of final period 
outputs was much closer to the Nash equilibrium than to a collusive, joint profit maximizing output. Aoyagi and 
Frechette (2005) also report an experiment conducted with supergames constructed from an indefinite sequence of a 
prisoner’s dilemma game with noisy public signals. Their subjects also played under fixed pairings.  They found that 
cooperation increases as the noise in the signal decreases. 
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contribution game.  This game was played under both fixed and anonymous random matching 

protocols.  Unlike a Prisoners’ Dilemma, non-cooperation is not a dominant strategy in their 

stage game and the stage game has a multiplicity of cooperative equilibria.  They found that 

under random matching, subjects “adhere to cut-point decision rules that are, on average, very 

close to those predicted by the Bayesian equilibrium (of the one-shot game).  Repetition (i.e., 

fixed matching) leads to more cooperative behavior (than observed with random 

matching)...(but) the observed magnitudes of improvement are much smaller than predicted 

(assuming that random matching corresponds to the play of a one-shot game).”  The fact that 

subjects did not come close to fully exploiting the opportunities for coordination and cooperation 

under either the fixed or random matching protocols in the Palfrey-Rosenthal experiment is, 

perhaps, not surprising.  Their stage game is a game of incomplete information. The symmetric 

cut-point strategy that maximizes expected joint profits is not transparent. That game has a 

multiplicity of equilibria in non-symmetric pure strategies and there is no evidence of any effort 

to coordinate on a pure strategy equilibrium.  By using a Prisoner’s Dilemma as the stage game 

in our own experiment we expect the cooperative equilibrium of the supergame to be much more 

salient.  

 

2.2 Information 

 

The Kandori theorem implies that a cooperative norm can develop even in the absence of any 

information being transmitted about one player’s past actions or experience to the other player 

with whom he is currently paired.  Nevertheless, one might expect players to act differently if 

such information is transmitted than if it is not.  Bolton, Katok and Ockenfels (2005) report an 

experiment with a finitely repeated stage game in which each player may carry with him an 

image score that reflects some information about the past experience of that player.  This 

information, but not the identity of the player, is observable to the other person with whom s/he 

is matched in the current stage game.     At the beginning of each stage game, individuals are 

randomly paired and then a random draw determines the choice of ‘dictator’. The dictator can 

either ‘Give’ the other player (‘receiver’) a large payoff and receive no payoff himself, or ‘Take’ 

a small payoff himself and give the receiver nothing.  The issue they explore is whether a 
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concern for one’s future image influences the dictator’s current behavior.  They find that when 

the opportunity cost of being nice is high, ‘giving’ is much lower when there is no image score 

than when there is an image score. Because their stage game is finitely repeated, Kandori’s 

theorem does not directly apply.  Indeed, in their game, the only sequentially perfect equilibrium 

is to ‘Take’.  Nevertheless, this experiment suggests that information transmission may make a 

difference in the play of a game under a random matching protocol. 

Another related experiment was conducted by Schwartz, Young and Zvinakis (2000). 

They use a modified Prisoner’s Dilemma as the stage game in their experimental design.  Their 

stage game is played for an indefinite number of times under a random matching protocol.  

Subjects remain anonymous. However, under different treatments, different portions of a 

player’s past history are revealed to the person with whom s/he is currently matched.  They find 

that these disclosure conditions have a large effect on the initial levels of cooperation observed.  

However, under either information condition, they observe a decline in cooperation as subjects 

gain experience. Like Bolton, et al., the results of Schwartz and his associates indicate that 

among inexperienced subjects, in environments where cooperation can only be reciprocated 

indirectly, information transmission can have significant effects on behavior.  What is left open 

is whether these effects can sustain a cooperative equilibrium as subjects gain experience.  

Conversely, it is still unknown whether anonymous random matching with no information 

transmission about one’s current partner’s history will reliably produce a non-cooperative 

equilibrium.6 

 

3.  The Experiment 

3.1 Experimental Design 

In all sessions of our experiment we use an indefinite repetition of the Prisoner’s Dilemma stage 

game shown in Figure 1. 

                                                 
6 Andreoni and Croson (2002) assess the effect of random re-matching (strangers) versus fixed matchings (partners) 
in the context of finitely repeated, N>2-player voluntary public good game experiments. Examining several different 
studies, they find inconsistent evidence on the effect that random (fixed) matching has on the level of contributions 
to a public good. By contrast, in this paper, we focus on two-player, indefinitely repeated prisoner dilemma games 
under fixed and random matching protocols, and we vary the level of information in the case of random pairings. 
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The infinite horizon supergame was constructed as follows. Following play of the stage game, a 

random draw was made from a uniform distribution over the range [1, 100]. The draw was made 

by the computer program that was used to carry out the experiment (students made their choices 

and observed the outcomes on networked computer workstations) and the number chosen was 

displayed in a pop-up box on all player’s computer screens to reinforce the random nature of the 

draws.   If the draw was less than or equal to 90, players were matched according to the given 

protocol and the stage game was repeated.  If the random draw exceeded 90 the supergame was 

ended.  Thus, the probability, p, that a supergame continues is .90 and the expected number of 

future rounds to be played from the perspective of any round reached is always 1/(1-p) or 10. 

This is equivalent to an infinite horizon where the discount factor attached to future payoffs is 

.90 per round.  Once a supergame ended, depending on the time available, another supergame 

would begin with the same stage game, matching protocol and population of players used in all 

previous supergames of the experimental session.7 

 Note that the random draw is useful not only for implementing an indefinite horizon. It 

can also be used as a publicly observable randomization device enabling players to implement 

the kinds of strategies found in Ellison (1994), where the randomization device is used to 

coordinate a halt to a contagious defection phase of play and resumption of a potentially new 

cooperative phase of play of the repeated game. 

The stage game payoffs and the discount factor were chosen such that for the population 

size of players we consider, N<14, there exists a perfect, sequential equilibrium that supports 

                                                 
7  Despite our instructions, subjects may have conceived of the sequence of indefinitely repeated games 
actually played as one single repeated game. If this were the case, the relevant discount factor would be greater 
than the induced value of .9.  Nevertheless, the contagious equilibrium would continue to exist in this case. As 
we shall see later, there is evidence of a substantial spike in cooperation frequencies at the start of each new 
supergame indicating that subjects did conceive of each indefinitely repeated game as a separate game. 

  Column Player 

  X Y 

X 20,20 0, 30 Row 

Player Y 30, 0 10,10 

Figure 1: The stage game 
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perfect cooperation even if there is anonymous random matching after each stage game and all 

information about an individual’s prior history is strictly private. Under the same parameters, 

these games also have perfect, sequential equilibria that support perfect coordination when some 

information about an individual’s history is transmitted to the individual with whom that person 

is currently matched. Appendix A provides further details. Given that the expected length of a 

supergame is 10 repetitions of the stage game, subjects have experience with several supergames 

over the course of a two-hour session. 

There are three treatment variables in our main design.  The first treatment variable is the 

matching protocol (fixed pairings; random pairings).  The second treatment variable is the size of 

the population (N=14 or N=6).  The third treatment variable is the information conveyed to each 

member of a pair playing a stage game regarding the history of the other member of the pair.  

Since, in fixed pairings each member of a pair shares a complete history with the other member 

and is aware of this fact, the information treatment is varied only in the random matching 

protocol sessions. 

 

3.2 Hypotheses 

 

The basic hypothesis to be tested is that there is no significant difference in the level of 

cooperative play observed under anonymous-fixed and anonymous-random matching protocols.  

In a given session, the matching protocol is made public through the instructions that are read out 

loud.  In most sessions, the protocol does not change during the course of a session. Subjects are 

either assigned to a fixed pairing at the beginning of a supergame or are randomly paired after 

each stage of a supergame.  In sessions in which a fixed pairing protocol is used, the fixed 

pairings changed from one supergame to the next in a round robin format; prior to the first round 

of each new supergame, each player was anonymously matched with one of the N-1 players with 

whom s/he had not previously played a supergame.8  In some sessions, one matching protocol is 

                                                 
8  Hence, for the fixed-pairings treatment, up to N-1 supergames could be played where in each supergame, the 
players in a anonymous fixed pairing have not previously met one another. This consideration motivated our choice 
of N=14, as we typically played no more than 13 supergames in a session (see Table 1). If more than N-1 
supergames were played in a session, (as in sessions where N=6), then players were matched with players with 
whom they had played before. However, as these matchings were anonymous, players could not condition on their 
past history of play with any other player. 
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used at the beginning of a session and then the second protocol is used for the remainder of the 

session.  In those sessions in which two protocols are used, subjects are not informed of the 

change in protocol until the point in the session at which the switch is made.  This treatment 

allows us to observe how a given group of subjects responds to a change in matching protocol. 

A second hypothesis to be tested is that in an anonymous random matching environment, 

the relative frequency of cooperative play is unaffected by the amount of information about an 

individual’s own history that is available to the person with whom that individual is matched.  A 

competing hypothesis is that the more information an individual has available to label a player a 

non-cooperator, the greater likelihood that individuals will refrain from non-cooperative play in 

the random matching environment.  The amount of information about one player’s history that is 

transmitted to the other player is a second treatment variable in our design.  This variable, I, can 

take on one of three values: 0 (no information is transmitted); 1 (the average payoff of the two 

players in the individual’s last stage game is transmitted); 2 (the action chosen by the individual 

last period is transmitted). Under all conditions, the matching and information transmission are 

done so as to preserve the anonymity of each person.  When I = 0, each player can only condition 

his/her own strategy on his/her own history.  Only an individual who has actually experienced 

non-cooperative play has any reason to update his/her own priors about the relative frequency of 

playing future games with another individual who has had the same experience. This is the case 

considered by Kandori (1992).  When I > 0, each player can condition his action on not only 

her/his own history, but also on the information provided about his opponent’s history.  

Furthermore, when I>0, each player knows that the player with whom they will be matched next 

period will possess information that may (when I= 1) or will (I = 2) be sufficient to label her/him 

a ‘non-cooperator’ if s/he chooses to defect this period. Intuitively, giving players information on 

other players’ histories prior to the play of a stage game should serve to speed up the onset of the 

contagious equilibrium thereby strengthening the threat by which a norm of cooperative behavior 

is sustained.  On the other hand, Kandori’s theorem does not require that players posses such 

information on their opponent’s immediate past history of play.  Hence our null hypothesis is 

that the frequency of cooperative play is unaffected by either I>0 treatment. 

 

3.3 Results 
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We report results from 28 experimental sessions involving a total of 344 subjects. A description 

of the characteristics of these experimental sessions is given in Table 1.  In most sessions we 

used a population size of N=14.  In six sessions we considered a smaller population of size N=6 

as a robustness check on our results with the larger population size.  

 

[Insert Table 1 here] 

 

Our aim was to get approximately 100 rounds of data per session.  As the length of each 

indefinitely repeated game (supergame) should average 10 rounds, our goal of 100 rounds per 

session was satisfied by playing an average of 10 indefinitely repeated games per session.  Of 

course, due to the random end of each indefinitely repeated game, there is some variation in the 

number of games and rounds as indicated in Table 1.  Subjects were not told of our objective of 

100 rounds, nor were they told in advance which indefinitely repeated game would be the last 

one played.  Subjects were recruited for a two-hour session but our goal of 100 rounds was 

always achieved well before this two-hour limit, typically after around 90 minutes. 

The subjects were recruited from the undergraduate population at the University of 

Pittsburgh. Each group of subjects had no prior experience participating in any treatment of our 

experiment. Subjects were read instructions pertaining to the single treatment they were 

participating in and then began playing the Prisoner’s Dilemma game shown in Figure 1, 

entering their choices, X or Y, on a computer screen when prompted. All of our treatments 

involved the same parameterization of the stage game shown in Figure 1.  Copies of the 

instructions used in the fixed and the random pairings (I=0) treatments are included in Appendix 

B.  Following their choice of action, X or Y, subjects were informed of the other player’s action 

and their payoff.  The payoff numbers for the game, as shown in Figure 1 were interpreted as 

monetary payoffs in terms of cents (US$). Thus, if two players chose Y,Y in a round, each player 

earned 10 cents, etc.  Subjects were paid their payoffs from all rounds of all games played and in 

addition were given a show-up payment of $5.  Average total earnings depended on the 

treatment. In the fixed pairings treatment, subject’s total earnings (including the $5 showup fee) 
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averaged $18.64.  In the random pairings treatment (I=0, N=14) subjects’ total earnings averaged 

$14.86. 

 
3.3.1  Fixed Versus Random Pairings with No Information, 14 Subjects 

 
[Insert Figure 2 here] 
 

The left column of Figure 2 presents data on the aggregate frequency of cooperation in each 

round of each game played in four sessions that were conducted under a fixed pairings matching 

protocol with 14 subjects. The horizontal axis reports round numbers.  A round number of 1, 

represented in Figure 2 (and subsequent figures) by a vertical bar, indicates the start of a new 

supergame. The right column of Figure 2 presents the aggregate frequency of cooperation in 

each round of each game played in the four sessions that were conducted under the random 

pairings matching protocol when subjects received no information (I=0) regarding the past 

experience of anyone with whom they were currently matched. While subjects who played under 

the random pairings protocol were randomly paired after each round of play, the procedure was 

to terminate a sequence of rounds with the same stopping rule as was used in the fixed pairings 

matching protocol sessions.  When a sequence ended, the end of the ‘game’ was announced. If 

our criteria of obtaining approximately 100 rounds of play had not yet been reached, we 

announced that a new game would begin. Therefore, a round number of 1 on these graphs also 

indicates when a new sequence of rounds was begun.  In the graphs shown in Figure 2, we report 

both the aggregate frequency of cooperation—% choice of action X— together with a fitted line 

from a regression of %X on a constant and time, t,=1,2…T (where T is the total number of 

rounds played in all supergames of the session). A tabular display of the aggregate frequencies of 

cooperation for the fixed and random, I=0 matching sessions with 14 subjects is presented in 

Table 2.  

                                            [Insert Table 2 here] 
 

The column in Table 2 labeled “Game 1, Round 1” reports the aggregate frequency of 

cooperative play (i.e., choice of X) in the first round of the first game played in each session 

involving 14 subjects.  According to nonparametric, robust rank-order tests9, there is no 

                                                 
9  See Siegel and Castellan (1988) or Feltovich (2003) for a discussion of the robust rank order test. This test is used 



 
 

12

significant difference (p>.10) in the distribution of these Game 1, Round 1 cooperation 

frequencies between the fixed and random, I=0 treatments.  Thus, the difference between the 

fixed and random matching protocols is not immediately taken into account by subjects.  

While there is no difference in the way inexperienced subjects first play these games, 

experience under the fixed pairings protocol drives each group of subjects to a much higher level 

of cooperative play than is observed under random pairings.  Indeed, under random pairings, as 

subjects gain experience, the frequency of cooperation plummets towards zero.  By contrast, 

under fixed pairings, as a session progresses, the frequency of cooperative play increases.  As 

subjects gain experience, the difference in cooperative frequencies between fixed and the random 

pairing treatments increases. 

More precisely, robust rank-order tests of the null hypothesis of no difference in 

cooperation rates between treatments confirm that the aggregate cooperation frequencies over the 

first half, over the second half, and over all rounds of a session (as reported in Table 2) are 

significantly higher in the fixed pairings treatment than in the random pairings (I=0) treatment (p 

=.014, smallest critical value for paired samples with 4 observations each).   Furthermore, in the 

fixed pairings treatment, the cooperation frequencies in the second half of the sessions are 

significantly higher than those in the first half (p=.014).   By contrast, in the Random I=0 

treatment, the cooperation frequencies in the second half of the sessions are marginally lower 

than those in the first half (p=.10). 

An interesting property of the data in all sessions is the increase in cooperation observed 

in the first round of many of the supergames relative to the level of cooperation in the final 

rounds of the preceding supergame. This ‘restart’ phenomenon shows up in all of our treatments 

as revealed in Figure 2 (but see also Figures 6-9).  It is clearly illustrated in Figure 3a, which 

shows the aggregate frequency of cooperation in the first round of all supergames as well as the 

aggregate frequency of cooperation in all other supergame rounds, excluding the first round 

across all fixed or random I=0 sessions with 14 subjects. The figure reveals that on average, 

cooperation is greater in the first round than over all subsequent rounds of each supergame.   

 

[Insert Figures 3a-3b here] 
                                                                                                                                                             
throughout this paper, wherever p-values are reported in the text. 
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In the random pairings treatment, the restart effect reflects repeated efforts by just a few 

subjects to encourage a social norm of cooperation.  Some evidence for the existence of 

heterogeneous subject types is given in Table 3, which reports the cumulative number 

(cumulative percent) of players in each of the fixed or random I=0 pairings sessions involving 14 

subjects whose individual frequencies of cooperation fell below various threshold levels, using 

data from all rounds of all supergames of a session, as well as for the first and second halves of a 

session. For instance, in Session 2 of the Random, I=0 pairings treatment, there were 2 subjects 

who cooperated (chose action X) in 10 to 25 percent of all rounds played, while in session 4 of 

this same treatment, there were 3 subjects who cooperated in 25 to 50 percent of all rounds 

played.  However most of these cooperating-types are cooperating with low frequency, typically 

in the first round of each new supergame. As a random-pairings session continues, some of these 

first-round cooperators get discouraged, and shift to defecting in the first round. This has the 

effect of dampening out the restart effect and reducing first-round cooperation frequencies in the 

random matching (I=0) treatment as shown in Figure 3b.10   

To see that this is the case, let us (arbitrarily) label a player who cooperates more than 10 

percent of the time in the first half of a Random I=0 session a “hopeful” player. For instance, in 

session 1 of the Random, I=0 treatment, Table 3 reveals that there is exactly 1 hopeful player; in 

session 2 there are 3 hopeful players, in session 3, there are 6 hopeful players and in session 4 

there are 12 hopeful players. In all 8 of these sessions, Table 3 reveals that the number of hopeful 

players always declines from the first to the second half of the session.  

This reduction in the number of hopeful players tends to dampen out the ‘restart’ 

phenomenon as additional supergames are played, as the hopeful players are mainly cooperating 

in the first round of a supergame. This dampening out of the restart phenomenon in the random 

matchings treatments is illustrated in Figure 3b, which shows the aggregate frequency of 

cooperation in the first rounds of supergame numbers 1-10 using pooled data from all sessions of 

a treatment.11 

                                                 
10 A similar dampening out of the restart effect occurs in the random pairings treatments with I=1 or I=2. 
11 As noted above in the discussion of Table 1, some sessions had more than 10 supergames, and some had less. In 
Figure 3b, we have reported the average frequency of cooperation in supergame number 1,2,…10 for all sessions of 
a treatment for which that supergame was actually played. 
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[Insert Table 3 here] 

 

In the fixed pairings treatment, the aggregate level of cooperation within a given 

sequence of rounds (supergame) tends to diminish as the number of rounds played in that 

sequence increases, as can be seen in Figure 2 or in the aggregate frequencies shown in Figure 

3a.  The decline in the aggregate frequency of cooperation over time is due to the presence of 

just a few players, who very frequently chose to defect, despite being in the fixed pairings 

treatment.  The presence of these  defecting players can again be seen in Table 3.  For instance, 

in Sessions 1, 2 and 3 of the fixed pairings sessions, we see that there are always 1 or 2 

individuals who were choosing action X (cooperating) in less than 10 percent of all rounds 

played, (defecting more than 90 percent of the time).  As in the random pairings treatment, there 

is a “restart” phenomenon where the aggregate level of cooperation increases at the beginning of 

a new sequence with new pairings, from the level observed at the end of the previous sequence.  

Unlike the random pairings treatment, there is an upward trend in the aggregate level of 

cooperation observed the first time new pairings interact, in the first round of each supergame – 

see Figure 3b.   

[Insert Figure 4 here] 

 

As Figure 4 makes clear, on average, the aggregate frequency of cooperation is a little 

more than 10 percent lower at the end of each supergame relative to the start of that supergame. 

The reason for this finding is that in each fixed pairing session there is typically a small core of 

players – ‘defectors’ – who defect with a high frequency as can be seen in Table 3.  In the first 

rounds of play of a new supergame, these defectors’ impact on the aggregate frequency of 

cooperation is at its weakest.  However, if the defectors are in fixed pairings with subjects 

playing conditionally cooperative strategies, these conditional cooperators will quickly switch 

from cooperating to defecting, thereby further lowering the aggregate frequency of cooperation 

as the supergame proceeds.  Nevertheless, the upward trend in the frequency of cooperation in 

the first round of each new supergame is sufficiently strong that the aggregate frequency of 

cooperation increases over time.   
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This upward trend in first-round cooperation under fixed pairings – as shown in Figure 

3b- is due to a reduction in the number of ‘near-unconditional’ defectors as a session proceeds.  

To see that this is the case, let us (again, arbitrarily) label a player who cooperates less than 10 

percent of the time in the first half of a fixed pairing session a “pessimistic” player.  As Table 3 

reveals, in two of the four fixed pairing sessions, (numbers 2 and 4), the number of these 

pessimists drops from 1 or 2 in the first half of the session to 0 in the second half of the session. 

If pessimists were alternatively defined as those who cooperated less than 50% of the time, a 

starker drop-off in the number of pessimists would be found from the first to the second half of 

all four fixed pairings sessions.12  

We conclude that, under fixed pairings there appears to develop a social norm of 

cooperation as a given group of subjects gains experience, while under the random, I=0 pairing 

treatment, experience tends to drive groups toward a far more competitive norm. 

 

3.3.2  Further evidence of heterogeneity and player ‘types’ 

 

 While we have provided some evidence for heterogeneity in player types, the evidence 

has been obtained using data on observed actions.  At the suggestion of referees, we have 

conducted a modified version of our random, I=0 pairings treatment that allows us to more 

carefully identify player types and the extent of heterogeneity among player types in this 

treatment.  In this modified treatment, in addition to observing subjects’ actions we also elicit 

their strategies and beliefs regarding the play of other 13 subjects in the room, with the aim of 

characterizing each player as either a conditional cooperator or an unconditional defector.  To do 

so, we adopt a design proposed by Fischbacher et al. (2001) and Fischbacher and Gächter (2006) 

aimed at measuring the extent of “social” (or “other- regarding”) preferences in finitely repeated 

public good games.13  

                                                 
12  We have verified that this drop-off in the number of pessimists is due to changes in the actions chosen by the 
players labeled as pessimists in the first half of the session.  Players who were not labeled as pessimists in the first 
half of a session are almost never labeled as pessimists in the second half of a session. 
13   In the indefinitely repeated games that we study, conditionally cooperative play need not be indicative of 
“social” preferences; rather such behavior is fully consistent with standard, self-interested preferences. 
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Specifically, in this new treatment, referred to in Table 1 as the “one shot then Random 

I=0” treatment, we divide our random, I=0 pairing treatment into two parts. In the first part, the 

14 subjects are presented with the Prisoner’s Dilemma game shown in Figure 1. They are then 

asked to provide their strategy for playing that game once against a randomly chosen opponent.  

Specially, they are asked: “what is the smallest number of the other 13 people with whom you 

might be matched who must choose X before you would choose to play X?”  They are further 

instructed that this number can be any integer between 0 and 13 inclusive and that “Never choose 

X” is also a choice; under the latter choice, they would never choose X (cooperate) regardless of 

the number of others who chose X – a strategy of unconditional defection.  After specifying a 

strategy, subjects were asked to provide a forecast of the number of other 13 subjects who will 

play X.  Finally, they were instructed to state their action choice (X or Y) for the one-shot game. 

The 14 subjects were then randomly matched.  In each pair, one randomly chosen member had 

his strategy played for him using the actual number of the other 13 subjects who stated that they 

would play X. The action played by the other member of the pair was his stated action for the 

one-shot game.14  Subjects were then informed of the outcome of the one-shot game, learning 

whether the action they chose was as they had stated or was determined using their strategy, the 

action chosen by their opponent and their payoff in points (0, 10, 20 or 30 points).   They were 

further informed of the number of the other 13 subjects who chose X and were awarded an 

additional 10 points if their forecast of the behavior of the other 13 subjects was correct (0 points 

otherwise).15 

In the second part of this new treatment (which was not revealed in advance), subjects 

played a number of indefinitely repeated supergames under the same random matching I=0 

conditions that we examined earlier, but with one change.  Prior to making their decision in 

every round of every game, they had to predict the number of the other 13 subjects who they 

thought would choose X in the round they are about to play (an integer between 0 and 13 

                                                 
14 This design, which was made clear to subjects in advance in the written instructions, insures that they have 
incentives to specify strategies that best characterize the actions they would choose given their beliefs (forecasts). 
Instructions for this treatment are available in the supplementary materials that accompany this paper or from the 
authors. 
 
15 Thus, at the start of the second half of the session, subjects in this treatment were informed of the frequency of 
cooperation by other subjects in the one-shot game. 
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inclusive).  Subjects were further instructed that “since the person with whom you are matched is 

selected randomly, your prediction reflects your assessment of the likelihood that you will be 

matched with someone who plays X.”  To incentivize subjects to provide accurate forecasts, we 

told them we would choose one round of one supergame at random at the end of the session and 

pay them 100 points if their pre-play forecast of the behavior of the other 13 subjects was correct 

in that round (and 0 points otherwise).  As in our prior sessions, subjects also received their 

payoff in points from all rounds of all supergames played in the second part along with their first 

part earnings.  The conversion rate for points awarded in both parts of this treatment was the 

same, 1 point equaled 1 cent.16 

 [Insert Figure 5 here] 

 [Insert Table 4 here] 

Figure 5 shows the cumulative frequency of player “types” in each session of this 

treatment, where a player’s type is defined by his cut-off strategy – the number of the other 13 

players who would have to play X in order for the player to play X (cooperate).  The figure 

reveals that with a single exception (in session 3),  no subject specified a threshold of 0, 

indicating unconditional cooperation.  However, in each session there is a substantial fraction of 

unconditional defectors in the one-shot game – those specifying a threshold of 14 (which 

corresponds to the strategy “Never choose X” (cooperate)) in Figure 5 range from 21.4% (3 out 

of 14 subjects in Session 3) to 50% (7 out of 14 subjects in Session 1).  The remaining subjects, 

between 50% in Session 1 and 78.6% in Session 3 may be labeled as conditional cooperators, 

who cooperate provided that some number 130 ≤≤ k  of the other 13 subjects cooperate.  The 

mean and median threshold among all conditional cooperators is 8.  If we also include the 

unconditional defectors (threshold of 14) the mean threshold rises to 10 and the median threshold 

rises to 11.  A two-sided Kolmogorov-Smirnov test confirms the impression given by Figure 5 

that there are no significant differences between any pair of cumulative frequency distributions 

(p>.10 in all pairwise comparisons), suggesting that our subject samples come from the same 

population distribution.  Our findings regarding the distribution of player types is similar to that 

of Fischbacher and Gächter (2006) who report that 55 percent of subjects in their finitely 

                                                 
16 We did not attempt a strategy elicitation treatment under the fixed matching protocol as the space of possible 
strategies under that matching protocol is too large to characterize in a simple fashion. 
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repeated public good game may be classified as conditional cooperators while 22.9 percent are 

“free-riders” (unconditional defectors). 

Table 4 shows aggregate cooperation frequencies in the first and second parts of the three 

sessions of this ‘one shot then random, I=0 pairings’ treatment.  Cooperation frequencies in the 

second part of this treatment are further disaggregated according to player types, as determined 

again by the cut-off strategy elicited from subjects in the first part of the session for play of the 

one-shot game.  Subjects were characterized as “conditional cooperators” if their strategy 

specified a cut-off level of 13 or less. Otherwise they were characterized as unconditional 

defectors. The numbers of each type of subject in each session are reported in left-most column 

of Table 4.   

Notice first in Table 4 that session-level cooperation frequencies by all subjects in the 

initial one-shot game (average .262) are somewhat lower  than is observed in Game 1, Round 1 

of the indefinitely repeated random matching I=0 treatment with 14 subjects (average .429) as 

reported in Table 2, but this difference is not significant (p>.10 using a rank-order test).  

Similarly, cooperation frequencies by all subjects in the second part of this new treatment (all 

games all rounds, average .043) is also a little lower than found in all games, all rounds of  the 

indefinitely repeated random matching I=0 treatment with 14 subjects (average .075) as reported 

in Table 2, but again this difference is not significant (p>.10).  The more striking finding of 

Table 4 is that cooperation rates by conditional cooperators are typically 3 to 5 times greater than 

the corresponding cooperation rates of unconditional defectors within the same session. This 

evidence serves to confirm our earlier intuition that heterogeneity among subjects accounts for 

both the restart effect and the non-convergence of cooperation levels to zero in the random-

matching I=0 treatment, but it also makes clear that a large fraction of subjects would stand 

ready to cooperate if only the aggregate cooperation frequencies were sufficiently high.  Finally, 

the last column of Table 4 reports the average accuracy of subjects’ first part strategy and 

second-part beliefs in predicting their actual second part behavior.17  While there is no reason to 

                                                 
17 This measure is constructed as follows. For each subject we took the cut-off strategy we elicited from them in the 
first part of the session and combined that with their forecast (belief) prior to the play of each round in the second 
part of the session regarding the number of the other 13 players who would choose X in that round.  We counted the 
number of times subjects’ strategy and forecast accurately predicted their actual play and used these numbers to 
calculate the average accuracy measures reported in the final column of Table 4. 
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believe that subjects’ strategies for playing a one-shot game should predict their behavior in the 

second part of these sessions which involve a sequence of indefinitely repeated games, the 

accuracy of subjects’ one-shot strategies in predicting their play in the indefinitely repeated game 

is quite high averaging in excess of 75 percent in all sessions.18  Notice further that those 

specifying a strategy of unconditional defection in the initial one-shot game nearly always defect 

in the second part of the session (on average 98.6 % of the time) whereas those who specify 

conditionally cooperative strategies in the initial one-shot game are somewhat less likely to 

follow those same cut-off strategies in the second part of the session, though consistency remains 

high (on average 84.3%).   Taken together, this evidence suggests that subjects may approach 

play of an indefinite sequence of prisoner dilemma games under random matching in the same 

way that they would play a one-shot version of that game.  In other words, subjects behave as 

though they understand that random matching will work to frustrate opportunities for collusive 

outcomes even in an indefinitely repeated game with a finite population size. 

 

3.3.3 The Effect of Group Size 
 

A group size of 14 is, theoretically, sufficiently small for the existence of a cooperative 

equilibrium under random matching with no information transmission (I=0).  Indeed, as detailed 

in Appendix A, our parameterization of the indefinitely repeated Prisoner’s Dilemma game 

admits a cooperative equilibrium under random pairings and no information for any group of size 

2-30.  However, the threat of setting off a contagion process does not appear to be sufficient to 

sustain cooperation in random matching environments with a group of size 14.  Figure 6 below 

displays the results observed in sessions in which a smaller group of 6 subjects were matched 

either in fixed pairings for the duration of a supergame or randomly in each round of a 

supergame with no information about their opponent’s prior history of play – 3 sessions of each 

treatment.  In the experimental sessions with groups of 6 subjects, we followed the same 

experimental procedures as in the sessions with 14 subjects. With a smaller group size, a 

contagion process will get back to its originator much more quickly and the threat of setting off 
                                                 
18 Of course, we cannot rule out the possibility that the high degree of consistency observed between the actions 
subjects took and the actions that their elicited strategies indicated they would take, conditional on their forecasts, 
may be an artifact of the design in which they are first asked to articulate their strategies.       
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such a process should provide a correspondingly larger incentive to cooperate.  As the data in 

Figure 6 reveal, when there is no information feedback, under random matching the smaller 

groups behave as competitively as the larger groups. 

[Insert Figure 6 here] 

 

Table 5 gives the aggregate frequencies of cooperation in the eight sessions with 6 subjects. 

     [Insert Table 5 here] 

 

As in the sessions with 14 subjects, robust rank-order tests reveal that the null hypothesis of no 

difference in the distribution of game 1, round  1 cooperation frequencies between the fixed and 

random pairings I=0 treatments  cannot be rejected (p>.10).  Under the fixed matching protocol, 

the aggregate frequency of cooperation increases with experience in all three sessions with 6 

subjects, while under the random matching protocol the aggregate frequency of cooperation 

diminishes with experience in two of the three sessions.19   Rank-order tests further confirm that 

the aggregate cooperation frequencies over the first half, over the second half, and over all 

rounds of a session (as reported in Table 5) are significantly higher in the fixed pairings 

treatment than in the random, I=0 treatment. (p≤ .029).   A comparison of the aggregate 

cooperation frequencies (over the first half, second half, or all rounds of a session) achieved by 

groups of 14 subjects in the random, I=0 treatment with those achieved by groups of 6 subjects 

in the same treatment (cf. Tables 2 and 5) yields no significant differences (p>.10). Similarly, a 

comparison of the cooperation frequencies achieved by groups of size 14 or 6 under the fixed 

pairings protocol also yields no significant differences. We conclude that group size has no 

statistically significant effect on aggregate cooperation rates. 

 
3.3.4 The Effect of Prior Conditioning 

 

                                                 
19  In session #3 of the random, I=0 treatment with 6 subjects, there was a slight increase the aggregate frequency of 
cooperation over time-see the bottom right panel of Figure 6; the slope of the fitted line for this session is positive, 
though not significantly different from zero. This slight upward trend is owing to the increase, over time, in 
cooperation frequencies in the first few rounds of each new supergame. However, there continues to be a dramatic 
fall-off in the cooperation  over the course of each supergame, contrary to the findings in the fixed pairings 
treatment.  
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A group of subjects who gain experience with the fixed pairings protocol tends to exhibit a high 

degree of cooperation.  It is natural to ask whether the social norm of cooperation such a group 

had exhibited under fixed pairings will be sustained when the group is switched to a random 

matching protocol.  Conversely, if a group has exhibited a social norm of non-cooperation under 

a random matching protocol will that experience inhibit the formation of a cooperative norm if 

they are switched to a fixed pairings protocol?   To study the effect of prior conditioning on the 

nature of the social norm developed under a given matching protocol we conducted four sessions 

in which subjects were first matched under one protocol and then, sometime during the middle of 

each experimental session, they were switched to another matching protocol. This type of design 

is referred to as a “within-subjects” design and stands in contrast to the “between-subjects” 

design we have used up to now.20  The switch in matching protocols was not announced in 

advance. When the switch was made, we handed out and read aloud a brief change in the 

instructions, which explained to subjects the new matching protocol that would be in effect in all 

subsequent rounds. We then played several supergames under this new protocol. All other 

procedures were as before.  

Figure 7 shows data on cooperation frequencies from the four within-subjects sessions we 

conducted with 14 inexperienced subjects per session.  The left column of Figure 7 displays data 

from two sessions in which subjects were first matched according to the fixed pairings protocol 

and then, without prior announcement switched to a random pairings protocol in the manner 

describe above. The right column of Figure 7 displays data from two sessions with the opposite 

order of use of protocol. 

[Insert Figure 7 here] 

 

When subjects are first matched under fixed pairings, they quickly achieve a high level of 

cooperation.  However, the switch to the random matching protocol produces an immediate, 

dramatic decline in the rate of cooperation and, as the session continues, the rate of cooperation 

                                                 
20  Within-subject designs yield findings that are less susceptible to individual differences than  between-subject 
designs, e.g., a subject who had too little sleep before an experimental session is nevertheless present in all 
treatments of a within-subjects design, but is only in one treatment of a between-subjects design. On the other hand, 
between-subject designs allow subjects to acquire more experience with a particular treatment than within-subject 
design sessions of the same duration. 
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quickly tends to zero.  In short, there is no evidence that a group of people who have learned to 

cooperate under fixed pairings will develop a social norm of cooperation that persists when 

matched randomly. Conversely, as shown in the right column of Figure 7, experience with 

random matching that has led members of a group to behave competitively does not prevent the 

group from immediately making a marked increase in the cooperation rates in response to a 

switch to the fixed pairing protocol and, with experience, achieving very high sustained levels of 

cooperation.  Indeed, the data suggest that a group that has experienced the competitive 

outcomes under random matching may learn to cooperate under fixed pairings even more rapidly 

than groups who have not had such experience.  

 

3.3.5 The Effect of Information Transmission 

 

In the case of the random pairings treatment with 14 subjects, we have also considered 

variation in the amount of information that players have regarding their opponents relative to our 

baseline I=0 treatment, where players have no such information.  In the random pairings, I=1 

treatment, prior to play of the stage game, both players are informed of the average payoff earned 

in the last two-player stage game played by their opponent.  There are just three possibilities for 

this average payoff: 10, 15 or 20. If the report is 10 (20), then it is known that the opponent 

played Y (X) in the last stage game.  If the report is 15, then it is known that either the opponent, 

or his matched pair, but not both, played Y in the last period. In this information treatment, a 

player who was seeking to signal to a future opponent her determination (say) to play the 

cooperative action X by choosing X this period would be unable to do so unambiguously. 

Alternatively, this information treatment can be viewed as a particular form of imperfect 

monitoring.  

 In the random pairings, I=2 treatment, prior to play of the stage game, players are perfectly 

informed of the action (X or Y) that their opponent chose in the previous round of play when 

matched with another player. This is a different kind of information than is given in the I=1 

treatment; in the I=2 treatment, there is no ambiguity about the action chosen by a player’s 

opponent in the previous period.  Providing unambiguous information on an opponent’s action 

choice prior to play of the stage game as in the I=2 treatment makes it straightforward to label an 
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opponent as a cooperator/defector before playing the game. On the other hand, the payoff 

information in the I=1 treatment reveals whether the opponent or his partner defected in the last 

round and therefore provides more information about whether a contagious process has started 

than does the information provided in the I=2 treatment.21   

 

             [Insert Figures 8-9 here.] 

 

Figures 8 and 9 show the time paths of the frequency of cooperative play in all random 

pairings sessions with 14 subjects under the I=1 (Figure 8) and I=2 (Figure 9) treatments.  Table 

6 provides aggregate cooperation frequencies for these two treatments analogous to Table 2.  For 

comparison purposes, the aggregate cooperation frequencies in the random pairings I=0 

treatment with 14 subjects, reported earlier in Table 2, are also reproduced in Table 6. 

 

[Insert Table 6 here.] 

 

Figures 8-9 reveal that, as in the random matching treatment with no information 

feedback (I=0), in both the I=1 and I=2 random matching treatments, there is no indication of 

any significant trend increase in cooperation rates with experience.  Indeed, in most sessions 

there is a slight decrease in cooperative behavior over time.  Further, the level of cooperation 

achieved in these treatments is quite low relative to that observed under the fixed pairings 

matching protocol with 14 subjects (compare Figure 8 or 9 with the left panel of Figure 2).    

Analyzing the session level averages for the I=1 and I=2 treatments reported in Table 6, 

we find that there is no significant difference in the distribution of Game 1, Round 1 (initial) 

cooperation frequencies between the Random I=0 and I=1 treatments, between the Random I=0 

and I=2 treatments or between the Random I=1 and I=2 treatments (p>.10 in all pairwise 

comparisons using nonparametric rank-order tests).22  Thus, the additional information provided 

                                                 
21  Unambiguously labeling a player as a cooperator or defector may enhance reputational concerns as stressed, e.g., 
by Bolton et al. (2004). However, such reputational concerns play no role in Kandori’s theory. 
 
22 There is also no significant difference in initial cooperation frequencies between the Random matchings I=1 or 
I=2 treatments and the Fixed matchings treatment (p>.10). 
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in the random matching I=1 and I=2 protocols is not immediately taken into account by subjects, 

nor is there any initial perceived difference between these two types of information.   

Though initial frequencies of cooperation are similar across all random pairings 

treatments, average cooperation frequencies are significantly higher in the I=1 treatment as 

compared with the I=0 treatment using session-level averages over all rounds (p=.05) or from the 

first half of each session (p= .10) or from the second half (p<.05).  Further, in the I=1 treatment, 

there is no significant decrease in cooperation frequencies from the first half to the second half of 

sessions (p >.10), though cooperation frequencies in this treatment are low, averaging less than 

20% in both halves of a session.   By contrast, we are unable to reject the null of no difference in 

average cooperation frequencies between the I=2 and I=0 random pairings treatments using 

session averages from all rounds, or from the first or second half of a session  (p>.10 in all 

cases).  As in the I=1 treatment, there is no significant decrease in cooperation frequencies from 

the first to the second half of I=2 sessions (p>.10), but cooperation rates in the I=2 sessions 

average less than 20% in both halves of those sessions.   Finally, we are unable to reject the null 

hypothesis of no difference in average cooperation frequencies between the I=1 and I=2 random 

pairings treatments using session averages from all rounds, or from the first or second half of 

sessions (p>.10 in all cases).    

While there is no significant difference in cooperation frequencies between the I=1 and 

I=2 random pairings treatments, the cooperation frequencies in these two treatments (as in the 

I=0 treatment) remain well below those found in the fixed pairings treatment, where cooperation 

frequencies over all rounds averaged more than 50% . Cooperation frequencies in the fixed 

pairings treatment are significantly higher than in either the I=1 or I=2 treatments using session 

level averages from all rounds, or from the first or second half of sessions (p=.014 in all cases).  

The conclusion that emerges from this analysis is clear: regardless of the additional information 

we provide in the random pairings treatment, this information does not enable subjects to sustain 

cooperation rates that are anywhere close to those observed in the fixed pairings treatments. This 

finding suggests that it is the matching protocol rather than information about an opponent’s 

history that plays the more important role in the achievement of high frequencies of cooperation.  

 

4.  Concluding Observations 
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Ellison (1994) observed that Kandori’s theorem cast doubt on claims that the development of 

private local institutions, providing information on the reputations of individuals who participate 

in trade with various partners in the absence of enforceable contracts, were essential for the 

continued success of medieval trade fairs (Milgrom, et al. (1990)) and the international trading 

ventures of Maghribi traders (Grief (1989)).   The experiment we report on in this paper shows 

that under anonymous random matching there is no evidence of the development of a 

cooperative norm even under the conditions of small group interaction or limited information 

about an opponent’s past actions or histories.  This finding gives weight to the argument that 

without the development of the kinds of institutions that can make an individual’s reputation 

public, the systems of trading at medieval fairs and international trade conducted amongst 

members of the same tribe could not have been sustained.23 

Ellison also observed that Kandori’s theorem cast doubt on claims by experimenters that 

random, anonymous matching was sufficient to prevent subjects from treating all repetitions of a 

game played during an experimental session as a single supergame.24 Our findings indicate that, 

as a matter of fact,  the behavior of subjects who are in fixed pairings for the duration of a 

supergame is markedly different from the behavior of subjects who play a sequence of one shot 

games with random re-matching of anonymous players after each game is played.  This finding 

suggests that random matching amongst anonymous players does, in fact, tend to suppress the 

inclination of subjects to treat all trials in a given session as a single supergame.  

                                                 
23 Similarly, our experimental findings cast doubt on the main proposition of Aliprantis et al. (2007) who (applying 
the logic of Kandori’s result to a search model of money) argue that anonymous random pairings may not suffice to 
generate an essential role for money. 
24  Experimenters know that subject behavior changes with experience.  They wish to give subjects experience with 
a game without creating a supergame.  A concern that subjects may treat all of the repetitions of a game played 
during an experimental session as a supergame, even when the intent is simply to give subjects experience with the 
game, has a long history.  In commenting on the early Prisoner’s Dilemma experiment conducted by Flood and 
Dresher, John Nash claimed that “The flaw in this experiment as a test of equilibrium point theory is that the 
experiment really amounts to having the players play one large multimove game…..Since 100 trials are so long that 
(backward induction is likely to fail) …it is fairly clear that one should expect (behavior) which is most appropriate 
for indeterminate end games...”  Flood (1958, p. 16).  If subjects further considered the existence of some 
conditionally cooperative player types, they would have an incentive to adjust their behavior with experience, even 
in experiments that utilized a random matching protocol, so as to learn about the percentage of the group with whom 
they are interacting that were conditional cooperators.  Consequently, unless there is some way of making the 
number of conditional cooperators common knowledge at the outset of an experiment, supergame effects cannot be 
completely eliminated when a random matching protocol is used. 
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Finally, the results of our experiment establish empirically that in indefinitely repeated PD 

games played with fixed pairings, a community norm of cooperation becomes possible as 

subjects gain experience. This norm is achieved in both large and small groups, despite the 

anonymity of pairings and the presence of some `pessimistic’ players, and even in cases where 

players have prior experience, under a random matching protocol, with a competitive norm.  
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Appendix A 
 
In this appendix we explain how we verified the existence of a “contagious” equilibrium as 
described in Kandori (1992, section 4) for the parameterization of the Prisoner’s Dilemma game 
shown in Figure 1 and used in all experimental sessions reported in this paper. We also establish 
that under this same parameterization, the cooperative outcome can be supported as equilibrium 
of the indefinitely repeated game if both players in a fixed pairing adhere to a grim trigger 
strategy. 

Let the stage game be described by the following symmetric payoff table showing the 
payoffs to the row player only 

 C D 

C w x 

D y z 
 
Here C is the cooperative action and D is the defect action (labeled X and Y in the experiment). 

In our experimental environment (unlike Kandori (1992)), we restricted w, x, y and z to 
be strictly nonnegative.  Specifically, as noted in the text, we chose w=20, x=0, y=30 and z=10 
so that the game is a Prisoner’s Dilemma. To translate into Kandori’s notation, the gain from 
defection, wyg −= , and the loss when cheated, xz −=l . Given our parameterization, 

.10== lg   
 
A.1 Cooperative Equilibrium With Random Pairings 
 

As in Kandori, letδ  be the period discount factor and let M denote the population size. 
The M players are randomly paired in each round of an indefinitely repeated game. Suppose 
there are just two types of players in the population. Type c players are those whose history of 
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play includes no defections; otherwise, a player is a type d player forever. The “contagious 
strategy” is for players to play the action corresponding to their type, i.e., type c’s play C and 
type d’s play D. Kandori (1992 Theorem 1) shows that the contagious strategy is a sequential 
equilibrium strategy for any given g and M provided that δ  and l  are sufficiently large. 

Following Kandori’s (1992) notation, let tX  be total number of type d players in period t 
and let A be an MM ×  transition matrix with elements { }.|Pr 1t iXjXa tij === +  Similarly, let 
B be an MM × transition matrix with elements 

{ }tandiXjXb ttij  at time C playing  todeviatesplayer  d  typeone    |Pr 1 === + . The matrix H=B-
A characterizes how the diffusion of d types is delayed if one d type unilaterally deviates from 
the contagious strategy. The conditional probability that a type d player randomly meets a type c 
player when there are i d types is given by the ith element of the column vector 

TMM
M

]0,1,...,2,1[
1

1
−−

−
=ρ . 

Finally, let ie  be a M×1 row vector with the ith element equal to 1 and all other elements equal 
to 0. Using the notation given above, we restate Kandori’s Lemma. 
 The contagious equilibrium constitutes a sequential equilibrium if, first, a one-shot 
deviation from the equilibrium is unprofitable, i.e., if 

[ ]∑
∞

=

−+≥
− 0

11 )1( 
1 t

ttt zAeyAew ρρδ
δ

. 

The left hand side is the expected payoff from cooperating forever and the right hand side is the 
expected payoff from defecting forever. The term ρtAe1  is the probability of meeting a type c 
player at time t given that the player was the first to defect at t=0. The above expression can be 
simplified to yield 

,) ()1( 1
1 ρδδ −−−≥

−
− AIe

zy
zw             (1) 

which is comparable to equation (1) in Kandori (1992) under his normalization of w=1, z=0 and 
using the definition y=w+g. 
 A second, sufficient condition for the contagious equilibrium strategy to be an 
equilibrium is that a one-shot deviation off the equilibrium path (a type d plays C) is unprofitable 
under any consistent belief. Specifically, the condition is that a type d player finds a one-shot 
deviation from playing D forever to be unprofitable given :,...,3,2 allfor  , MkkX t ==  
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The left hand side is the expected payoff from defecting forever when there are k d-type players 
including the player himself. The right hand side is what the player earns by deviating in the 
current period --playing C -- and then playing D forever; )1/()( −− MkM is the probability of 
meeting a type c player and )1/()1( −− Mk is the probability of meeting a type d player. Finally, 

Bek is the distribution of the number of type d players in the next period given that in the current 
period there are k type d players and one of them (the player under consideration) deviates to 
playing C in the current period. The above expression can be simplified to yield 
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which is again comparable to equation (2) in Kandori (1992) under his normalization of w=1, 
z=0 and using the definition wyg −= and .xz −=l  
 To check whether conditions (1-2) are satisfied under our parameterization of the stage 
game and for our choices of M and δ , we require the transition matrices A and H. Formulas for 
constructing these matrices are provided in Kandori (1989) and for completeness we reproduce 
these formulas here. 
 First, define the number of different ways of forming M/2 pairs out of M individuals,  

∏
=

−=
2/

1

)12()(
M

m

mMS . 

Using this definition, a closed form solution for the MM × transition matrix A is given by the 
following formula. For j=i, i+2, i+4,..., min[2i, M], if i is even and for j=i+1, i+3, i+5,..., 
min[2i, M] if i is odd, 
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otherwise 
.0=ija  

A closed form solution for the MM × transition matrix ABhH ij −== )(  is given by the 
following formula. For j=i+2, i+4,..., min[2i, M], if i is even, and for j=i+1, i+3,..., min[2i, M] 
if i is odd, 

, and 1, ijjiijij hha
i

ijh =⎟
⎠
⎞

⎜
⎝
⎛ −

= −  

otherwise 
.0=ijh  

 Using these definitions for the matrices A and H, we have verified that conditions (1-2) 
are satisfied for our parameter choices ,90.=δ w=20, x=0, y=30 z=10 for even integer values of 
M over the range .302 ≤≤ M 25  (The maximum number of computers we have available in our 
computer laboratory is 30). 
 
A.2 Cooperative Equilibrium with Fixed Pairings 
 

When players remain paired with the same player for the duration of an indefinitely 
repeated game, a strategy where each player plays C in all rounds of the game is an equilibrium 
under our parameterization if players adhere to the “grim trigger” strategy, i.e., begin by 

                                                 
25  A Mathematica program that checks these conditions is available in the supplementary materials that accompany 
this paper or from the authors. 
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cooperating and if the history of play ever includes a defection, defect forever, otherwise 
continue cooperating.   

Specifically, consider a player who decides to deviate from playing C in the current 
round. His one time gain from doing so, g=y-w. Since the other player is playing a grim trigger 
strategy, the deviant player faces a loss of w-z in the following period and forever after. Hence, 
the cooperative strategy is equilibrium provided that: 

∑
∞

=

−<−
0t

or  ),( zwwy tδδ  

).(
1

zwwy −
−

<−
δ

δ  

This is simply the condition that a deviation from the grim trigger strategy is unprofitable. Since 
y-w=w-z=10 in our parameterization, this condition reduces to ,50. δ<  which is readily satisfied 
by our choice of .90.=δ   Hence, the grim trigger strategy supporting cooperative play is an 
equilibrium in the fixed pairings environment that we consider.
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Appendix B  

This appendix provides the written instructions used in the two main treatments of the 
experiment, the fixed pairings treatment and the random matching I=0 treatment. 
Instructions for these and all other treatments are available in the supplementary materials 
that accompany this paper or from the authors. 
 
B.1 Instructions used in the fixed pairings treatment 

Overview 
 

This is an experiment in decision-making.  The National Science Foundation has 
provided funds for this research.  During the course of the experiment, you will be called 
upon to make a series of decisions.  If you follow the instructions carefully and make good 
decisions, you can earn a considerable amount of money which will be paid to you in cash 
at the end of the experiment. We ask that you not talk with one another for the duration of 
the experiment. 
 
Specifics 
 

The experiment is divided into a series of games.  A game will consist of an 
indefinite number of rounds.  At the beginning of each game you will be paired with 
someone else in this room.  You will be paired with this player for one game. In each round 
both of you will play the game described in the upper center portion of your screen.  In this 
game each of you can make either of two choices, X or Y.  The points you earn in a round 
depends upon both the choice you make and the choice made by the other person with 
whom you are matched.  As the payoff table on your screen indicates: 
 
If both of you choose X this round then:   you both earn 20 points. 
 
  If you choose X this round and the other person chooses Y then:  you earn 0 points and 
the other person earns 30 points. 
 
  If you choose Y this round and the other person chooses X then: you earn 30 points and 
the other person earns 0 points. 
 
  If you both choose Y this round then:   you both earn 10 points. 
 

  To make your choice in each round, click the radio button next to either X or Y.  
You may change your mind any time prior to clicking the submit button by simply clicking 
on the button next to X or Y. You are free to choose X or Y in every round.  When you are 
satisfied with your choice, click on the submit button. The computer program will record 
your choice and the choice made by the player with whom you are matched.  After all 
players have made their choices, the results of the round will appear on the lower portion of 
your screen.  You will be reminded of your own choice and will be shown the choice of the 
player with whom you are matched as well as the number of points you have earned for the 
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round. Record the results of the round on your RECORD SHEET under the appropriate 
headings. 

 
Immediately after you have received information on your choice and the choice of 

the person with whom you are matched for a given round, the computer program will 
randomly select a number from 1 to 100. The selected number will appear on a popup box 
in the middle of your screen. If this random number is less than 91, the game will continue 
into the next round. If the number selected is greater than 90 the game is over.  Therefore, 
after each round there is a 90% chance that you will play another round with the same 
individual and a 10% chance that the game will end.   
 

Suppose that a number less than 91 has been drawn.  Then you click on the OK 
button, eliminating the popup box, and the next round is played.  You will play the same 
game with the same individual as in the previous rounds   Before making you choice, you 
may review all the outcomes of all of the prior games in the sequence by scrolling down 
the history record.  You then choose either X or Y.  Your choice and the choice of the 
person with whom you are matched are recorded and added to the history record at the 
lower portion of your screen.  You record the outcome and your point earnings for the 
round.  The computer then randomly selects a number between 1 and 100 to determine 
whether the game continues for another round.  
 

If the number drawn is greater than 90 then the game ends. The experimenter will 
announce whether or not a new game will be played.  If a new game is to be played then 
you will be matched with someone different from those you have been matched with in 
prior games. You will be matched with that person for all rounds in the new game.   
 
Earnings 
 

 Each point that you earn is worth 1 cent ( $.01).  Therefore, the more points you 
earn the more money you earn.  You will be paid your earnings from all rounds played 
today in cash, and in private, at the end of today’s session. 
 
Final Comments 
 

First, do not discuss your choices or your results with anyone at any time during the 
experiment.   
 

Second, your ID# is private.  Do not reveal it to anyone. 
 

Third, remember that you are paired with the same individual for the entire 
sequence of rounds in a given game.  Since there is a 90% chance that at the end of a round 
the sequence will continue, you can expect, on average, to play 10 rounds with the same 
individual.  However, since the stopping decision is made randomly, some sequences may 
be much longer than 10 rounds and others may be much shorter. 
 
Questions?  
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Now is the time for questions.  Does anyone have any questions before we begin? 
 
B.2  Instructions used in the random pairings, no information (I=0) treatment 
 
Overview 
 

This is an experiment in decision-making.  The National Science Foundation has 
provided funds for this research.  During the course of the experiment, you will be called 
upon to make a series of decisions.  If you follow the instructions carefully and make good 
decisions, you can earn a considerable amount of money which will be paid to you in cash 
at the end of the experiment. We ask that you not talk with one another for the duration of 
the experiment. 
 
Specifics 
 

The experiment is divided into a series of games. A game will consist of an 
indefinite number of rounds.  At the beginning of each round you will be paired with 
someone else in this room.  You will be paired with this player for one round. In each 
round you will play the game described in the upper center portion of your screen.  In this 
game each of you can make either of two choices, X or Y.  The points you earn in a round 
depends upon both the choice you make and the choice made by the other person with 
whom you are matched.  As the payoff table on your screen indicates: 
 
If both of you choose X this round then:  you both earn 20 points. 
 
  If you choose X this round and the other person chooses Y then:  you earn 0 points and 
the other person earns 30 points. 
 
  If you choose Y this round and the other person chooses X then: you earn 30 points and 
the other person earns 0 points. 
 
  If you both choose Y then:  you both earn 10 points. 
 

  To make your choice in each round, click the radio button next to either X or Y.  
You may change your mind any time prior to clicking the submit button by simply clicking 
on the button next to X or Y. You are free to choose X or Y in every round.  When you are 
satisfied with your choice, click the submit button. The computer program will record your 
choice and the choice made by the player with whom you are matched.  After all players 
have made their choices, the results of the round will appear on the lower portion of your 
screen.  You will be reminded of your own choice and will be shown the choice of the 
player with whom you are matched as well as the number of points you have earned for the 
round. Record the results of the round on your RECORD SHEET under the appropriate 
headings. 

 
Immediately after you have received information on your choice and the choice of 

the person with whom you are matched for the round, the computer program will randomly 
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select a number from 1 to 100. The selected number will appear on a popup box in the 
middle of your screen. If this random number is less than 91, the game will continue into 
the next round. If the number selected is greater than 90 the sequence is over.  Therefore, 
after each round there is a 90% chance that you will play another round and a 10% chance 
that the game will end.   

 
Suppose that a number less than 91 has been drawn.  Then you press the OK button 

eliminating the popup box and the next round is played.  You will play the same game as in 
the previous round, but with an individual selected at random from all the individuals 
in the room. Before making your choice, you may review all the outcomes of all of the 
prior games in the sequence by scrolling down the history record.  You then choose either 
X or Y.  Your choice and the choice of the person with whom you are matched this round 
are recorded and added to the history record at the lower portion of your screen.  You 
record the outcome and your point earnings for the round.  The computer then randomly 
selects a number between 1 and 100 to determine whether the game continues for another 
round.  
 

If the number drawn is greater than 90 then the game ends. The experimenter will 
announce whether or not a new game will be played.  If a new game is to be played then 
you will be matched with someone drawn at random from the other people in the room. 
The new game will then be played as described above. 
 
Earnings 
 

 Each point that you earn is worth 1 cent ( $.01).  Therefore, the more points you 
earn the more money you earn.  You will be paid your earnings from all rounds played 
today in cash and in private at the end of today’s session. 
 
Final Comments 
 

First, do not discuss your choices or your results with anyone at any time during the 
experiment.   
 

Second, your ID# is private.  Do not reveal it to anyone. 
 

Third, since there is a 90% chance that at the end of a round the sequence will 
continue, you can expect, on average, to play 10 rounds in a given game sequence.  
However, since the stopping decision is made randomly, some sequences may be much 
longer than 10 rounds and others may be much shorter. 
 

Fourth, remember that after each round of a game you will be matched randomly 
with someone in this room.  Therefore, if there are N people in the room the probability of 
you being matched with the same individual in two consecutive rounds of a game is 1/(N-
1).   
 
Questions? 
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Now is the time for questions.  Does anyone have any questions before we begin? 



 
 

35

References 

 
Aliprantis, C.D., Camera, G., Puzzello, D., 2007. Contagion equilibria in a monetary 
model.  Econometrica 75, 277-282. 
 
Aoyagi, M., Frechette, G., 2005. Collusion as public monitoring becomes noisy: 
Experimental evidence. Working paper, New York University and Osaka University. 
 
Andreoni, J., Croson, R., 2002. Partners versus strangers: The effect of random rematching 
in public goods experiments. To appear in Plott, C., Smith, V., (Eds.), Handbook of 
Experimental Economics Results. Elsevier, Amsterdam/New York.  
 
Axelrod, R., 1984. The Evolution of Cooperation. Basic Books, New York. 
 
Bolton, G.E. Katok, E., Ockenfels, A., 2004. How effective are electronic reputation 
mechanisms? An experimental investigation. Management Science 50, 1587-1602    
 
Bolton, G.E., Katok, E., Ockenfels, A., 2005. Cooperation among strangers with limited 
information about reputation. Journal of Public Economics 89, 1457-1468. 
 
Dal Bó, P., 2005. Cooperation under the shadow of the future: Experimental evidence from 
infinitely repeated games. American Economic Review 95, 1591-1604. 
 
Ellison, G., 1994. Cooperation in the Prisoner’s Dilemma with anonymous random 
matching. Review of Economic Studies 61, 567-588.  
 
Feltovich, N., 2003. Nonparametric tests of differences in medians: comparison of the 
Wilcoxan-Mann-Whitney and Robust Rank-Order tests. Experimental Economics 6, 273-
297. 
 
Fischbacher, U., Gächter, S., 2006. Heterogeneous social preferences and the dynamics of 
free-riding in public goods. Institute for Empirical Research in Economics, University of 
Zurich, Working Papers Series ISSN 1424-0459. 
 
Fischbacher, U., Gächter, S., Fehr, E., 2001. Are people conditionally cooperative? 
Evidence from a public goods experiment. Economics Letters 71, 397-404. 
 
Flood, M.M., 1958. Some experimental games. Management Science 5, 5-26. 
 
Greif, A., 1989. Reputation and coalitions in medieval trade: Evidence on the Maghribi 
traders coalition. Journal of Economic History 49, 857-882. 
 
Holt, C.A., 1985. An experimental test of the consistent-conjectures hypothesis. American 
Economic Review 75, 314-325. 
 



 
 

36

Kandori, M., 1989. Social norms and community enforcement. CARESS Working Paper 
No. 89-14, University of Pennsylvania. 
 
Kandori, M., 1992. Social norms and community enforcement. Review of Economic 
Studies 59, 63-80. 
 
Milgrom, P.R., North, D.C., Weingast, B.R., 1990. The role of institutions in the revival of 
trade: The law merchant, private judges, and the Champagne fairs.  Economics and Politics 
2, 1-23. 
 
Palfrey, T.R., Rosenthal, H., 1994. Repeated play, cooperation and coordination: An 
experimental study. Review of Economic Studies 61, 545-565.   
 
Roth, A.E., Murnighan, K., 1978. Equilibrium behavior and repeated play of the Prisoner’s 
Dilemma. Journal of Mathematical Psychology 17, 189-198. 
 
Schwartz, S., Young, R., Zvinakis, K., 2000. Reputation without repeated interaction: A 
role for public disclosures. Review of Accounting Studies 5, 351-375. 
 
Siegel, S., Castellan, Jr., N.J., 1988. Nonparametric Statistics for the Behavioral Sciences, 
2nd Ed.  New York, McGraw Hill. 
 
Van Huyck, J.B., Wildenthal, J.M., Battalio, R.C., 2002. Tacit cooperation, strategic 
uncertainty, and coordination failure: Evidence from repeated dominance solvable games. 
Games and Economic Behavior 38, 156-175. 
 



 
 

37

 
Table 1: Characteristics of Experimental Sessions 

Treatment 
Treatment 

Session No. 
Number of 
Subjects 

Number of 
Supergames 

Number of 
Rounds 

Fixed  1 14 11 59 
Fixed 2 14 10 96 
Fixed 3 14 13 131 
Fixed 4 14 10 115 
Random I=0 1 14 10 112 
Random I=0 2 14 12 104 
Random I=0 3 14 8 97 
Random I=0 4 14 8 89 
One Shot then Random I=0 1 14 9 84 
One Shot then Random I=0 2 14 12 78 
One Shot then Random I=0 3 14 11 79 
Random I=1 1 14 9 75 
Random I=1 2 14 9 106 
Random I=1 3 14 16 99 
Random I=1 4 14 9 105 
Random I=2 1 14 14 110 
Random I=2 2 14 8 101 
Random I=2 3 14 7 100 
Fixed Then Random I=0 1 14 15 134 
Fixed Then Random I=0 2 14 15 127 
Random I=0 Then Fixed 1 14 13 113 
Random I=0 Then Fixed 2 14 11 133 
Fixed 1 6 10 109 
Fixed 2 6 9 108 
Fixed 3 6 13 108 
Random I=0 1 6 12 104 
Random I=0 2 6 12 100 
Random I=0 3 6 7 88 
 28 Sessions Total: 344 

Subjects 
Avg.=10.8 Avg.=102.3 
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Table 2: Aggregate Frequencies of Cooperation 

Fixed or Random (I=0) Matching Sessions with 14 Subjects 
 Game 1, All Rounds First Half of Second Half 
Fixed Round 1 of All Games the Session of the Session 
Session 1 0.786 0.548 0.478 0.617 
Session 2 0.286 0.576 0.457 0.695 
Session 3 0.571 0.477 0.408 0.545 
Session 4 0.286 0.608 0.520 0.695 
All Sessions 0.482 0.549 0.462 0.634 
     
 Game 1, All Rounds First Half of Second Half 
Random I=0 Round 1 of All Games the Session of the Session 
Session 1 0.214 0.022 0.034 0.010 
Session 2 0.429 0.042 0.080 0.004 
Session 3 0.429 0.063 0.097 0.029 
Session 4 0.643 0.173 0.211 0.137 
All Sessions 0.429 0.075 0.105 0.045 
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Figure 2: Aggregate Frequency of Cooperation in Fixed (left column) and Random, I=0 (right column) Matching Sessions with 14 Subjects 
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Table 3: Individual Frequencies of Cooperation 
Fixed 

Pairings 
Cumulative Number (Cum %) of the 14 Subjects Whose Frequency of  Cooperation Falls Below Various Thresholds 

Over All Rounds and Over the 1st Half and the 2nd Half of Each Session 

Session 1 Session 2 Session 3 Session 4 Frequency of  
Cooperation 

Is: 
All 

Rounds 1st Half 2nd Half 
All 

Rounds 1st Half 2nd Half 
All 

Rounds 1st Half 2nd Half 
All 

Rounds 1st Half 2nd Half 

All 4 
Sessions 

Combined 
Cumulative 
Frequency 
All Rounds 

<.05 1 (.071) 1 (.071) 1 (.071) 0 (.000) 2 (.143) 0 (.000) 0 (.000) 0 (.000) 1 (.071) 0 (.000) 0 (.000) 0 (.000) 0.018 

<.10 1 (.071) 1 (.071) 1 (.071) 1 (.071) 2 (.143) 0 (.000) 2 (.143) 2 (.143) 2 (.143) 0 (.000) 1 (.071) 0 (.000) 0.071 

<.25 2 (.143) 3 (.339) 2 (.143) 1 (.071) 2 (.143) 1 (.071) 3 (.214) 4 (.286) 4 (.286) 0 (.000) 1 (.071) 0 (.000) 0.107 

<.50 4 (.286) 7 (.500) 5 (.357) 5 (.357) 9 (.643) 2 (.143) 7 (.500) 9 (.643) 7 (.500) 3 (.214) 7 (.500) 3 (.214) 0.339 

<.75 11 (.786) 11 (.786) 8 (.571) 11 (.786) 13 (.929) 7 (.500) 10 (.714) 14 (1.00) 8 (.571) 10 (.714) 12 (.857) 6 (.429) 0.750 

<=1.0 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 1.000 
 

Random 
Pairings I=0 

Cumulative Number (Cum %) of the 14 Subjects Whose Frequency of  Cooperation Falls Below Various Thresholds 
Over All Rounds and Over the 1st Half and the 2nd Half of Each Session 

Session 1 Session 2 Session 3 Session 4 Frequency of  
Cooperation 

Is: 
All 

Rounds 1st Half 2nd Half 
All 

Rounds 1st Half 2nd Half 
All 

Rounds 1st Half 2nd Half 
All 

Rounds 1st Half 2nd Half 

All 4 
Sessions 

Combined 
Cumulative 
Frequency 
All Rounds 

<.05 13 (.929) 10 (.714) 13 (.929) 9 (.643) 8 (.571) 13 (.929) 4 (.286) 1 (.071) 10 (.714) 1 (.071) 1 (.071) 4 (.286) 0.482 
<.10 13 (.929) 13 (.929) 14 (1.00) 12 (.857) 11 (.786) 14 (1.00) 14 (1.00) 8 (.571) 14 (1.00) 3 (.214) 2 (.143) 5 (.357) 0.750 
<.25 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 13 (.929) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 11 (.786) 9 (.643) 12 (.857) 0.946 
<.50 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 1.000 
<.75 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 1.000 

<=1.0 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 14 (1.00) 1.000 
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Figure 4:  Change in the Aggregate Frequency of Cooperation from the 
First to the Last Round of Each Supergame* 

(Pooled Data from 4 Fixed Pairing Sessions with 14 Subjects Each)
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* Change is: Avg. % Cooperation in Final Round of Supergame - Avg. % Cooperation in First  
Round of Supergame.  ** Supergames are in the order played, excluding any 1-round supergames.
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Figure 5: Cumulative Frequency Distribution of Elicited Strategy 
Thresholds in the First Part of the "One Shot Then Random I=0" 

Treatment. Data from 3 Sessions, 14 Subjects Per Session.

0

0.1
0.2

0.3
0.4

0.5

0.6
0.7

0.8
0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Strategy Threshold - No. of Other 13 Who Must Choose 
X for Player to Choose X  (14=Never Choose X)

C
um

ul
at

iv
e 

Fr
eq

ue
nc

y 
of

 1
4 

Su
bj

ec
ts

  

Session 1
Session 2
Session 3

 



 
 

44

Table 4: Aggregate Cooperation Frequencies and Strategy Prediction Accuracy 
One-Shot Then Random (I=0) Matching Sessions with 14 Subjects 

Subject Group First Part Second Part Second Part Second Part Second Part Second Part 

 
One Shot 

 %C 
Game 1, 

Round 1 %C 
All Rounds of 

All Games %C 
First Half of 

 the Session %C 
Second Half of 
the Session %C 

Strategy Prediction Accuracy 
All Rounds of All Games 

All Subjects       
Session 1 0.143 0.143 0.096 0.110 0.083 0.899
Session 2 0.286 0.071 0.015 0.026 0.004 0.955
Session 3 0.357 0.214 0.019 0.027 0.012 0.806
All Sessions 0.262 0.143 0.043 0.054 0.033 0.887
Conditional     
Cooperators  Only    
Session 1:  7 Players 0.286 0.143 0.153 0.173 0.133 0.837
Session 2:  10 Players 0.400 0.100 0.019 0.033 0.005 0.938
Session 3:  11 Players 0.455 0.273 0.024 0.035 0.014 0.753
All Sessions 0.380 0.172 0.065 0.081 0.050 0.843
Unconditional    
Defectors Only    
Session 1:  7 Players 0.000 0.143 0.039 0.044 0.034 0.961
Session 2:  4 Players 0.000 0.000 0.003 0.006 0.000 0.997
Session 3:  3 Players 0.000 0.000 0.000 0.000 0.000 1.000
All Sessions 0.000 0.048 0.014 0.017 0.011 0.986
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Figure 6: Aggregate Frequency of Cooperation in Fixed (left column) and Random, I=0, (right column) Matching Sessions with 6 Subjects

Random Pairings, No Information, 6 Subjects, Session # 1
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Table 5: Aggregate Frequencies of Cooperation 
All Sessions with 6 Subjects and a Single Matching Protocol 

 Game 1, All Rounds First Half of Second Half 
Fixed Round 1 of All Games the Session of the Session 
Session 1 0.500 0.292 0.189 0.418 
Session 2 0.833 0.782 0.729 0.840 
Session 3 0.167 0.440 0.280 0.663 
All Sessions 0.500 0.505 0.399 0.634 
     
 Game 1, All Rounds First Half of Second Half 
Random I=0 Round 1 of All Games the Session of the Session 
Session 1 0.500 0.072 0.102 0.045 
Session 2 0.667 0.167 0.217 0.117 
Session 3 0.500 0.208 0.216 0.201 
All Sessions 0.556 0.149 0.178 0.121 



 
 

47

 

 
 

Figure 7: Within Subjects Treatments. 2 Sessions of Fixed followed by Random (I=0) Matching, 14 subjects each (left column) and 2 Sessions of 
Random (I=0) followed by Fixed Matching, 14 subjects each.  The Timing of Each Matching Protocol is Indicated on Each Figure 
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Figure 8: Aggregate Frequency of Cooperation in Four Random (I=1) Matching Sessions with 14 Subjects 

Random Pairings, Information on Immediate Past Average Payoffs 
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Figure 9: Aggregate Frequency of Cooperation in Three Random (I=2) Matching Sessions with 14 
Subjects

Random Pairings, Information on Immediate Past Actions (I=2) 
14 Subjects, Session # 1
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Table 6: Aggregate Frequencies of Cooperation 
All Random Matching Sessions with 14 Subjects, I=0, 1, 2 

 Game 1, All Rounds First Half of Second Half 
Random I=0 Round 1 of All Games the Session of the Session 
Session 1 0.214 0.022 0.034 0.010 
Session 2 0.429 0.042 0.080 0.004 
Session 3 0.429 0.063 0.097 0.029 
Session 4 0.643 0.173 0.211 0.137 
All Sessions 0.429 0.075 0.105 0.045 
     
 Game 1, All Rounds First Half of Second Half 
Random I=1 Round 1 of All Games the Session of the Session 
Session 1 0.429 0.135 0.197 0.075 
Session 2 0.500 0.185 0.168 0.202 
Session 3 0.571 0.144 0.143 0.144 
Session 4 0.571 0.225 0.236 0.214 
All Sessions 0.518 0.176 0.186 0.166 
     
 Game 1, All Rounds First Half of Second Half 
Random I=2 Round 1 of All Games the Session of the Session 
Session 1 0.571 0.158 0.207 0.110 
Session 2 0.357 0.276 0.277 0.275 
Session 3 0.357 0.086 0.108 0.066 
All Sessions 0.429 0.173 0.198 0.143 

 


