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1 Introduction

Many economic models employ an infinite horizon with discounting to examine agents’ be-
havior under the shadow of the future. Such environments are quite natural for studying
the pricing of assets because many assets, e.g., equities, are long-lived and have no definite
maturity date. Nevertheless, experimental economists have typically studied asset pricing
and trading behavior in finite-horizon settings with no discounting. In these settings, the
standard fundamental value (FV) of the asset at any moment in time is taken to be the
expected sum of the asset’s remaining dividend payments, that is, the risk-neutral present
value of the asset. Since the horizon is finite, the FV of the asset decreases over time, as in
the canonical experimental design of Smith et al. (1988).

In this paper, we study the trade of assets in an experimental market with indefinite horizons,
consisting of an unknown number of periods. The first period begins with trade in the asset.
Following trade, each unit of the asset pays its holder a fixed dividend. Thereafter, with a
constant probability δ, traders’ holdings of the asset carry over to the next period, and in
each new period, trade in the asset takes place and asset holders earn dividends per unit
held. With probability 1 − δ, the asset ceases to exist; the asset market shuts down and
the asset has no continuation value. This indefinite-horizon, or random-termination, design,
initially proposed by Roth and Murnighan (1978), is the most commonly used approach in
the laboratory to implementing infinite horizons with discounting.

Unlike most finite-horizon asset markets where the FV of the asset decreases over time, the
stationarity associated with indefinite horizons implies that the FV of the indefinitely lived
asset is constant over time.1 The stationarity associated with indefinite horizons may be a
more natural setting for understanding asset pricing decisions.2

In our baseline, “BRT” treatment (with BRT standing for block random termination), sub-
jects trade in indefinite-horizon asset markets implemented by random termination (more
precisely, a modified version of the block random termination scheme of Fréchette and Yuk-

1While it is possible to generate constant values for the FV in finite-horizon settings, this is typically
done by having some known, constant terminal period payoff value for the asset, as in Smith et al. (2000),
possibly also accompanied by a dividend process where the expected dividend payment is 0, as in Noussair
et al. (2001). In the indefinite-horizon design, the value of the asset is constant over time with positive
dividend payments and zero terminal value.

2Kirchler et al. (2012) have shown that the trend of the FV process (i.e., whether it is constant, increases,
or decreases over time) has a large impact on the formation of non-rational asset price bubbles (which we
define as sustained departures from the FV). Giusti et al. (2016) show that in addition to the trend of the
FV process, the sign of the expected dividend payment (positive, zero, or negative) also affects traded prices.
Our experimental setting, which features a constant FV and a positive dividend payment in each period,
serves as a more natural setting for understanding asset pricing.
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sel (2017)). In each period the market is open, subjects first trade units of a single asset.
Once trading is concluded, they receive dividend payments for each asset share they hold.
Finally, a random number determines whether the asset market will continue to a new pe-
riod. In each session, subjects participate in three indefinite-horizon markets (with different
pre-drawn market lengths) to reveal the effect of experience, as in Smith et al. (1988). We
find that traded prices are quite low, averaging around 40% of the standard FV, and they
remain low even as traders gain experience. This result is rather surprising given that the
vast majority of experimental asset market studies following the Smith et al. (1988) design
find asset price bubbles, or prices greatly in excess of the standard FV, in the first market
played, with approximate convergence to the standard FV within three market repetitions.

To better understand the low traded prices of our indefinitely lived asset (relative to the stan-
dard FV), we design two auxiliary treatments, noting that indefinite-horizon asset markets
involve two types of intertwined risks: payoff uncertainty and trading horizon uncertainty.
Payoff uncertainty refers to the uncertain sequence of dividend realizations an investor earns
from adopting a buy-and-hold strategy. In terms of the sum of dividend payments, the asset
can be viewed as a lottery, as described in Table 1, involving an infinite number of states,
t = 1, 2, ...,∞. State t is the event that the asset lasts until period t, yielding a payoff of td,
which occurs with probability δt−1(1− δ). By contrast, trading horizon uncertainty refers to
uncertainty about the length of time in which agents can expect to buy or sell the asset, or
the asset’s liquidity. While payoff uncertainty affects the holding value of the asset, trading
horizon uncertainty may affect a trader’s strategy, especially for speculators. If the horizon
over which the asset has value is perfectly known, then speculators might time their asset
purchases and sales with this information in mind, as in the asset pricing literature using the
Smith et al. (1988) design. In that design, speculators buy early and sell when they sense
the bubble to be peaking. By contrast, with an indefinite horizon, such speculative timing is
made difficult. Thus, there is reason to believe that an indefinite horizon for asset markets
might depress prices and trade volume relative to asset markets with known, finite horizons.

Table 1: Total Dividend Payments of an Asset with an Indefinite Horizon
Market Duration 1 2 3 ... t ...
Probability 1− δ δ(1− δ) δ2(1− δ) ... δt−1(1− δ) ...
Total Dividend Payments d 2d 3d ... td ...

Our second experimental treatment, “D-2” (with D standing for definite horizon and 2 stand-
ing for two phases) aims to single out the effect of trading horizon uncertainty from payoff
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uncertainty by separating the asset market into two stages. Stage one consists of a fixed
number of trading periods, and subjects do not observe nor receive dividend payments in
this stage. Stage two reveals dividend realizations, and subjects receive the realized divi-
dend payments for each share held at the end of the trading stage. The dividend realization
process in stage two mimics the distribution of the sum of remaining dividend payments as
in the baseline BRT treatment (characterized in Table 1). We find that traded prices in this
second treatment are fairly close to the standard FV.

At first sight, the notable difference in traded prices between these two treatments might
be attributed to trading horizon uncertainty. However, given that many studies in the
experimental asset pricing literature report that traded prices tend to converge to the FV
after three market repetitions, we suspect that the differences we find in traded prices in later
markets may not be fully attributable to trading horizon uncertainty.3 The two-stage design
of the D-2 treatment allows us to fix the trading horizon and control for the distribution of
the sum of dividend payoffs, but it also induces a difference in the timing of those dividend
realizations. In the baseline BRT treatment, dividend payments are realized dynamically
across each trading period. In the D-2 treatment, all dividend payments are revealed and
paid altogether at once, only after all trading activities have ended.

To separate the effects of trading horizon uncertainty and the timing of dividend realizations,
we conducted a third treatment, “BRT-2” (with BRT standing for block random termination
and 2 standing for two phases). This treatment involves two separate stages, as in the D-2
treatment, but keeps the uncertain trading horizon of the baseline BRT treatment. Thus, our
third treatment serves as a stepping stone between the first two treatments. The difference
between the D-2 and BRT-2 treatments reveals the effect of trading horizon uncertainty.
The difference between the BRT and BRT-2 treatments reveals the effect of the timing of
dividend realizations. We find that traded prices in the BRT-2 treatment are also fairly close
to the standard FV and not significantly different from the D-2 treatment.

Considering the evidence from all three treatments, we come to the conclusion that our
results are not due to uncertainty about the value of total dividend payments nor horizon
uncertainty as we initially suspected. Instead, what matters more is the timing of dividend
realizations. Our remaining task is to explain our experimental results. In particular, we
investigate whether the significantly lower traded prices found in our baseline BRT treatment

3Recent studies by Kopányi-Peuker and Weber (2021, 2022) find that bubbles can persist even with three
market repetitions. As shown in their first paper, this finding is mainly due to their use of a high cash-
to-asset ratio; with a lower cash-to-asset ratio similar to the one that we use, they observe prices closer to
FVs.
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relative to the other two treatments can be rationalized by a lower FV resulting from a
dynamic realization of dividend payments versus a static realization.

More precisely, in treatment BRT, dividends are realized dynamically in each trading period.
The stationarity of our dynamic asset trading environment implies that the asset can be
viewed as a combination of the fixed dividend payment in the current trading period with a
binary lottery in the next trading period (or at the end of the current trading period) that
yields a zero payoff with probability 1− δ and a replica of the asset with probability δ.

By contrast, in treatments D-2 and BRT-2, there is no dividend realization in any trading
period since all dividend payments are realized only after the trading phase is over. From
the point of view of all trading periods, the riskiness of dividend payments is resolved in
batch, and in a single instance so that the FV of the asset is captured solely by the certainty
equivalence of the static lottery shown in Table 1.

To conduct our analysis, we develop a new methodology for calculating the FV of the asset
that incorporates the market participants’ risk attitudes toward payoff uncertainty. Specifi-
cally, we suppose that subjects have constant relative risk-aversion (CRRA) preferences and
we infer their risk parameter using the individual choice task of Holt and Laury (2002).
We then derive each individual subject’s demand curve for the asset as the solution to a
portfolio choice problem, combining an individual’s asset and cash profile and the estimated
risk parameter. Finally, we estimate the risk-adjusted FV of the asset as the market price
that clears the market.

We use our procedure to compute two different versions of the risk-adjusted FV for the asset.
In the first version, which we refer to as the static risk-adjusted FV, subject’s expected utility
from holding shares of the asset follows the view of the asset as a static lottery as illustrated
in Table 1. In a second version that we refer to as the dynamic, risk-adjusted FV, we
adopt a non-expected utility, recursive preference specification to aggregate the dividend
payments from the asset that is due to Epstein and Zin (1989).4 We argue that the dynamic
risk-adjusted FV may be more appropriate for our BRT treatment, where dividends are
dynamically realized in each trading period; the static formulation is better suited to the
D-2 and BRT-2 treatments where all dividends are realized only after trading is complete.

4Epstein-Zin preferences are commonly used in the finance literature to rationalize the equity premium
and risk-free rate puzzles (see, e.g., Campbell (2018)). These preferences relax the restriction that the
elasticity of inter-temporal substitution equals the reciprocal of the coefficient of relative risk aversion by
allowing different parameters for each, so that agents can treat current consumption values and the certainty
equivalence of future values in a nonlinear way that violates the independence axiom of expected utility
theory.
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The computed dynamic risk-adjusted market FV is found to be about 70% of the standard
FV, and the static risk-adjusted market FV is found to be about 90% of the standard
FV. These risk-adjusted FVs can reasonably account for the traded prices observed in our
experimental asset markets. For the BRT treatment, the computed dynamic risk-adjusted
FV is not statistically significantly different from the traded price according to signed-rank
tests (although there remains a noticeable gap in the magnitude). For the D-2 and BRT-2
treatments, the static risk-adjusted FV moderately underestimates traded prices (even if the
difference is statistically significant according to signed-rank tests).

As an extension, we also examine the static and dynamic FVs under alternative assumptions.
Specifically, we compute both FVs by incorporating probability weighting with recursive
preferences instead of incorporating risk attitudes. We find that the probability-weighted FVs
are consistent with traded prices in all three treatments, both quantitatively and statistically.

There is a large body of literature involving experimental asset markets with known, finite
horizons following Smith et al. (1988). Surveys can be found in Palan (2009, 2013) and
Noussair and Tucker (2013). In this set-up, the asset yields dividends up to some known
terminal date, beyond which the asset pays no further dividends (it either ceases to have
value or pays some final buyout value). This set-up reliably generates asset prices bubbles
and crashes among inexperienced subjects. With experienced subjects, the price tends to
approach the standard FV.

By comparison, there are relatively fewer experimental studies of asset markets with in-
definite horizons. Table 2 provides a summary of the 11 studies involving the pricing of
indefinitely lived assets that we are aware of, the continuation values they used, and what
they found in terms of asset pricing behavior. As this table indicates, both overpricing and
underpricing of assets has been found using indefinitely repeated asset pricing models. Al-
though these papers adopt an experimental framework where the number of trading periods
is uncertain, their main focus is often not on the indefinitely lived feature itself, and they
often introduce other confounding design features. This makes it difficult to directly com-
pare their results to ours and pinpoint the exact reasons behind the different results. In the
online Appendix A, we provide further details on how these studies compare with our own
and why the results with regard to prices may differ from ours.

Among these studies, our indefinite-horizon treatment is most similar to treatment 2 in Köse
(2015), who uses the standard random termination method instead of the block random
termination method that we use. Like us, he also finds underpricing of the asset relative to
the standard FV. Although he identifies the importance of bankruptcy risk, he does not offer
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Table 2: Summary of Indefinitely Repeated Asset Pricing Experiments

Authors Market Details δ Results
Camerer and Weigelt (1993) Asset pays different dividends .85 Overpricing and underpricing

to different subject types

Ball and Holt (1998) Random termination with .833 Overpricing, bubble crash
a terminal value

Hens and Steude (2009) Dividend process is stochastic .97 Overpricing and underpricing
and unknown to subjects

Köse (2009) Definite versus indefinitely .875 Underpricing of assets
repeated asset pricing models in indefinitely repeated model

Asparouhova et al. (2016) Asset and bond pricing with .833 Prices close to fundamentals
consumption smoothing but excessively volatile

Fenig et al. (2018) Asset market competes with .865 Overpricing, bubble crash
production income

Weber et al. (2018) Pricing of risky bond Endogenous∗ Prices close to or greater
subject to default risk than fundamental values

Crockett et al. (2019) Consumption smoothing .833 Underpricing with a consumption
using Lucas assets smoothing objective

Kopányi-Peuker Forecasting versus trading Unknown† Recurrent bubbles and crashes
and Weber (2021) models of asset pricing unless the C/A ratio is low

Kopányi-Peuker Definite versus indefinite 0.9 after Recurrent bubbles
and Weber (2022) and short versus long some periods with high C/A ratio

Halim et al. (2022) Consumption smoothing .833 Overpricing even with a
using Lucas assets consumption smoothing objective

* The continuation probability, or discount factor, is determined as a function of an initial price offering.
† Subjects were not told the number of periods for each market, only that it would lie between 25 and 40 periods.

a theory or explanation as to how such risk may induce low traded prices. We confirm that
Köse (2015)’s finding is robust and we develop an in-depth analysis as to why it occurs.5

By designing the auxiliary treatments, we rule out trading horizon uncertainty as the driver
of low traded prices and we identify the importance of modeling the dynamic realization

5The low traded price of an indefinitely lived asset relative to the standard FV is a robust finding,
at least when the risk of termination without a buyout value is salient and there is careful control of
other confounding factors (e.g., asset trading is the single main activity, the dividend payment scheme and
termination probability are clearly defined and communicated, the C/A ratio is moderate and subjects have
the opportunity to gain experience). Köse (2015) has the same finding with standard random termination.
In revising this paper following the Covid pandemic, we conducted five additional sessions of the indefinitely
lived asset treatment (three with block random termination and two with standard random termination).
All five sessions again exhibited low traded prices, thus replicating our initial finding.
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of dividend payments when calculating the FV. We question the applicability of expected
utility theory approaches in this setting and show that recursive utility specifications and
probability weighting can explain the low traded prices that we observe.

Moreover, we show that the dynamic FV is also consistent with findings in other experimental
asset markets, such as the original design of Smith et al. (1988) with fixed, finite trading
periods, or indefinite-horizon asset markets with a buyout value. In those settings, the
dynamic FV is close to the standard FV and is, therefore, consistent with the experimental
finding that the traded prices are close to the standard FV among experienced subjects. Our
study suggests that it is important to study experimental asset markets using a truly dynamic
perspective: this is especially critical for indefinite-horizon markets. Finally, our paper
makes a methodological contribution in the development of a new procedure to determine
the market FV for an asset that incorporates traders’ heterogeneity, here with respect to
data we collected on our subjects’ risk preferences. This methodology could also be used to
incorporate other subject attributes as well as, for instance, heterogeneity in agents’ time
preferences.

Our work is also related to a growing experimental literature on preferences for the timing
of uncertainty resolution (see Nielson (2020) for an excellent survey).6 Among these works,
Brown and Kim (2014) and Meissner and Pfeiffer (2022) are most closely related to this
paper.

Brown and Kim (2014) report that most subjects prefer early resolution of risk and provide
supportive evidence for Epstein-Zin preferences. In particular, individuals predicted to prefer
early resolution according to Epstein-Zin preferences choose early resolution with a 20–50%
higher probability. However, Meissner and Pfeiffer (2022) find a negative correlation between
the (model-free) elicited-timing premia and the predicted-timing premia under Epstein-Zin
preferences. Our paper shows that recursive utility specifications can help to account for the
low traded prices in indefinitely lived asset markets relative to the standard FV, as well as
differences that we observe in market traded prices when we change the timing of dividend
realizations. However, we did not design our experiment to specifically test for Epstein-Zin
preferences or preferences for the timing of risk resolution.7

6In this paper, we use risk resolution and uncertainty resolution interchangeably. In Brown et al. (2022),
they distinguish between risk (objective uncertainty) and ambiguity (subjective uncertainty).

7It is still under debate how long the time delay should be between stages of uncertainty resolution
when eliciting such preferences. Nielsen (2020) points out that if the time delay between two stages of
uncertainty resolution is over days or weeks it may introduce instrumental information concerns, especially
with monetary payments. Meissner and Pfeiffer (2022) argue that it requires a meaningful amount of time
to test recursive utility specifications. Nielsen (2020) implements a non-instrumental framework, where the
time delay between the two stages of resolution is 30 minutes during which subjects were occupied by other
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The remainder of the paper is organized as follows. Section 2 presents the experimental
design and procedures. Sections 3 and 4 report on the experimental results across treatments
and estimate various market FVs and assess their fit to the experimental data. Section 5
concludes with a summary of our main findings and some suggestions for future research.

2 Experimental Design

In this section, we describe the main characteristics of our baseline BRT treatment with an
indefinitely lived asset market. We then describe two auxiliary treatments designed to un-
derstand traded prices in our baseline BRT treatment. Finally, we describe the experimental
procedures that we follow in running all three treatments.

2.1 Baseline BRT Treatment

The baseline BRT treatment (also labeled as treatment A) implements an asset market that
lasts for an indefinite horizon through a modified version of the block random termination
scheme of Fréchette and Yuksel (2017). Each experimental session consists of two parts.
In the first part, subjects complete a Holt and Laury (2002) risk-preference elicitation task
that involves choosing between 10 pairs of lotteries with different expected payoffs. This task
allows us to obtain a measure of each subject’s risk attitudes which we later use to investigate
whether subjects’ risk attitudes can help to explain the traded price of the asset. In the
second part, subjects trade assets in three consecutive and ex-ante identical asset markets.
The repetition of three markets allows for subject learning and to examine whether prices
convergence in an indefinitely lived asset market. Repetition is motivated by the observation
in Smith et al. (1988) and follow-up studies that when the same group of traders interact
in consecutive fixed-horizon asset markets with identical market structures, prices often
converge to the standard FV by the third market.

activities. The preference for early (late) resolution in her framework is represented by the choice of the
multi-stage lottery or information structure in which the first-stage random draw or signal is more (less)
informative on the final outcome. She finds that framing matters: a preference for early resolution with a
frame of information structures and late resolution with isomorphic multi-stage lotteries. Using Nielsen’s
(2020) information structure frame with non-instrumental information, Brown et al. (2022) elicit subjects’
preferences regarding the resolution of risk (objective uncertainty) and ambiguity (subjective uncertainty).
They find that subjects most frequently exhibit a preference for early resolution of both risk and ambiguity
and that the generalized recursive smooth ambiguity model of Hayashi and Miao (2011) can explain their
experimental findings.
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At the beginning of each of the three asset markets, subjects are endowed with shares
and cash (in units of experimental money (EM)). They then trade shares for an indefinite
number of periods. In each period, subjects first trade shares through a double-auction
trading interface subject to budget and asset supply constraints (subjects cannot borrow
cash or shares). Following the completion of asset trading, subjects receive a dividend of
d = 5 EM for each share of the asset that they hold post trading. The dividend payments
are placed in a separate account and cannot be used to purchase shares in the future, so
the cash-to-asset ratio (C/A) is kept constant and equal to 1 given the traders’ endowment
profiles, as described below.8 Finally, a randomly drawn number determines whether or not
the market will continue with another period. If the market continues, then each trader’s
asset position carries over to the next period; if it does not continue, then the asset shares
have a zero value and the market is declared over. As noted, the probability of continuation
is δ = 0.9, and so the probability that a market ends is (1− δ) = 0.1. In practice, a random
number between 1 and 100 is drawn and if the random number is less than or equal to 90,
the market continues with another period; if it is greater than 90, the market ends and the
asset ceases to have value. Subjects know that δ = .9 and are informed of this procedure
for determining the duration of a market. Subjects’ earnings in EM from the asset market
consists of their cash balance at the end of the market and all dividends earned over the
course of that market; this amount is converted into dollars at a fixed and known exchange
rate.

Unlike the standard random termination method where subjects are informed about the
random draw realizations as they occur at the end of each period, in our BRT implementation
scheme, in the first “block” of 10 periods, subjects receive no feedback regarding the random
draws and participate in the market anyway. At the end of period 10, subjects are told
whether or not the market has actually ended and, if so, in which period this occurred
within that block of 10 periods. If the market does not end within the 10-period block,
then subjects continue to participate in the market as in regular indefinite-horizon markets
with random termination, that is, at the end of each period the realization of the random
draw is revealed. If the market ends within the first 10 periods, then all trading activities

8Caginalp et al. (1998, 2001), Haruvy and Noussair (2006), Kirchler et al. (2012) and Kopányi-Peuker
and Weber (2021, 2022) report that high initial or increasing C/A ratios can drive bubble formation in
experimental asset markets. In our experiment, the supply of assets is held constant and dividend payments
are placed in a separate account so that the subject cannot use dividend income for asset purchases in
later periods of the market. This restriction prevents the dividend payments from increasing the C/A ratio
and affecting market outcomes. As our focus is on the fundamental price, not price bubbles, we choose a
moderate C/A ratio of 1, as in Kirchler et al. (2012). In addition, we keep the same C/A ratio across all
treatments so that the differences in traded prices across the treatments cannot be attributed to the C/A
ratio.
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and dividend payments in the subsequent periods after the market has actually ended are
void. Subjects are made well aware of this block random termination procedure before they
participate in the asset market. The BRT allows us to obtain, at a minimum, a 10-period data
series to analyze asset pricing; without it, some markets would be too short for meaningful
discussion.9

In Fréchette and Yuksel (2017), subjects play the game in fixed-length blocks, and a full-
length new block is played if the game has not ended in the previous block. We modify their
design in that beyond the first block, the market continues with the regular random termi-
nation design, so that from period 11 on, subjects receive live information about whether the
current period has ended or not. The main purpose of this modification is to save on time
and guarantee that we run three markets of at least 10 periods to examine the possibility
of price convergence in indefinite-horizon markets. Repeating 10-period blocks would make
each market longer, and it would be difficult to complete three markets in one session.

The expected horizon of each asset market is T = 1/(1 − δ) = 10 periods from the start of
the market or from any period reached. The standard FV of the asset, which measures the
expected value of total dividend payments, is constant in all periods at

V0 = d
∞∑
τ=t

δτ−t =
d

1− δ
= 50.

The realized life span of the asset, however, can be any number of periods, t = 1, 2, 3, · · · .
Since random termination can result in a large variance in the length of asset markets and
we are restricted in the length of time that we can keep subjects in the laboratory, we pre-
drew a set of three sequences of random numbers and used the same set of draws to control
the length of the three asset markets in all experimental sessions to reduce uncertainty and
facilitate a comparison across different sessions.10 These sequences of random numbers imply
market lengths of 6, 20, and 9 periods for markets 1, 2 and 3, respectively (for an average
of 11.67 periods per market). Note that under the BRT scheme, in asset markets 1 and 3,
subjects are prompted to trade for 10 periods, but their actions and dividend payments after
period 6 (9) are void. In market 2, all 20 periods count.

9As a robustness check, we also report on two experimental sessions of our BRT treatment that use
standard random termination without blocks. The results of this robustness exercise, as reported in online
Appendix D, are similar to our BRT findings (using 10 period blocks). In addition, Köse (2015) runs three
sessions of an indefinitely lived asset market implemented with standard random termination and has similar
findings.

10The first two sequences of random numbers were obtained from a pilot session that consisted of just two
asset markets, and the last sequence of random numbers was produced using a random number generator.
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Previous studies on finite-horizon experimental asset markets suggest that traded prices
converge to the standard FV, the expected value of total dividend payments, after subjects
repeat the same trading market three times. We check whether that convergence result
also holds in our asset markets with indefinite horizons, that is, whether the traded price in
market 3 converges to the standard FV of 50 EM. To our surprise, the mean traded price of
the asset in market 3 of the baseline BRT treatment is about 40% of the standard FV.

2.2 Auxiliary Treatments

In order to understand this surprising result, we design two auxiliary treatments, B and C,
where the asset market part differs from the baseline BRT treatment (while the first, risk
elicitation part remains the same).

While designing treatment B, we note that the asset market in the baseline BRT treatment
involves two types of intertwined risks: (1) payoff uncertainty and (2) trading horizon uncer-
tainty. Payoff uncertainty refers to uncertainty about the asset’s dividend payments. Note
that if a trader buys a share of the asset in any period and holds it until the end of the
market, in terms of total dividend payments, it is similar to buying a lottery, as in Table 1.
Trading horizon uncertainty refers to the length of time that agents can expect to trade the
asset, which affects the asset’s liquidity. While payoff uncertainty affects the holding value
of the asset, trading-horizon uncertainty may affect traders’ strategy, especially for specu-
lators. If the horizon over which the asset has value is perfectly known, then speculators
might time their asset purchases and sales with this information in mind. By contrast, in an
indefinite horizon, timing such speculation is more difficult. Thus, an indefinite horizon for
asset markets might depress prices and the volume of trade relative to known, finite horizon
markets.

Treatment B is designed to disentangle the effect of trading-horizon uncertainty and payoff
uncertainty. It replicates the BRT treatment regarding payoff uncertainty by having the same
distribution of total dividend payments. However, it fixes the trading horizon and, therefore,
eliminates trading-horizon uncertainty. To achieve this, we divide the asset market into two
phases: the trading phase and the dividend realization phase. In the first, trading phase,
subjects trade assets for a finite duration of T = 10 periods (as in much of the experimental
asset pricing literature, beginning with Smith et al. (1988)). We chose T = 10, since as
noted earlier, this is the expected number of periods from the beginning of an indefinitely
repeated asset market with a continuation probability of δ = 0.9. During these T trading
periods, there are no dividend realizations. In each trading period, subjects can choose to
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buy or sell assets as they wish, so long as they obey budget and (asset) supply constraints.

Following the final trading period T , all asset positions are considered final and subjects move
on to the second phase of the market where they experience/observe a random sequence of
dividend payments. Specifically, each share of the asset that a subject holds at the end of the
trading phase yields at least one dividend payment of d = 5EM . Following each dividend
payment, a random number between 1 and 100 is drawn to determine whether or not there
will be further dividend payments. If the random number is greater than 90, then there will
be no further dividend payments. Otherwise, each share yields another dividend payment,
d, followed by another independent random draw to determine further dividend payments.
Using this procedure, the asset in treatment B not only has the same standard FV of 50,
but the same distribution of total dividend payments as in the BRT treatment (represented
by the lottery in Table 1). In fact, we use the same three sequences of random numbers used
to determine market durations in the BRT treatment to determine the realized number of
dividend payments in the second stage of treatment B; i.e., for each share held at the end of
the trading stage, subjects receive 6 dividend payments in market 1, 20 dividend payments in
market 2, and 9 dividend payments in market 3. As noted earlier, we also refer to treatment
B as treatment“D-2,” with “D” standing for definite horizon, and “2” for two phases.11

We find that the mean traded price of the asset is close to the standard FV in the D-2
treatment. At first sight, the low traded price in the BRT treatment relative to the D-2
treatment might be attributed to trading-horizon uncertainty. However, given the finding in
the literature that traded prices tend to converge to the FV after three market repetitions,
it is possible that the persistent difference in traded prices that we observe between the BRT
and D-2 treatments in the later markets cannot be fully attributable to trading-horizon
uncertainty. The two-stage design of our second treatment allows us to fix the trading
horizon while controlling for the distribution of total dividend payoffs, but it also induces an
unavoidable difference in the timing of dividend realizations. In the BRT treatment, dividend
payments are revealed and paid period-by-period as subjects trade. In the D-2 treatment,
all dividend payments are revealed and paid altogether after trading activities have ended.
To separate the effects of the trading horizon and the timing of dividend realizations, we
conduct a third treatment.

Treatment C combines the uncertain trading horizon of the baseline BRT treatment with

11As an alternative, we considered a design where players trade for a known, finite number of 10 periods
as in the D-2 treatment, but they only earned dividends based on the shares they actually held at the end
of each period for which the random draw made for dividend earnings purposes was less than δ. However,
on reflection, this design would just be a replication of our BRT treatment.
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the two-stage design of the D-2 treatment, while keeping the distribution of total dividend
payments identical to the first two treatments. As noted earlier, we label treatment C “BRT-
2” to reflect that block random termination is used to determine the trading horizon but
the design involves two separate stages. Similar to the D-2 treatment, no dividends are
realized during the trading phase and there is no trading during the dividend realization
phase. Thus, this new treatment serves as a bridge between the first two treatments. The
difference between the D-2 and BRT-2 treatments serves as a clearer indicator of whether
trading-horizon uncertainty matters more than the difference between the BRT and D-2
treatments. The effect of the timing of dividend realizations is also more cleanly captured
by comparing the BRT and BRT-2 treatments.

The number of dividend realizations remains 6, 20 and 9 for the three markets of the BRT-2
treatment. However, we independently draw another three sequences of random numbers
with the same continuation probability, δ = 0.9, to determine the actual lengths of the
trading phases of the three markets of the BRT-2 treatment. These turned out to be 11, 5
and 16 periods.12 As in the BRT treatment, subjects did not know the number of trading
periods for each market, and as in the D-2 and BRT-2 treatments, they did not know the
number of dividend realizations for each market.

Another difference between the BRT treatment and the D-2 treatment is that in the BRT
treatment the dividend payment depends on the quantity of shares held at the end of each
trading period, while in the D-2 treatment, it depends on each trader’s final share position at
the end of the entire trading phase, i.e., trading period 10. Note that the BRT-2 treatment
helps to bridge the other two treatments in this respect as well. In the BRT-2 treatment,
similar to the BRT treatment, the asset position in every trading period counts as well
because each trading period can be the last trading period.

Table 3 summarizes the main differences in the design of the three treatments. Table 4
provides a summary of the number of trading periods and dividend realizations in the three
markets of our three treatments.

12The realizations of the random variable that determine trading duration and dividend realizations are
independently drawn to ensure that the distribution of total dividend payments remains the same across
time. If we used the same realizations for the two stages, then the distribution would have a lower bound of
d multiplied by the current trading period, and the holding value of the asset would increase across time.
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Table 3: Treatments
Treatment Trading Uncertain Dividends Realized

Horizon FVt? after Trading Phase?
A (BRT) Random Yes No
B (D-2) Definite Yes Yes
C (BRT-2) Random Yes Yes

Table 4: Number of Trading Periods and Dividend Payments
No. of Trading Periods No. of Dividend Payments

Treatment Mkt 1 Mkt 2 Mkt 3 Mkt 1 Mkt 2 Mkt 3
A (BRT) 6 20 9 6 20 9
B (D-2) 10 10 10 6 20 9
C (BRT-2) 11 5 16 6 20 9

2.3 Experimental Procedures

The experiment was conducted at CIRANO economics lab using university student subjects.
Subjects were recruited for the experiment using ORSEE (Greiner, 2004). We conducted
eight sessions for each of our three treatments. Most sessions had 10 participants (five sessions
had eight or nine subjects) with no prior experience in any treatment of our experiment. Each
subject participated in one session of one treatment only.

Each session had two parts. In the first part, subjects completed a Holt and Laury (2002)
risk-preference elicitation task (details are provided in the online Appendix E). For this
individual choice task, subjects were instructed to make 10 choices between pairs of lotteries
and were paid based on their choice from one randomly chosen lottery out of the 10 pairs.13

The second part of a session consisted of the three asset markets. Following the risk-
elicitation procedure, subjects were given written instructions for the asset market corre-
sponding to either the BRT, D-2 or BRT-2 treatment. Copies of these instructions are found
in online Appendix B. The experimenter read aloud these instructions (in an effort to make
them common knowledge), and subjects were asked to answer a set of quiz questions. After
reviewing the answers to these questions with the experimenter, subjects practiced using
the computerized trading interface before the formal asset market was officially opened.
The trading interface uses a double auction mechanism programmed in z-Tree (Fischbacher,
2007).14 It took about 45 minutes to go through the instructions and practice periods using

13Payments from this task were made only at the end of the experiment, and the average earning from
this part was $4. This part of the experiment took about 10 minutes.

14The z-Tree program we used was modified from a program published by Kirchler et al. (2012).
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Table 5: Session Characteristics
Session Treatment Duration No. of Subjects Avg. Payment
A1 BRT 2.5 hr 10 $29.98
A2 BRT 2.5 hr 10 $30.87
A3 BRT 2.5 hr 10 $30.34
A4 BRT 2.5 hr 9 $29.17
A5 BRT 2.5 hr 10 $29.45
A6 BRT 2.5 hr 10 $30.41
A7 BRT 2.5 hr 10 $30.03
A8 BRT 2.5 hr 10 $32.43
B1 D-2 2 hr 10 $37.29
B2 D-2 2 hr 10 $30.26
B3 D-2 2 hr 10 $31.00
B4 D-2 2 hr 10 $30.64
B5 D-2 2 hr 10 $29.58
B6 D-2 2 hr 8 $29.20
B7 D-2 2 hr 10 $29.88
B8 D-2 2 hr 10 $27.86
C1 BRT-2 2.5 hr 10 $36.99
C2 BRT-2 2.5 hr 8 $30.83
C3 BRT-2 2.5 hr 10 $30.86
C4 BRT-2 2.5 hr 10 $31.61
C5 BRT-2 2.5 hr 10 $30.12
C6 BRT-2 2.5 hr 10 $30.57
C7 BRT-2 2.5 hr 9 $28.02
C8 BRT-2 2.5 hr 9 $30.84

the trading interface. Subjects then participated in the three consecutive asset markets.15

Each asset market took 20–40 minutes to complete, depending on the treatment and the
realized market length. At the beginning of the asset market, half of the participants were
endowed with 20 shares of the asset and 3,000 EM units, while the other half was endowed
with 60 shares of the asset and 1,000 EM units; at the standard FV of 50 EM, the values of
these endowments were identical.16 In each trading period of the asset market, the trading
interface was open for two minutes. Subjects’ earnings from all three markets consisted of
their end-of-market cash balance and all dividends earned over the course of each market.
This amount, denominated in EM, was converted into Canadian dollars at a fixed and known

15In the instructions, subjects were told that after one asset market, depending on the time remaining,
another market might open, so they did not know in advance that there would be only 3 asset markets.

16In three sessions, we had nine subjects. Since odd-numbered subjects were given endowment profile 1,
the value of cash relative to shares was slightly higher in this session. This did not seem to significantly
affect the market outcome (see Table 6 In addition, the cash and asset supplies are incorporated into the
calculation of market FV in Table 9.
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exchange rate of 500 EM = 1 Canadian dollar at the end of the experiment.17 Given that
there were 6, 20, and 9 dividend payments in markets one, two, and three, respectively, the
average earning from the asset markets was $26.

The sessions of the BRT and BRT-2 treatments lasted two-and-a-half hours, while the ses-
sions of the D-2 treatment lasted two hours. The average total payment per subject was
about $30 ($26 from the asset markets, plus $4 from the Holt-Laury risk-elicitation task),
excluding the show-up fee. Participants were paid in cash and in private at the end of each
session. Table 5 summarizes the characteristics of the 24 experimental sessions.

3 Experimental Results: Comparison across Treatments

We analyze the experimental data from two perspectives. In this section, we compare market
outcomes among the three treatments and infer the effect of horizon uncertainty and the
different timing of dividend payments. In the next section, we will focus on whether we can
explain traded prices in the final market 3 with a market FV that incorporates risk aversion
and the effects of the different timing of dividend realizations.

Figure 3 shows the average prices of the asset over time in each treatment. The three vertical
bars in this figure indicate the first period of each new market. The left (right) panel shows
the mean (median) of session average prices across the 8 sessions in each treatment. For the
BRT and D-2 treatments, the mean and median trajectories are very close. For the BRT-2
treatment, the mean trajectory is noticeably higher than the median. This was caused by
session C7, which was an outlier session exhibiting persistently high prices (see Figure C.1
in the online Appendix C which shows the average price trajectory for each session). Our
discussion will focus on the median. In the BRT treatment, the median of the session average
price in the first market starts at around 50 (the standard FV), 55 in the D-2 treatment
and 40 in the BRT-2 treatment; as we will see later, the session average prices in the first
market are not significantly different across the three treatments. However, the median of
the session average price in the BRT treatment in the second and third markets steadily
declines, falling to around 20 by the end of market 2 and remaining there in market 3, while

17In sessions B1 and C1 only, the exchange rate was 400 EM=$1, which resulted in a higher payment in
the asset markets, as shown in Table 5. All other sessions had an exchange rate of 500 EM=$1. We tried
a different exchange rate for the first sessions of the D-2 and BRT-2 treatments considering they involved a
two-stage procedure, and we wanted to pay the subjects a bit more to compensate for that difference. We
then found from the first sessions that the second stage (the dividend realization stage) went very quickly.
As a result, we scaled the exchange rate back to be the same as for the BRT treatment.
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Figure 1: Mean and Median of Session-Level Average Traded Prices over Time, by Treatment

Notes : The red horizontal line is the standard FV, which is equal to 50. The left (right)
panel is the mean (median) of the session-level average traded price across the 8 sessions in
each treatment.

it stays around 50 in the last two markets in the D-2 and BRT-2 treatments.18 The pattern
tends to hold at the disaggregated session level as well. Further, the underpricing of the

18From Figures 3 and C.1 (in online Appendix C), there is only a very mild restart effect. This is likely
because the environment is stable across rounds and across markets.
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asset observed in the BRT treatment is robust to replacing the block random termination
design with standard random termination, as shown in online Appendix D.19

Table 6 shows the average price and the trading volume in each market of each session. We
also show in boldface the mean and median of session average prices. We conduct two-tailed
Mann-Whitney tests on session average prices and trading volume to assess whether there
are any treatment differences in these market measures. There are nine tests (3 markets x
3 treatments) each for traded price and volume. We present the p-values from the Mann-
Whitney tests and the Bonferroni adjusted p-values for multiple hypothesis testing, in Table
7. The results reported in that table provide support for the following three findings.20

Finding 1 There is no systematic, significant difference in the average trading volume across
the three treatments.

The experimental data suggest that the treatment variables, horizon uncertainty and the
timing of dividend payments, have no significant effect on average trading volume by the
Bonferroni adjusted p-values of the nine pairwise tests. We cannot reject the hypothesis that
it is equally likely that the observation is drawn from the two alternative treatments.

Finding 2 In market 1 the average traded price is not significantly different between any
two treatments.

Again, support for this finding comes from Table 7. Although the traded price tends to be
lower in the BRT treatment versus the other two treatments, the difference is not statistically
significant by the Bonferroni adjusted p-values.

Finding 3 In markets 2 and 3, the average market price is significantly lower in the BRT
treatment than for the other two treatments in markets 2 and 3. The average market price
in markets 2 and 3 is not significantly different between the D-2 and BRT-2 treatments.

In the BRT treatment, the median of session average traded prices in markets 2 and 3 are
22.3 and 20.0, respectively. By contrast, in the D-2 treatment, the comparable prices in
markets 2 and 3 are 51.5 and 50.6, respectively, and in the BRT-2 treatment, they are 46.0
and 48.6, respectively. The average traded price in markets 2 and 3 is, therefore, significantly

19Given that the price pattern across our three different treatments is quite clear, we choose not to report
the bubble (mispricing) measures (as deviations from the standard FV) as in most of the experimental papers
on asset markets. The statistical tests on bubbles measures, RAD and RD, developed in Stöckl et al. (2010)
are consistent with the test results we report for price differences from the standard FV.

20The results from the Kruskal-Wallis tests support similar findings. The average traded price across the
three treatments is marginally significantly different in market 1 (p < 0.05), and very significantly different
in markets 2 and 3 (p < 0.001). The average trading volume is not significantly different in markets 1 and 2
(p > 0.1) and marginally significantly different in market 3 (p < 0.05).
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Table 6: Average Traded Price and Volume by Session and Market
Session Average Price Average Volume

Mkt1 Mkt2 Mkt3 Mkt1 Mkt2 Mkt3
A1 30.9 18.9 17.9 60.7 45.2 67.3
A2 34.3 24.0 11.5 54.3 64.7 62.6
A3 84.9 40.9 33.3 58.7 58.5 64.3
A4 18.3 15.7 16.5 52.5 72.7 101.0
A5 41.3 20.6 22.1 122.8 146.9 221.6
A6 37.1 13.4 17.5 60.1 57.45 22.6
A7 37.3 27.4 27.3 85.9 61.55 91.4
A8 49.3 43.8 34.9 72.3 63.45 89.9

Treatment A (BRT) Mean 41.7 25.6 22.6 70.9 71.3 90.1
Treatment A (BRT) Median 37.2 22.3 20.0 60.4 62.5 78.6

B1 77.9 52.8 45.0 32.0 22.7 10.8
B2 73.6 70.9 67.7 71.1 85.3 67.9
B3 39.5 48.8 49.5 65.2 64.6 66.4
B4 52.7 50.3 50.2 57.4 48.9 48.5
B5 59.8 49.0 45.3 125.3 90.2 65.8
B6 39.6 49.2 55.7 15.3 17.3 16.4
B7 66.6 55.5 51.1 48.6 42.2 54.2
B8 109.9 54.3 56.8 23.3 57.5 62.8

Treatment B (D-2) Mean 64.9 53.8 52.6 54.8 53.6 49.3
Treatment B (D-2) Median 63.2 51.5 50.6 53.0 53.2 58.5

C1 49.1 45.6 47.7 37.2 40.7 24.6
C2 42.6 46.5 46.8 54.8 52.5 75.5
C3 58.6 60.6 62.1 32.5 43.6 29.6
C4 55.6 48.4 49.5 55.9 54.1 22.9
C5 36.6 40.0 70.6 84.4 88.3 60.4
C6 56.7 44.6 47.2 27.8 32.4 18.3
C7 152.6 177.7 170.4 13.0 23.5 22.6
C8 41.9 41.8 46.0 73.0 57.5 35.3

Treatment C (BRT-2) Mean 61.7 63.1 67.5 47.3 49.1 36.2
Treatment C (BRT-2) Median 52.4 46.0 48.6 46.0 48.1 27.1
Notes : Average price is the mean of the period price over all trading periods in a market.
For the BRT and BRT-2 treatments, it includes 10 periods if the market ends within the
block. The period price is the volume-weighted average traded price in the period. Average
volume is the mean of trading volume (number of shares traded) over all trading periods in
a market. The mean and median of both session average price and volume are in bold face.

lower in the BRT treatment than in the other two treatments. The Bonferroni adjusted p-
value is ≤ 0.01 for the two-tailed Mann-Whitney tests between the BRT treatment and
either the D-2 or BRT-2 treatment. Comparing the D-2 and BRT-2 treatments, the average
traded price is very close. The difference in the median of the session average traded price
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Table 7: p-values from Mann-Whitney Tests of Treatment Differences in Average Market
Price and Trading Volume

Treatment Average Price Trading Volume
Comparison Mkt1 Mkt2 Mkt3 Mkt1 Mkt2 Mkt3

A (BRT) vs. B (D-2) 0.028 0.000 0.000 0.234 0.328 0.065
[0.253] [0.002] [0.002] [1.000] [1.000] [0.585]

A (BRT) vs. C (BRT-2) 0.065 0.001 0.000 0.105 0.028 0.015
[0.585] [0.010] [0.002] [0.944] [0.253] [0.137]

B (D-2) vs. C (BRT-2) 0.382 0.083 0.900 0.879 0.742 0.442
[1.000] [0.747] [1.000] [1.000] [1.000] [1.000]

No. of Obs. 16 16 16 16 16 16
Notes : Bonferroni adjusted p-values are in square brackets to correct for multiple hypothe-
ses testing (tests on average trading price and trading volume corrected separately for 9
hypotheses, 3 comparisons between treatments x 3 markets).

is 5.5 in market 2 and 2.0 in market 3. The difference in the session average traded prices is
statistically insignificant (the Bonferroni adjusted p-value is > 0.5 for all three markets).

Based on these statistical results, we conclude that market outcomes in the BRT treatment,
specifically prices, are significantly different from the other two treatments. The insignifi-
cant difference in traded prices between the D-2 and BRT-2 treatments indicates that the
uncertain trading horizon itself does not significantly affect the market price with experi-
enced subjects. In addition, given that all three treatments share the same distribution of
the value of total dividend payments, the experimental results suggest that the uncertainty
in the value of total dividend payments cannot account for the low traded price in the BRT
treatment relative to the other two treatments. Instead, it appears that the timing of the
dividend realizations is what matters for the significant difference we observe in traded prices.

4 Market FVs

In this section we try to rationalize the differences in traded prices observed in the third
market of our three treatments. The approach we take is to calculate what we refer to as
the market FV of the asset based on the actual risk preferences of the market participants
and test whether it is significantly different from traded prices in market 3. The rationale is
that since the same subjects repeat the same market game three times, the market price in
the third market can reasonably be expected to approximate the market FV of the asset.21

21As shown in Tables 6 and 7, the traded price changes little from market 2 to market 3, so it seems that
convergence is achieved in market 2 and strengthened in market 3. We focus on the comparison between the
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First, as shown in the second column of Table 10, the standard FV (V0 = 50) cannot capture
the low traded price of the asset in the BRT treatment: the median of the session average
traded price in market 3 is 20.0, which is 40% of the standard FV. Statistically, this result
is also confirmed by a two-tailed, Wilcoxon signed rank test that compares this traded price
with the standard FV of 50: the Bonferroni adjusted p-value is 0.024.

By contrast, the traded price in market 3 of the other two treatments is close to the standard
FV of 50 (the Bonferroni adjusted p-value is 0.766 for the D-2 treatment and 1 for the BRT-2
treatment).

Noting that the standard FV cannot explain the low traded price in the BRT treatment,
a natural next step is to investigate whether incorporating subjects’ (heterogeneous) risk
attitudes can explain the low traded prices in the BRT treatment versus the D-2 and BRT-2
treatments. For this purpose, we construct a three-step procedure to compute the market
FV that accounts for subjects’ risk attitudes. In step 1, we estimate each individual’s risk
parameter by using individual data from the Holt-Laury risk-preference elicitation task. In
step 2, we derive each individual’s net demand curve for assets as a function of the share
price. We derive the demand curve as the solution to a portfolio choice problem, combining
each individual’s asset and cash profile assigned in the experiment and their risk parameter
estimated in the first step.

In step 3, we aggregate the individual demand curve for each session and calculate the market
equilibrium price, where the net demand equals zero, which we refer to as the market FV of
the asset.

As discussed in section 2, the BRT treatment differs from the other two treatments regarding
the timing of dividend realizations. In the BRT treatment, dividends are dynamically realized
in each trading period. In the D-2 and BRT-2 treatments, trading and dividend realization
take place in two separate stages, and all dividends are realized only after trading ends. For
these two treatments, in all trading periods, the asset can be viewed as a static lottery, as
described in Table 1; we call the related market FV the static risk-adjusted FV. In the BRT
treatment, in principle, it is possible that subjects view the asset in the same manner as in
the other two treatments if they care only about total dividend payments. However, given
the significant difference in traded prices between the BRT treatment and the other two
treatments, it is unlikely that subjects take this perspective. For the BRT treatment, we
also calculate what we call the dynamic risk-adjusted FV. The stationarity of the dynamic
asset market in the BRT treatment implies that the asset can be viewed as a combination of

traded price in market 3 and the FV to save on unnecessary repetition.
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the fixed dividend payment in the current trading period with a binary lottery in the next
trading period (or at the end of the current trading period) that yields a zero payoff with
probability 1− δ and a replica of the asset with probability δ. In the following steps, we will
describe in more detail how to calculate the risk-adjusted FVs.

Step 1 of our three-step procedure, which is the same for computing static and dynamic
market FVs, is to estimate the risk parameter for each subject from their Holt-Laury tasks.
We assume that subjects’ utility functions take the form u(x, α) = xα/α, where α is a risk-
preference parameter, with α = 1, α < 1 and α > 1 corresponding to risk-neutrality, risk-
aversion and risk-loving behavior, respectively. Table E.1 in online Appendix E provides a
summary of α(nA), the estimated value of the risk parameter as a function of the number of
safe choices, nA, made by individual subjects. More details about how we derive the numbers
can be found in the online Appendix E. Table 8 suggests that risk-neutral subjects would
choose nA = 4, and risk-averse (loving) agents would choose nA ≥ 5 (nA ≤ 3). Out of the
233 participants, 31, or 13%, (who chose 4 safe choices) can be classified as risk-neutral, 177,
or 76%, (who chose more than 4 safe choices) are classified as risk-averse, and 25, or 11%,
(who chose 0–3 safe choices) are classified as risk-loving. Figure E.1 in online Appendix E
shows a histogram of the number of safe choices made by subjects in our experiment across
all sessions. These results are consistent with previous findings in the literature.

Table 8: Estimation of the CRRA Parameter from the Holt-Laury Task
nA α(nA)
0 2.7128
1 2.3298
2 1.7167
3 1.3146
4 0.9981
5 0.7211
6 0.4562
7 0.1766
8 −0.1695
9 −0.3684
10 −0.3684

Notes. We assume subjects have CRRA utility functions, u(x) = xα/α.

4.1 Static Risk-Adjusted FV

In this subsection, we use the estimated-risk parameter to calculate the static risk-adjusted
market FV (in steps 2 and 3 of the three-step procedure) and examine whether it can capture
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traded prices in our experiment.

First, we derive each subject’s demand for assets. Let m0 and s0 be the subject’s endow-
ment of money and shares, respectively, p the market price, and s the holding of shares
after trading. An individual with the risk parameter α solves the following portfolio choice
problem:

max
s

Σ∞t=1(1− δ)δt−1[tds+m0 + (s0 − s)p]α/α (1)

subject to: s ≥ 0;m0 + (s0 − s)p ≥ 0,

where the two constraints imply there are no short sales of shares and subjects cannot borrow
money to buy shares. Let s(p) be the solution to equation(1), then the subject’s individual
net demand for shares is q(p) = s(p)− s0. We then construct the aggregate demand Q(p) as
the sum of individual demands. The market FV, V , solves Q(V ) = 0. In Table 9, we report
the estimated static risk-adjusted market FV, which we denote by V1.22

Given that most (76%) of our subjects are risk-averse, this risk-adjusted FV, V1, is always
found to be lower than the standard FV, V0 = 50, but V1 lies in a relatively small range
between 40.2 and 49.9 across all treatments. Incorporating risk attitudes toward uncertainty
in the value of total dividend payments brings the market FV closer to the traded prices
in market 3 of the BRT treatment, which are repeated in the second column of Table 9 for
comparison purposes. However, for the BRT treatment there is still a large gap between V1
and the market 3 traded prices. As Table 9 reveals, the median of V1 is 45.0 across the eight
sessions of the BRT treatment while the median of the actual average market traded price
is much lower, at 20.0.

Column 3 in Table 10 reports on signed rank tests of the null hypothesis that the market
traded prices are equal to V1 in market 3 of our three treatments. There we see that for market
3 of the BRT treatment, our method of adjusting the static-market FV by incorporating
individual risk attitudes still leads us to reject the null hypothesis of no difference in favor of
the alternative that traded prices in market 3 of the BRT treatment are significantly lower
than V1 (Bonferroni adjusted p = 0.024). By contrast, for the D-2 and BRT-2 treatments
we see in Table 9 and 10 that although market 3 average traded prices are higher than V1

22We find the market-clearing price numerically, following these steps: (1) Set the interval for possible
prices, for instance, from 1 to 100, with a fine grid, 0.1. Index these prices by j. (2) For each price pj in the
interval, use subjects’ individual risk parameter α measured in step 1 to solve the maximization problem (1)
and find the individual’s desired asset holding s(pj). The net demand for the individual is s(pj) − s0. (3)
Sum up the net demands across all subjects to get the net total demand Q(pj). (4) The equilibrium price is
the pj that minimizes |Q|.
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Table 9: Estimated Risk-Adjusted FV, by Treatment and Session
Session Avg Mkt3 Price V0 V1 V2
A1 17.9 50 44.7 36.7
A2 11.5 50 44.5 36.7
A3 33.3 50 40.2 24.3
A4 16.5 50 46.2 36.8
A5 22.1 50 45.0 30.0
A6 17.5 50 49.9 49.9
A7 27.3 50 44.9 36.7
A8 34.9 50 45.7 36.7

Treatment A (BRT) Mean 22.6 50 45.1 36.0
Treatment A (BRT) Median 20.0 50 45.0 36.7

B1 45.0 50 44.9
B2 67.7 50 40.7
B3 49.5 50 44.6
B4 50.2 50 44.3
B5 45.3 50 43.9
B6 55.7 50 42.6
B7 51.1 50 48.0
B8 56.8 50 47.3

Treatment B (D-2) Mean 52.6 50 44.5
Treatment B (D-2) Median 50.6 50 44.5

C1 47.7 50 44.4
C2 46.8 50 44.5
C3 62.1 50 47.2
C4 49.5 50 44.3
C5 70.6 50 42.3
C6 47.2 50 43.3
C7 170.4 50 45.2
C8 46.0 50 46.7

Treatment C (BRT-2) Mean 67.5 50 44.7
Treatment C (BRT-2) Median 48.6 50 44.5
Notes. V0 is the standard (risk-neutral) FV; V1 is the static risk-adjusted FV; and V2 is
the dynamic risk-adjusted FV. The treatment mean and median are taken over the session
values.

statistically (Bonferroni adjusted p < 0.05), the difference is modest in terms of magnitude.
The median of V1 undershoots the median of the session average price by 12% for the D-2
treatment and by 8% for the BRT-2 treatment.

24



Table 10: p-values from Wilcoxon Signed Rank Tests: Average Market 3 Prices against
Market FVs
Treatment V0 V1 V2
A (BRT) 0.008 0.008 0.039

[0.024] [0.024] [0.117]
B (D-2) 0.383 0.008

[0.766] [0.016]
C (BRT-2) 0.742 0.016

[1.000] [0.032]
No. of Obs. 8 8 8
Notes : V0 is the standard (risk-neutral) FV, V1 is the static risk-adjusted FV, and V2 is the
dynamic risk-adjusted FV. Bonferroni adjusted p-values are in square brackets to correct for
multiple hypothesis testing (tests for each treatment corrected separately).

4.2 Dynamic Risk-Adjusted FV

In this subsection we calculate the dynamic risk-adjusted FV for the BRT treatment (for
the other two treatments, the static FV remains an appropriate benchmark). To incorporate
the dynamic realization of dividend payments into the analysis of the FV for the BRT
treatment, we employ a recursive preference specification as per Kreps and Porteus (1978)
and Epstein and Zin (1989). This specification involves two components: a risk aggregator
that aggregates risky payoffs within the same period and a time aggregator that aggregates
the certainty equivalence of risky payoffs across periods. We adopt the popular specification,
as per Epstein and Zin (1989), which uses a constant elasticity of substitution (CES) time
aggregator to combine the current payoff, in our case, the dividend d, with the certainty
equivalence value of all future payoffs. To calculate the FV of the asset in the BRT treatment,
we consider a special case of the CES time aggregator where subjects treat the payoff in the
current trading period and the certainty equivalence of future payoffs as perfect substitutes
(and the implied elasticity of inter-temporal substitution is infinity). This is a reasonable
assumption (and perhaps the only assumption that can be made) for time aggregation in
the context of the BRT treatment because each trading period lasts for only two minutes
and it is hard to imagine subjects would have any motive to smooth payoffs across different
trading periods (or discount payoffs in later periods). For the risk aggregator, we continue
using the CRRA specification to aggregate the risk-associated future payoffs. With these
assumptions, each subject solves the following portfolio choice problem:

max
s
ds+m0 + p(s0 − s) + δ1/αps (2)

subject to: s ≥ 0;m0 + (s0 − s)p ≥ 0,
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where the last term is the certainty equivalence of the lottery that pays ps with prob δ and
0 with prob 1 − δ. Note, it is assumed that the economy is in its stationary equilibrium
where the price of the asset is constant across time. The solution to equation (2) gives the
individual’s demand for the asset:

q =

{
m0

p
if p < d

1−δ
1
α

−s0 otherwise
.

We then construct the aggregate demand curves to calculate the dynamic-market FV (V2)
following the same procedures as in the estimation of the static FV (V1). The estimated V2
for the BRT treatment is shown in the last column of Table 9. The p-values from Wilcoxon
signed rank tests comparing the market 3 traded prices with the estimated V2 values are
shown in Table 10.

For the BRT treatment, Table 9 reveals that the static and dynamic FVs are very different
from one another.23 The dynamic FV is noticeably lower than the static FV for seven out of
the eight sessions.24 Compared with the static FV, which has a median of 45.0, the dynamic
FV has a median of 36.7 and is significantly closer to the median of the session average
traded price in market 3 of the BRT treatment, which is 20. A signed rank test reported in
column 4 in Table 10 suggests that average traded prices in market 3 of the BRT treatment
are not significantly different from the estimated dynamic FV at the 10% significance level
(the Bonferroni adjusted p-value is 0.117). We summarize the results regarding the standard
FV and risk-adjusted FVs in the following finding.

Finding 4 Market Price and Risk-Adjusted FV.

1. For the BRT treatment, the traded price in market 3 is significantly lower than the
standard FV or the static risk-adjusted FV. The dynamic risk-adjusted FV is not sta-
tistically significantly different (at the 10% significance level) from the traded price,
although the magnitude of overshooting is still noticeable.

2. For the D-2 and BRT-2 treatments, the traded price in market 3 is not significantly
different from the standard FV prediction. The traded price is statistically significantly

23To understand the difference, note that in the dynamic context, subjects view the asset as a current
dividend payment plus certainty equivalence of the future value of the asset, which is zero if the market
ends. If subjects view the asset as a static lottery, then they consider all possibilities of the total number of
dividend payments, which ranges from 1 to infinity. With concave utilities, the prospect of a zero payment
lowers the dynamic FV.

24The exception is session A6, where the Holt-Laury task suggests that 4 out of the 10 subjects are
risk-neutral and the computed static and dynamic FVs are both close to the standard FV.
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higher than the static risk-adjusted FV predictions, but the magnitude of overshooting
is modest at about 12% and 8%, respectively.

The dynamic risk-adjusted FV reasonably captures the low traded price in the BRT treat-
ment. In the online Appendix G, we analyze the timing of uncertainty resolution in our three
treatments. Using a two-period example, we show that the value of the asset in the BRT
treatment resembles a dynamic lottery with gradual/late resolution. By contrast, under the
assumption of perfect inter-temporal substitution across periods, the value of the dynamic
lottery with early resolution, where the length of the market is determined before the market
starts, coincides with the certainty equivalence of the static lottery that describes the asset
in the D-2 and BRT-2 treatments (as depicted in Table 1). Therefore, the difference in the
traded prices between the BRT treatment versus D-2/BRT-2 in our experiment, which re-
flects the difference between the dynamic risk-adjusted FV and static risk-adjusted FV, could
also reflect the difference between the value of the asset with late resolution and the asset
with early resolution. The lower traded price in the BRT treatment relative to D-2/BRT-2
is consistent with the theoretical result that early resolution is preferred when the value of
the inter-temporal substitution parameter is larger than the value of the risk parameter in
the Epstein-Zin model.

One may wonder whether this result can be generalized to other experimental asset markets.
In the online Appendix F, we apply the analysis to two other types of markets studied in the
literature. The first is the widely studied market with a fixed, finite horizon, due to Smith
et al. (1988). The second is a market with an indefinite horizon and a buyout/terminal
value for the asset as studied in Köse (2015). We find that unlike in the BRT treatment,
where the dynamic FV is substantially lower than the standard FV, they are much closer in
these two setups. In terms of experimental evidence of the traded price in these alternative
experimental settings, the general finding is that the traded price is close to the standard
FV, with experienced subjects. Given that the risk-adjusted dynamic FV is close to the
standard FV, the traded price in those settings is also close to the risk-adjusted dynamic
FV. The take-away is that dynamic considerations and recursive preferences apply generally
to our treatments as well as to other settings in the literature. In our BRT treatment with
random termination and no buyout value, the dynamic FV is very different from the standard
FV so it is critical to use the dynamic FV to explain the traded price with experienced
subjects. In the settings with definite horizons and/or the existence of a buyout value for
the asset, the dynamic FV is close to the standard FV, so the standard FV constitutes a
good approximation.

27



4.3 Probability Weighting

Given that there is still a noticeable gap between the dynamic risk-adjusted FV and the
traded price in the BRT treatment, we extend our analysis of static and dynamic FVs under
alternative assumptions. Specifically, we incorporate probability weighting following the
cumulative prospect theory of Tversky and Kahneman (1992).25 In order to clearly pinpoint
the role played by probability weighting, we assume risk neutrality. For the BRT treatment,
similar to the consideration of risk attitudes, it is important to distinguish whether subjects
perceive the asset as a static or dynamic lottery. While calculating the probability-weighted
dynamic FV, we still employ the recursive structure by viewing the asset as a combination of
the fixed dividend in the current trading period and the certainty equivalence of the binary
lottery in the next trading period. For the other two treatments, it is more appropriate to
consider the static FV.

Probability weighting works as follows. Suppose agents face a risky prospect with n (ordered)
outcomes x1 < x2 < xi < ... < xn, each with probability p1, p2, ..., pi, ..., pn. Probability
weighting transforms each of the original probabilities, pi, through two functions πi(·) and

w(·), with commonly used functional forms πi = w

(
n∑
j=i

pj

)
− w

(
n∑

j=i+1

pj

)
and w(q) =

qγ

[qγ+(1−q)γ ]1/γ . The effect is that small probabilities are over-weighted while large probabilities
are under-weighted relative to their true values. We set γ = 0.71 following Wu and Gonzalez
(1996).26

The estimation of the risk-neutral FV under probability weighting follows a two-step proce-
dure. The first step is to transform the probabilities of the lottery outcomes. In the second
step, we use the transformed probabilities to calculate the expected value of the lottery.
Note that under the assumption of risk neutrality, the expected value of the lottery is also
the market FV.

In the case of the static lottery, the weighted probability of receiving t dividends is given by
the following equation (refer to online Appendix H for more details):

π(td) = w(δt−1)− w(δt).

25Ackert et al. (2009) report direct evidence of probability judgment errors on low-probability, high-payoff
events in experimental asset markets, similar to Smith et al. (1988), and find the probability judgment error
is correlated with the occurrence of asset price bubbles measured relative to the standard FV.

26As we did not elicit subjects’ probability weighting parameters, we rely on values suggested in the
literature. Other values of γ suggested are 0.56 in Camerer and Ho (1994) and 0.61 in Tversky and Kahneman
(1992). We use the highest value of γ among the three, 0.71, as it involves the least distortion of the objective
probabilities. We will also discuss the implications of different γ values later.
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As a result, the extreme outcomes (i.e., receiving t dividends when t ≥ 22 or when t ≤ 2) are
overweighted and other outcomes are underweighted, given the functional form of w(), our
choice of δ = 0.9 and the value γ = 0.71 (see Appendix H for a detailed discussion). The risk-
neutral, probability-weighted market FV is the expected value of dividend payments using
the weighted probabilities, π(td) = w(δt−1) − w(δt), in place of the original probabilities,
(1− δ)δt−1:

V PW
1 =

∞∑
t=1

[w(δt−1)− w(δt)](td) = 57.3.

To derive the probability-weighted dynamic FV, we first transform the probabilities of the
two-outcome lottery: a share of the asset maintains its value with probability π2 = w(0.9)−
w(0) = w(0.9) < δ = 0.9 and loses all of its value with probability π1 = w (1) − w (0.9) =

1−w(0.9) > 1−δ = 0.1. As a result, the bad outcome is overweighted and the good outcome
is underweighted. The risk-neutral probability-weighted dynamic FV can be calculated from
V PW
2 = d+ π2V

PW
2 , that is

V PW
2 =

d

1− π2
= 23.6.

Table 11: p-values from Wilcoxon Signed Rank Tests: Average Market 3 Prices against
Risk-Neutral Probability-Weighted Market FVs
Treatment V0 V PW

1 V PW
2

A (BRT) 0.008 0.008 0.742
[0.024] [0.024] [1.000]

B (D-2) 0.383 0.109
[0.766] [0.218]

C (BRT-2) 0.742 0.844
[1.000] [1.000]

No. of Obs. 8 8
Notes. V0 is the standard (risk-neutral) FV, V PW

1 is the risk-neutral, probability-weighted
static FV, and V PW

2 is the risk-neutral, probability-weighted dynamic FV. Bonferroni ad-
justed p-values are in square brackets to correct for multiple hypothesis testing (tests for
each treatment corrected separately).

Table 11 lists the p-value of the signed rank tests between the session average traded price and
the (risk-neutral) probability-weighted FV. The probability-weighted FV seems to capture
the traded price in all three treatments reasonably well. For the BRT treatment, the dynamic
probability-weighted FV is 23.6, which is only slightly above the median of the session average
price in market 3, 20. The signed rank test suggests that the average traded prices in market 3
of the BRT treatment are not significantly different from the probability-weighted dynamic
FV. The p-value for the test between probability-weighted dynamic FV and the average
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market 3 price in the BRT treatment is 0.742. For the D-2 and BRT-2 treatments, the
probability-weighted static FV is 57.3, which slightly overshoots the median of the session
average traded price in market 3 (50.6 in the D-2 treatment and 48.6 in the BRT-2 treatment).
The p-value for the tests between the probability-weighted static FV and the average market
price is 0.109 and 0.844, respectively. The results are robust with Bonferroni adjusted p-
values. We summarize the analysis in this section as the finding below.

Finding 5 Market Price and Risk-Neutral, Probability-Weighted FV.

1. For the BRT treatment, the traded price in market 3 is not significantly different from
the probability-weighted dynamic FV.

2. For the D-2 and BRT-2 treatments, the traded prices in market 3 are not significantly
different from the standard FV or the static probability-weighted FV.

The intuition behind Finding 5 is also critically related to whether subjects view the asset
from a dynamic or a static perspective. In the BRT treatment, from the dynamic perspective,
there are only two possible outcomes at the end of each trading period, the market continues
(the good outcome) with probability 0.9 or the market ends (the bad outcome) with prob-
ability 0.1. The effect of probability weighting is to overweight the small-probability event
(the bad outcome), which leads to a lower FV. However, in the D-2 and BRT-2 treatments,
from the static perspective, there are many, theoretically infinite, possible outcomes as pre-
sented in Table 1. In addition, the difference in two consecutive outcomes in Table 1 is also
small, always equal to d, which is another difference from the case in the BRT treatment. As
a result, the effect of probability weighting in the static case is rather mild: it over-weighs
the extremely good and bad outcomes and under-weighs the intermediate outcomes, but the
final estimated FV is about 10% higher than the standard risk-neutral FV. In fact, we find
that this result is robust even if we vary the value of δ (see online Appendix I for details).

Similar to the exercise with the risk-adjusted FV in section 4.2, we show that the probability-
weighted dynamic FV is also consistent with the convergent traded prices in asset markets
similar to the setup in Smith et al. (1988). For example, in one configuration used in Smith
et al. (1988), the asset lasts for a finite number of periods, and in each period, the dividend
follows an iid distribution with four possible outcomes {0 4 8 20} with equal probabilities.
The standard FV is = 8× the number of remaining periods. The weighted probabilities
assuming γ = 0.71 as above are {0.3611, 0.1783, 0.1677, 0.2929}. The probability-weighted
dynamic FV is 7.9122× the number of remaining periods, which is very close to (98.9% of)
the standard FV. So it seems that probability weighting applies to both our treatments and
other settings in the literature. In our BRT treatment, probability weighting reduces the
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FV significantly relative to the FV, while in other treatments, it does not make a significant
difference. Generally speaking, the FV under probability weighting more robustly captures
traded prices relative to the standard FV.

4.4 Discussion

In our BRT treatment, the traded price is substantially lower than the standard FV. Our
analysis above has explored three alternative FVs in an effort to rationalize the low traded
price found in the BRT treatment. The static risk-adjusted FV is substantially higher than
the traded price in the BRT treatment (though it captures the traded prices in the D-2
and BRT-2 treatments reasonably well). The dynamic risk-adjusted FV with an Epstein-
Zin recursive preference specification is significantly closer to the traded price in the BRT
treatment relative to the standard FV, but there is still a noticeable gap. The dynamic risk-
neutral FV with probability weighting is very close to the traded price in the BRT treatment.
Both of these dynamic FVs also capture traded prices in the D-2 and BRT-2 treatments;
in those treatments, the dynamic FVs degenerate to the static FVs, and this also holds for
asset markets apart from those studied in this paper, such as the finite horizon markets of
Smith et al. (1988).

As a result, using the dynamic FV is crucial for capturing the traded price in the BRT treat-
ment. Both the Epstein-Zin specification with risk considerations and probability weighting
with risk neutrality clearly beat the standard FV, and we cannot reject the null that traded
prices are equal to either of these dynamic FVs. Among the two, the dynamic FV with
probability weighting seems to fit the data from our experiment better: it can fully account
for the traded price in all three treatments.

5 Conclusion

Most asset pricing models employ infinite horizons, as the duration of assets, such as equities,
is typically unknown. By contrast, experimental asset markets typically have finite horizons
making it difficult to test the predictions of infinite horizon models. While strictly speak-
ing infinite horizons cannot be studied in the laboratory, one can mimic the environment
with indefinite horizons, where in each period the asset continues to yield future dividend
payments with a known probability. If agents are risk-neutral, expected utility maximizers,
then the probability that the asset continues to yield payoffs plays the role of the discount
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factor and the price predictions under the infinite horizon economy extend to the indefinitely
repeated environment. In both environments, the FV of the asset is constant over time and
equal to the expected value of total dividend payments, a standard measure of FV found in
asset pricing models.

In this paper, we study the empirical relevance of the indefinite-horizon model for understand-
ing the predictions of deterministic infinite-horizon asset pricing models with discounting. In
our baseline BRT treatment, which implements a random termination design, we find that
experienced subjects consistently price the asset below the standard FV, a surprising finding
given the literature.

Compared with the infinite-horizon model with discounting, the indefinite-horizon model
introduces two types of risks: risk in dividend payoffs (payoff uncertainty) and risk in the
duration of trading (trading-horizon uncertainty). To better understand whether the ob-
served, low traded prices can be attributed to either of these two risks, we consider two
auxiliary experimental treatments, both involving a two-stage design. In the first stage,
subjects trade assets without receiving or observing dividend payments on those assets. In
the second stage, they observe dividend realizations, and the total dividend payoff replicates
the distribution in the baseline BRT treatment. The two auxiliary treatments differ in that
the number of trading periods is fixed in one and uncertain in the other. In both of these
treatments, the asset is priced close to the standard FV.

As a result, we conclude that neither uncertainty about the trading horizon nor uncertainty
regarding total dividend payoffs can account for the low traded prices observed in the baseline
BRT treatment relative to the other two treatments. Instead, the experimental results
suggest that the dynamic realization of dividend payments plays a critical role in accounting
for the low traded price in the BRT treatment relative to the other two treatments. In the
BRT treatment, in each trading period, subjects receive dividend payments in the current
period and face an uncertain continuation value in the future. In the other two treatments,
as all dividend realizations are realized after trading is completed, subjects are more likely
to view the asset as a static lottery and care about the total dividend payments.

To investigate whether risk attitudes together with dynamic considerations can account for
the low traded prices of the BRT treatment, we introduce a new procedure to adjust the
estimated FV for the observed heterogeneity in subjects’ risk attitudes (and departures from
risk neutrality). We find that the risk-adjusted dynamic FV can account for a significant
fraction of the low traded prices observed in our baseline BRT treatment, and the two are
not significantly different according to signed-rank tests. However, the risk-adjusted FV still
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overshoots the traded price in the BRT treatment by a noticeable margin. At the same time,
for the other two treatments, the static risk-adjusted FV tends to undershoot the traded price
according to a signed-rank test, but the magnitude of this undershooting is moderate.

We also extend the application of recursive preferences by incorporating probability weighting
in our analysis, according to which subjects overreact to the small probability of market
termination, while assuming risk neutrality. The probability-weighted FVs can rationalize
the low traded prices observed in our baseline BRT treatment, as well as the observation
that the traded prices in the D-2 and BRT-2 treatments are close to the standard FV.

Our findings are of relevance to both finance and experimental researchers. For finance
researchers, our results offer some potentially useful insights into asset pricing. One lesson
is that in the presence of non-neutral risk preferences or probability weighting, modeling the
asset as a static lottery over total dividend payments could be misleading for calculation of
the FV of the asset. Our results also suggest that the stock prices of companies with very low
bankruptcy risk (high δ) may be undervalued, while the stock prices of companies with very
high bankruptcy risk may be overvalued.27 It would be of interest to explore these predictions
using field data in future research. An important take-away for experimental economists is
that the mis-pricing behavior found in experimental asset markets may be quite different
under random termination, as compared with the more typically studied finite-horizon case
that follows the lead of Smith et al. (1988). Rather than finding overpricing relative to
the standard FV (bubbles) among inexperienced subjects and close tracking of the standard
FV among experienced subjects, we find substantial underpricing of the asset relative to the
standard FV in our baseline BRT treatment with experienced subjects. We can rationalize
this departure from the standard FV by incorporating risk attitudes or probability weighting
of the Epstein-Zin type of recursive preferences.

Finally, while our experiment was not designed to directly test the empirical relevance of
Epstein-Zin preferences or whether subjects engage in probability weighting, we find that
incorporating these features helps to explain our experimental results. In future research
involving asset markets with indefinite horizons, it would be of interest to directly elicit the
parameters of the Epstein-Zin preferences and probability weighting, in a manner similar to
the way in which we elicited individual risk preferences. Note that the procedure that we
developed to incorporate individual subjects’ risk into the estimation of market FV is quite
general and additional individual characteristics can easily be incorporated. We leave this
exercise and other extensions to future research.

27In online Appendix I, we show the ratio of the alternative FVs relative to the standard FV for different
continuation probabilities, δ.
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