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The Condorcet jury model with costless but informative signals about the true state of 
the world predicts that the efficiency of group decision-making increases unambiguously 
with the group size. However, if signal acquisition is made an endogenous and costly 
decision, then rational voters have disincentives to purchase information as the group 
size becomes larger. We investigate the extent to which human subjects recognize this 
trade-off between better information aggregation and greater incentives to free-ride in a 
laboratory experiment where we vary the group size, the cost of information acquisition 
and the precision of signals. We find that the theory predicts well in the case of precise 
signals. However, when signals are imprecise, free-riding incentives appear to be much 
weaker as there is a pronounced tendency for subjects to over-acquire information relative 
to equilibrium predictions. We rationalize the latter finding using a quantal response 
equilibrium that allows for risk aversion.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Condorcet’s jury theorem (Condorcet, 1785) asserts that if a group of individuals have common preferences over some 
binary outcome (e.g., convicting the guilty or acquitting the innocent) and are given independent and informative private 
signals about the true state of the world (e.g., “guilt” or “innocence”) then, under majority rule, the correct outcome is more 
likely to be achieved as the group size of voters is increased. Feddersen and Pesendorfer (1997) have shown that this result 
is robust to strategic or insincere voting, where voters may rationally vote against their private information; even if voters 
vote strategically against their signals, they do so in an optimal way so that information aggregation continues to improve 
as the group size increases. An implication of these results for optimal voting mechanisms is that, under the maintained 
assumptions, we can always make a voting mechanism better by adding more voters. However, this result assumes that 
private signals about the true but unknown state of the world are costless and exogenously provided.

In this paper we study the question of endogenous information aggregation in a setting where voters must first inde-
pendently decide whether to acquire a costly signal about the true state of the world prior to voting as a group whether 
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to convict or acquit under majority rule. In particular, we present results from a laboratory experiment designed to explore 
how the number of players, the cost of information and the informativeness of signals matter for information aggregation 
by juries or committees. We believe that a laboratory experiment provides the best means of empirically evaluating the 
theory of voting and information aggregation with endogenous information acquisition as the laboratory allows for firm 
control over the number of voters, the costs and precision of information that voter receive as well as the incentives that 
voters face, so that the theory can be properly tested.

The basic set-up of our experiment is the Condorcet jury model in which voters have common preferences and must 
make a decision as a group about whether to convict or acquit a defendant based on private, informative signals about 
whether the defendant is guilty or innocent. A main focus of our study is how the size of the group affects the probability 
that it makes the correct decision (henceforth referred to as informational efficiency). Theory suggests that adding an addi-
tional individual (or voter) to the group has two opposing effects. On the one hand, since the additional individual’s signal 
is informative – it is more likely to be correct than incorrect – efficiency will increase. We term this the information aggre-
gation effect, and the content of the various versions of the Condorcet Jury Theorem is that when voters are exogenously 
endowed with private, independent but informative signals about the state of the world, this effect ensures that arbitrarily 
large groups can reduce the likelihood of error in the group decision without bound, thus improving informational efficiency. 
However, when the acquisition of information (signals) is a costly choice, then as the group size increases, each individual 
has a lower incentive to acquire information. This countervailing free-riding effect works to reduce informational efficiency. 
Thus, when information is endogenously chosen and costly, the overall effect of group size on informational efficiency de-
pends on the tradeoff between the information aggregation effect and the free-riding effect. Persico (2004) and Koriyama 
and Szentes (2009) show the existence of an upper bound on the optimal group size in Condorcet jury environments with 
costly information acquisition.

These theoretical papers provide us with testable hypotheses that we evaluate in our laboratory experiment. In particular, 
increases in the group size should result in an increase in informational efficiency when information is informative and 
freely available. However, if information acquisition is costly, informational efficiency should only increase up to a certain 
group size before falling off and for large enough group sizes, reaching the minimum efficiency level. Depending on the 
model parameterization, all voters may have an incentive to acquire information up to a certain group size, but beyond that 
group size rational voters play a mixed strategy with regard to information acquisition, and for a large enough group size, 
rational voters should refuse to acquire any information at all. Thus, the theory puts an upper bound on the optimal group 
size and one purpose of our experiment is to determine whether this upper bound really matters among the laboratory 
subjects who are asked to make a decision about the purchase of costly information prior to voting. In addition to increasing 
the group size, we also vary the cost of information acquisition and the precision of the signal process.

To preview our results, we find that if signals are costly and noisy (but informative), the free-riding effect on information 
acquisition that is predicted to become dominant as the group size increases is actually rather weak, so that the information 
aggregation effect associated with a larger group size tends to dominate and thus welfare is generally increasing with the 
group size, counter to theoretical predictions. On the other hand, consistent with theoretical predictions, we find that 
if signals are costly and perfectly informative, then there is a drop in welfare as the group size increases in line with 
theoretical predictions. We then consider several explanations for why the group size effect is not as strong in the noisy 
signal environment as compared with the perfect signal environment.

Specifically, we first consider whether subjects might simply be coordinating on asymmetric equilibria as opposed to the 
symmetric equilibria that we focus on. We find, however, that these two different types of equilibria are not sufficiently 
distinct from one another to provide a meaningful explanation. We then consider several different behavioral explanations 
for our findings including 1) that subjects may approach the game in decision-theoretic rather than game-theoretic terms 
thereby ignoring free-riding considerations; 2) that behavior reflects noisy best responses so that a quantal response rather 
than a Nash equilibrium is the appropriate benchmark for analysis and finally, 3) that subjects are risk averse with regard to 
uncertain money payoffs (rather than risk neutral as the theory presumes), and this risk aversion leads them to over-acquire 
information in the noisy signal environment. We conclude that a quantal response equilibrium with risk averse preferences 
provides a compelling explanation for why behavior departs from theoretical predictions in the noisy signal environment.

The rest of the paper is organized as follows. Section 2 discusses related literature. Section 3 presents the theoretical 
model and equilibrium predictions. Section 4 describes our experimental design and in section 5 we state our research 
hypotheses with numerical predictions under the parameterizations used in the experiment. Section 6 presents our main 
experimental findings in comparison with theoretical explanations and we also evaluate the various behavioral explanations 
for why, in certain treatments, information acquisition departs from theoretical predictions. Finally, section 7 concludes with 
a summary of our main findings and some suggestions for future research.

2. Related literature

The theory of endogenous information acquisition in the Condorcet jury model begins with Persico (2004) and Martinelli
(2006). Persico (2004) observed that if agents must first decide whether to acquire private noisy information that is then ag-
gregated to reach a collective decision, then the information acquisition decision is properly viewed as a free-rider problem 
with the result that information acquisition will generally be less than the social optimum under a given voting rule. An im-
plication of this observation is that for any given signal precision and voting rule there will exist an optimal committee size, 
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and in contrast to the standard Condorcet Jury Theorem, larger committees will not always be welfare-improving. Martinelli 
(2006, 2007) studies endogenous, costly and noisy information acquisition but considers the case where the signal precision 
is the choice variable, with more precise signals being more costly. Martinelli shows that if the marginal cost of the signal 
precision is zero at the lowest level of precision, then voters acquire some information even in large electorates and that 
the voting outcome can be (under certain assumptions) asymptotically efficient. Mukhopadhaya (2003) and Koriyama and 
Szentes (2009) also explore the Condorcet Jury model under endogenous information acquisition and show that larger than 
optimal committee sizes do lead to social welfare losses relative to smaller committee sizes, but that these losses might not 
be so great. Gerardi and Yariv (2008) show that the optimal voting mechanism is in general not ex-post efficient; distor-
tions have to be introduced to ensure that agents have incentives to acquire information. Oliveros (2013) adds abstention 
and heterogeneity in intensity of preferences to Martinelli’s endogenous information choice setting and shows that those 
acquiring more precise information do not necessarily abstain less often.

The first experimental studies of the Condorcet jury model all examined environments where informative signals were 
exogenously and freely provided to voters (there was no information acquisition decision): Guarnaschelli et al. (2000), Ali 
et al. (2008), Battaglini et al. (2010), Goeree and Yariv (2011), Bhattacharya et al. (2014) and Anderson et al. (2015). These 
studies focus on the extent of strategic versus sincere voting under a variety of different conditions: different voting rules 
(majority or unanimity), timing assumptions (simultaneous or sequential), committee durations (ad hoc/one-shot or stand-
ing/extended), asymmetrically informed voters, preplay communication, compulsory versus voluntary voting (abstention), 
and differential costs associated with incorrect group decisions. More recent experimental studies by Großer and Seebauer
(2016), Elbittar et al. (forthcoming) and Mechtenberg and Tyran (2016) use the Condorcet jury model to explore the conse-
quences of allowing endogenous costly information acquisition prior to voting as we do in this paper.1 Großer and Seebauer
(2016) study costly information acquisition by groups of size 3 or 7 and focus on whether compulsory rather than voluntary 
voting (where abstention is allowed), provides greater incentives for voters to acquire information (it does). Elbittar et al.
(forthcoming) explore endogenous information acquisition under a voluntary voting mechanism focusing on the extent to 
which the voting rule, majority or unanimity, matters for information acquisition and participation in voting. Mechtenberg 
and Tyran (2016) study costly information acquisition prior to voluntary voting (abstention allowed) where voters can first 
petition to hold a vote or defer the decision to an expert. They report that when subjects can first petition to hold a vote, 
information acquisition is greater than when the vote is exogenously imposed. By contrast with these three studies, we 
consider only the majority rule, compulsory voting setting (no abstention) where we focus not only on the effect of changes 
in group size, but also on changes in the cost of acquiring information (signals) about the true state of the world as well as 
the precision of those signals. Our paper is the only one in this literature to consider cases where subjects can acquire, at a 
fixed cost, noisy or perfect signals of the true state of the world. Our design thus enables a more complete assessment of 
the comparative statics implications of group size, information cost, and signal precision for endogenous, costly information 
acquisition all under the simple majority rule, compulsory voting mechanism.

3. The model

Our experiment implements the standard Condorcet Jury model with the addition of an endogenous, costly information 
acquisition stage that takes place prior to the voting stage as in Persico (2004) and Martinelli (2006, 2007). Within this 
environment, we consider the comparative statics implications of varying the information acquisition cost, c, the group size, 
N , and the signal precision, x.

In all of our experimental settings (or “treatments”) a group consisting of an odd number, N , of individuals faces a choice 
between two alternatives, labeled R (Red) and B (Blue). The group’s choice is made in an election decided by majority rule, 
that is, the alternative, R or B that receives more than N/2 votes is the group’s decision. It is common knowledge among 
voters that there are two equally likely states of nature, ρ and β , i.e., all voters have the common prior Pr[ρ] = Pr[β] = .5. 
Alternative R is commonly known to be the better choice in state ρ while alternative B is commonly known to be the 
better choice in state β . Specifically, in state ρ , each group member earns a payoff of M > 0 if R is the alternative chosen 
by the group and 0 if B is the chosen alternative. In state β the payoffs from R and B are reversed. Formally, we have:

U (R|ρ) = U (B|β) = M,

U (R|β) = U (B|ρ) = 0.

Prior to the voting decision, each individual may acquire a costly private signal regarding the true, binary state of nature. 
This signal can take on one of two values, either r or b. The probability of receiving a particular signal depends on the true 
state of nature. Specifically, each subject choosing to acquire a signal receives a conditionally independent signal where

Pr[r|ρ] = Pr[b|β] = x.

Voters who do not acquire a signal have no more information about the true state of the world than the initial common 
prior that the two states are equally likely.

1 We only became aware of these other studies after we had begun working on this project.
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We suppose that 1/2 < x ≤ 1 so that signals are informative but possibly noisy. More precisely we will consider cases 
where 1/2 < x < 1, so that the signal is noisy but informative as well as cases where x = 1, and the signal (if purchased) is 
perfectly informative. The latter case eliminates fundamental uncertainty about the true state of the world so that the voter 
only faces strategic uncertainty as to the information acquisition choices of other voters.

Given that x > 1/2, signal r is associated with state ρ while signal b is associated with state β (we say that r is the 
correct signal in state ρ while b is the correct signal in state β). It can be easily checked that when the signal precision is 
symmetric and the two priors are equal, the posterior probabilities that signals are matched with the correct states are the 
same in both states and are given by the signal precision parameter x:

Pr[ρ|r] = Pr[β|b] = x.

In our setting, each individual must decide whether or not to acquire a private signal at a fixed cost of c > 0. If an 
individual acquires a private signal then her payoff is U (A|ω) − c, where A is the group decision outcome and ω is the state 
of nature (i.e., payoffs are either M − c or −c, depending on the correctness of the group decision). If an individual does not 
acquire a private signal her payoffs are given by U (A|ω).

Having specified the preferences and information structure of the model, we next discuss the equilibrium strategies and 
outcomes for the voting games we study in our experiment. We initially restrict attention to symmetric equilibria in weakly 
un-dominated strategies as such equilibria would seem to be the most relevant given the information that is available to 
subjects in our experiment and our use of anonymous random matching to form groups (as detailed later in section 4). In 
particular, we require that in equilibrium: 1) all voters of the same signal type play the same strategies and 2) no voter uses 
a weakly dominated strategy. We will discuss later the possibility that subjects coordinate on other asymmetric equilibria, 
but our design involves a choice of parameters such that a symmetric equilibrium in weakly un-dominated strategies always 
exists and this symmetric equilibrium is unique.

3.1. Symmetric equilibrium predictions

The strategy of a voter consists of three elements: (1) a probability σ of buying costly information, (2) a probability vs

of voting sincerely conditional on buying a signal s ∈ {r, b}, and (3) a probability of voting for each alternative conditional 
on not buying information.

Since we use a setting that is symmetric across alternatives (equal priors in favor of either state, equal signal precision, x, 
in each state, and simple majority rule), we focus on equilibria where voters vote for each alternative with equal probability 
if they do not buy information. Moreover, it is easy to show that in any equilibrium, voters must vote sincerely conditional 
on buying information, i.e., v∗

b = v∗
r = 1. Thus, in this setting, the symmetric equilibrium is characterized by σ ∗ , the equi-

librium probability of information acquisition alone. In special cases, this probability may be 0 or 1, i.e., we may have a 
pure strategy equilibrium. We will sometimes denote the pure action of information acquisition (σ = 1) by σ1 and the pure 
action of not acquiring information (σ = 0) by σ0. Our focus on symmetric equilibria, where voters with the same private 
information use the same strategy, follows the common practice in the literature.

Under costly information acquisition, there may exist multiple equilibria (including asymmetric equilibria) where indi-
viduals acquire information with positive probability (σ ∗ > 0).2 As noted earlier, we always choose our parameter values 
such that the voting game in our experiment has a unique symmetric equilibrium.

Given sincere voting conditional on information acquisition, the expected utility from acquiring information is given by

U (σ1) = M

2
{Pr[ρ|r]Pr[P iv|ρ] + Pr[β|b]Pr[P iv|β]} − c, (1)

and the expected utility from not acquiring information is given by

U (σ0) = M

2

{
1

2
Pr[P iv|ρ] + 1

2
Pr[P iv|β]

}
, (2)

where Pr[P iv|ω] is the probability a vote is pivotal in state ω ∈ {ρ, β}.
Suppose the probability of information acquisition is σ ∈ [0, 1]. Then, the ex-ante likelihood of a voter voting for the 

correct alternative is

zσ = xσ + 1

2
(1 − σ). (3)

Notice that we must have Pr[P iv|ρ] = Pr[P iv|β] = pσ (say). Therefore, we have

U (σ1) = Mxpσ − c

U (σ0) = M
2 pσ

}
where

2 Since subjects are randomly matched to form a different group in each round of our experiment (which will be explained in detail in the next section 
on experimental design), we doubt that subjects could find a way to coordinate on play of an asymmetric equilibrium. However, we address the question 
of whether our subjects coordinated on asymmetric equilibria later on in section 6.3.
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pσ = Pr(P iv|ω) =
(

N − 1
N−1

2

)
[zσ (1 − zσ )]

N−1
2 . (4)

The information acquisition part of the strategy σ depends on the sign of U (σ1) −U (σ0), which turns out to be a comparison 
of the net benefit of information acquisition conditional on being pivotal with the normalized cost. In particular, σ ∗ ≥ 0 if 
and only if(

x − 1

2

)
pσ ≥ c

M
(5)

and σ ∗ = 1 if the inequality is strict. Notice that the net benefit of information acquisition is itself a function of σ .
Again, the solution value σ ∗ is then used for the calculation of informational efficiency. It is given by the formula

W =
N∑

k= N+1
2

(
N

k

)
zk
σ (1 − zσ )N−k. (6)

4. Experimental design

We consider three main treatment variables: 1) the group size, N , 2) the information cost, c, and (3) the signal preci-
sion, x. We adopt a between subjects experimental design so that in each session, subjects only make decisions under a 
single set of the three treatment variables.3

The experiment was computerized and was presented to subjects as an abstract group decision-making task using neutral 
language that avoids any direct reference to voting, elections, jury deliberation, etc., so as not to trigger some other possible 
(non-theoretical) motivations for voting (e.g., civic duty, the sanction of peers, etc.). A sample of the written instructions 
that were given to subjects and read aloud prior to the start of each experimental session are provided in Appendix A.

Each session consisted of 2N inexperienced subjects and 25 rounds. At the start of each of these 25 rounds, subjects 
were randomly and anonymously matched into two groups of size N and this random formation of N-member groups at 
the start of each round was made public knowledge in the written instructions.4 One of the two groups of size N was 
randomly assigned to the red jar (state ρ) and the other was assigned to the blue jar (state β), thus fixing the true state 
of nature for each group and ensuring that we have an equal number of ρ and β states. No subject knew which jar was 
assigned to her group. Subjects did know that it was equally likely that their group was assigned to either the red or the 
blue jar at the start of each round, that is, we took care to implement this common prior belief among the subjects.

Both the red and blue jars held 10 ball each. The red jar was known to contain a fraction x of red balls (signal r) and a 
fraction 1 − x of blue balls (signal b) while the blue jar was known to contain a fraction x of blue balls and a fraction 1 − x of 
red balls. We fixed the signal precision at either x = 0.7 or at x = 1 in a given session, and these signal precisions were made 
public knowledge in the written instructions. We thus implemented symmetric signal precisions so as to facilitate subjects’ 
understanding of equilibrium strategies in the compound decision making environment that we study. In addition, as we 
have previously noted, symmetric signal precisions rule out strategic (insincere) voting under the majority rule compulsory 
voting mechanism that we employed.

The sequence of moves in each round of our experiment was as follows. First, each subject had to decide whether or 
not to pay the fixed and known per round cost, c > 0, to draw a ball from the jar randomly assigned to her group for that 
round. If a subject decided to pay the cost and draw a ball, this was then done virtually in our computerized experiment; 
subjects clicked on one of 10 balls on their decision screen and the color of their chosen ball was privately revealed to them. 
In each round and for each subject, the assignment of colors to the 10 ball choices the subject faced were made randomly 
according to whether the jar the subject was drawing from was the red jar (in which case x percent of the balls were red 
and 1 − x percent were blue) or the blue jar (in which case x percent of the balls were blue and 1 − x percent were red). 
While each subject observed the color of the ball she had drawn, she did not observe the color of the balls drawn by any 
other subject or the color of the jar from which she had drawn a ball. The group’s common and publicly known objective 
was to correctly determine the jar, “red” or “blue”, that had been assigned to their group.

Subjects who chose not to draw a ball had to wait until other group members (if any) finished drawing a ball. Subjects 
were seated at computer workstations with privacy dividers so they could not observe the choices of other subjects. After 
the information acquisition decision was made and any voters who had chosen to acquire information had drawn their 
ball and observed its color, play proceeded to making a choice between red or blue for the color of the group’s jar. All N
subjects, regardless of whether or not they chose to draw a ball, had to choose either red or blue for their guess of the color 
of their group’s jar for that round, that is, voting was compulsory and abstention was not allowed. The group’s decision, 
red or blue, was then determined by majority rule. Ties were ruled out by the fact that the group size, N , was always 

3 That is, in each session, the group size N , information cost c, and signal precision x, are fixed over all rounds of the session.
4 Following the terminology of Ali et al. (2008), we use an “ad hoc committee” design. Our intention was to disrupt repeated game dynamics that could 

arise under the alternative fixed-match “standing committee” design, which could enable coordination on asymmetric equilibria or other collusive outcomes. 
Our random, ad hoc committee design is intended to make the symmetric equilibrium predictions of the model as salient as possible.
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Table 1
Characteristics of experimental sessions.

Treatment conditions No. of 
sessions

No. of subjects 
per session

No. of rounds 
per sessionN c x

3 5 0.7 4 6 25
3 8 0.7 4 6 25
3 25 0.7 4 6 25
7 5 0.7 4 14 25
7 8 0.7 4 14 25
13 8 0.7 4 26 25
3 8 1.0 4 6 25
7 8 1.0 4 14 25

chosen to be an odd number so that a group’s decision via majority rule was always unambiguously either red or blue. 
In our experiment we considered several different group sizes, N ∈ {3, 7, 13}; signal precisions, x ∈ {.7, 1} and information 
acquisition costs, c ∈ {5, 8, 25}. As we explain in the next section, these choices for N were made so as to explore various 
equilibrium predictions of the theory.

Payoffs in each round were determined as follows. First, at the start of each round, each subject was endowed with c
points, an amount equal to the treatment-specific cost of acquiring information in each round. If the group’s decision via 
majority rule turned out to be correct, i.e., the group’s decision was red (blue) and the jar assigned to that group was 
in fact the red (blue) jar, then each group member who chose to acquire information prior to voting received 100 points 
for the round (M = 100), while those group members who chose not acquire information prior to voting received 100 + c
points for the round. If the group’s decision turned out to be incorrect, then each group member who chose to acquire 
information prior to voting received 0 points for the round, while those group members who did not acquire information 
prior to voting received c points for the round. Thus, if a voter decided not to draw a ball (i.e., buy information), then she 
kept her endowment of c points and also earned the group-wide payoff in points as well, which depended on whether the 
group got the decision correct (100 points) or incorrect (0 points). Note that our awarding of an endowment of c points to 
each subject at the start of each round does not change any of the equilibrium predictions and it avoids the possibility that 
subjects earn negative payoffs in any round.5 We vary the magnitude of the information acquisition cost c ∈ {5, 8, 25}; as we 
explain in the next section, these choices for c were made so as to explore various equilibrium and behavioral hypotheses. 
The parameterization of the payoff function (i.e., the value of M and c) was held constant across all rounds of any given 
session (i.e., as noted above, we use a between-subjects design).

At the end of each round, after all choices had been made and payoffs determined, subjects received feedback on the 
results of the round. If a subject had paid the cost to buy a signal, she was reminded of the private signal (red or blue) 
that she received prior to voting in the round. All subjects were reminded of their “choice” (i.e., their vote) for red or blue 
for the color of their group’s jar for the round. Subjects were then informed of the number of red and blue choices (votes) 
made by group members, the group’s decision (red or blue) according to the majority rule, the true color of their group’s 
jar for the round (red or blue) and whether their group’s decision was “correct” or “incorrect”. Subjects were also informed 
of their payoff in points for the round, which was one of four possible values: 0, c, 100 or 100 + c. Subjects were further 
informed at the end of each round about the number of subjects in their N-player group who did or did not choose to 
purchase information (a signal) prior to making a choice (voting) for red or blue in that round.6

Following 25 rounds of play, the session was declared over. Subjects’ point totals from all 25 rounds of play were 
converted into dollars at the fixed and known rate of 1 point = $0.01 and these dollar earnings were then paid to subjects 
in cash and in private. In addition, subjects were awarded a $5 cash show-up payment.

Table 1 summarizes our experimental design, which consists of 32 voting sessions involving 368 subjects. Subjects were 
recruited from the undergraduate population of the University of Pittsburgh and the experiment was conducted in the 
Pittsburgh Experimental Economics Laboratory using Willow, a Python framework for experimental economics.7 No subject 
was allowed to participate in more than one session of this experiment. Total earnings including the $5 show-up payment 
averaged around $24 per subject for a 1 hour experiment.

5 Levine and Palfrey (2007) and Bhattacharya et al. (2014) use this same design.
6 Theoretically speaking, such ex-post information on the number of group members acquiring/not acquiring information prior to voting is irrelevant in 

our one-shot, random-matching (ad hoc committee) design. However, in an initial pilot experiment (not reported in this paper) where we did not provide 
ex-post information on the number of voters acquiring information, we observed over-acquisition of information relative to equilibrium predictions and so 
we thought it might be behaviorally important (from a learning perspective) to provide such information, which we did in all of the sessions reported on 
in this paper. As it turned out, information acquisition frequencies remained higher than equilibrium predictions in many (but not all) of our experimental 
treatments (as detailed below) even with the feedback we provided at the end of each round about the number of group members acquiring/not acquiring 
information in that round.

7 The program we used to conduct the experiment reported in this paper is available upon request.
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Table 2
Symmetric equilibrium predictions.

N = 3 N = 7 N = 13

σ ∗ w∗ σ ∗ w∗ σ ∗ w∗

x = 0.7
5 1 0.784 0.6693 0.773 0 0.5
8 1 0.784 0 0.5 0 0.5
25 0 0.5 0 0.5 0 0.5

x = 1
c = 5 0.8944 0.992 0.5621 0.955 0.356 0.912
8 0.825 0.978 0.447 0.902 0.2359 0.810

Notes: σ ∗ indicates the equilibrium rate of information acquisition and w∗ indicates equilibrium (infor-
mational) efficiency.

5. Research hypotheses

Table 2 shows symmetric equilibrium predictions for various combinations of our three treatment parameters: N , c
and x. Note that we did not conduct sessions for all of the treatment combinations shown in Table 2 as budget constraints 
prevented such an exhaustive exercise. The predictions of the treatments for which we did collect experimental data are 
indicated in boldface type in Table 2; other predictions from alternative parameterizations of the model shown in non-
boldface type are given for reference purposes only and serve to justify the model parameterizations (treatments) that we 
did choose to run in the laboratory.8

Based on the equilibrium predictions shown in Table 2, we formulate three research hypotheses concerning the effect of 
our three treatment variables on the frequency of information acquisition (and hence on the frequency of a group’s making 
correct decisions – the informational efficiency of group decision-making always moves in the same direction as the rate of 
information acquisition, as Table 2 reveals).

H1. Group size effect: For any fixed (positive) information cost and signal precision (c, x) ∈ {5, 8, 25} ×{0.7, 1}, the frequency 
of information acquisition, σ ∗ , decreases toward zero or remains at zero as we increase the group size from N = 3 to 
N = 7 to N = 13.

To see the free-riding effect, notice that for any given σ , x and c, as N increases, the pivot probability pσ , (4), decreases, 
leading to a drop in the benefit of information acquisition (left hand side of inequality (5)). The two competing effects of 
changing group size on efficiency are easy to see from expression (6). On the one hand, the free-riding effect depresses the 
equilibrium value of σ (and therefore zσ ), which depresses W if N were held constant. On the other hand, the information 
aggregation effect predicts that, for any strictly positive σ (and therefore, zσ > 1

2 ), an increase in N raises W . While these 
effects work in opposite directions, notice that for any c, x and σ , for a large enough N , the pivot probability, pσ , will 
eventually be small enough that the benefit of information acquisition is lower than the cost. Thus, for a large enough 
group size, the free-riding effect dominates so that σ ∗ = 0, and, as a result, the likelihood of a correct decision is no better 
than the prior so that W = 0.5.

H2. Cost effect: For any fixed group size and signal precision (N, x) ∈ {3, 7, 13} × {0.7, 1}, the frequency of information 
acquisition, σ ∗ , remains constant or decreases toward zero as we increase the information acquisition cost from c = 5
to c = 8 to c = 25.

The effect of information cost is straightforward: the higher is the cost of information acquisition, the less likely are 
individuals to acquire information, a prediction that follows directly from expression (5). In the case where N = 3, a cost of 
c = 8 is the highest (integer) value for which all N players rationally acquire information in the symmetric equilibrium of 
the majority rule voting game. Thus we chose to compare the case of c = 8 with the case of c = 5. Note that for the cost 
effect we have data for two cases: 1) N = 3 and x = 0.7, where we vary c from 5 to 8, and 2) N = 7 and x = 0.7 where we 
also vary c from 5 to 8. We further note that there might be some salience issue. For example, theoretically speaking, with 
x = 0.7, an information cost of c = 8 should be large enough to dissuade voters from acquiring any information when N is 
sufficiently large, 7 or higher. Behaviorally speaking, subjects may feel that such a cost level (8 points) is not sufficiently 
large compared with the benefit level from a correct group decision (100 points), and therefore they may continue to acquire 
information with a positive frequency. For this reason we also explore a very large cost of c = 25 in the N = 3 and x = 0.7
treatment. This large, c = 25, information cost treatment was also added to address the extent to which players perceive 
they are playing a game with others, as we discuss in further detail later in section 6.4.1.

8 For example, as Table 2 reveals, when x = 0.7, as N increases from 3 to 7 to 13, efficiency (w∗) more rapidly declines to the minimal level of 0.5 as c
is increased from 5 to 8 and to as high as 25. Thus, there is less reason to study variations in c for large enough N , e.g., N = 13.
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Table 3
Information acquisition and efficiency by treatment: averages over all rounds of each experimental session and over all sessions of each treatment.

Treatment conditions Variable Session number Overall 
average

Theoretical 
prediction1 2 3 4

x = 0.7, N = 3, c = 5 σ̂ 0.547 0.760 0.640 0.833 0.695 1.000
ŵ 0.620 0.760 0.700 0.660 0.685 0.784

x = 0.7, N = 3, c = 8 σ̂ 0.600 0.353 0.740 0.633 0.582 1.000
ŵ 0.680 0.620 0.660 0.620 0.645 0.784

x = 0.7, N = 3, c = 25 σ̂ 0.340 0.087 0.240 0.420 0.272 0.000
ŵ 0.540 0.480 0.520 0.700 0.560 0.500

x = 0.7, N = 7, c = 5 σ̂ 0.640 0.826 0.746 0.857 0.767 0.669
ŵ 0.760 0.800 0.860 0.840 0.815 0.773

x = 0.7, N = 7, c = 8 σ̂ 0.340 0.751 0.360 0.603 0.514 0.000
ŵ 0.580 0.820 0.700 0.740 0.710 0.500

x = 0.7, N = 13, c = 8 σ̂ 0.442 0.617 0.388 0.406 0.463 0.000
ŵ 0.700 0.820 0.780 0.740 0.760 0.500

x = 1, N = 3, c = 8 σ̂ 0.887 0.833 0.707 0.833 0.815 0.825
ŵ 1.000 1.000 0.960 1.000 0.990 0.978

x = 1, N = 7, c = 8 σ̂ 0.514 0.529 0.646 0.537 0.556 0.447
ŵ 0.920 0.940 0.980 0.960 0.950 0.902

Notes: σ̂ indicates the observed frequency of information acquisition and ŵ indicates the observed informational efficiency.

H3. Signal precision effect: For a given group size and information cost (N, c) ∈ {3, 7, 13} × {5, 8, 25}, the frequency of 
information acquisition can either decrease or increase with an increase in the signal precision from x = 0.7 to x = 1.

As we increase the signal precision, there are again two effects that work against each other. On the one hand, a more 
precise signal will induce individuals to invest in information with a higher frequency holding the pivot probability constant. 
More precisely, fixing pσ , an increase in x increases the left hand side of the inequality in expression (5) making information 
acquisition more likely. On the other hand, a better quality of information makes an individual’s vote less likely to be 
pivotal since those who have acquired the more precise signal are now more likely to vote for the correct alternative. More 
precisely, from expression (3), an increase in x results in an increase in zσ and from expression (4), an increase in zσ leads 
to a decrease in pσ , which from (5) makes information acquisition less likely. Overall, whether voters acquire information 
with a higher or lower frequency in equilibrium will depend on which of these two effects is dominant. Note that if 
subjects are purely decision-theoretic and don’t fully understand the strategic interactions associated with the collective 
decision problem, then only the first effect is at play and the frequency of information acquisition should increase with an 
increase in the signal precision. However, if subjects do reason game-theoretically, then the equilibrium consequence of a 
more precise signal is a lower frequency of information acquisition in small groups, e.g., N = 3, but a higher frequency of 
information acquisition in larger groups, e.g., N = 7 – see Table 2 for the precise predictions. For the signal precision effect, 
we have data for two cases: 1) N = 3, c = 8 and x = 0.7 or x = 1 and 2) N = 7, c = 8 and x = 0.7 or x = 1.

6. Experimental results

We discuss our experimental findings at both the aggregate and the individual level. We then consider the possibility 
that subjects coordinated on asymmetric equilibria and we conclude with an analysis of several behavioral explanations for 
our findings.

6.1. Aggregate data

Table 3 reports on the average frequencies of information acquisition and informational efficiency in each of the four 
sessions of each treatment combination (x, N, c) as well as over all sessions of each treatment. Using the data reported in 
this table, we first address the group size effect, [H1]. Fixing x = 0.7 and c = 0.5, Table 3 reveals that the mean frequency of 
information acquisition increases as N is increased from 3 to 7, rising from .695 to .767 but this difference is not statistically 
significant according to non-parametric Mann–Whitney tests using the session-level averages (p > 0.10).9 By contrast, the 
theory predicts a movement in the opposite direction from a frequency of information acquisition of 1 to .669 as N is 
increased from 3 to 7. Next, keeping x = 0.7 but now fixing c at a higher value, c = 8, Table 3 indicates that the mean 
frequency of information acquisition decreases slightly as N is increased from 3 to 7 to 13, from .582 to .514 to .463, 

9 Unless otherwise noted, in what follows, reported p-values are from non-parametric Mann–Whitney tests using independent session-level averages.
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respectively. These differences are again not statistically significant according to pairwise tests (p > 0.10). Nevertheless, for 
the c = 8 treatment, the observed decline in the mean frequency of information acquisition as N is increased is consistent 
with the theory, though the magnitude of the acquisition frequencies departs substantially from theoretical predictions: the 
theory predicts that the frequency of information acquisition declines from 1 when N = 3 to 0 when N is 7 or 13.

Remarkably, as Table 3 further reveals, support for the group size effect is much more clearly evident when signals are 
perfectly precise, i.e., in the case where x = 1. Fixing x = 1 and c = 8, the mean frequency of information acquisition drops 
significantly from .815 when N = 3 to .556 when N = 7 (p < 0.02). The theoretical prediction is that the frequency of 
information acquisition is .825 when N = 3 and falls to .447 when N = 7. Using a two-sided Wilcoxon sign rank test on 
session-level observations we cannot reject the null hypothesis that the frequency of information acquisition in the x = 1, 
N = 3, c = 8 treatment differs from the theoretical prediction (p = 0.46), though we can marginally reject this same null 
hypothesis for the corresponding N = 7 treatment (p = 0.07). Hence, in the x = 1 case, not only do the experimental data 
reflect the group size effect, but in addition, the mean frequencies of information acquisition are close to or insignificantly 
different from the theoretical predictions for both group sizes N = 3 and N = 7. This finding may obtain because when x = 1
we have strictly interior predictions for σ ∗ whereas when x = 0.7, we have mostly boundary predictions, either 0 or 1.10

In addition or alternatively, the elimination of noise in the signal may have enabled subjects to understand the free-riding 
effect more clearly, a conjecture that we address more fully in the next section.

At this stage, it is also instructive to look at how decision accuracy correlates with group size in the experimental data 
and compare that with theoretical predictions. For noisy signals (x = 0.7) and c = 5 as N increases from 3 to 7, Nash 
equilibrium predicts a marginal drop in efficiency from 78% to 77%. However, the experimental data show a statistically 
significant (p < 0.03) increase in efficiency from 68.5% to 81.5%. For x = 0.7 and c = 8, efficiency is supposed to be 78.4% 
at N = 3 and then drop to the minimal level (50%) for N = 7 and N = 13. However, in the experimental data, the efficiency 
increases from 64.5% to 71% to 76% as N increases from 3 to 7 to 13. Moreover, the change in efficiency from N = 3 to 
N = 13 is statistically significant (p < 0.03).11 When signals are noisy, the free-riding effect is weak enough that in general, 
it is dominated by the information aggregation effect in sharp contrast to theoretical predictions. On the other hand, when 
signals are perfectly informative, free-riding is strong enough in the laboratory that efficiency drops with the group size in 
accordance with theoretical predictions. For x = 1 and c = 8, as N increases from 3 to 7, efficiency drops from 99% to 95%, 
which is very close to the theoretically predicted drop from 97.8% to 90%, and this drop is moderately significant (p < 0.06).

We next turn to the information cost effect [H2]. Fixing x = 0.7 and N = 3, Table 3 reveals that an increase in the cost 
of acquiring information from c = 5 to 8 results in a decrease in the frequency of information acquisition from .695 to .582, 
but this decrease is not statistically significant (p > 0.10). However, as we further increase the cost to c = 25 holding x = 0.7
and N = 3 constant, the frequency of information purchase drops more dramatically to .272 and this drop is statistically 
significant (p < 0.03 in the comparison of c = 8 vs. c = 25). Fixing x = 0.7, and N = 7, an increase in the cost of acquiring 
information from c = 5 to 8 results in a decrease in the frequency of information acquisition from .767 to .514 – theory 
predicts a fall from .669 to 0 – and this decrease is marginally significant (p = 0.08).

Finally, we consider the signal precision effect [H3]. Fixing N = 3 and c = 8, Table 3 reveals that an increase in the signal 
precision from x = 0.7 to 1 results in an increase in the mean frequency of information acquisition from .582 to .815 and 
this difference is statistically significant (p = 0.04). The theoretical prediction, by contrast, is for a decrease from 1 to .825. 
On the other hand, fixing N = 7 and c = 8, an increase in the signal precision from x = 0.7 to 1 results in a slight increase in 
the frequency of information acquisition from .514 to .556. This difference is not statistically significant (p > 0.10). Still, the 
observed increase is consistent with the theoretical prediction, which calls for an increase in information acquisition from 0 
to .447 as x is increased from 0.7 to 1. While play is close to Nash equilibrium predictions when x = 1, behavior is far away 
from equilibrium predictions when x = 0.7 (there is under-acquisition of information in the N = 3 case and over-acquisition 
of information in the N = 7 case), and it is the latter deviations that are responsible for the observed deviations from the 
signal precision effect (H3).

Table 4 reports on the average frequencies of information acquisition and efficiency over the first 13 rounds versus the 
final 12 rounds of each treatment (using data from all sessions) in an effort to assess whether there is any evidence for 
learning over time. In particular, we examined whether there was a significant upward, “<”, or downward, “>” trend in the 
overall mean frequencies of information acquisition or informational efficiency in the first 13 rounds as compared with the 
last 12 rounds. As Table 4 reveals, the evidence for learning is weak; there is a very slight decrease in the mean frequencies 
of information acquisition (σ̂ ) from the first to the second half of all sessions. Sometimes this decrease is in the direction 
of equilibrium prediction, i.e., in treatments (x, N, c) ∈ {(0.7, 3, 25), (0.7, 7, 5), (0.7, 7, 8), (0.7, 13, 8), (1, 7, 8)} while in other 
instances it is not, i.e., in treatments (x, N, c) ∈ {(0.7, 3, 5), (0.7, 3, 8), (1, 3, 8)}. However, none of these decreases in the 
frequency of information acquisition are statistically significant using Mann Whitney tests on session-level averages. Despite 
the slight decrease in the mean frequency of information acquisition, the mean level of informational efficiency is, in most 
treatments, increasing slightly from the first to the second half of sessions, though with a single exception, these trends are 
also statistically insignificant. Overall, we conclude that the evidence for learning is weak.

10 These boundary predictions cannot be assessed using simple statistical tests as the boundary frequency values of 0 or 1 can never be exceeded.
11 However, the differences in efficiency from N = 3 to N = 7 and from N = 7 to N = 13 are not statistically significant (p ≥ 0.10 for both comparisons).



S. Bhattacharya et al. / Games and Economic Behavior 102 (2017) 316–338 325
Table 4
Information acquisition and efficiency over time. Averages from all sessions of a given treatment: first 13 rounds, 
second 12 rounds and overall (all 25 rounds).

Treatment conditions Variable 1st 13 rds 2nd 12 rds Overall Prediction

x = 0.7, N = 3, c = 5 σ̂ 0.715 > 0.674 0.695 1.000
ŵ 0.664 < 0.708 0.685 0.784

x = 0.7, N = 3, c = 8 σ̂ 0.590 > 0.573 0.582 1.000
ŵ 0.606 <∗∗ 0.688 0.645 0.784

x = 0.7, N = 3, c = 25 σ̂ 0.276 > 0.267 0.272 0.000
ŵ 0.519 < 0.604 0.560 0.500

x = 0.7, N = 7, c = 5 σ̂ 0.768 > 0.766 0.767 0.669
ŵ 0.779 < 0.854 0.815 0.773

x = 0.7, N = 7, c = 8 σ̂ 0.523 > 0.503 0.514 0.000
ŵ 0.692 < 0.729 0.710 0.500

x = 0.7, N = 13, c = 8 σ̂ 0.473 > 0.452 0.463 0.000
ŵ 0.789 > 0.729 0.760 0.500

x = 1, N = 3, c = 8 σ̂ 0.817 > 0.813 0.815 0.825
ŵ 1.000 > 0.979 0.990 0.978

x = 1, N = 7, c = 8 σ̂ 0.584 > 0.527 0.556 0.447
ŵ 0.952 > 0.948 0.950 0.902

Notes: σ̂ indicates the observed frequency of information acquisition and ŵ indicates observed (informational) 
efficiency. ∗ ∗ ∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% levels, respectively.

Summarizing, using session level means, we find that the experimental evidence departs from the precise point pre-
dictions of the theory and there is mixed support for the theory’s comparative statics predictions as identified in our 
Hypotheses H1–H3. The theory appears to perform best in terms of the match between point predictions and the experi-
mental data in the case where x = 1 so that signals are perfectly informative. We next turn to exploring individual subject 
behavior in some detail so as to determine whether our aggregate data analysis (using session-level means) may be masking 
any larger behavioral differences across treatment conditions.

6.2. Individual behavior

Fig. 1 shows cumulative distributions of the frequency of information acquisition over all 25 rounds of our experiment 
using pooled data from various combinations of treatments where the signal precision is fixed at x = 0.7. Fig. 2 shows the 
same type of cumulative frequency distributions for various combinations of treatments where the signal precision is either 
x = 0.7 or x = 1. In these figures, the left-most intercept of the cumulative frequency indicates the percentage of subjects 
who never chose to purchase information, 0 of 25 rounds.

Consider first the case where the signal precision is fixed at x = 0.7. When c = 5, the upper left panel of Fig. 1 reveals 
that the cumulative frequency of information purchase when N = 7 stochastically dominates the cumulative frequency of 
information purchase when N = 3, which is completely opposite to theoretical predictions. By contrast, when c = 8, as 
shown in the upper right panel of Fig. 1, an increase in group size largely follows the comparative statics prediction that 
information acquisition decreases as the group size gets larger. Indeed, for this case, the cumulative frequency of information 
purchase when N = 3 stochastically dominates the cumulative frequency of information purchase when N = 13. The bottom 
two panels of Fig. 1 confirm that the individual distributions follow the comparative statics prediction that, holding N and 
x constant, increases in information cost, c, are associated with less information acquisition for groups of size N = 3 and 
N = 7 respectively (we administered only one cost level c = 8 for the larger group size N = 13). Indeed, for the N = 7 case 
we see clearly that the cumulative frequency of information acquisition when c = 5 stochastically dominates the cumulative 
frequency of information acquisition when c = 8.

The cumulative frequency distributions shown in Fig. 2 enable us to examine the effect of changes in the signal precision 
and/or the group size on information acquisition. Here we fix c = 8 as this is the only cost that we considered in treatments 
where x = 1. We find that, consistent with the theory, when x = 1 there is more information acquisition when N = 3 than 
when N = 7, as seen in the upper right panel of Fig. 2. However, we also find that the comparative statics predictions of 
the theory concerning variations in the signal precision are not clearly found in our data for either groups of size N = 3 or 
N = 7. As the upper and bottom left panels of Fig. 2 show, the frequency of information acquisition generally increases as 
we increase the level of the signal precision from x = 0.7 to x = 1, though this is more clearly evident in the case where 
N = 3 than in the case where N = 7. However, according to the theory, an increase in signal precision sometimes implies 
a decrease in the equilibrium frequency of information acquisition (e.g., from 1.00 to 0.825 when N = 3 and c = 8) and 
sometimes an increase (e.g., from 0.00 to 0.447 when N = 7 and c = 8), again as a consequence of competition between 
the information aggregation effect and the free-riding effect. Our finding that increases in signal precision generally lead 
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Fig. 1. Distribution of the individual frequencies of information acquisition over all 25 rounds, x = 0.7.

Fig. 2. Comparison of individual distributions across different signal precisions.

to greater frequencies of information acquisition (for fixed N and c) suggests that our data may be better explained by 
decision-theoretic (as opposed to game-theoretic) considerations. From a decision-theoretic perspective, if N and c are held 
constant, then as the quality of information improves, it becomes more desirable to acquire such information. The proportion 
of subjects who behave according to this decision-theoretic approach should be large enough to sway the overall results in 
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Table 5
Random effects probit analysis of buy decisions, data from all sessions.

Dependent var: buy info (1) (2) (3) (4)

constant 5.316∗∗∗ 4.630∗∗∗ 4.791∗∗∗ 4.860∗∗∗
(10.76) (9.35) (9.45) (9.63)

perfect 0.914∗ 0.881 0.678 4.336∗∗∗
(2.50) (1.82) (1.40) (3.33)

round −0.019∗∗∗ −0.019∗∗∗ −0.019∗∗∗ −0.019∗∗∗
(−5.53) (−5.49) (−5.47) (−5.61)

N −0.229∗∗∗ −0.208∗∗∗ −0.221∗∗∗ −0.220∗∗∗
(−5.34) (−5.04) (−5.11) (−5.27)

c −0.269∗∗∗ −0.194∗∗∗ −0.239∗∗∗ −0.250∗∗∗
(−8.91) (−6.89) (−8.20) (−8.47)

successlag1 −0.245∗∗∗ −0.205∗∗ 0.212 0.290
(−3.99) (−3.24) (1.37) (1.86)

pctuniflag1 −0.238 −0.496∗∗ 0.0166 0.115
(−1.52) (−2.77) (0.07) (0.46)

succXpctuniflag1 −0.799∗∗ −0.950∗∗∗
(−2.96) (−3.46)

perfXsuccesslag1 −0.495∗ −0.312 −4.077∗∗
(−2.00) (−1.23) (−3.22)

perfXpctuniflag1 0.795∗ 1.042∗∗ −3.747∗
(2.09) (2.68) (−2.29)

perfXsuccXpctuniflag1 5.077∗∗
(3.03)

Observations 9200 9200 9200 9200

Notes: t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

their favor while the game-theoretic reasoning is so subtle here that strategic (game-theoretic) subjects may fail to grasp 
such incentives. We will address this issue further in section 6.4.1.

In addition to examining the cumulative distributions of individual information acquisition choices, we have also con-
ducted a regression analysis of those information choices. Specifically, we report on a random effects probit regression of 
subjects’ binary decision to buy or not buy information (buy = 1, not buy = 0) in every round of our experiment using 
pooled data from all sessions of all treatments with standard errors clustered at the session level. Table 5 reports on results 
from several different regression model specifications.

In these regressions, “perfect” is a dummy variable set to 1 if x = 1 and 0 otherwise (x = 0.7); “round” is the round 
number, 1, 2, . . . , 25; N is the group size, c is the information cost; “successlag1” is a dummy variable set to 1 if the 
subject’s group correctly guessed the jar assigned to it in the last round and 0 otherwise; “pctuniflag1” denotes the per-
cent of the subject’s group who did not buy information (were uninformed) last round (recall that this information was 
revealed at to all group members at the end of each round); “perfXpctuniflag1” is an interaction variable, perfect × pctu-
niflag1; “perXsuccesslag1” is another interaction variable, perfect × successlag1; “succXpctuniflag1” is another interaction 
variable, successlag1 × pctuniflag1; and “perfXsuccXpctuniflag1” is a three-way interaction variable, perfect × successlag1 
× pctuniflag1. Note that the baseline model, where perfect = 0, is the x = .7 case.

Table 5 reveals that across all four specifications, increases in N and c yield statistically significant decreases in the prob-
ability of buying information, which is consistent with the group size effect, hypothesis H1, and the cost effect, hypothesis 
H2. While we did not find such strong evidence for these hypotheses in the treatment-by-treatment pairwise comparisons 
using non-parametric tests (especially in the case of noisy signals) as reported on in the previous section, using the pooled 
data set and a random effects probit regression analysis, we find stronger qualitative support for these two hypotheses.

Consider next the effect of the two feedback variables, successlag1 and pctuniflag1; theory is silent on the effect of 
these lagged variables on decisions to acquire information since the model being tested is a one-shot, static model. We 
include these two feedback variables because they serve as proxies for incentives to free-ride. The number of uninformed 
voters in the last round directly reveals the extent of free-riding in that round. Whether a player’s group achieved success 
last round is also an inducement to free-ride for an individual in the sense that, if the group members play similarly 
this round, the outcome is again likely to be a success even if the individual free-rides (so long as the individual was 
not pivotal in the last round). Overall, as revealed in regression specifications 1–2, we find that individuals are less likely 
to buy information this round if they were 1) in a group that experienced a success last round (successlag1 = 1) or 
2) the greater was the percentage of group members who did not buy information and were thus uninformed last round, 
indicating that these proxies for free-riding incentives have some predictive power. However, as the last two regression 
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specifications in Table 5 make clear, the impact of these lagged outcome variables on information acquisition decisions 
clearly depends on whether interaction effects are allowed and whether information was perfect or not. In specifications 
3–4, for the baseline case of imperfect information (perfect = 0 or x = 0.7), the coefficient estimates on successlag1 and 
pctuniflag1 are not significantly different from zero; only the interaction variable, succXpctuniflag1 leads to a significant 
decrease in the likelihood of buying information. However, allowing for all possible interaction effects as in specification 4, 
we see that in the case of perfect information, both the lagged success rate and the lagged percentage of uninformed 
voters work to depress the likelihood of buying information, as evidenced by the significantly negative coefficients on the 
perfXsuccesslag1 and perfXpctuniflag1 interaction variables. We interpret these differences as indicating that incentives for 
free-riding are much stronger for subjects in the perfect information case as compared with the imperfect information 
case.12 These findings provide some explanation for why behavior in the perfect information case was found to be closer to 
the symmetric Nash equilibrium predictions than in the imperfect information case.

6.3. Asymmetric equilibria

Thus far, we have considered the extent to which our experimental data might be rationalized by the unique symmetric
equilibrium of the theory as described in section 3.1, i.e., by an equilibrium in which two voters with the same private 
information use the same strategy. This restriction is justified by the fact that coordinating on an asymmetric profile of 
strategies should be difficult in our experiment given our random and anonymous matching of subjects into groups of size 
N in every round.

In this section we consider a different natural restriction on the set of equilibrium strategies that leads to asymmetric 
voting strategies in some cases. Specifically, we now require equilibrium strategies to satisfy two criteria: first, each subject’s 
strategy with respect to information acquisition should be pure, i.e., σ ∗

i ∈ {0, 1}, and second, the voting part of their strategy 
should be symmetric across alternatives. In this setting, it is easy to establish that those who acquire information (σ ∗

i = 1) 
must vote according to their signal, while those who do not acquire information (σ ∗

i = 0) must vote randomly. Thus, 
equilibrium under this new set of restrictions is simply characterized by the number of voters who acquire information 
and vote sincerely represented by k∗ ∈ {0, 1, ...N}. The other N − k∗ voters set σ ∗ = 0 and vote randomly. If k∗ = 0 or 
k∗ = N , the equilibrium strategies are type-symmetric, but if 0 < k∗ < N , we have an asymmetric equilibrium.13

In order to characterize the (potentially asymmetric) equilibrium with a pure information acquisition strategy, consider 
the profile where k out of N voters acquire information (and vote sincerely) and the remaining N − k do not (and vote 
randomly) and denote the probability of a tie under such a profile by p(k, N).14

Remark 1. In the environment (x, N, c), there is an equilibrium where k∗ voters acquire information (and vote sincerely) 
and N − k∗ do not (and vote randomly) if and only if

p(k∗ − 1, N − 1) ≥ c

M
(

x − 1
2

) ≥ p(k∗, N − 1). (7)

Moreover, the value of k∗ that satisfies the above condition is unique.

See Appendix B for a proof.
In environments where the symmetric equilibrium value for σ ∗ is strictly interior, i.e., σ ∗ ∈ (0, 1), pure information 

acquisition strategies induce asymmetric equilibria with the property that k∗
N approximates (but can differ from) σ ∗ .15 To 

explore whether these asymmetric equilibria might better explain our experimental data, we focus on the three cases 
where there are interior symmetric equilibria (x, N, c) = {(.7, 7, 5), (1, 3, 8), (1, 7, 8)} where the ratios k∗/N are: 5/7 = .71, 
2/3 = 0.67 and 3/7 = 0.43, respectively, and the corresponding values for σ ∗ are 0.67, 0.83, and .045, respectively. It is 

12 The significantly positive coefficient on the three-way interaction variable, perfXsuccXpctuniflag1, is a little puzzling. However, one interpretation may 
be that players in the perfect information treatment are willing to free-ride up to some point, but if they experience a success with a low percentage of 
informed voters, they rightly attribute that outcome to luck, and increase their willingness to buy information in the subsequent round.
13 We consider only asymmetric equilibria of this type. A complete characterization of asymmetric equilibria for our model is beyond the scope of this 

paper.
14 The formula for p(k, N) is:

p(k, N) =

⎧⎪⎨
⎪⎩

∑ N−1
2

t=0

[(k
t

)
xt(1 − x)k−t

][( N−k
N−1

2 −t

)(
1
2

)N−k
]

if 0 < x < 1,

( N−k
N−1

2 −k

)(
1
2

)N−k
if x = 1.

where

(
a

b

)
= 0 if a < b

Notice that for a fixed N , p(k, N) is strictly decreasing in k.
15 In environments where the symmetric equilibrium values for σ ∗ are corner solutions, i.e., σ ∗ ∈ {0, 1}, k∗/N will also be symmetric and correspond to 

the same corner solution (as in 5 of our 8 treatments), so we don’t focus on these cases.
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Table 6
Regression evidence on best response play according to asymmetric equilibrium 
predictions. Three treatments with interior asymmetric equilibria.

Dependent var: buy info (1) (2) (3)
(x, N, c) = (.7,7,5) (1,3,8) (1,7,8)

Constant 2.663∗∗∗ 1.646∗∗∗ 2.764∗∗
(7.21) (3.65) (2.98)

k−i
t−1 − 5 −0.0987

(−1.09)

k−i
t−1 − 2 −0.597

(−1.09)

k−i
t−1 − 3 −0.129∗

(−2.54)

Observations 1400 600 1400

Notes: t statistics in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

interesting to note that the equilibrium k∗ is that value of k which produces a search frequency k∗
N closest to σ ∗ in every 

case. We first verified that in these three cases, the uninformed are voting randomly while the informed are voting sincerely 
according to their private signals.16

We next perform a simple check of whether voters best respond to some proxy for the threshold value, k∗ , the number 
of voters who are expected to acquire information in an asymmetric equilibrium. The proxy we use is the number of 
voters among the other N − 1, who had acquired information in the last round, k−i

t−1. In our experiment, subjects received 
feedback at the end of each round as to how many in their group of size N acquired information in that round. Thus, 
if k−i

t−1 voters acquired information last round and are again expected to do so in the current round, then a subject’s 
best response is to buy information if k−i

t−1 < k∗ and not buy information if k−i
t−1 ≥ k∗ . One would therefore expect the 

probability of information acquisition to be decreasing in k−i
t−1 − k∗ . We test this prediction for the three environments 

where we have interior solutions for k∗ using again a random effects probit regression analysis of individual decisions to 
buy information with standard errors clustered on session level observations. Here, each regression uses only data from one 
of the three treatments with interior asymmetric equilibria. The only explanatory variable, in addition to a constant term, is 
the difference variable, k−i

t−1 − k∗ , where k∗ is determined by treatment conditions: k∗ = 5, 2, 3 for the (x, N, c) treatments 
(.7, 7, 5), (1, 3, 8), (1, 7, 8), respectively. The results are reported in Table 6.

The regression results reported in Table 6 confirm the negative relationship between the difference variable k−i
t−1 − k∗

and information acquisition decisions in each of the three treatments. However, the coefficient on this difference variable is 
only significantly negative for the treatment (x, N, c) = (1, 7, 8) (column 3) involving perfect signals, where the difference 
between k∗

N and the symmetric equilibrium prediction σ ∗ is the smallest of the three cases examined. Given this very 
small difference, it seems likely that the significantly negative coefficient in this case simply reflects players playing a best 
response to the symmetric equilibrium prediction, especially since we have already found evidence that behavior in the x = 1
treatments is very close to symmetric equilibrium predictions. We conclude that there is not much support for the notion 
that our data are better rationalized by this class of asymmetric equilibria, which, for most of our treatments, coincide with 
the unique symmetric equilibrium. Having considered the explanatory power of both symmetric and asymmetric equilibrium 
predictions, we next turn to examining some behavioral models in an attempt to further rationalize our experimental data.

6.4. Behavioral models

As we have seen, in some of our experimental treatments subjects under-acquire information relative to the symmetric 
Nash equilibrium prediction, e.g., the case where N = 3, c = 8 and x = 0.7. On the other hand, we often see that with 
a single change of a treatment variable we move from under- to over-acquisition of information as for example in the 
case where N = 7, c = 8 and x = 0.7. In this section we present several possible explanations for the observed over- or 
under-acquisition of information in our experimental data.

6.4.1. Decision-theoretic rather than strategic thinking
Suppose that subjects under-weight or dismiss completely the strategic interaction that is involved in the collective 

action voting game. As an extreme case, let us suppose that subjects perceive the game to be one where N = 1 and so in 

16 Using data from all sessions of all treatments, we find that the null hypothesis that uninformed voters randomize between R and B cannot be rejected 
(p > .05). Among informed voters, sincere voting (voting according to the signal received) is close to or equals 100 percent in each treatment of our 
experimental treatments.
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Table 7
Proportions of different subject types over time: averages from all sessions of a given treatment: first 
13 rounds, second 12 rounds and overall (all 25 rounds).

Treatment Type 1st 13 rds 2nd 12 rds Overall

x = 0.7, N = 3, c = 5 NB 0.167 < 0.250 0.167
S 0.250 > 0.125 0.250
AB 0.583 < 0.625 0.583

x = 0.7, N = 3, c = 8 NB 0.167 < 0.292 0.167
S 0.416 >∗ 0.250 0.416
AB 0.417 < 0.458 0.417

x = 0.7, N = 3, c = 25 NB 0.500 < 0.542 0.458
S 0.375 > 0.292 0.417
AB 0.125 < 0.166 0.125

x = 0.7, N = 7, c = 5 NB 0.107 < 0.143 0.107
S 0.232 > 0.161 0.232
AB 0.661 < 0.696 0.661

x = 0.7, N = 7, c = 8 NB 0.286 < 0.393 0.286
S 0.321 > 0.178 0.321
AB 0.393 < 0.429 0.393

x = 0.7, N = 13, c = 8 NB 0.317 < 0.366 0.298
S 0.375 > 0.317 0.423
AB 0.308 < 0.317 0.279

x = 1, N = 3, c = 8 NB 0.125 = 0.125 0.125
S 0.083 = 0.083 0.083
AB 0.792 = 0.792 0.792

x = 1, N = 7, c = 8 NB 0.179 < 0.250 0.143
S 0.393 > 0.304 0.428
AB 0.428 < 0.446 0.429

Notes: NB refers to subjects who never buy information over the sample period, S, to subjects who switch
between buying and not buying information (at least once) over the sample period, and AB, to subjects 
who always buy information over the sample period. ∗ ∗ ∗, ∗∗, and ∗ indicate significance at the 1%, 5%, 
and 10% levels, respectively.

effect, they are lone decision-makers and thus they always view themselves as being pivotal.17 If N = 1, then it is rational 
to acquire information at the fixed cost c so long as M(x − 1/2) ≥ c (this follows from expression (5) with pσ = 1) and to 
not acquire information otherwise. In our parameterization, we have M = 100. Thus for our x = 0.7 treatment, it becomes 
rational to acquire information if c ≤ 20, while for our x = 1 treatment it is rational to acquire information so long as c ≤
50.18 These cost thresholds are satisfied for all of our treatments, with the sole exception of the x = 0.7, c = 25 treatment, 
and indeed, that is why we chose to implement that particular treatment. In that treatment, both the decision-theoretic and 
game-theoretic incentives are perfectly aligned and so one might expect that subjects would never acquire information in 
that setting. Note that while the characterization of subjects as decision theorists can explain over-acquisition of information 
in our x = 0.7 treatments with c < 20 it cannot explain under-acquisition of information as in the N = 3, x = 0.7 treatments 
where c = 5 or c = 8. More generally we note that over- or under-acquisition of information may be an unavoidable finding 
in settings where the equilibrium point predictions of the theory imply, respectively, 0 and 100 percent frequencies of 
information acquisition, as is indeed the case in several of our treatments.

In an effort to address the extent to which subjects might be ignoring strategic considerations and acting as decision-
theorists, we classified each subject based on their information acquisition decisions. Specifically, we classified each subject 
according to one of three distinct types: 1) those who never buy (NB) information; 2) those who switch (S) at least once 
between buying and not buying information; and 3) those who always buy (AB) information. Table 7 shows the proportion 
of subjects who fall into these three classifications for each treatment condition (x, N, c) over all 25 rounds (Overall) as well 
as for the first 13 and last 12 rounds. Using the latter two measures, we examined whether there was a trend upward, “<”, 
downward “>”, or no change, “=”, in the proportions of a given type from the first to the second half of a session and we 
further tested the significance of any trend changes using Mann Whitney tests on session-level averages.

A general observation from Table 7 is that the proportion of switching (S) types declines as subjects gain experience, 
while the proportion of pure strategy, NB and AB types grows over time though these differences are, with a single ex-
ception, not statistically significant. Further, the growth in NB types is generally greater than the growth in AB types, and 

17 This assumption finds some support in Duffy and Tavits (2008) who elicited the beliefs of voters prior to their participation in an experimental 
voting game and found that many voters greatly overestimated the pivotality of their voting choice, though such misperceptions tended to decrease with 
experience.
18 Hence for fixed c, information acquisition becomes more attractive as x increases, as discussed at the end of section 6.2.
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this finding explains why information acquisition declines slightly from the first to the second half of sessions as reported 
earlier in Table 4.

Regarding comparative statics predictions, let us first focus on the x = 0.7, c = 8 treatments. In this case, the share of 
AB-types in the population steadily decreases from 41.7 percent to 39.3 percent to 27.9 percent as we increase N from 3 to 
7 to 13, respectively. The declines from N = 3 to N = 7 or from N = 7 to N = 13 are not statistically significant according 
to Mann–Whitney tests on session level data, (p > 0.10 for both tests). The game-theoretic equilibrium prediction is for 100 
percent AB-types when N = 3 and a drop-off to 0 percent AB-types (and 100 percent NB-types) when N = 7 or N = 13. By 
contrast, the decision-theoretic prediction is for 100 percent AB-types in all three of these treatments. The steady but more 
gradual decline in AB-types as N is increased as reported in Table 7 suggests that decision costs, as opposed to strategic, 
group-size considerations alone may be playing a role in the behavior of some of our AB-type subjects.

Consider next the case where x = 0.7 and N = 7 and c is varied from 5 to 8. The game-theoretic equilibrium prediction 
is that subjects should acquire information on average 66.9 percent of the time when c = 5, but should never acquire 
information when c = 8. By contrast, the decision-theoretic prediction again calls for 100 percent AB-types in both of these 
treatments as c is always less than 20. Table 7 reveals that there is indeed a much larger percentage of AB-types when 
c = 5 (66.1 percent) than when c = 8 (39.3 percent) and this difference is statistically significant (p < 0.05) though the 
percentage of AB-types remains strictly greater than 0 in violation of game-theoretic equilibrium prediction but consistent 
with the notion that some subjects may be acting as decision-theorists.

Similarly, in the case where x = 0.7 and N = 3, we see a steady decline in the frequency of AB-types as the cost, 
c, increases from 5 to 8 to 25, however, only the latter decline in AB types as c increases from 8 to 25 is statistically 
significant (p = 0.052). This finding on type differences helps us to understand an earlier finding in connection with Table 3, 
where fixing x = 0.7 and N = 3, we found a statistically insignificant decrease in the frequency of information acquisition 
as c was increased from 5 to 8 but a statistically significant drop in the frequency of information acquisition as c was 
further increased from 8 to 25. However, these results remain inconsistent with the pure game-theoretic prediction of 
100 percent AB-types when c = 5 or c = 8 and a decline to 0 percent AB-types when c = 25. Note that in the last case, 
the decision-theoretic model predictions coincide with the game-theoretic equilibrium predictions, and so there are also 
inconsistencies with using the decision-theoretic approach to characterize subject behavior; in particular, when c = 25, the 
observed frequency of AB types is not 0, as both the game theoretic equilibrium and decision-theoretic models predict.

Finally, consider the case where x = 1 and c = 8. In this case, the game–theoretic equilibrium predictions are closer to 
matching the distribution of subject types than the decision-theoretic predictions. In particular, when N = 3, the game-
theoretic equilibrium prediction is for 82.5 percent of subjects to acquire information, while when N = 7 the prediction 
is for 44.7 percent of subjects to acquire information. The decision-theoretic prediction is for all subjects to acquire infor-
mation in both of these treatments as c is always less than 50. Table 7 reveals that the frequency of AB-types falls from 
79.2 percent when N = 3 to 42.9 percent when N = 7 (a statistically significant decrease, p = 0.017) instead of remaining 
constant at 100 percent as would be consistent with the decision-theoretic approach.

Summarizing, the evidence on individual behavior suggests that when x < 1, the player population could be charac-
terized as a mixture of game-theoretic and decision-theoretic player types; decision-theoretic reasoning can account for 
over-acquisition of information in all but one of our treatments (the one where c = 25), though not under-acquisition of 
information as is often observed in our treatments where N = 3. By contrast, when x = 1, the distribution of player types 
is more closely aligned with game-theoretic equilibrium predictions as opposed to decision-theoretic predictions. The latter 
finding suggests that subjects may compensate for the greater noise in the imperfect signal (x = 0.7) treatments and the 
associated strategic uncertainty about the information held by others by ignoring strategic considerations altogether and 
acting more like decision-theorists.

6.4.2. Quantal response equilibrium
A second possible explanation for why the frequency of information acquisition is at odds with theoretical predictions 

is that the experimental environment in which voters are operating is a noisy one and so the appropriate way to model 
behavior is using a noisy best response function that conditions on the actual distribution of subjects’ decisions and allows 
subjects to make mistakes. The idea of finding equilibria that comprise mutual best responses to the empirical distribution 
of actual and possibly noisy behavior, as opposed to the theoretical ideal has been formalized as the concept of a quantal 
response equilibrium (QRE) by McKelvey and Palfrey (1995). In this section we estimate the QRE predictions for information 
acquisition using our experimental data and we compare these with the observed frequencies of information acquisition as 
well as with the Nash equilibrium predictions.

In the QRE model, we calculate the information acquisition choice probabilities as quantal response functions of the 
expected payoffs. Given the slope λ of the logistic quantal response function, the information acquisition choice strategy of 
a subject can be written as:

σ(λ) = 1

1 + exp[−λ{U (σ1) − U (σ0)}] (8)

where, as before, σ1 means “acquire information,” while σ0 means “do not acquire information.” Here, λ is understood 
to measure the “degree of rationality” of the subjects, with λ = 0 corresponding to random information acquisition choice 
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Table 8
Quantal response equilibrium: maximum likelihood estimates.

Precision Group size Cost λ̂ σ̂ λ̂p σ̂p Observed Predicted

x = 0.7 N = 3 c = 5 9.7 0.694 3.3 0.573 0.695 1
c = 8 11.3 0.582 3.3 0.526 0.582 1
c = 25 3.3 0.269 3.3 0.269 0.272 0

N = 7 c = 5 ∞ 0.669 3.3 0.508 0.767 0.669
c = 8 0 0.500 3.3 0.461 0.514 0

N = 13 c = 8 1.7 0.463 3.3 0.431 0.463 0

Notes: λ̂ and σ̂ are estimated for each treatment with fixed (x, N, c) while λ̂p and σ̂p are estimated using pooled data from all x = 0.7 treatments. The 
mean squared error (MSE) between the pooled estimates and the experimental data is found to be 0.01479.

behavior as in that case, σ(λ = 0) = 1
2 . As λ → ∞, the QRE estimates of σ(λ) converge to the rational choice predictions of 

the model.
The likelihood function we maximize is given by:

L(λ) = σ(λ)σ1 [1 − σ(λ)]σ0 (9)

In all instances, we use pooled data from all sessions of a single treatment condition, (x, N, c) in maximizing the above 
likelihood function. We focus on the x = 0.7 treatments only since the noisy signal setting is where we observe the greatest 
departure of the experimental data from theoretical predictions.19

In addition to treatment-by-treatment estimations, we also estimate a quantal response parameter λp using pooled data 
from all sessions of all treatments where x < 1. In that case, we maximize the following likelihood function

L(λp) =
∏

j

σ(λp)σ
j

1
[
1 − σ(λp)

]σ j
0 (10)

where the index j runs through all treatments; i.e., each index j represents a fixed treatment of (x, N, c). The results of our 
maximum likelihood estimation are reported in Table 8.

The QRE estimates for the individual treatments, (σ̂ ), generally provide a good fit to the observed frequencies of informa-
tion acquisition (Observed) and thus a means of rationalizing our experimental data as the play of noisy best responses by 
the subjects in our experiment. Note in particular, that the QRE approach, unlike the view of subjects as decision-theorists, 
can account for both the over-acquisition of information and the under-acquisition of information that is observed in our 
experiment; for example the under-acquisition of information in the N = 3, x = 0.7 treatments where c = 5 or c = 8. The 
pooled QRE estimates σ̂p provide a slightly poorer fit to the observed information acquisition choice frequencies but never-
theless continue to capture the observed variations in information acquisition (above and below the equilibrium predictions) 
across all of our different treatments. We note that the mean squared error (MSE) between the pooled estimates and the 
observed frequencies of information acquisition is 0.0148, indicating a very good fit.20 We note further that the pooled 
rationality parameter estimate, λ̂p = 3.3, indicates a rather low level of overall game theoretic rationality by the subjects in 
our experiment.

6.4.3. Risk aversion
A third possible explanation for why information acquisition decisions are at odds with theoretical predictions is that 

we have assumed that agents are risk neutral with regard to uncertain money earnings. This assumption can be relaxed by 
allowing agents to be risk averse with respect to uncertain monetary payoffs. In our context, risk aversion is equivalent to 
the marginal cost of information acquisition depending on the voting outcome: the subject perceives this marginal cost to 
be lower if the group decision is correct.

For convenience of exposition, in this section we assume that a voter’s monetary payoff, m, takes the value 1 or 0 if 
she acquires information (depending on whether the group decision is correct or incorrect), and respectively, takes the 
value 1 + c or c if she does not. We further assume that the money amount, m, earned by a subject leads to a utility, 
u(m). The risk-neutral case which has been studied in the main section of the paper is the special case where u(m) = m. 
We model risk aversion with the assumption that u(·) satisfies u′ > 0 and u′′ < 0 for all m > 0. To capture our present 
parameterization, we assume that the utility function is CARA, i.e.,

u(m) = 1 − exp(−αm)

1 − exp(−α)
,

19 QRE estimates for the x = 1 case are available from the authors on request.
20 The MSE is calculated by summing the squared errors between observed information acquisition frequencies and the QRE estimates using the pooled 

data over all treatments, and then dividing the resulting sum of squares by the number of included treatments; M S E = ∑
j(σo − σ̂p)2/6, where j represents 

each treatment with fixed (x, N, c), σo is an observation in our data, and σ̂p is an estimate from the pooled data from all treatments.
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where α > 0 is the parameter that captures the extent of risk aversion. In the limit, the α = 0 case captures risk neutral 
behavior.21 We now turn to the question of how the optimal behavior of a risk-averse subject may differ from that of a risk 
neutral one.

As before, a strategy consists of two elements: the probability of information acquisition, σ , and the probability of 
sincere voting vs conditional on obtaining signal s ∈ {r, b}. It is easy to establish that risk averse agents vote sincerely in 
equilibrium, i.e., v∗

b = v∗
r = 1. We continue to assume that R and B are picked with equal probability in the absence of a 

signal. Thus, the information acquisition probability, σ , is what determines equilibrium behavior.
Under risk-neutrality, a voter has to focus only on the pivotal event pσ , given by equation (4). However, with more 

general utility functions, voters have to take into account both pivotal and non-pivotal events. Conditioning on the other 
N − 1 voters’ votes not ending up in a tie, the probability of a correct decision is

qσ =
N−1∑

k= N+1
2

(
N − 1

k

)
zk
σ (1 − zσ )N−1−k,

where zσ is the probability of a random voter voting in favor of the correct alternative, and is given by equation (3).
The respective expected utilities from acquisition and non-acquisition of information are now given by:

U (σ1) = [u(1) − u(0)] [pσ x + (1 − pσ )qσ ] + u(0),

U (σ0) = [u(1 + c) − u(c)]

[
pσ

1

2
+ (1 − pσ )qσ

]
+ u(c).

If there is some σ ∗ ∈ (0, 1) for which U (σ1) = U (σ0), then σ ∗ is an equilibrium. Otherwise, we have a corner solution 
in the usual way.

At this stage, it is useful to study how the net benefit from acquisition of information U (σ1) − U (σ0) depends on the 
extent of risk aversion, as captured by the parameter α in the CARA specification of the utility function. In doing so, we 
keep the belief (pσ , qσ ) about others’ strategies fixed.

The net benefit of information acquisition, U (σ1) − U (σ0), can be written as{
[u(1) − u(0)] [pσ x + (1 − pσ )qσ ] − [u(1 + c) − u(c)]

[
pσ

1

2
+ (1 − pσ )qσ

]}
− {u(c) − u(0)} . (11)

When u(m) = m, we have [u(1) − u(0)] = [u(1 + c) − u(c)] = 1. It is easy to check that the first term of (11) now reduces 
to pσ

(
x − 1

2

)
and the second term reduces to c, giving us condition (5) in section 3.1.

If we allow risk aversion, there are two opposing effects on incentives to acquire information. First, for any α > 0, the 
marginal gain in utility from obtaining the correct group decision is higher when information is acquired than when it is 
not:

u(1) − u(0) > u(1 + c) − u(c).

Moreover, this difference in marginal gains increases with α, raising the first term in the expression (11). On the other 
hand, as a subject becomes more risk averse, she values more the cost saved by not acquiring information in the event of 
a wrong group decision, i.e., the second term also increases in α. Typically, the first effect dominates for lower values of 
α and the second effect dominates for higher values of α. As a result, U (σ1) − U (σ0) will typically first increase and then 
decrease with increases in the degree of risk aversion α. Therefore, it is in general unclear whether risk aversion leads to 
more or less information acquisition. Importantly for our purposes, risk aversion may help to explain why we sometimes 
observe too much and sometimes too little information acquisition compared with risk neutrality.

To explore the extent to which risk-aversion might help to explain our experimental findings, we build upon the QRE 
model of the previous section 6.4.2, and add to it the normalized CARA utility function, u(m) = 1−exp[−αm]

1−exp[−α] in place of the 
risk neutral u(m) = m assumption.22 Using this CARA specification for u(·), we estimate the information acquisition choice 
strategy of a subject using the logistic specification

σ(α,λ) = 1

1 + exp[−λ{U (σ1;α) − U (σ0;α)}] ,

where U (·; α) is understood to be calculated as expected utility based on the above risk-averse preference u(m). We then 
maximize the likelihood function,

L(α,λ) = σ(α,λ)σ1 [1 − σ(α,λ)]σ0 , (12)

21 The denominator allows us to normalize u(0) = 0 and u(1) = 1 for all α, just like the risk-neutral case.
22 See also Goeree et al. (2002, 2003).



334 S. Bhattacharya et al. / Games and Economic Behavior 102 (2017) 316–338
Table 9
Quantal response equilibrium with risk-aversion: maximum likelihood estimates.

Precision Group size Cost λ̂ α̂ σ̂ Observed Predicted1 Predicted3

x = 0.7 N = 3 c = 5 28 3.1 0.695 0.695 1 1
c = 8 59 2.4 0.582 0.582 0.999 1
c = 25 7 0.3 0.272 0.272 0 0

N = 7 c = 5 180 1.7 0.767 0.767 0.969 0.669
c = 8 1 1.2 0.500 0.514 0 0

N = 13 c = 8 4 3 0.463 0.463 0 0

Precision Group size Cost λ̂p α̂p σ̂p Observed Predicted2 Predicted3

x = 0.7 N = 3 c = 5 9 1.1 0.602 0.695 1 1
c = 8 9 1.1 0.541 0.582 1 1
c = 25 9 1.1 0.233 0.272 0 0

N = 7 c = 5 9 1.1 0.522 0.767 0.996 0.669
c = 8 9 1.1 0.464 0.514 0 0

N = 13 c = 8 9 1.1 0.432 0.463 0 0

Notes: λ̂, α̂ and σ̂ are estimated for each treatment with fixed (x, N, c) while λ̂p , α̂p and σ̂p are estimated using pooled data from all x = 0.7 treatments. 
The MSE between the pooled estimates and the experimental data is found to be 0.01258. Predicted1 is the Nash equilibria with treatment-specific 
risk-aversion parameter α̂; Predicted2 is the Nash equilibria with pooled risk-aversion parameter α̂p ; and Predicted3 is the Nash equilibria with risk-neutral 
preferences (α = 0).

using the data from each treatment, (x, N, c). As before, we also maximize

L(αp, λp) =
∏

j

σ(αp, λp)σ
j

1
[
1 − σ(αp, λp)

]σ j
0 (13)

using the pooled data from all of our treatments where x < 1.23 The results from maximum likelihood estimation of the 
QRE model with CARA preferences are reported in Table 9. The top part of this table reports the unpooled, treatment-by-
treatment estimation results while the bottom part reports the pooled estimation results.

The estimates using the pooled data indicate some improvement in the fit of the QRE model with risk aversion relative 
to the model that assumes risk neutral preferences. In particular, we note that the mean squared error (MSE) for the QRE 
with CARA preferences is slightly smaller, MSE=0.0126 (vs. 0.0148 for the risk neutral case) by incorporating the additional 
risk-aversion parameter α into the model. While the absolute change in the MSE is not very large, the percentage decrease 
in the MSE from including risk aversion, 14.94%, is considerable. We further note that the pooled rationality parameter 
estimate, λ̂p = 9, is now higher than that found for the QRE model without risk aversion (where λ̂p = 3.3).

Finally, we note that the estimates of the risk aversion parameter, α̂, are generally quite plausible with the pooled 
estimate, α̂p = 1.1, indicating a moderate degree of risk aversion among our subjects. Nevertheless, as it turns out the 
allowance for some amount of risk aversion yields a significantly better fit of the QRE model to the experimental data. 
In particular, according to a likelihood ratio (LR) test, the difference between the unrestricted QRE model which allows 
for risk-averse preferences and the restricted QRE model with risk-neutral preferences (α = 0) is highly significant (LR
Stat = −2 ln l = 54.81 	 χ2

.001 = 10.83 with d. f . = 1).24 Thus we can easily reject the null hypothesis (H0) that the subjects’ 
preferences are risk-neutral (p < 0.001).

Summarizing, of the three behavioral models we have considered in section 6.4, the QRE model with risk averse prefer-
ences with respect to uncertain money amounts is the one that can best rationalize our experimental finding of both over-
and under-acquisition of costly information prior to voting.25

7. Conclusion

We have designed and reported on an experiment examining the effects of group size, information cost and signal 
precision on information acquisition decisions made prior to committee or jury voting decisions. Our experiment, building 
upon the work of others, is the first to systematically explore the comparative statics implications of changes in group size, 
information cost and signal precision for information acquisition and efficiency under a compulsory, majority rule voting 
mechanism. A comparison of the behavior of subjects in our experimental setting with the comparative statics predictions 

23 Again, estimates for the x = 1 treatments are available upon request.
24 The degree of freedom is one here as we have only one restriction on risk-aversion parameter that α = 0.
25 In an earlier draft, we also considered a fourth behavioral model of subjective beliefs equilibrium (SBE) due to Elbittar et al. (forthcoming). That model 

supposes that some fraction of voters hold biased prior beliefs about the true state of the world that depart from the correct 0.5 prior. We found that 
we could only apply this model to cases where x = .7, since in the perfect information case (x = 1), biased prior beliefs don’t matter for posteriors. For 
the x = 0.7 case we found that the SBE estimates provided a fit to the data that was better than QRE model but not as good as the QRE model with risk 
aversion.
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of the theory is important for understanding the extent to which subjects appreciate the tradeoff between better information 
aggregation (from greater information acquisition) and information free-riding that the theory emphasizes.

Our experimental findings suggest that there is mixed support for the comparative statics predictions of the rational 
choice theory of endogenous information acquisition and voting. In particular, when signals are noisy (x = 0.7), there is 
only weak evidence for a group size effect where the frequency of information acquisition decreases as the group size 
increases due to the eventual dominance of the free-riding effect over the information aggregation effect. However, when 
signals are precise (x = 1) there is strong evidence for a group size effect; we conjecture that subjects better comprehend 
the free-riding problems of larger group sizes when signals are precise as compared with when they are imprecise. With 
regard to the effect of information cost, we find that higher costs reduce the frequency of information acquisition just as 
rational choice theory predicts, but we do not observe the often sharp, corner solution point predictions of the theory, e.g., 
where σ ∗ goes from 1 to 0 as the information cost, c, is steadily increased.

We observe that in most of our treatments, subjects are over-investing in costly information, hence the extent of free-
riding is not as large as predicted and consequently, efficiency is not decreasing so rapidly with increases in the group size. 
Many subjects appear to be ignoring strategic considerations and acting as lone decision-theorists as evidenced by the sig-
nificant percentages of subjects who always buy information in all 25 rounds, even in settings where in the rational choice 
equilibrium, no voter should buy information in any round. If subjects incorrectly perceive the setting to be one where 
N = 1, then it can be rational to buy information whenever M(x − 1/2) ≥ c, a condition that holds in most of our treat-
ments thus enabling a decision-theoretic rationale for always acquiring information. We conducted one treatment where 
the information cost was very large so that the inequality did not hold. In that treatment we found the lowest mean level 
of information acquisition across all of our treatments, 27.17%, but this frequency of information acquisition was still greater 
than the game-theoretic and decision-theoretic prediction of zero information acquisition.

The characterization of some subjects as decision theorists can explain over-acquisition of information, but it cannot 
explain the under-acquisition of information that we sometimes also observe, e.g., in our N = 3, x = 0.7 treatments. To 
explain both patterns of behavior with regard to information choices, we first considered a noisy best response or quantal 
response equilibrium analysis which is generally useful in explaining boundedly rational subject behavior relative to the 
sharp point predictions of rational choice theory. Using the QRE approach we find that we can successfully account for 
the phenomena of both over- and under-acquisition of information across all of our experimental treatments albeit with 
a rather low rationality parameter estimate for λ. We further show how augmenting the QRE approach to allow for risk 
averse agents can aid in rationalizing both over- and under-acquisition of information relative to the theoretical equilibrium 
predictions that assume risk neutral agents. When we allow for risk averse subjects in our QRE estimation, we find that 
this unrestricted model fits the data better than does the restricted model allowing for risk neutral subjects only. We also 
find a modest improvement in the mean squared error between the observed information acquisition frequencies and the 
QRE estimates allowing for risk aversion and we find confirmatory evidence that our experimental subjects are modestly 
risk averse.

Our experiment considers only the case of compulsory, majority rule voting with symmetric signal precisions and 
relatively small group sizes. We think that a promising direction for future research on group size and cost effects on 
endogenous information acquisition would be to consider larger information costs or larger group sizes (e.g., as in an 
internet-based voting experiment) especially in settings with perfectly precise signals, as the x = 1 setting is the one where 
we have found the closest correspondence between the theory and the experimental findings. It would also be of interest 
to adapt the model so that subjects could purchase more precise signals at a higher cost. Finally, it would be of interest to 
study endogenous information acquisition in the case where voters can freely communicate with one another following the 
information acquisition stage and receipt of any signals, but prior to voting, in which case free-riding considerations might 
become even more pronounced relative to the no-communication environment that we study in this paper. We leave these 
extensions to future research.

Appendix A. Experimental instructions

In this Appendix we provide the instructions used in the N = 7, c = 5, x = 0.7 treatment of our experiment. Instructions 
for the other treatments are similar.

Instructions
Welcome to this experiment in the economics of decision-making. Funding for this experiment has been provided by the 

National Science Foundation. We ask that you not talk with one another for the duration of today’s session.
For your participation in today’s session you will be paid in cash at the end of the experiment. Different participants 

may earn different amounts of money. The amount you earn depends partly on your decisions, partly on the decisions of 
others, and partly on chance. Thus it is important that you listen carefully and fully understand these instructions before 
we begin. There will be a short comprehension quiz following the reading of these instructions which you will all need to 
complete before we can begin the experimental session.

The experiment will make use of the computer workstations, and all interaction among you will take place through these 
computers. You will interact anonymously with one another and your data records will be stored only by your ID number; 
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your name or the names of other participants will not be revealed at any time during today’s session or in any write-up of 
the findings from this experiment.

Today’s session will involve 14 subjects and 25 rounds of a decision-making task. In each round you will view some 
information and make a decision. Your decision together with the decisions of others determine the amount of points you 
earn each round. Your dollar earnings are determined by multiplying your total points from all 25 rounds by a conversion 
rate. In this experiment, each point is worth 1 cent, so 100 points = $1. Following completion of the 25th round, you will 
be paid your total dollar earnings plus a show-up fee of $5.00. Everyone will be paid in private, and you are under no 
obligation to tell others how much you earned.

Specific details
At the start of each and every round, you will be randomly assigned to one of two groups, the R (Red) group or the B 

(Blue) group. Each group will consist of 7 members. All assignments of the 14 subjects to the two groups of size 7 at the 
start of each round are equally likely. Neither you nor any other member of your group or the other group will be informed 
of whether they are assigned to the R or B groups until the end of the round.

Imagine that there are two “jars”, which we call the red jar and the blue jar. Each jar contains 10 balls; the red jar 
contains 7 red balls and 3 blue balls while the blue jar contains 7 blue balls and 3 red balls. The red jar is always assigned 
to the R (Red) group and the blue jar is always assigned to the B (Blue) group. However, recall that you do not know which 
group (Red or Blue) you have been assigned to; that is, you don’t know the true color of your group’s jar. Furthermore, your 
assignment to the R or B group is randomly determined at the start of every round.

To help you determine the jar that has been assigned to your group for the round, you and each member of your group 
can decide whether or not you want to independently choose one ball from your group’s jar and privately observe the color 
of that ball. You face this decision on the first decision screen for each round where you are asked: Do you want to draw a 
ball? If you click on no, then you can get additional points as will be explained in detail below, however, in that case you 
will not have any more information about the jar that has been assigned to your group; all you will know is that there is a 
50 percent chance your group is assigned to the red jar and a 50 percent chance your group is assigned to the blue jar. If 
you click on yes, then you will be shown 10 different balls that you can choose. The balls are numbered 1 to 10. You must 
then click on one of the 10 balls. When you are satisfied with your choice click the OK button. After doing so you will be 
privately informed of the color of that ball. You will not be informed about whether other members of your group chose to 
select a ball, or how many members of your group chose to select a ball (until the end of the round), nor will they learn 
whether you chose to select a ball. You will also not be told the color of the balls drawn by any other members of your 
group who chose to draw balls, nor will they learn the color of the ball you chose, and it is possible for members of your 
group to draw the same ball as you do or any of the other 9 balls as well. Each member in your group who chooses to 
draw a ball selects one ball on their own and only observes the color of his/her own ball. However, all members of your 
group (Red or Blue), if they decide to choose a ball, will choose a ball from the same jar that contains the same number of 
red and blue balls. Recall again that if you are choosing a ball from the red jar, that jar contains 7 red balls and 3 blue balls 
while if you are choosing a ball from the blue jar, that jar contains 7 blue balls and 3 red balls.

After all group members have decided whether or not to draw a ball and those choosing to draw a ball have chosen their 
ball and observed its color, all group members will face a second decision screen where they will be asked to make a choice 
about the color of the jar that has been assigned to their group. Specifically, all group members, regardless of whether or 
not they have chosen to draw a ball, will face a choice between RED or BLUE for the color of the jar that has been assigned 
to their group. Those who chose to draw a ball will be reminded on this second decision screen of the color of the ball they 
have drawn. But all group members, even those who did not choose to draw a ball must choose whether the jar assigned 
to their group is BLUE or RED by clicking on either the blue or the red buttons.

Your group’s decision depends on the individual member decisions. Your 7-member group’s decision is RED if 4 or more 
of the members of your group (a majority) choose RED and your group’s decision is BLUE otherwise, that is, if 4 or more of 
your group members (a majority) choose BLUE.

Suppose you selected to draw a ball (and selected RED or BLUE). If your group’s decision (via majority rule) is the same 
as the true color of the jar that is assigned to your group, then the group decision is CORRECT, and you and every member 
of your group earns 100 points from the group’s correct decision. If your group’s decision is different from the true color of 
your group’s jar, then the group decision is INCORRECT, and you and every member of your group will earn 0 points from 
the group’s incorrect decision.

Suppose you selected not to draw a ball. Then you get an additional 5 points for the round. In other words, if your 
group’s decision is the same as the true color of the jar that is assigned to your group, then you will earn 105 points from 
the group’s correct decision. If your group’s decision is different from the true color of your group’s jar, then you will earn 
5 points from the group’s incorrect decision. Thus, by choosing to draw a ball to be further informed of the true color of 
the jar that is assigned to your group, you give up an additional 5 points for the round.

If the final (25th) round has not yet been played, then at the start of each new round you will again be randomly 
assigned to one of two groups of size 7. One group, Group R, will be assigned to the red jar and the other group, Group 
B will be assigned to the blue jar. Again, no one will know to which group or jar they have been assigned. Each group 
member will have the opportunity to privately decide whether or not to draw a new ball from your group’s jar and observe 
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its color (your decision to draw a ball in the previous round doesn’t affect your decision for the current round), and then to 
choose between BLUE or RED. In other words, the group you are in will change from round to round.

Following completion of the final, 25th round, your points earned from all 25 rounds will be converted into cash at the 
rate of 1 point = 1 cent. You will be paid these total earnings together with your $5 show-up payment in cash and in 
private.

Questions?
Now is the time for questions? If you have a question about any aspect of these instructions, please raise your hand and 

an experimenter will answer your question in private.

Quiz
Before we start today’s experiment we ask you to answer the following quiz questions that are intended to check your 

comprehension of the instructions. The numbers in these quiz questions are illustrative; the actual numbers in the exper-
iment may be quite different. Before starting the experiment we will review each participant’s answers. If there are any 
incorrect answers we will go over the relevant part of the instructions again.

1. I will be assigned to the same group, R or B in every round. Circle one: True False.
2. I must draw a ball from my group’s jar in every round. Circle one: True False.
3. If you decide to draw a ball from your group’s jar and the color of the ball you have actually drawn is red, then the 

color of your group’s jar is also red. Circle one: True False.
4. The red jar contains ______ red balls and ______ blue balls. The blue jar contains ______ red balls and _______ blue balls.
5. Consider the following scenario in a round. 4 members of your group choose RED.

a. What is your group’s decision? _________
b. If the jar of balls your group was drawing from was in fact the RED jar and if you have drawn a ball from the jar, 

how many points do you earn? _________
c. If the jar of balls your group was drawing from was in fact the BLUE jar and if you have drawn a ball from the jar, 

how many points do you earn? _________
d. If the jar of balls your group was drawing from was in fact the RED jar and if you have not drawn a ball from the 

jar, how many points do you earn? _________
e. If the jar of balls your group was drawing from was in fact the BLUE jar and if you have not drawn a ball from the 

jar, how many points do you earn? _________

Appendix B. Proof of Remark 1

Proof. To see why, note that from condition (7), it is optimal to (not to) acquire information if the pivot probability is 
greater (less) than c

M
(

x− 1
2

) . In a candidate equilibrium where k∗ voters acquire information and N − k∗ do not, the pivot 

probability faced by a voter who acquires information is p(k∗ − 1, N − 1) and that faced by one who does not acquire 
information is p(k∗, N − 1). Finally, strict monotonicity of p(k, N) in its first argument guarantees the uniqueness of k∗ . �
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