
Contents lists available at ScienceDirect

European Economic Review

European Economic Review 83 (2016) 64–89
http://d
0014-29

n Corr
E-m
1 Th

Woodfo
journal homepage: www.elsevier.com/locate/eer
Adaptive versus eductive learning: Theory and evidence

Te Bao a, John Duffy b,n

a Division of Economics, School of Humanities and Social Sciences, Nanyang Technological University, 14 Nanyang Drive, Singapore
637332, Singapore
b Department of Economics, University of California, Irvine, CA 92697 USA
a r t i c l e i n f o

Article history:
Received 3 September 2015
Accepted 12 December 2015
Available online 6 January 2016

JEL Classification code:
C91
C92
D83
D84

Keywords:
Rational expectations
Adaptive learning
Eductive learning
Experimental economics
x.doi.org/10.1016/j.euroecorev.2015.12.007
21/& 2016 Elsevier B.V. All rights reserved.

esponding author.
ail addresses: baote@ntu.edu.sg (T. Bao), duf
ese two approaches are also considered as
rd (2013).
a b s t r a c t

Adaptive and eductive learning are two widely used ways of modeling the process by
which agents learn a rational expectation equilibrium (REE). In this paper we report an
experiment where we exploit differences in the conditions under which adaptive and
eductive learning converge to REE so as to investigate which approach provides the better
description of the learning behavior of human subjects. Our results suggest that the path
by which the system converges appears to be a mixture of both adaptive and eductive
learning model predictions.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

How do agents learn a rational expectations equilibrium (REE) if they do not initially find themselves in such an equi-
librium? This important, foundational question has generated a large literature in macroeconomics (see, e.g., surveys by
Sargent, 1993, Grandmont, 1998, Evans and Honkapohja, 2001). In this paper we focus on two different but related
approaches to addressing this question.

Perhaps the most widely used approach, beginning, e.g., with Bray (1982) is to suppose that agents are boundedly
rational adaptive learners and to ask whether their use of a given real-time adaptive learning model that allows for a REE as
a possible solution converges in the limit to that REE. An alternative, off-line approach, originally advocated by Guesnerie
(1992, 2002), is to suppose that learning is a mental process involving collective introspection that takes place in some
notional time and that leads agents to understand and instantly coordinate upon or “educe” the REE solution.1 Both
approaches to learning place restrictions on model parameters under which learning agents can learn the REE. The
restrictions for learnability under adaptive learning may differ from the restrictions under eductive learning and this dif-
ference serves as one means of identifying the learning process that agents are using. A second difference between the two
learning approaches concerns the speed of convergence: if agents are adaptive learners who start out with beliefs different
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from the REE and if the REE is stable under adaptive learning, then it will generally take some time before agents' forecasts
converge to the REE value. By contrast, if agents are eductive learners who understand the model and if the REE is eductively
stable, then agents' forecasts should instantaneously convergence to the REE value. A third difference between the two
learning approaches is that eductive learning is an inherently social type of learning as it relies heavily on common
knowledge of the rationality of other actors, whereas adaptive learning does not explicitly consider the behavior of other
agents. The contribution of this paper is that we test the importance of all of these different features of the two learning
approaches using controlled laboratory experiments with human subjects.

Evans (2001) highlights the differences between the adaptive and eductive approaches to learning and invites empirical
and experimental testing of the different theoretical predictions. Specifically he writes:
2 H
(calcula

3 S
survey
“Which is the appropriate way to model economic agents will ultimately be a matter for empirical and experimental
research. It is likely that the answer depends on the circumstances, for example, in experiments, on the details of the
setting and the types of information provided to the subjects. A plausible conjecture is that when a model is simple
and transparent as well as eductively stable, agents will coordinate rapidly on the REE….If a model has no eductively
stable REE, but has an REE that is adaptively stable, then a plausible conjecture is that there will still be convergence to
the REE, at a rate governed by the accumulation of data….The eductive results provide a caution, however, that
coordination in such cases may not be robust.” (Evans, 2001, p. 581 emphasis added).
In this paper we follow up on Evans's invitation to compare adaptive versus eductive learning approaches. Indeed, the
manner in which agents might go about learning a rational expectations equilibrium is an important, fundamental yet
unresolved issue; there are many ways to model this learning process and it would be useful to have a consensus on which
approach (or combination of approaches) are more empirically valid than others.2 Understanding the manner in which
agents learn is also important for policy purposes. For instance, if agents can educe a REE prior to making decisions via the
mental, collective introspective process described by eductive learning, then policy ineffectiveness propositions that arise
under rational expectations may have full standing. However, if agents instead learn a REE adaptively over time, then policy
interventions may be effective in the short-run in the determination of economic variables. Thus, the manner in which
agents learn is an important empirical question.

Ideally, one would like to address the question of how agents form expectations using non-experimental field data, but
unfortunately, properly incentivized field data on individual-level expectations are not generally available. Survey evidence,
e.g., on inflationary expectations, consumer confidence, etc. are available, but these data are not properly incentivized in that
constant rewards or, more typically, no reward at all for participation in such surveys, yield poor incentives to report truthful
beliefs. Even setting such incentive problems aside, to use survey data on expectations one would have to know the precise
structure of the economic environment, i.e., the data generating process in which agents were forming their expectations,
knowledge that is typically unavailable and/or subject to some dispute. For these reasons, a laboratory experiment offers the
better means of collecting data on expectations as truthful revelation can be properly incentivized (using quadratic loss
scoring rules) and the control of the laboratory allows for precise implementation of the model environment (data gen-
erating process) in which agents' expectations matter for the realizations of economic variables.3

We report results from an experiment where subjects form predictions about the single market price in a simple cobweb
economy. The price forecasts determine actual prices according to an equilibrium reduced form equation of the model
which is known to all subjects. Our main treatment variable is the slope parameter of this reduced form model, which is also
known to subjects. We consider values for this parameter such that the REE solution is both adaptively and eductively stable
and other parameterizations where the REE solution is adaptively stable but not eductively stable, taking into account the
number of agents in the economy. As eductive stability relies upon common knowledge of rationality, we also vary whether
several agents' forecasts are aggregated to determine market prices as in an oligopoly setting, or whether each subject acts
as a monopolist so that their own price forecast uniquely determines the market clearing price.

Our main finding is that support can be found for both types of learning, adaptive and eductive, in our experimental data.
More precisely, we find that prices converge reliably to the REE in experimental markets where both learning approaches
predict convergence to the REE. Some of these markets converge in the first period as is consistent with eductive learning,
while other markets take many more periods to converge, as is consistent with adaptive learning. In our treatment where
the REE is learnable under adaptive learning but is not stable under eductive learning, we find that some markets still
converge to the REE within 50 periods but that the majority of markets fail to converge to REE in this case. This non-
convergence finding only obtains when agents form forecasts as part of a group of agents, as in our oligopoly setting, and not
when they form forecasts independent of others as in our monopoly setting, and this distinction is consistent with the social
learning aspect of the eductive learning criterion. Finally, looking at individual price forecasts we find that we can char-
acterize a majority of the subjects in our experiment as either adaptive or eductive learners, with a roughly equal division
between the two types.
ere we focus on just two approaches, but there are several other approaches including Bayesian learning, evolutionary learning and near-rational
tion-cost) learning.
ee Duffy (2016) for further arguments in support of using laboratory evidence to evaluate macroeconomic models and assumptions as well as a
of the literature on experimental macroeconomics.
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The organization of the remainder of paper is as follows: Section 2 discusses related literature, Section 3 presents the
theoretical model, Section 4 discusses the experimental design and hypotheses, Section 5 reports the experimental results,
and Section 6 concludes.
2. Related literature

Our experiment employs a “learning-to-forecast” experimental design (as pioneered by Marimon and Sunder, 1993) that
involves versions of the cobweb market model with negative feedback (or strategic substitutes). Hommes et al. (2000)
provide the first experimental test of such a cobweb economy, and this study has been followed up by Sonnemans et al.
(2004), Hommes et al. (2007), Heemeijer et al. (2009), Sonnemans and Tuinstra (2010), Bao et al. (2012, 2013) and Beshears
et al. (2013). Hommes (2011) surveys the literature. The differences between the present study and those earlier papers are
as follows. First, subjects in most of these prior studies do not precisely know the model of the economy (i.e., the data
generating process). This lack of knowledge makes it impossible for subjects to apply eductive learning as that type of
learning (as demonstrated below) requires full knowledge of the model thereby enabling introspective reasoning about the
proper price forecast. By contrast, subjects in our experiment are informed about the model economy and so they can in
principle apply eductive learning, or even directly solve for the REE using the perfect foresight condition. Second, most prior
experiments using the cobweb model employ a group design where both learning and strategic uncertainty can influence
the speed of the convergence to the REE. By contrast, we have both a group (“oligopoly” market) treatment and an indi-
vidual-decision making (“monopoly” market) treatment. The monopoly treatment rules out strategic uncertainty as a factor
and serves as an important baseline for assessing the extent of rational play among subjects. Third, all prior learning-to-
forecast experiments involving linear cobweb models use a data generating process for the market price equation that has a
coefficient on expected prices, α, that is smaller than 1 in absolute value.4 Finally, we explicitly test restrictions on the
stability of REE under the two different learning approaches. By contrast, most of the existing experimental literature on
whether and how agents learn a REE in cobweb economies has been concerned with characterizing the type distribution of
(adaptive) learning behaviors without regard to any stability under learning criteria, and certainly not a comparison of two
different learning criteria, as we present in this paper.

Since subjects in our experiment are informed that prices are determined as a function of price forecasts, (i.e., they know
the data generating process) our experiment is also related to an experimental literature on “guessing” or “beauty contest”
games (see, e.g., Nagel, 1995, Duffy and Nagel, 1997, Ho et al., 1998, Grosskopf and Nagel, 2008 among others). In these
guessing games, subjects are asked to guess a number. The winning guess (which is similar to a market price and which
yields the winner a large prize) is a known function of the average guess (or average opinion which is similar to the mean
price forecast). A main finding from this literature is that the winning number is initially very far from the rational
expectations equilibrium though it gets closer to that prediction with experience.

In our experiment we consider forecasting by a group of three subjects (in our “oligopoly” setting) as well as an indi-
vidual forecasting treatment (our “monopoly” setting) and we also examine whether our results for the monopoly treat-
ment are closer to the REE relative to the oligopoly treatment. The winning number in beauty contest games is typically a
linear function, ρ� the mean guess, where ρAð0;1Þ which is similar to a learning-to-forecast experiment with positive
feedback (strategic complements). There are also some guessing game experiments where ρAð�1;0Þ such as Sutan and
Willinger (2009). The difference between our work and their paper is that we provide a more detailed description of the
model that generates the price that agents are seeking to forecast and we vary the value of ρ (equivalently, our α) so as to
explore the implications of differing stability results under the adaptive and eductive approaches to learning. As in a typical
macroeconomic model, we also add a shock term to the price determination equation, a setup that is not usually found in
beauty contest/guessing games. Our framework could also be readily extended to a real intertemporal design where these
shocks are autocorrelated.

Since we have both monopoly (individual decision-making) and oligopoly (group decision-making) treatments, our
paper is related to experimental studies on oligopoly markets, for example, Bosch-Doménech and Vriend (2003), Huck et al.
(1999), and Offerman et al. (2002). These oligopoly market experiments use learning-to-optimize designs where subjects
submit a quantity choice directly and price forecasts are not elicited. By contrast, we ignore quantity choices and focus
instead on price forecasts (expectations) using a learning-to-forecast design.5 Our monopoly versus oligopoly design is also
helpful for investigating the important role played by common knowledge of rationality in eductive learning. In this respect
our paper is related to other experimental studies exploring the role of common knowledge of rationality in market settings,
for example, the “money illusion” experiments of Fehr and Tyran (2005, 2007, 2008) and the asset market experiments of
Akiyama et al. (2012, 2013).
4 Sonnemans and Tuinstra (2010) compare different treatments with limited as well as complete information. Hommes et al. (2000) discuss an
individual learning-to-forecast experiment. Hommes et al., 2007 report a nonlinear cobweb model experiment where jαj41 in the REE. However, none of
these studies explicitly tests for differences between adaptive and eductive learning model predictions.

5 In a learning-to-forecast design, subjects submit a price forecast and a computer program uses that forecast to optimally determine the subject's
quantity decision. By contrast, in a learning–to–optimize design, subjects submit a quantity choice directly; their price forecast is not elicited, though it is
implicit in their quantity decision. See Bao et al. (2013) for a comparison of these two approaches.
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Finally, we note that Gaballo (2013) has generalized Guesnerie's (1992, 2002) perfectly competitive market version of the
eductive learning criterion to market settings with an arbitrary but finite number of firms, N40, so that the conditions
under which an REE is eductively stable explicitly depend on N. We compare and contrast Gaballo's eductive stability
conditions with Guesnerie's eductive stability conditions in our experimental design and analysis and find that Gaballo's
conditions matter for convergence to REE and the stability of price forecasts.
3. Theoretical model

3.1. Cobweb economy

We consider a simple version of a cobweb model as presented in Evans and Honkapohja (2001) that is based on Bray and
Savin (1986). We chose the cobweb model as it was the model originally used by Muth (1961) to illustrate the notion of a
REE. It is also simple enough to explain to subjects and has the critical feature that expectations matter for outcomes, here
price realizations, while outcomes can in turn matter for beliefs as subjects interact under the same model environment
repeatedly. The cobweb model is one of demand and supply for a single perishable good and consists of the two equations:

Dt ¼ a�bpt ;
St ¼ cpet þηt :

Here, D represents demand, S supply, a, b, and c are parameters, which are usually assumed to be positive, pt is the period t
price of the good, pet ¼ Et�1½pt �, and ηt is a mean zero supply shock.6

Assuming market clearing, the reduced form equation for prices is given by:

pt ¼ μþαpet þνt ; ð1Þ
where μ¼ a=b; α¼ �c=b, and νt ¼ ηt=b.

The system has a unique rational expectations equilibrium where

pe;�t ¼ μ

1�α
and p�t ¼ pe;�t þνt : ð2Þ

3.2. Theoretical predictions

As Evans (2001) shows, the unique REE of this model (2) is stable under adaptive learning (i.e., it is “learnable”) if αo1.
However, under the eductive learning approach, the REE is learnable only if jαjo1 (see, e.g., Evans, 2001 or Evans and
Honkapohja, 2001, Section 15.4).7 We exploit this difference in stability conditions as one means of identifying which
learning process, adaptive or eductive, characterizes the price forecasts of our human subjects.

To be more precise about these two learning processes, adaptive learning consists of a general class of backward looking
learning rules that make use of past information and the specific type of adaptive learning rule that we consider in this
paper is “least squares learning” which is widely used. In supposing that agents learn in this particular adaptive fashion, we
assume that they do not know or they ignore any information about the price determination equations of the economy.
Instead, they start out by choosing a random prediction for the price in period 1, pe1. The adaptive agents’ “perceived law of
motion” for the price at time t is that it is equal to some constant, a, plus noise, ϵt, i.e., pet ¼ aþϵt , which has the same
functional form as the REE solution. Given this perceived law of motion and the assumption that the adaptive agents are
least squares learners, it follows that, in each period t41, an agent's price forecast is equal to the sample average of all past
prices given the available history:

pet ¼
1

t�1

Xt�1

s ¼ 1

ps: ð3Þ

Evans and Honkapohja (2001, Sections 2.3 and 2.4 for a simple linear case with an additional exogenous variable) provide
a general proof, based on matrix operations, as to why the REE in this simple cobweb system is learnable via adaptive, least
squares learning provided that αo1.8 For readers without prior knowledge about adaptive learning to capture the idea of
this modeling approach, we provide an alternative proof for the non-stochastic version of this model (namely, ignoring the
noise term νt since it has mean zero and small variance) based on mathematical induction in the Appendix.
6 Bray and Savin and Evans and Honkapohja use a somewhat richer model in which the supply equation, St ¼ cpet þδwt�1þηt , where wt�1 is an
observable exogenous variable affecting supply, e.g., weather in period t�1, that follows a known process (i.i.d. mean 0 or possibly AR(1)). For simplicity
we study the case where δ¼ 0, but we think it would also be interesting to study cases with such exogenous forcing variables as well.

7 We recognize that other learning approaches may impose different restrictions on the parameters of the cobweb economy to ensure converge to the
REE. For example, Hommes and Wagener (2010) find that when agents use the evolutionary learning model of Brock and Hommes (1997), the market price
may converge to a locally stable two cycle when αA 1

2;1
� �

.
8 See also Evans and Honkapohja (2001, p. 149) for a more sophisticated non-stochastic nonlinear negative feedback model with decreasing gain in the

multivariate case based on Evans and Honkapohja (2000).



Fig. 1. An illustration of the iterative process in notional time under eductive learning. The process creates a boundary, Bt, in notional time period t, and
excludes numbers that are larger/smaller than this boundary in even/odd notional periods. When jαjo1 the boundaries move closer to each other with
each iteration so that the interval eventually tightens to a single point, i.e., limt-1

Pt
s ¼ 1 α

sμ¼ μ=ð1�αÞ.
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For the experiment we parameterized the cobweb model as follows. We set μ¼ 60 and νt �Nð0;1Þ. We drew the
sequence of random shocks, fνtg just once and then used the same shock sequence in all of our experimental sessions. Thus,
μ and fνtg are the same in all of our experimental sessions. We consider four different values for the parameter α, which
serves as the primary treatment variable in our experiment. Specifically, our four treatment values for α are T1: α¼ �0:5,
T2: α¼ �0:9, T3: α¼ �2 and T4: α¼ �4. The REE price predictions associated with these four different choices for α are
T1: pe;� ¼ 40, T2: pe;� ¼ 31:58, T3: pe;� ¼ 20 and T4: pe;� ¼ 12, respectively. The rationale for these different values for α has to
do with differing predictions for the stability of the REE under the two different learning approaches.

Eductive learning has two versions, the basic, single-dimensional version found in Guesnerie (1992) and a more general,
multi-dimensional version in Guesnerie (2002). Eductive learning is based on iterated elimination of strategies that are
never best responses, in our case, the elimination of unlikely price forecasts.9 This iteration occurs in a competitive market
environment where each individual producer has no market power (therefore, the rational expectations equilibrium cor-
responds to the competitive equilibrium). Each producer has perfect individual rationality, namely, each producer can per-
fectly solve for the rational expectations equilibrium of the system, and common knowledge of such rationality by other
producers is also assumed.10 The eductive learning model describes the learning process by which agents iteratively
eliminate non-rationalizable strategies (price forecasts) from their strategy space. If this process leads to elimination of all
other strategies aside from predicting the rational expectations equilibrium, then the rational expectations equilibrium is
said to be eductively stable. We would like to emphasize that in this sense, eductive learning is a social learning process
(Vriend, 2000) as the agents' learning behavior is also conditioned upon others' decisions, while adaptive learning is
essentially an individual learning process where agents learn from the history of the realized market price and interact with
other agents only indirectly.

In this paper, we focus on the single-dimensional version of eductive learning as in Guesnerie (1992) since our cobweb
model is a simple, one product market. The eductive learning process works in the following way: in notional period 0, each
agent knows that it is rational to forecast pt ¼ μ=ð1�αÞ. Further, since all agents know the data generating process,
pt ¼ μþαpet , that prices should be non-negative and that α¼ �c=bo0, it follows that agents can logically rule out the
possibility that any other agent would forecast prices greater than μ,11 and so it can be regarded as common knowledge that
no one is going to forecast pt4μ. In notional period 1, knowing that no one is going to make a price forecast that is larger
than μ, and substituting this constraint into the price equation, pt ¼ μþαpet , agents should all infer that no one will forecast
prices lower than μþαμ¼ ð1þαÞμ. In notional period 2, using the same reasoning, agents can rule out price forecasts greater
than μþαðμþαμÞ ¼ ð1þαþα2Þμ, etc. More generally, in notional period t, the new forecast boundary created by this iterative
process will be ð1þαþα2þ⋯þαtÞμ. If jαjo1, this process will tighten the interval range of possible price forecasts to a
single point, the REE. When jαjo1, in the limit, the two boundaries become a single point, limt-1

Pt
s ¼ 1 α

sμ¼ μ=ð1�αÞ. This
iterative, notional time eductive learning process is illustrated in Fig. 1. By contrast, when αo�1, agents cannot rule out any
price forecasts starting from notional period 1, because μþαμo0. Hence, in the case where αo�1, the REE is not eductively
stable, though as noted earlier, it is stable under the adaptive learning dynamics. This difference in the criteria for con-
vergence to REE is the main hypothesis that our experiment addresses.

Thus far, our theoretical conditions for stability under eductive learning are derived under the perfectly competitive
market model of Guesnerie (1992), which presumes that all firms are atomistic and have no market power. However, since it
is not possible to host infinitely many producers in the lab, we should also consider how the finite number of firms in our
oligopoly treatment matters for the stability of REE under eductive learning. Recently, Gaballo (2013) has derived a gen-
eralized version of the eductive stability condition that can be used for the oligopoly cobweb market model with a finite
number N40 of firms. This condition is:

� N
N�2

oαNo1: ð4Þ
9 Eductive learning is the counterpart of rationalizability (Bernheim, 1984; Pearce, 1984) in games.
10 We acknowledge that the ability of agents to solve the REE from Eq. (1) is not explicitly included as a part of individual rationality as defined by

Guesnerie (1992) on page 1257. But immediately after that, on page 1258, Guesnerie makes the comment that the rational expectations equilibrium is also
the unique Nash Equilibrium of the game. Therefore, the subjects should be able to find the REE/Nash Equilibrium by solving the game as if they are
perfectly rational.

11 Since the literature on eductive learning typically assumes that αo0 as the starting point, when we prove that the REE is not eductively stable when
jαj41, we only focus on αo�1, case because the α41 case is already ruled out by the assumption that αo0.
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Here αN refers to the expectation feedback coefficient in the price generation function when there are N firms (by contrast
with α for the perfectly competitive version of the same model). Notice that in the limit, as N-1, this condition becomes
exactly the same as the competitive market version of Guesnerie (1992). According to Gaballo's criteria, our oligopoly T3
treatment, where N¼3 and α¼ �2 is eductively stable since �2A ½�3;1�. To address whether the finiteness of the firm
population size matters for our experimental findings, we added treatment T4 where α¼ �4 as a robustness check.12 With
N¼3 and α¼ �4, Gaballo's criterion for eductive stability is not satisfied. If oligopoly markets (with N¼3) converge to the
REE in treatment T4, that finding would serve as strong evidence in favor of adaptive over eductive learning. In this paper,
we will use the condition defined in (4) as the condition for eductive stability.

We note that there is another type of stability condition, namely stability under naïve expectations, where pet ¼ pt�1. This
naïve view of expectation formation predicts that the REE will be stable or unstable depending on whether jαjo1 or
jαj41.13 While naïve expectations is not the focus of our study, it also predicts differences in the stability of the REE
between our treatments T1–T2 and T3–T4. Later, in Section 5.6, we check whether subjects are behaving in this naïve
manner and find little evidence for naïve expectations, but we mention this possibility here as a further way of distin-
guishing between the predictions of our various experimental treatments.

As noted above, our primary treatment variable is α, which takes on four different values f�0:5; �0:9; �2; �4g in our
experiment. As a second treatment variable, we also differentiate between monopoly and oligopoly markets. In the oligo-
poly treatment there are N¼3 firms forming price forecasts in each market while in the monopoly treatment there is a
single firm forming price forecasts in each market. Since eductive learning is a social learning process, only the oligopoly
market design provides an environment where both adaptive learning and eductive learning can be properly implemented.
In that case, both learning theories predict that subjects will learn the REE in treatments T1 ðα¼ �0:5Þ and T2 ðα¼ �0:9Þ
and T3 ðα¼ �2Þ, but under treatment T4 ðα¼ �4Þ the REE is “learnable” only if agents are adaptive learners. This is our main
hypothesis to be tested. In addition, as a robustness check on the oligopoly market behavior, we also explore a monopoly
market treatment involving individual decision-making. By contrast with the oligopoly design, in the monopoly design, the
REE is learnable under eductive learning in all four treatments, since eductive learning assumes that agents have no dif-
ficulty solving for the REE by themselves. In other words, the predictions of the two learning models diverge only in the
oligopoly T4 treatment. Finally, we also consider differences in the speed of convergence to the REE; when an REE is stable
under eductive learning, convergence should, in principle, be instantaneous while under adaptive learning, it can take
several periods for the economy to converge to the REE depending on initial price forecasts.
4. Experimental design and hypotheses

We employ a 4� 2 experimental design where the treatment variables are (1) the four different values of the slope
coefficient, α, and (2) the number of subjects in one experimental market: either just one subject–the “monopoly” market
case or three subjects–the “oligopoly” market case. The monopoly versus oligopoly design is helpful for investigating the
role of strategic uncertainty in decision-making. Eductive learning assumes first that agents are perfectly rational, i.e., that
they can perfectly solve for the REE when they have complete information about the model (as in our design) and second,
that there is common knowledge of rationality, namely, that each player knows the other players are rational, each knows
that the others know that they are rational and so on. In monopoly markets, common knowledge of rationality is not an
issue since the single agent faces no uncertainty about his own level of rationality. Deviations from REE in the monopoly
market are violations of the assumption of individual rationality. However, since individual rationality is a precondition for
common knowledge of rationality, the extent to which deviations from individual rationality arise in the monopoly markets
is useful for understanding behavior in the oligopoly markets where common knowledge of rationality plays a critical role. If
there is some doubt as to whether other market participants can form rational expectation forecasts, as evidenced by
monopoly market forecasts that are not immediately equal to REE values, then forecasting the REE price in the oligopoly
setting may no longer be a best response. If it takes some time for subjects to learn the REE in the monopoly setting, then it
should take at least as much time or longer for subjects to learn the REE in the oligopoly setting, as group members would
first have to establish that there was common knowledge of rationality.

As noted earlier, our four treatment values for α are as follows:

Treatment 1 (T1): Weak negative feedback treatment, α¼ �0:5. The REE of this treatment is stable under both adaptive
and eductive learning, as well as when agents use naïve expectations.
Treatment 2 (T2): Medium negative feedback treatment, α¼ �0:9. The REE of this treatment is stable under both
adaptive and eductive learning, as well as when agents use naïve expectations.
Treatment 3 (T3): Strong negative feedback treatment, α¼ �2. The REE of this treatment is stable under both adaptive
and eductive learning, but not stable when agents use naïve expectations.
12 We thank a referee who recommended us to run this additional treatment.
13 For example, when α¼ �2, naïve expectations results in convergence to an oscillatory two period cycle where prices alternate between 0 and 60.
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Treatment 4 (T4): Very strong negative feedback treatment, α¼ �4. The REE of this treatment is stable only under
adaptive learning, but not stable under eductive learning or when agents use naïve expectations.

Our experiment makes use of a learning to forecast (LtFE) experimental design. Subjects play the role of an advisor who
makes price forecasts only. In our monopoly treatment, each market consists of a single forecaster. The time t price forecast
of subject i, pei;t , determines the price forecast for that market, i.e., pet ¼ pei;t which is then used to determine the actual market
price, pt, for that monopoly market according to Eq. (1). By contrast, in the oligopoly treatment, each market involves three
forecasters. We use the mean of the three subjects' individual price forecasts for period t as the market price forecast for
period t, i.e., pet ¼ 1

3

P3
i ¼ 1 p

e
i;t , which is then used to determine the actual market price, pt, for each oligopoly market, again

according to Eq. (1). In both treatments, subjects are paid according to the accuracy of their own price forecast and are thus
incentivized to provide good price forecasts. Since subjects are paid according to their forecast accuracy and not according to
the profit from their production decision, they have no incentive to take their market power into consideration. Under our
incentive system, predicting the REE (competitive equilibrium) is the only Nash Equilibrium of the prediction game, where
the forecasting error is minimized, and the payoff is maximized for every subject in the same market. Thus, the atomistic
assumption underlying Guesnerie's eductive stability condition may not be unreasonable in our setting. If subjects were
instead paid according to the profit their firm earned, they might have an incentive to play the Cournot–Nash equilibrium, or
the collusive equilibrium, which are different from the competitive market settings that are typically used in both the
adaptive and eductive learning literatures.

An important issue is how to allow for eductive learning, which is an off-line, notional time concept. It is not clear how to
capture or measure this type of learning in real time. Here we focus on the stability differences as pointed out by Evans
(2001) as our main test of whether agents are eductive or adaptive learners. Nevertheless, we wanted to be sure that
subjects understood the model and had sufficient time for the introspective reasoning required under eductive learning.
Under adaptive learning, there is no assumption that agents know the model while under eductive learning it is assumed
that agents do know the model. What we have chosen to do is to fully inform subjects about the model, in particular about
the price determination Eq. (1) – see the written experimental instructions in the Appendix for the details on how this
information was presented to subjects. Thus the agents in our model have more information than is typically assumed under
adaptive learning specifications, but at the same time, they have all the information they need to be eductive learners. We
felt that, in order to put the two learning approaches on an equal footing for comparison purposes we would have to
eliminate any informational differences between the two learning approaches, which could serve as a confounding factor in
our analysis. Thus we provide subjects with complete and common information about the model across all of our eight
treatments. Further, we did not impose any time limits on subjects' decision-making so as not to limit the type of intro-
spective reasoning associated with the eductive approach. Indeed, we captured subjects' decision time as a variable in order
to better understand whether there were any differences in decision time across treatments T1–T4, or between individuals
and groups in our monopoly and oligopoly treatments.

4.1. Hypotheses

Based on the theoretical analysis of Section 3, we formulate the following testable hypotheses. The underlying prior is
that agents are adaptive learners, and so the results favor eductive learning if the hypotheses are rejected.

Hypothesis 1. The market price and price expectations in all treatments converge to the unique rational expectation
equilibrium given in (2).

As in Section 2, both adaptive and eductive learning theories predict that market price forecasts and market prices will
converge to the REE in treatments T1–T3. In treatment T4, the REE is learnable under adaptive learning. It is learnable under
eductive learning in the monopoly design but not in the oligopoly design for the competitive version of eductive learning. If
Hypothesis 1 is rejected, and forecasts and prices do not converge to the REE in treatment T4, the experimental results favor
eductive learning over adaptive learning.

Hypothesis 2. Given that the market price and price expectations converge to the REE, convergence never takes place in the
first period of the experiment.

Since convergence under adaptive learning takes place more gradually and in real time while eductive learning happens
in notional time, convergence should take place in the first real period that is incentivized for monetary payment if agents
are eductive learners, or after a few periods if agents use adaptive learning and depending on initial conditions. If
Hypothesis 2 is rejected, the experimental results favor eductive learning over adaptive learning.

Hypothesis 3. Agents spend no more time in making their decisions in each period of treatment T4 as compared with each
period of treatments T1–T3 in the oligopoly design.

Since eductive learning can involve considerable introspective reasoning in notional time, which we take to be the period
prior to the first incentivized market forecasting period, it may require more time for agents to reach a decision. In parti-
cular, the REE is predicted to be more difficult to learn under eductive learning in treatment T4 as compared with treatments



Table 1
Number of markets (independent observations) and subjects in the eight treatments of the experiment.

Treatment conditions Monopoly Oligopoly Total no. subjects
No. markets/Subjects No. markets/Subjects

T1 14 / 14 10 / 30 44
T2 12 / 12 10 / 30 42
T3 13 / 13 11 / 33 46
T4 14 / 14 10 / 30 44

Totals 53 / 53 41 / 123 176

Fig. 2. The computer decision screen used in the experiment for the treatment where α¼ �0:5 and the subject is a monopolist in the market. Note: the
price and price expectations shown in this figure are random inputs by the authors for illustration purposes and are not taken from any experimental data.
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T1–T3 in the oligopoly design. Since decision time is a typical measure of the cognitive cost to agents of decision-making, if
Hypothesis 4 is rejected, it suggests that making a decision in treatment T4 is indeed more difficult than in treatments
T1–T3, and the results would thus favor eductive learning over adaptive learning.

4.2. Number of observations

The experimental data was collected in a number of sessions run at the CREED Lab of the University of Amsterdam. Subjects had
no prior experience with our experimental design and were not allowed to participate in more than a single session of our
experiment. Each session consisted of 50 periods over which the treatment parameters for that session were held constant (i.e., we
used a “between subjects” experimental design). Table 1 provides a summary of the number of subjects or markets (independent
observations) for each of our eight treatments. Note that in the monopoly treatment, each subject acted alone in a single market, so
the number of subjects equals the number of independent observations (markets) in that setting. By contrast, in the oligopoly
treatment, each market consisted of three firms (subjects), so while we have more subjects in our oligopoly treatments, we never-
theless have fewer 3-firm markets (independent observations) for the oligopoly treatments. Each session averaged about 1 h and
10min in duration. The average payoff was 21.9 euros across all four monopoly treatments and 18.8 euros across all four oligopoly
treatments.

4.3. Computer screen

Fig. 2 shows the computer screen we developed for the experiment in the treatment where α¼ �0:5. Subjects were
asked to enter a forecast number in the box and then to click “send” to submit their forecast in each period. Since the price
and price expectation were restricted to be non-negative, the range of possible prices should be ½0;60� according to Eq. (1).14
14 If pet 40 and given that αo0 it follows that pt ¼ 60þαpet o60.
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Fig. 3. The average expectation against the REE in each of the four treatments of the monopoly design.
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However, restricting the price forecast range to ½0;60� would be equivalent to directly imposing the first step in the eductive
learning process. Therefore, we restricted the price forecast range to ½0;100� in the experiment, which is less suggestive. The
subjects are told in the instructions that neither the price nor their price predictions can be negative. The upper forecast
bound of 100 was not indicated in the written instructions, but subjects would see a pop-up window indicating that a
forecast larger than 100 is not allowed if they attempted to submit a price forecast that was greater than 100. Notice that the
computer decision screen presented subjects with information and graphs of past prices, their own prior price forecasts as
well as realizations of shocks. The screen was refreshed with updated information once all subjects had submitted forecasts
and the market price was determined. Notice further that at the top of the decision screen, the price determination equation
(1) with the treatment specific value of α was always available for subjects to view and it appeared next to the input box
where they were asked to submit their price prediction in each period.
4.4. Payoff function

The period payoff function for subjects (in points) is a decreasing quadratic function of their market price prediction
error, and was given by:

Payoff for subject i0s forecast in period t ¼max 1300�1300
49

ðpt�pei;tÞ2;0
� �

: ð5Þ

This payoff function was carefully explained to subjects in the written instructions. Notice that subjects earn 0 points if their
own, individual price forecast error is greater than 7 and they earn a maximum of 1300 points for a perfect forecast.
Subjects' point totals from all 50 periods were converted into to euros at the end of each session at a known and fixed rate of
1 euro for every 2600 points. Thus, over 50 periods, each subject's maximum earning was ð1300� 50Þ=2600¼ 25 euros.
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Fig. 4. Disaggregated price expectations against the REE in each individual market of the four treatments of the monopoly design.

Table 2
Mean and variance of price expectations in each treatment ðα¼ �0:5; �0:9; �2; �4Þ of the monopoly setting.

Treatment REE Periods 1–50 Periods 1–25 Periods 26–50

Mean Variance Mean Variance Mean Variance

α¼ �0:5 p� ¼ 40 40.02 14.18 39.97 28.30 40.07 0.23
α¼ �0:9 p� ¼ 31:58 31.62 10.79 31.65 17.51 31.60 4.51
α¼ �2:0 p� ¼ 20 21.46 90.76 22.88 172.70 20.03 0.13
α¼ �4:0 p� ¼ 12 12.63 28.40 13.17 49.82 12.09 6.48
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5. Experimental results

5.1. Market dynamics

5.1.1. Monopoly markets
Fig. 3 plots the average price expectation (forecast) against the respective REE price expectation using data from all markets

(individual observations) of each of the four monopoly treatments. According to the theoretical analysis in Section 3, convergence
in terms of the market price or in terms of price expectations are equivalent. We choose to plot the time path of average price
expectations instead of themarket prices to limit the influence of the noise term νt.15 We observe that the mean price expectation
in all four treatments appears to converge to the REE, although at different speeds (we will quantify this speed of convergence
later in Section 5.2). The adjustment towards the REE is observed to be fastest in T1 and slowest in T4.
15 The results for market prices are thus very similar to the results for market price forecasts, but due to the noise term, market prices have a higher
variance.
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Fig. 4 plots the disaggregated price expectation paths in each individualmarket for each of the four monopoly treatments
against the respective REE. As this figure reveals, it may take 25 periods or more for some markets to converge, e.g.,
treatments T3–T4, and there are a lot of extreme outcomes, e.g., price forecasts such as 0 and 60. From these results we
preliminarily conclude that adaptive learning is correct in predicting the convergence outcome across all four treatments
including treatments T3–T4, however the time path of convergence for some markets often resembles a real-time
demonstration of the eductive, introspective learning process, in particular, the dampened cycling of price expectations over
time in some markets. Further, if we look at self-reported strategies from a questionnaire solicited from subjects following
the end of the experiment (as we do later in Section 5.6), it seems that several subjects directly solved for the REE using
pe;� ¼ μ=ð1�αÞ, which indicates that those subjects were applying eductive reasoning.16

Table 2 reports the mean and variance of price expectations across all markets in each of the four monopoly treatments
for the entire sample of 50 periods as well as for the first 25 and the last 25 periods of the sample. Confirming the
impression given in Figs. 3 and 4, we observe that, on average, price forecasts converged to the REE in each monopoly
treatment and that the variance in these forecasts over all 50 periods was greatest in treatment T3. When attention is
restricted to the last 25 rounds, the variance is greatest for treatment T4.

5.1.2. Oligopoly markets
Fig. 5 plots the average price expectations (forecasts) against the respective REE price expectation using data from all

markets of each of the four oligopoly treatments. We see that the average price expectation in all four treatments either
converges to the REE or to a neighborhood around the REE although, again, such convergence happens at different speeds.
The adjustment towards the REE is again observed to be fastest in T1 and slowest in T4.

Fig. 6 plots the disaggregated average price expectations for each of the three-firm markets (independent observations)
against the respective REE price for all four oligopoly treatments. Compared with the monopoly treatment, the convergence
16 At the end of one experimental session during the payment phase, a subject commented: “this experiment is simple; I just solve the linear equation
and then give the same prediction in every period.”
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Fig. 6. Disaggregated average expectations against the REE price when α¼ �0:5; �0:9; �2 and �4 (from top to bottom) in the oligopoly design.

Table 3
Mean price and variance of price expectations in each treatment ðα¼ �0:5; �0:9; �2; �4Þ of the oligopoly setting.

Treatment REE Periods 1–50 Periods 1–25 Periods 26–50

Mean Variance Mean Variance Mean Variance

α¼ �0:5 p� ¼ 40 39.90 1.14 39.74 2.18 40.05 0.08
α¼ �0:9 p� ¼ 31:58 31.60 1.61 31.61 2.82 31.58 0.45
α¼ �2:0 p� ¼ 20 20.46 25.01 20.75 44.37 20.19 6.31
α¼ �4:0 p� ¼ 12 13.98 77.91 15.29 97.66 12.67 55.00
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to REE in the oligopoly setting seems to be faster and more reliable in the eductively stable treatments, T1–T3. By contrast,
in the eductively unstable oligopoly market treatment T4, the volatility of price expectations appears to be greater and more
persistent than in the oligopoly T1–T3 treatments or by comparison with the monopoly T4 treatment. Indeed, 6 of the 10
oligopoly markets in the T4 treatment failed to converge to the REE within the 50 periods allowed according to our con-
vergence criterion as described in the next section. This finding suggests that the oligopoly market setting may facilitate
learning when the REE is eductively stable as this environment aggregates the already near-rational expectations of other
agents and may thus speed up the achievement of common knowledge of rationality. However, when the REE is not
eductively stable so that the REE is not rationalizable, we frequently observe non-convergence to the REE or greater
volatility in market price expectations that do converge to the REE.

Table 3 reports the mean and variance of price expectations across all markets of each of the four oligopoly treatments
for the entire 50 period sample and for the first 25 and last 25 periods of the sample. Consistent with Figs. 5 and 6, we
observe that, on average, price expectations converged to the REE prediction for each treatment and that the variance in
price expectations increases with α, with T1 having the lowest variance at 1.14 over all 50 periods and treatment T4 having
the greatest at 77.91 over all 50 periods. These rankings do not change if attention is restricted to the last 25 periods. Note



Table 4
Frequency distribution of the number of periods required for convergence to the REE in each treatment. Convergence period ranges are given in the left-
most column as bins []. The numbers of observations per bin are indicated in ().

Convergence in period(s) Monopoly Oligopoly

α¼ �0:5 α¼ �0:9 α¼ �2 α¼ �4 α¼ �0:5 α¼ �0:9 α¼ �2 α¼ �4

1 21.4% (3) 41.7% (5) 30.8% (4) 7.1% (1) 20.0% (2) 30.0% (3) 0.0% (0) 0.0% (0)
½2;5� 57.1% (8) 25.0% (3) 30.8% (4) 78.6% (11) 80.0% (8) 60.0% (6) 27.3% (3) 0.0% (0)
½6;10� 14.3% (2) 16.7% (2) 7.7% (1) 7.1% (1) 0.0% (0) 0.0% (0) 18.2% (2) 0.0% (0)
½11;20� 0.0% (0) 0.0% (0) 0.0% (0) 7.1% (1) 0.0% (0) 0.0% (0) 18.2% (2) 0.0% (0)
½21;50� 7.1% (1) 16.7% (2) 30.8% (4) 0.0% (0) 0.0% (0) 10.0% (1) 36.4% (4) 40.0% (4)
450 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0) 60.0% (6)

Average 4.4 8.2 8.8 5.5 2.1 7.1 17.3 40.9
Variance 29.5 179.8 87.0 47.3 1.1 188.8 289.2 171.7
Obs 14 12 13 14 10 10 11 10
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that under adaptive learning, the value of α should not matter for the variance of price expectations while under eductive
learning, REE is either stable or unstable.

5.2. Convergence to REE

We declare that convergence to REE occurs in the first period for which the absolute difference between the (average) price
expectation and the REE price prediction is less than 3 and stays below 3 forever after that period for the remainder of the 50
period market. We choose a threshold of 3 for two reasons: (1) ideally, one would like to declare convergence only if the price
expectation was exactly equal to the REE, but if such criteria were used, almost no market would satisfy that criterion so that it
would not be possible to make any distinctions among our treatments; (2) the threshold should not be so large that it allows for
substantial deviations from the REE. We choose the two sided range ½�3; þ3� because it is 10% of the rationalizable price range,
½0;60�, and one-sided deviations from REE larger than 3 (5%) of this range may be regarded as substantial. We further categorize
markets according to whether convergence happens immediately in period 1, or between periods 2 and 5, between periods 6 and
10, between periods 11 and 20, between periods 21 and 50 or the market is non-convergent according to our criterion as of the final
period 50 ð450Þ. In calculating the average number of rounds to convergence, we use the first round in which convergence
occurred according to our criterion, or if convergence did not occur within the 50 periods of the experiment, we declared the period
of convergence to be period 51. Our tests for treatment differences using this convergence criterion (as discussed below) do not
depend on the latter assumption because all of our tests are non-parametric so that only rank matters.

The results from applying our convergence criterion to each market of each treatment are reported in Table 4. In the final
rows of this same table we also report the mean number of periods to convergence over all markets in each treatment as
well as the variance. Table 4 reveals that it takes fewer periods, on average, for price forecasts to converge to the REE in
treatment T1 as compared with treatments T2–T4 for both the monopoly and oligopoly settings. There is less of a difference
in the mean time to convergence between the T2 and T3 treatments of the monopoly setting, though convergence is slightly
faster on average in T2 than in T3. Surprisingly, the number of periods before convergence obtains in treatment T4 of the
monopoly design is smaller than in T2 and T3, though it remains larger than for T1.

As for the oligopoly setting, it is clear that as α becomes more negative in moving from treatments T1–T4, the mean time to
convergence steadily increases. AWilcoxon Mann–Whitney test on market-level data (independent observations) suggests that the
differences in the mean time to convergence between treatments T1 and either the T2 or T3 treatments is statistically significant at
the 5% level for both the monopoly and oligopoly treatments while the differences in the mean time to convergence between
treatments T2 and T3 is statistically significant at the 5% level for the oligopoly treatment but not statistically significant for the
monopoly treatment. Themean time to convergence in treatment T4 is not significantly different at the 5% level from that of all other
treatments in the monopoly design, and is significantly different from all other treatments of the oligopoly design. The mean time to
convergence is smaller in the oligopoly design than in the monopoly design for the eductively stable treatments (T1 and T2), where
the difference is significant at the 5% for T1 but not for T2, while it is larger in the oligopoly design than in the monopoly design in
treatments T3 and T4, where the differences are significant at the 5% level for both treatments.

For both the monopoly and oligopoly markets, the variance in the number of periods before convergence is smallest in
treatment T1. In the monopoly market treatment, the variance in the number of periods required for convergence is larger in
treatment T2 than in treatment T3, but this is due to the random behavior of just a few subjects in T2 who inexplicably
began experimenting with high/low price predictions after they had converged to the REE for more than 10 periods. For the
oligopoly treatment, the variance in the number of periods required for convergence is also smallest in treatment T1 and is
higher and similar in treatments T2 and T3.17 These results generally support the notion that convergence is more difficult as
the absolute value of the coefficient α becomes larger, as larger values of α make the market more unstable. We have
17 We performed a Siegel–Tukey test and found that none of the differences in variances across treatments is significant at 10% level.
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verified, using simulations of adaptive learning agents (available on request) that the number of periods required for
convergence to the REE is indeed increasing with increases in the value of jαj.

Table 4 also reveals that for all four monopoly market treatments, there is at least 1 market (and often more) that
converges to the REE beginning with the very first period. As noted earlier, convergence to the REE in the very first period
may be regarded as support for the eductive learning approach. If this eductive learning criterion is relaxed to allow for
convergence within the first 5 periods of the experiment, then more than 60% of all markets in all four monopoly treatments
can be said to be consistent with eductive learning. A similar finding obtains for the eductively stable treatments, T1–T2, of
the oligopoly design. By contrast, in treatments T3 and T4 of the oligopoly treatment, there are no instances of convergence
to the REE in the very first period of a session and in the T4 oligopoly treatment, 60% of markets (6/10) failed to satisfy our
convergence criterion within the 50 periods allowed by our experiment. These differences in outcomes between the
eductively stable treatments T1 and T2 and the eductively unstable treatments T3 and T4 suggest that the eductive stability
criterion is indeed useful in understanding differences in the behavior of subjects in our experiment. Furthermore, the
significant frequency of non-convergent outcomes in the T4 oligopoly treatment compared with the T3 oligopoly treatment
(where all markets converged) provides support for Gaballo's (2013) general eductive stability requirement based
N¼3 firms.

Fig. 7 displays cumulative distribution functions (CDFs) of the percentage of markets in each treatment that have met our
convergence criterion by each of the 50 periods of our experiment. For the monopoly treatment (left panel of Fig. 7), these
CDFs are closely aligned and intersect one another suggesting that there is not much difference in the distribution of
convergence times across these four monopoly treatments. Indeed, a non-parametric Kolmogorov–Smirnov test indicates
that there is no significant difference in these distributions at the 5% level for all pairwise comparisons of the four monopoly
treatments. By stark contrast, in the oligopoly markets (right panel of Fig. 7) it is clear that markets in treatment T1 converge
the fastest followed by treatment T2, then treatment T3 and lastly by treatment T4 where only 40% of markets had satisfied
our convergence criterion by the final period 50. A Kolmogorov–Smirnov test indicates that there is no significant difference
between the distribution of periods before convergence in Treatments T1 and T2. However, this same test indicates that
both the oligopoly treatments T3 and T4 are significantly different from the other treatments (namely, T3 differs from T1, T2,
T4, and T4 differs from T1–T3) at the 5% level.

We summarize the findings in the above sections as Results 1 and 2 addressing Hypotheses 1 and 2:

Result 1. We do not reject Hypothesis 1 for the monopoly markets as convergence to the REE obtains in all four treatments
of the monopoly design. We do reject Hypothesis 1 for the oligopoly treatment, in particular for treatment T4 where 60% of
markets (observations) failed to converge to the REE within 50 periods.

Result 2. We reject Hypothesis 2 that when the REE is eductively stable convergence to the REE occurs immediately as it is
more frequently the case that convergence requires more than a single period.

Results 1 and 2 suggest, as Evans (2001) posited, that the learning process may be regarded as a mixture of both adaptive
and eductive approaches when the REE is not learnable under eductive learning.

5.3. Fit of the two learning approaches to the experimental data

We next consider the fit of the two different learning approaches to our experimental data. For the adaptive learning
model, we assume that the model's predictions coincide with the actual (average) price prediction in the experimental data.
To initialize a simulation of the adaptive learning model we set the initial price prediction, pe1, equal to the individual



Table 5
MSE between the experimental data and the two learning model predictions when these models predict convergence to the REE.

Learning model Market Monopoly Oligopoly

α¼ �0:5 α¼ �0:9 α¼ �2 α¼ �4 α¼ �0:5 α¼ �0:9 α¼ �2 α¼ �4

Adaptive 1 0.94 0.15 377.75 0.40 0.10 2.21 11.88 18.14
2 0.33 0.38 78.71 9.60 0.18 0.50 1.26 7.15
3 0.17 23.46 42.25 0.31 0.35 0.30 6.98 3.71
4 109.73 0.06 0.93 9.94 0.26 4.63 69.94 182.94
5 0.97 5.15 10.57 98.77 0.12 0.26 62.46 37.64
6 0.16 5.40 0.13 0.45 0.27 0.73 5.40 147.64
7 23.76 8.73 8.03 0.49 0.63 0.57 12.87 129.85
8 0.08 0.70 223.79 0.98 0.57 0.33 25.50 20.32
9 0.79 0.17 31.01 6.27 0.26 0.97 10.19 65.50
10 0.34 3.94 0.67 6.00 0.63 0.28 21.88 88.17
11 0.49 9.67 371.13 1.72 5.51
12 1.49 1.43 1.19 127.85
13 0.03 2.19 13.24
14 9.46 0.66
Average 10.62 4.94 88.34 19.76 0.34 1.08 21.29 70.11

Eductive 1 2.52 0.00 384.14 0.27 0.89 2.41 16.70 –

2 0.91 0.09 76.26 18.01 1.04 0.63 3.12 –

3 2.17 52.14 81.08 1.72 0.68 0.42 3.88 –

4 141.14 0.06 1.02 8.82 2.02 6.34 91.21 –

5 3.29 30.14 13.41 121.62 0.19 1.62 63.38 –

6 2.02 5.75 0.00 0.04 0.67 1.30 9.29 –

7 22.05 23.43 45.04 0.28 0.46 1.14 3.96 –

8 0.19 0.69 230.52 0.21 3.12 0.19 26.19 –

9 3.02 0.21 10.81 0.64 0.90 1.60 18.03 –

10 0.15 3.79 0.71 39.17 1.34 0.33 28.67 –

11 0.49 9.76 387.83 15.49 12.75
12 3.62 1.33 4.00 137.22
13 5.01 2.05 50.63
14 13.01 8.59
Average 14.26 10.62 95.14 28.77 1.13 1.60 25.20 –
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(monopoly) or average (oligopoly) forecasts made by subjects in period 1 (and period 1 only). Thereafter, the adaptive
learning model specifies how all subsequent simulated prices and price predictions are determined. That is, given pe1, the
price for period 1, p1, is determined by Eq. (1). Given p1 the adaptive learning model predicts the price for period 2 according
to Eq. (3) and thus generates a simulated actual price for period 2 again via Eq. (1). In period 3, the adaptive model takes the
average of the simulated prices for periods 1 and 2 and makes a price prediction for period 3, which is then used to generate
the simulated price for period 3 via Eq. (1), and so on. Thus, the adaptive learning model uses its own simulated prices as
input to generate simulated market price predictions in each period. Importantly, this simulation only loads experimental
data from period 1, and makes simulated prices and predictions for the remaining 49 periods, so there are no degrees of
freedom in the predictions of the adaptive learning model for each market observation.

For the eductive learning model, we assume that for each period, the simulated price prediction is peedc;t ¼ μ=ð1�αÞ and
thus the actual market price equals the REE price, μ=ð1�αÞþνt in the treatments where eductive learning predicts that the
REE is learnable, namely, all treatments of the monopoly setting, and treatments T1–T3 of the oligopoly setting. Note that
for treatment T4 in the monopoly setting, the eductive learning model predicts that the market price equals the REE price
because eductive learning assumes that individuals are perfectly capable of solving for the REE. Since in the monopoly case,
there are no other firms (agents) forming expectations, there is no strategic uncertainty regarding the decision of others and
so it follows that the market price should equal the REE price even in treatment T4 of the monopoly setting. By contrast, in
treatment T4 under the oligopoly setting, the eductive learning model does not exclude any combination of price predictions
and market prices, strictly speaking for treatment T4 only, given our finite number of firms. Therefore, deviations from the
eductive learning model prediction for the T4 treatment of the oligopoly setting are essentially undefined, or 0 if we
consider that the model predicts that “anything can happen.” For these reasons we did not calculate the MSE (mean squared
error) between the data and the eductive learning model prediction for the T4 treatment of the oligopoly setting. However,
for the other seven treatments, we can calculate the MSE between the data and the eductive learning model predictions. We
note that, as was the case for the adaptive learning model predictions, there are again no degrees of freedom in the pre-
dictions of the eductive learning model.

The MSEs between the simulated and experimental data for each market (independent observation) are presented in
Table 5. The results suggest that the adaptive learning model is generally a better fit to the experimental data, as it results in
a smaller MSE relative to the experimental data than does the eductive learning model using that same experimental data;
the average MSE for the adaptive learning model is lower than for eductive learning model in all of the treatments where



Table 6
Payoffs and payoff efficiency across the eight treatments.

Market structure α Avg. payoff Efficiency (%)

Monopoly �0.5 22.9 91.6
�0.9 22.7 90.8
�2 20.1 80.4
�4 21.8 87.0

Oligopoly �0.5 23.7 94.6
�0.9 22.6 90.6
�2 16.7 65.6
�4 12.6 50.2

Table 7
The decision time in the first period in each treatment.

Treatment T1 T2 T3 T4

Monopoly
Average 53.1 49.6 103.8 148.5
Variance 2956.8 393.7 10,569.3 11,237.2
Number of Obs. 14 12 13 14

Oligopoly
Average 55.2 62.3 98.1 89.2
Variance 1246.6 1562.9 14,595.2 5507.8
Number of Obs. 30 30 33 30
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this MSE can be calculated. AWilcoxon signed rank test suggests that the difference between the MSEs for the adaptive and
eductive learning models is significant (in favor of adaptive learning) at the 5% level for the α¼ �0:5 and α¼ �0:9 treat-
ments of both the monopoly and oligopoly settings, and for the α¼ �4 treatment of the monopoly setting. However, there is
also some heterogeneity across the different markets/observations. For example, in the monopoly market with α¼ �2, the
adaptive learning model generates a higher MSE relative to the eductive learning model in markets 2, 6, 8, 9 and 13 but a
lower MSE relative to the eductive learning model in markets 1, 3, 4, 5, 7, 10, 11 and 12. This finding suggests that it is very
likely that some markets are dominated by subjects using adaptive learning, while others are dominated by subjects using
eductive learning. We will provide evidence for such heterogeneity of types later on in Section 5.6.
5.4. Payoff efficiency

Table 6 reports average payoffs and payoff efficiency (payoffs divided by 25 euros, which was the maximum amount that
each subject could earn when they made no forecasting errors) for each treatment. Payoff efficiency is more than 90% when
α¼ �0:5 or α¼ �0:9, and lower, between 50% and 90% when α¼ �2 and α¼ �4. Efficiency is higher in the T1 oligopoly
treatment as compared with the T1 monopoly treatment and lower in the T3–T4 oligopoly treatments than in the T3–T4
monopoly treatments. We performed a Wilcoxon Mann–Whitney Test using individual earnings data in the monopoly
design and average earnings for each market of the oligopoly design. The results indicate that for the monopoly treatment,
there is no difference in payoff efficiency between the T1, T2 and T4 treatments at the 5% level, but that payoff efficiency in
these treatments is significantly greater than payoff efficiency in the T3 treatment at the 5% level. In the oligopoly treatment,
payoff efficiency is monotonically decreasing in α, and the difference between each pair of treatments is statistically sig-
nificant at the 5% level. The considerably lower payoff efficiency found in treatment T4 of the oligopoly design suggests that
the forecasting task is more cognitively demanding when the REE is unstable under eductive learning. We also compare, for
the same treatment (same α), whether there is a significant earnings difference between the monopoly and oligopoly
settings. It turns out that in four pairwise comparisons, the difference is only significant at 5% level for the T4 treatment
ðα¼ �4Þ, where earnings in the oligopoly setting are substantially lower than in the monopoly setting.
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Fig. 8. The empirical CDF of the time taken to complete decision tasks in treatments T1–T4 of the monopoly (solid line or markers) and oligopoly (long
dash line or hollow markers) settings. The unit of time is seconds, as measured on the horizontal axis. The vertical axis measures the cumulative frequency.
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5.5. Decision time

We collected data on the time it took subjects to make their decisions. Specifically, we measured the time, in seconds,
from the start of each new period to the time at which each subject clicked “send” to submit their price forecast for that
same period. Such data can be useful in understanding possible variations in the cognitive difficulty of decision-making
tasks. In particular, Rubinstein (2007) provides evidence that choices requiring greater cognitive activity are positively
correlated with a longer decision response time. In our experiment, subjects face a more difficult task in treatment T4 as
compared with treatments T1–T3 and so they may be expected to take more time to make their decisions in treatment T4
than in treatments T1–T3. At the suggestion of a referee, we compare the average decision time in the first period only, since
our computer program only advances to the next period when all subjects have made a forecast, the decision time in later
periods may be influenced by subjects' experience with waiting times in earlier periods, and thus these observations may
not be independent beyond the first period. Table 7 provides descriptive statistics of the decision time in the first period in
each treatment. For the monopoly treatment, the average decision time is 53.1 s in T1, 49.6 s in T2, 103.8 s in T3 and 148.5 s
in T4. In the oligopoly treatment, the average decision time is 55.2 seconds (s) in T1, 62.3 s in T2, 98.1 s in T3 and 89.2 s in T4.

Fig. 8 shows the empirical cumulative distribution function (CDF) of decision time in the first period for treatments
T1–T4 of the monopoly setting. We find that the difference between each of T1 and each of T3–T4, and T2 and T4 is
significant at the 5% level according to a Wilcoxon Mann–Whitney test, while other differences across treatments are not
statistically significant.

In the oligopoly treatment, the difference between each of T1–T2 and each of T3–T4 is significant at the 5% level
according to a Wilcoxon Mann–Whitney test, while the differences between T1 and T2 or T3 and T4 are not significantly
different from one another. These findings support the notion that subjects face a more difficult task in T4, and therefore
require more time to make a decision.

The findings in this section are summarized by Result 3 which addresses Hypothesis 3:

Result 3. We reject Hypothesis 3. When common knowledge of rationality is an issue as in our oligopoly setting, decision
time is always significantly greater in treatment T4 relative to treatments T1–T2.

We note additionally that the cognitive cost of decision-making in treatment T4 of our monopoly setting is often sig-
nificantly larger than in T1–T2.

5.6. Categorization of subjects into adaptive or eductive learners

In this section we focus on individual subject price forecasts and we attempt to categorize each subject in our experiment
as one of three types: adaptive learner, eductive learner or neither. We do this using two different approaches and we
examine the consistency between these two approaches.

The first approach is to make categorizations based on the definition of the two types of learning. This categorization is
performed as follows:

1. Eductive learners: We consider all subjects who predict the REE in the very first period to be eductive learners. Since the
REE in treatment T2 where α¼ �0:9 is 31.58, and not an integer, taking into account that some subjects may use α¼ �1
as a proxy, we consider all subjects making predictions in the range ½30;32� to be eductive learners in T2. For the other
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three α treatment values, the REE is an integer value so to be categorized as an eductive learner, subjects must correctly
predict a price of 40 in T1, a price of 20 in T3 and a price of 12 in T4.

2. Adaptive learners: For each subject we use their first period price forecast to initialize the adaptive learning model as
given in Eq. (3) and we then calculate the mean squared error between the simulated predictions of that model and each
individual subject's actual price predictions. If the mean squared error between the actual and predicted price forecasts is
smaller than 1, then the subject is classified as an adaptive learner. We choose a threshold of 1 as we wanted the
threshold to be as low as possible, but at the same time to allow for subjects to engage in some rounding of numbers to
integer values. Since adaptive learning does not make assumptions on the initial price prediction, the probability that one
happens to come up with the REE is infinitely close to 0 under adaptive learning.

If a subject meets our criteria for being categorized as both an adaptive and an eductive learner, then we classify him/her
as an eductive learner. If a subject meets neither criteria, then he/she is classified as “neither”.

Our second approach to type classification makes use of answers that subjects gave to a post-experimental questionnaire
(see the Appendix for details). The questionnaire asked subjects to characterize the type of price prediction strategy they
used during the experiment. We provided them with four options and we asked them to choose the option that best
described how they made their predictions in the experiment. Specifically, the four options were:

1. I refer to information about past prices.
2. I make calculations based on the value of α.
3. I eliminate unlikely numbers iteratively.
4. None of the above.

A subject is classified as an adaptive learner if he chooses option 1, and is classified as an eductive learner if he chooses
option 3. If the subject chooses option 2, it is likely that he solves the REE directly, and we also classify this type as an
eductive learner, since, as discussed in Section 3.2, the eductive learning model typically starts with the assumption that
agents solve the REE directly from Eq. (1).18 Subjects choosing option 4 are classified as “neither”. Due to a technical pro-
blem, we lost some data on self-reported strategies in the first, and relatively larger session of our monopoly market
treatments, (9 markets for treatment 1, 8 markets for each of treatments 2 and 3). Nevertheless, we do have data on self-
reported strategies for many of our subjects and for all eight treatments.

Table 8 shows the number of participants who can be categorized as adaptive or eductive learners in each of our eight
treatments using Approach 1 or Approach 2, as well as the overall frequency of each type classification for each treatment.
Tables 10 and 11 in the Appendix report more disaggregated information on each individual subject's type using both
approaches (where possible). We observe that using approach 1, classification becomes more difficult as α becomes more
negative, as indicated by the frequency of the ‘neither’ category. Among those subjects who can be classified using approach
1, overall about 55% can be classified as either adaptive or eductive learners, with a roughly equal split between the two
types. Using approach 2 subjects are more likely to be classified as eductive learners than adaptive learners in the monopoly
treatment, but the reverse generally holds for the oligopoly treatment where overall, a majority of subjects (55%) can be
classified as adaptive learners. An important exception is the α¼ �4 oligopoly treatment where a majority of subjects are
classified as eductive learners. We note further that there is a good level of consistency between the categorizations based
on our two different approaches. For 65 subjects for which both approaches yield a classification of either adaptive or
eductive learners, the two approaches agree on the type assignment in 43 cases, which means that the two approaches
assign the same category with a probability of 43=65¼ 66:2%.

In addition to classifying subjects as adaptive or eductive learners, we further considered whether any of our subjects
were following naïve expectations, i.e., forecasting pet ¼ pt�1. We do not consider such expectations to constitute a real
learning model as the forecast rule does not update over time. Nevertheless we investigate the existence of naïve types
because, as noted earlier in Section 3.2, stability under naïve expectations is a potentially confounding criterion (with
eductive stability) in our model set-up. We classify a naïve forecaster as follows: if the MSE between the naïve expectations
prediction and a subject's actual price forecast is less than 1 and this MSE is also less than the MSE of adaptive learning
model as well, then that subject can be regarded as having naïve expectations. Using this criterion, only 2 subjects (3.77%) in
the monopoly treatment and 7 subjects (5.69%) in the oligopoly treatment can be categorized as users of naïve expectations.
These numbers are far smaller than the number of subjects classified as adaptive or eductive learners. We thus conclude that
while there are indeed some followers of naïve expectations in our experiment, most of our subjects are forming expec-
tations in a more sophisticated manner.
18 Here we do not consider the case where subjects use a mixture of observation and calculation as in Evans and Ramey (1992), though that would be
an interesting extension.



Table 8
Number and percentage of subjects who can be categorized as adaptive or eductive learners or neither in each treatment. Approach 1 is the approach based
on first period price predictions and the mean squared error of individual price predictions from the adaptive learning model. Approach 2 is the approach
based on self-reported strategies.

Treatment α¼ �0:5 (%) α¼ �0:9 (%) α¼ �2 (%) α¼ �4 (%) All (%)

Approach 1
Monopoly
Adaptive 8 57.14 2 16.67 2 15.38 5 35.71 17 32.08
Eductive 3 21.43 5 41.67 3 23.08 1 7.14 12 22.64
Neither 3 21.43 5 41.67 8 61.54 8 57.14 24 45.28
Total 14 100.00 12 100.00 13 100.00 14 100.00 53 100.00

Oligopoly
Adaptive 17 56.67 8 26.67 9 27.27 0 0.00 34 27.64
Eductive 7 23.33 10 33.33 8 24.24 10 33.33 35 28.46
Neither 6 20.00 12 40.00 16 48.48 20 66.67 54 43.90
Total 30 100.00 30 100.00 33 100.00 30 100.00 123 100.00

Approach 2
Monopoly
Adaptive 1 7.14 1 8.33 2 15.38 2 14.29 6 11.32
Eductive 3 21.43 2 16.67 3 23.08 10 71.43 18 33.96
Neither 10 71.43 9 75.00 8 61.54 2 14.29 29 54.72
Total 14 100.00 12 100.00 13 100.00 14 100.00 53 100.00

Oligopoly
Adaptive 20 66.67 23 76.67 15 45.45 10 33.33 68 55.28
Eductive 10 33.33 6 20.00 10 30.30 16 53.33 42 34.15
Neither 0 0.00 1 3.33 8 24.24 4 13.33 13 10.57
Total 30 100.00 30 100.00 33 100.00 30 100.00 123 100.00
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6. Conclusion

The process by which agents might learn a REE has been the subject of a large amount of theorizing but surprisingly
there has been little empirical assessment of the leading theories of this learning process. To address this gap, we have
designed and implemented a learning-to-forecast experiment in the context of a simple cobweb economy with negative
feedback where expectations matter and where subjects are informed about the law of motion for prices. We are parti-
cularly interested in knowing which of two leading approaches to modeling learning – adaptive learning or eductive
learning – provides the better characterization of human learning behavior in this setting. In particular, we vary the slope
parameter of the price determination equation, α, in such a way that in some of our treatments the REE may not be learnable
(stable under learning) if agents are eductive learners but should always be learnable if agents are adaptive learners. We
further investigate different predictions between the two learning theories with regard to the speed of convergence. Finally,
our experimental design includes both monopoly and oligopoly settings in order to better understand the role played by
common knowledge of rationality.

In most (7/8) of our treatments, we always observe convergence of prices to the REE within the 50 period time frame of
our experiment. However, the variance in market prices is much greater as the α parameter becomes more negative. In the
oligopoly treatment where α¼ �4 and the REE is unambiguously eductively unstable, even adjusting for the finite number
of firms, we observe that 60 percent of our markets fail to achieve convergence to the REE within the 50 periods. The latter
finding is supportive of eductive learning as a characterization of subject behavior. Further, there are many instances of
markets that satisfy our criteria for convergence to the REE in the very first period, which is more in line with eductive
rather than adaptive learning. On the other hand, the observation that most markets take some time to converge to the REE,
and convergence is observed for at least some markets in all eight of our treatments, including the oligopoly treatment
where α¼ �4 and the REE is unambiguously eductively unstable, favors adaptive learning as a characterization of subject
behavior. Indeed, our efforts to classify subjects as adaptive or eductive learners reveal a mix of both learning types in all
treatments (as well as many subjects who are unclassifiable). Perhaps, as Evans (2001) suggests, individuals or populations
of individuals use a mixture of both adaptive and eductive learning approaches.

The cobweb economy that we study is a very simple economic model involving negative feedback. Our experimental
examination of forecasting behavior in this model provides subjects with complete information about the data generating
process. In this sense, our experiment can be viewed as providing very favorable conditions for the rational expectation
hypothesis and for the eductive learning approach in particular. Our findings confirm that the rational expectation
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hypothesis and rational expectation equilibrium provide a reasonable characterization of the market outcome in this setting
after a period of learning, provided that the REE is both adaptively and eductively stable. Further comparisons between
adaptive and eductive learning approaches should be conducted in environments where subjects face a more complicated,
forward-looking dynamic economic model where forecasts matter for realizations of future state variables, as in dynamic,
stochastic general equilibrium models. Another extension would be to consider positive feedback systems, as opposed to the
negative feedback system of the Cobweb model. Previous research, e.g., Hommes et al. (2005, 2008) shows that positive
feedback systems tend to generate oscillatory bubbles and crashes when the slope parameter in an asset pricing model is
positive and close to 1. Future research might consider the extent to which adaptive and eductive learning approaches
predict individual learning behavior when 0oαo1 and both learning theories predict convergence to REE. We leave these
extensions to future research.
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Appendix A. Experimental instructions

A.1. Experimental instructions (monopoly)

Experimental instructions: Welcome to this experiment in economic decision-making. Please read these instructions
carefully as they explain how you earn money from the decisions you make in today's experiment. There is no talking for the
duration of this session. If you have a question at any time, please raise your hand and your question will be answered in
private.

General information: Imagine you are an advisor to a farm that is the only supplier of a product in a local market. In each
time period the owner of the farm needs to decide how many units of the product he will produce. To make an optimal
decision each period, the owner requires a good prediction of the market price of the product in each period. As the advisor
to the farm owner, you will be asked to predict the market price, pt of the product during 50 successive time periods,
t¼ 1;2;…;50. Your earnings from this experiment will depend on the accuracy of your price predictions alone. The smaller
are your prediction errors, the greater will be your earnings.

About the determination of the market price pt: The actual market price for the product in each time period, t, is deter-
mined by a market clearing condition, meaning that it will be the price such that demand equals supply for that period.

The amount demanded for the product depends on the market price for the product. When the market price goes up
(down) the demand will go down (up). The supply of the product on the market is determined by the production decision of
the farm owner. Usually, a higher (lower) price prediction by you causes the farm owner to produce a larger (smaller)
quantity of the product which increases (decreases) the supply of the product on the market. Therefore, the actual market
price pt in each period depends upon your prediction, pet , of the product's market price. More precisely, equating demand
and supply, we have that the market price of the product is determined according to:

pt ¼maxð60�αpet þηt ;0Þ
This means that the price cannot be below 0. The parameter α is different for different local markets. You will see the α value
for your own local market on your decision page during the experiment. This α parameter will remain the same for your
local market for all 50 periods of the experiment. ηt is a small random shock to the supply caused by non-market (demand/
supply) factors, for example, weather conditions. This small shock is randomly drawn each period and is sometimes positive,
sometimes negative and sometimes zero. It is not correlated across periods. This small shock is normally distributed. The
long term mean value of this small shock is 0, and the standard deviation is 1.

Here is an example: Suppose the parameter α is 0.8 in your local market. Suppose further that you price prediction for the
period is 35, and the realization of the shock ηt is �0.2. Using the equation given above, the market price is then determined
as:

pt ¼ 60�0:8�35�0:2¼ 31:8
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Note that in this case your forecast error, jpet �pt j, is 35�31.8¼3.2. This forecast error of 3.2 would determine your points
for the period as discussed below.

Please also note that this example is for illustration purposes only. The value of the parameter α in your local market may
be different from 0.8. The precise value of alpha and the equation for the determination of the market price in your local
market is given on your decision page.

About your task: Your only task in this experiment is to correctly predict the market price in each time period as
accurately as possible. The only constraint on your predicted price is that it cannot be less than zero (negative), since the
actual price itself can never be less than zero. At the beginning of the experiment you are asked to give a prediction for the
price of your farm's product in period 1. Note that, while there are several farms being advised by a forecaster like you in
each period, these different local markets are totally separate from your own so what happens in other markets does not
have any influence on your market. After all forecasters have submitted their predictions for the first period, the local
market price for period 1 will be determined and will be revealed to you. Based the accuracy of your prediction in period 1,
your earnings will be calculated. Subsequently, you are asked to enter your prediction for period 2. When all forecasters
have submitted their predictions for the second period, the market price for that period in your local market will be revealed
to you and your earnings will be calculated, and so on, for all 50 consecutive periods.

Information: Following the first period, you will see information on your computer screen that consists of (1) a plot of all
past prices together with your market predictions and (2) a table containing the history of your past forecasts and payoffs, as
well as realized market price and the shock term ηt.

About your payoff: Your payoff depends on the accuracy of your price forecast. The earnings shown on the computer
screen will be in terms of points. When your prediction is pet and the market price is pt your payoff is a decreasing function in
your prediction error, namely the distance between your forecast and the realized price.

Payoff t ¼max 1300�1300
49

ðpet �ptÞ2;0
� �

Recalling the example above, if your forecast error for the period t, jpet �pt j, was 3.2, then according to the payoff function
you would earn 1028.33 points for the period.

Notice that the maximum possible payoff in points you can earn from the forecasting task is 1300 for each period, and
the larger is your prediction error, jpet �pt j, the fewer points you earn. You will earn 0 points if your prediction error is larger
than 7. There is a Payoff Table on your desk, which shows the points you can earn for various different prediction errors.

At the end of the experiment your total points earned from all 50 periods will be converted into Euros at the rate of 1 Euro
for every 2600 points that you earned. Thus, the more points you earn, the greater are your Euro earnings.

Questions?
If you have questions about any part of these instructions at any time, please raise your hand and an experimenter will

come to you and answer your question in private.

A.2. Experimental instructions (oligopoly)

Welcome to this experiment in economic decision-making. Please read these instructions carefully as they explain how
you earn money from the decisions you make in today's experiment. There is no talking for the duration of this session. If
you have a question at any time, please raise your hand and your question will be answered in private.

General information: Imagine you are an advisor to a farm that is one of the three main suppliers of a product in a local
market. In each time period the owner of the farm needs to decide how many units of the product he will produce. To make
an optimal decision, the owner requires a good prediction of the market price of the product in each period. As the advisor
to the farm owner, you will be asked to predict the local market price, pt, of the product during 50 successive time periods,
t ¼ 1;2;3;…50. Your earnings from this experiment will depend on the accuracy of your price predictions alone. The smaller
are your prediction errors, the greater will be your earnings.

About the determination of the market price pt: The actual market price for the product in each time period, t, is deter-
mined by a market clearing condition, meaning that it will be the price such that demand equals supply for that period.

The amount demanded for the product depends on the market price for the product. When the market price goes up
(down) the demand will go down (up). The supply of the product on the market is determined by the production decision of
the farm owners. Usually, a higher (lower) price prediction by the advisors causes the farm owners to produce a larger
(smaller) quantity of the product which increases (decreases) the supply of the product on the market. Therefore the actual
market price pt in each period depends upon the average prediction, pe

t , of the product's market price. For example, if the
predictions made by the advisors are pe1;t , p

e
2;t and pe3;t respectively, p

e
t ¼ 1

3 pe1;tþpe2;tþpe3;t
� �

. Equating demand and supply, we
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have that the market price of the product is determined according to:

PðtÞ ¼ 60�αpe
t þηt

This means that the price cannot be below 0. The parameter α will be shown on your decision page during the
experiment. This α parameter will be the same for all three farms in your local market and for all 50 periods. Note also that ηt
is a small random shock to the supply caused by non-market (demand/supply) factors, for example, weather conditions. This
small shock is randomly drawn each period and is sometimes positive, sometimes negative and sometimes zero. It is not
correlated across periods. This small shock is normally distributed. The long term mean value of this small shock is 0, and
the standard deviation is 1.

Here is an example: Suppose the parameter α is 0.8 for all three farms in your market. Suppose further that you pre-
diction for the price is 30 and the predictions by the other two advisors in your market are 35 and 40 respectively. Finally,
suppose that the realization of the shock, η, is �0.2. The market price is in your three farm local market is then determined
as follows:

pt ¼ 60�0:8� 1
3 30þ35þ40ð Þ�0:2¼ 31:8

Note that in this case your forecast error (the distance between your forecast and the market price), jpet �pt j, is
j30�31:8j ¼ 1:8. This forecast error would be used to determine your points for the period as discussed below.

Please also note that this example is for illustration purposes only. The value of the parameter may be different from 0.8.
The precise value of α and the equation for the determination of the market price in your local market are given on your
decision page.

About your task: Your only task in this experiment is to correctly predict the market price in each time period as
accurately as possible. The only constraint on your predicted price is that it cannot be less than zero (negative), since the
actual price itself can never be less than zero. At the beginning of the experiment you are asked to give a prediction for the
price in period 1. There are several markets of various products and each of them consists of 3 farms, and each of the farms is
advised by a forecaster like you. These different local markets are totally separate from your own market so what happens in
other markets does not have any influence on your market. After all forecasters have submitted their predictions for the first
period, the local market price for period 1 will be determined and will be revealed to you. Based on the accuracy of your
prediction in period 1, your earnings will be calculated. Subsequently, you are asked to enter your prediction for period 2.
When all forecasters have submitted their predictions for the second period, the market price for that period in your local
market will be revealed to you and your earnings will be calculated, and so on, for all 50 consecutive periods.

Information: Following the first period, you will see information on your computer screen that consists of (1) a plot of all
past market prices together with your market price forecasts and (2) a table containing the history of your past forecasts and
payoffs, as well as realized market prices and the shock term, ηt.

About your payoff: Your payoff depends on the accuracy of your price forecast. The earnings shown on the computer
screen will be in terms of points. When your prediction is and the market price is your payoff is a decreasing function of
your prediction error, namely the distance between your forecast and the realized price. Specifically:

payoff ¼max 1300 1�ðpet �ptÞ2
49

 !
;0

" #

Notice that the maximum possible payoff in points you can earn from the forecasting task is 1300 for each period, and
the larger is your prediction error, the fewer points you earn. You will earn 0 points if your prediction error is larger than 7.
There is a Payoff Table on your desk, which shows the points you can earn for various different prediction errors.

At the end of the experiment your total points earned from all 50 periods will be converted into Euros at the rate of
1 Euro for every 2600 points that you earned. Thus, the more points you earn, the greater are your Euro earnings.

Questions?
If you have questions about any part of these instructions at any time, please raise your hand and an experimenter will come
to you and answer your question in private.
Appendix B. Payoff table

Table 9 is the payoff table used in this experiment.



Table 9
Payoff table for forecasters.

Payoff table for forecasting task

Your Payoff¼max 1300�1300
49

ðYour Prediction ErrorÞ2 ;0
� �

2600 points equal 1 euro

Error Points Error Points Error Points Error Points

0 1300 1.85 1209 3.7 937 5.55 483
0.05 1300 1.9 1204 3.75 927 5.6 468
0.1 1300 1.95 1199 3.8 917 5.65 453
0.15 1299 2 1194 3.85 907 5.7 438
0.2 1299 2.05 1189 3.9 896 5.75 423
0.25 1298 2.1 1183 3.95 886 5.8 408
0.3 1298 2.15 1177 4 876 5.85 392
0.35 1297 2.2 1172 4.05 865 5.9 376
0.4 1296 2.25 1166 4.1 854 5.95 361
0.45 1295 2.3 1160 4.15 843 6 345
0.5 1293 2.35 1153 4.2 832 6.05 329
0.55 1292 2.4 1147 4.25 821 6.1 313
0.6 1290 2.45 1141 4.3 809 6.15 297
0.65 1289 2.5 1134 4.35 798 6.2 280
0.7 1287 2.55 1127 4.4 786 6.25 264
0.75 1285 2.6 1121 4.45 775 6.3 247
0.8 1283 2.65 1114 4.5 763 6.35 230
0.85 1281 2.7 1107 4.55 751 6.4 213
0.9 1279 2.75 1099 4.6 739 6.45 196
0.95 1276 2.8 1092 4.65 726 6.5 179
1 1273 2.85 1085 4.7 714 6.55 162
1.05 1271 2.9 1077 4.75 701 6.6 144
1.1 1268 2.95 1069 4.8 689 6.65 127
1.15 1265 3 1061 4.85 676 6.7 109
1.2 1262 3.05 1053 4.9 663 6.75 91
1.25 1259 3.1 1045 4.95 650 6.8 73
1.3 1255 3.15 1037 5 637 6.85 55
1.35 1252 3.2 1028 5.05 623 6.9 37
1.4 1248 3.25 1020 5.1 610 6.95 19
1.45 1244 3.3 1011 5.15 596 errorZ0
1.5 1240 3.35 1002 5.2 583
1.55 1236 3.4 993 5.25 569
1.6 1232 3.45 984 5.3 555
1.65 1228 3.5 975 5.35 541
1.7 1223 3.55 966 5.4 526
1.75 1219 3.6 956 5.45 512
1.8 1214 3.65 947 5.5 497
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Appendix C. Alternative proof of the stability condition of adaptive learning based on mathematical induction

Without loss of generality, let pe1 ¼ p�þΔ, where Δ is the difference between the period 1 prediction and the REE.
Substituting this forecast into Eq. (1), we obtain p1 ¼ μþαðp�þΔÞ. Since p� ¼ μþαp�, this expression simplifies to
p1 ¼ p�þαΔ. In period 2, the prediction is the price in period 1, pe2 ¼ p1 ¼ p�þαΔ. Substituting this prediction into Eq. (1) and
simplifying yields p2 ¼ μþαpe2 ¼ p�þα2Δ. In period 3, the prediction should be the average price in periods 1 and 2,
pe3 ¼ p1þp2

� 	
=2¼ p�þ1

2α αþ1ð ÞΔ. Substituting this prediction into Eq. (1) and simplifying yields p3 ¼ μþαpe3
¼ p�þ1

2α
2 αþ1ð ÞΔ. By iterating in this fashion it is not difficult to find that in general, for period t, pet ¼ ð1=ðt�1ÞÞPt�1

s ¼ 1 ps ¼ p�þðαðαþ1Þðαþ2Þ…ðαþt�2Þ=1� 2� 3…ðt�1ÞÞΔ and so pt ¼ μþαpet ¼ p�þα ðαðαþ1Þðαþ2Þ… ðαþt�2Þ=1� 2�
3… ðt�1ÞÞΔ.

Clearly this system converges to the REE whenever the ratio αðαþ1Þðαþ2Þ…ðαþt�2Þ=1� 2� 3…ðt�1Þ goes to 0. This
ratio consists of t�1 components in both the numerator and the denominator. We can pair the components in the
numerator and the denominator according to the sequence, namely, let α be paired to 1, αþ1 be paired to 2;…; αþt�2 be
paired to t�1. When α41, each component of the numerator is larger than its paired number in the denominator.
Therefore αðαþ1Þðαþ2Þ…ðαþt�2Þ=1� 2� 3…ðt�1Þ will increase over time with t, diverging away from 0. When α¼ 1, the



Table 10
Categorization of subjects into adaptive and eductive learners in the monopoly setting. “A” means adaptive learner. “E” means eductive learner. We leave
the cell blank for subjects we cannot categorize into either of the two types. “Categorized” means categorization according to the first approach where we
use the definition of the learning rules. “Reported” means categorization is done according to the second approach based on self-reported strategies.

Obs. α¼ �0:5 α¼ �0:9 α¼ �2 α¼ �4

Categorized Reported Categorized Reported Categorized Reported Categorized Reported

exp1 A E A E
exp2 A A E
exp3 A A E
exp4 E E A E
exp5 A
exp6 A E A A
exp7 A E
exp8 E A E E
exp9 A E E A E
exp10 E E E E A E
exp11 E E E E
exp12 A A A E
exp13 A E E E A
exp14 E A E

Table 11
Categorization of subjects into adaptive and eductive learners in the oligopoly setting. “A”means adaptive learner. “E”means eductive learner. We leave the
cell blank for subjects we cannot categorize into either of the two types. “Categorized” means categorization according to the first approach where we use
the definition of the learning rules. “Reported” means categorization is done according to the second approach based on self-reported strategies.

Obs. α¼ �0:5 α¼ �0:9 α¼ �2 α¼ �4

Categorized Reported Categorized Reported Categorized Reported Categorized Reported

exp11 E E E E
exp12 A A A E
exp13 A A A E E
exp21 A E A A E A
exp22 E E A A E A
exp23 A A A A A E E
exp31 A E A A A E
exp32 A A E A E E E E
exp33 A A A E
exp41 A A A E E E
exp42 A A A E E
exp43 A E A E
exp51 E E A A A E
exp52 A A A E A E A
exp53 A A E E A
exp61 E A A E E
exp62 A A A E A
exp63 A E A E A
exp71 A A A A E E
exp72 A E E A A
exp73 A A A E E E
exp81 A A E E E
exp82 E E E A A E E
exp83 A E E E E E
exp91 A A A E E
exp92 E A E E A
exp93 A E A A E E
exp101 A E A A A
exp102 A A E A A
exp103 E E A A A A
exp111 A
exp112 A
exp113 E
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ratio is exactly equal to 1. When �1oαo1, each component in the numerator has a smaller absolute value than its paired
number, so the ratio will decrease with t, and goes to 0 as t-1.

When αo�1, we make a slightly different re-matching of the components in the numerator and the denominator. First,
let m be an integer such that αþm�1o0 and αþm40. We re-state the ratio as αðαþ1Þðαþ2Þ…ðαþm�1Þ
ðαþmÞðαþmþ1Þ…ðαþt�2Þ=1� 2� 3…ðt�m�1Þðt�mÞðt�mþ1Þ…ðt�1Þ. We then “cut” the numerator into two parts,
N1 ¼ αðαþ1Þðαþ2Þ…ðαþm�1Þ and N2 ¼ ðαþmÞðαþmþ1Þ…ðαþt�2Þ, and we also cut the denominator into two parts,
D1 ¼ 1� 2� 3…ðt�m�1Þ and D2 ¼ ðt�mÞðt�mþ1Þ…ðt�1Þ. We pair N2 to D1, namely, αþm to 1, αþmþ1 to 2;…αþt�2 to
t�m�1. It is not difficult to see that each item in N2 is smaller than the paired item in D1

ðαþmo1; αþmþ1o2;…αþt�2ot�m�1Þ, and therefore that ðαþmÞðαþmþ1Þðαþmþ2Þ…ðαþt�2Þ=1� 2�
3…ðt�m�1Þ decreases with t, and goes to 0 as t-1. There remain m extra components in both the numerator and the
denominator. In the numerator, jN1j ¼ jαðαþ1Þðαþ2Þ…ðαþm�1Þjo jαmj is a finite number, while in the denominator,
D2 ¼ ðt�mÞðtþmþ1Þ…ðt�1Þ goes to infinity as t-1. Therefore, the remaining fraction αðαþ1Þðαþ2Þ…
ðαþm�1Þ=ðt�mÞðt�mþ1Þ…ðt�1Þ also goes to 0 as t-1. It follows that, under adaptive (least squares) learning, the
system converges to the REE provided that αo1 and diverges from the REE only if α41.
Appendix D. Categorization of subjects

See Tables 10 and 11.
Appendix E. Supplementary data

Supplementary data associated with this paper can be found in the online version at http://dx.doi.org/10.1016/j.euro
ecorev.2015.12.007.
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