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We present the results of a novel experiment investigating individuals’ ability
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minority find the desired device in the Prisoner’s Dilemma and the two Chicken
games. However, the vast majority of subjects designed an incentive-compatible
recommendation device for the Chicken games. Subjects failed to recognize that
strategic incentives meant the socially-efficient outcome could never be recom-
mended in Prisoner’s Dilemma. Our approach requires participants to use a
holistic approach to equilibrium reasoning. Our findings suggest that equilib-
rium reasoning is most challenging for individuals when strategic incentives
conflict with cooperative outcomes.
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1 Introduction

How good are people at equilibrium reasoning? Both the notion of Nash equilibrium

(Nash Jr, 1950) and its more general counterpart, correlated equilibrium (Aumann,

1974, 1987), are important solution concepts in game theory that form the basis of a

multitude of predictions and rationalizations of behavior in applied economic theory.

In one interpretation of correlated equilibrium due to Myerson (1991), a mediator

designs a device that makes private but correlated recommendations to each player in

the game.1 The recommendation device constitutes a correlated equilibrium if every

player is always willing to follow every recommendation that is made by the device.

We design a novel experiment to investigate the extent to which individuals grasp

equilibrium reasoning by having them serve as the designer of such recommendation

devices. That is, we investigate individuals’ ability to coordinate the behavior of

players in games towards desirable outcomes while taking into account the strategic

incentives of these players to follow recommendations. We ask individuals to complete

this task for a number of games for which success requires different aspects of strategic

reasoning. As such, our design illuminates the aspects of equilibrium reasoning that

people grasp well, as opposed to those they find challenging to comprehend.

Consider the following example. Two cars are approaching an intersection along

perpendicular roads. Conditional on the other car waiting, the driver of each car

prefers to go through the intersection rather than wait. The worst outcome, however,

is that both drivers go through the intersection at the same time, resulting in an

accident. The issue is that neither driver can see or communicate with the other and,

as such, has no way to coordinate their behavior. Now suppose that the city installs

a traffic light that, 50% of the time displays green for one driver and, simultaneously,

displays red to the other. Given a social norm that green means Go while red means

Stop, it follows that the drivers are willing to follow the recommendations of the

1Myerson (1991), p. 250 refers to the mediator as “a person or machine that can help the players
communicate and share information.” Similarly, Gintis (2014), p. 142 refers to such a designer as
“the choreographer,” – a “new player” in the “augmented” game who issues a “directive”.
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traffic light at all times so that one driver is always passing through the intersection

while the other waits. In other words, the traffic light coordinates the behavior

of the drivers to achieve a fair and efficient outcome. In this example, the traffic

light constitutes a recommendation device that implements a particularly desirable

correlated equilibrium.

To date, research exploring the empirical relevance of correlated equilibrium has

placed individuals in the role of a player in the game (i.e., a driver) and has tried

to understand whether they are willing to follow or learn to follow the recommenda-

tions produced by correlating devices (i.e., the traffic light). The main finding from

that literature, as discussed in the next section, is that while players generally tend

to follow such recommendations to improve upon Nash equilibrium outcomes, vari-

ous factors may impede the adoption of these recommendations for achieving better

results. For instance, those deviating from recommendations may struggle to effec-

tively reason about their strategy or about equilibrium, lack trust in their opponents

(i.e., face strategic uncertainty), or may exhibit other social preferences (such as fair-

ness considerations) that lie beyond the experimenter’s control. Therefore, assigning

someone the role of the ‘driver’ does not necessarily identify their degree of strategic

sophistication. Instead, we are the first to investigate whether experimental subjects

are able to design a recommendation device in order to coordinate the behavior of

players within a given game (i.e., create the traffic light). To focus on the behavior of

the designer, we automate the players in the game (i.e., the drivers) as rational robots.

As such, our research sheds light on whether individuals can engage in equilibrium

reasoning while controlling for the multitude of other factors that may shape behavior

when they simply play games.

By placing subjects in the role of designers, we essentially task them with solving

an information design problem. At the same time, we instruct our subjects to design

the device for rational players, whose behavior is automated. This specific experimen-

tal setting is of particular interest for several reasons. First, evidence on the ability

to properly design an information structure to achieve certain objectives presumes an
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understanding of how subjects themselves would react to those structures and thus

provides a stronger, more encompassing evaluation of the relevance of correlated equi-

libria.2 Second, while previous tests of recommendation following a conditioned signal

structure are certainly interesting, they are ultimately incomplete, since they rely on

an exogenous external event space and it is not clear how that external device might

have arisen in the first place.3 While our primary focus is on information design, our

approach can be viewed more broadly as placing subjects in the role of a mechanism

designer rather than simply observing their responses to various mechanisms. Third,

by using rational robots for the players who are considering the recommendations of

the human designer we avoid introducing additional interaction effects from noisy in-

dividual player behavior. The consistency of play by the rational robot players helps

us to cleanly isolate the comprehension of the design problem by the human infor-

mation designer. Indeed, the design of a correlation device requires mastering three

interrelated concepts: strategic incentives, randomness, and correlation. However, it

could further depend on how designers expect players to engage with the game. Our

design removes this latter channel. At the same time, our games are carefully chosen

so as to clearly assess which of the three aspects of equilibrium reasoning are well

understood and which are difficult for subjects to grasp. Finally, current advance-

ments in AI technology suggest that interactions of humans with robotic machines

are becoming increasingly important,4 making it especially interesting to study how

human subjects devise such devices, as in our approach.

Our experimental design is as follows. Participants design recommendation de-

vices for five different games under a common objective. They have five attempts

to design a device for each game. Each device provides probabilistic, private, poten-

tially correlated recommendations to pairs of robot players playing each game. These

2Our approach also enables a better sense of the empirical relevance of correlated versus Nash
equilibria. While every Nash equilibrium is a correlated equilibrium, the reverse is not true, and
thus it is of interest to understand the extent to which individuals recognize and/or use the more
general correlated equilibrium concept.

3For instance, the traffic lights were designed and are still being adjusted by human engineers.
4Think of the importance of submitting effective prompts to fully gain from the support of large

language models like ChatGPT or tasks that people should assign to robots.
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robot players are Bayesian expected-utility maximizers who decide whether adhering

to the recommendations from the participant’s device aligns with their self-interest.

Thus, a device for which all recommendations are followed implements a correlated

equilibrium.

We are interested in the subjects’ ability to design a device that achieves a cor-

related equilibrium, and, conditional on this, results in an outcome of a game that

is fair and efficient. This is accomplished as follows. First, subjects earn a positive

payoff from their device if and only if all of its recommendations are followed by the

robot players. Second, the payoff earned from a device for which all recommendations

are followed is increasing in the minimum expected payoff across the robot players.5

As all the games we consider are symmetric, this means that the desirable correlated

equilibrium (DCE), which if implemented by a subject’s device maximizes their pay-

off, is a correlated equilibrium that is both Pareto efficient and fair. We focus on

this selection rule from the set of correlated equilibria as it is naturally applicable

in practice. For example, the traffic light is a recommendation device that achieves

this social objective in the context of safely managing traffic flow. This is because

it is Pareto efficient (cars from only one direction are traversing the intersection at

a time), and it is fair (cars from different directions are afforded the opportunity to

cross the intersection).

There are five games for which participants are asked to design recommenda-

tion devices: Prisoner’s Dilemma, Matching Pennies, Battle of the Sexes, and two

versions of Chicken that differ in both the set of correlated equilibria and their de-

sirable correlated equilibrium. These games are chosen because the structure of their

DCE differs in important aspects of equilibrium reasoning, such as (1) the necessity

of randomization, (2) the degree of correlation required, and (3) the alignment of

strategic incentives with the social objective of fairness and efficiency. For example,

5In this sense, subjects are provided the Rawlsian criterion (see Rawls, 1971) – to make the worst-
off player as well off as possible, – as a secondary objective in selecting a correlated equilibrium.
Subjects attempt to satisfy this criterion subject to the constraint that the device is incentive
compatible (i.e., constitutes a correlated equilibrium).
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the DCE in Prisoner’s Dilemma is the unique Nash equilibrium in pure strategies,

which does not require randomization or correlation, and has payoff incentives that

are at odds with efficient outcomes. In contrast, the DCE in Battle of the Sexes

involves perfectly-correlated randomization between its two pure-strategy Nash equi-

libria and has payoff incentives that are perfectly aligned with the objective of fairness

and efficiency. These differences allow us to shed light on the aspects of equilibrium

reasoning that are most difficult for individuals.

We find significant heterogeneity across games in subjects’ abilities to design rec-

ommendation devices that implement desirable correlated equilibrium. The majority

of subjects are able to design the DCE in Battle of the Sexes and Matching Pennies

(79% and 73% of subjects, respectively) within the five attempts provided, while only

a minority of subjects can do so in Prisoner’s Dilemma and the two Chicken games

(37%, 18% and 30% of subjects, respectively). In both Chicken games, however, sub-

jects generally find correlated equilibria that partially meet the DCE objective (93%

and 96% of subjects, respectively). That is, they design devices for which all rec-

ommendations are followed even if their correlated equilibria are not fair and Pareto

efficient. Using a measure based on the distance between different distributions, we

see that subjects design devices that are close to what is desirable in all games except

Prisoner’s Dilemma.

We also explore in detail the devices that subjects design at the individual level.

We find that subjects initially design devices that put a lot of weight on action

profiles that are fair and efficient for each game. In Matching Pennies and Battle of

the Sexes, this constitutes a successful strategy. However, in Prisoner’s Dilemma and

both versions of Chicken, doing so does not respect the strategic incentives of the

robot players. By their final attempt, however, the modal device corresponds to the

DCE in each of the five games. However, many subjects are still putting too much

weight on the fair and efficient action profile in Prisoner’s Dilemma, while they are,

overall, underestimating the extent to which they can recommend such profiles in

Chicken. Thus, it seems that they understand better, at least qualitatively, the role
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of strategic incentives in Chicken relative to Prisoner’s Dilemma.

Our results suggest that subjects in our experiment are comfortable with random-

izing and correlating their recommendations across games. Where subjects struggle

the most is when strategic incentives are not aligned with socially desirable out-

comes. Specifically, these are situations where the fair and Pareto efficient outcome

is not a correlated equilibrium. Indeed, subjects exhibit maximal success in games

for which the socially desirable outcome is incentive compatible (Matching Pennies

and Battle of the Sexes), moderate success when strategic incentives are only weakly

associated with the socially desirable outcome (both versions of Chicken), and low

success when strategic incentives are unaligned with the socially desirable outcome

(Prisoner’s Dilemma). This suggests that individuals do not separate their cooper-

ative mindset from the non-cooperative mindset of the robot players who respond

to these recommendations. This is particularly interesting since one cannot conclude

that this is due to the usual factors used to explain cooperative behavior in Prisoner’s

Dilemma, such as social preferences. Moreover, it is striking since the strategic in-

centives pushing behavior away from the socially desirable outcome in the Prisoner’s

Dilemma are very strong: players have a strictly dominant strategy in this setting.

2 Related Literature

There are a number of papers that experimentally investigate correlated behavior

in games. These papers find that individuals tend to correlate their behavior when

pre-play communication is permitted (Moreno and Wooders, 1998), follow correlated-

equilibrium recommendations when those improve upon Nash equilibrium outcomes

(Duffy and Feltovich, 2010), and may learn to correlate their behavior in the absence

of coordinating devices (Friedman et al., 2022). The literature also finds, however,

that the propensity of subjects to follow recommendations that constitute a correlated

equilibrium is mediated by factors such as strategic uncertainty (Cason and Sharma,

2007), the directness of recommendations (Duffy et al., 2017), payoff asymmetries
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(Anbarcı et al., 2018), whether recommendations are private or public (Bone et al.,

2013), and whether subjects must commit to the coordinating device as a whole

(Georgalos et al., 2020). These papers focus mostly on the willingness of individuals

to adhere to the recommendations made by correlation devices. By contrast in this

paper, we ask whether individuals are able to design the correlation device themselves.

An exception to studies that investigate subjects’ willingness to follow correlated-

equilibrium recommendations is the work of Cason et al. (2022). In their paper,

experimental subjects are asked to predict the distribution over actions that will be

generated by other individuals playing that game. They find that subjects tend to

believe that play will be correlated even though the people playing the games do

not have access to any correlating device. In contrast, instead of asking subjects

to predict what will happen in the game, we ask subjects to design a coordination

device that implements what they believe should happen in the game. Moreover, our

subjects design devices for rational robot players to avoid the strategic uncertainties

created by human players.

There is also a related literature on mechanism design experiments, surveyed in

Chen and Ledyard (2010). These experiments generally involve evaluation of subjects’

play under various imposed mechanisms with most applications concerning public

good provision, auctions, contract theory, matching markets, and prediction markets,

among others. In this literature, it is typically not the case that subjects are placed in

the designer role as in our study. Still, we think that for simple games, such as those

that we study here, placing subjects in the designer role is a reasonable approach.

That is because it reveals the design preferences of non-expert designers, which may,

in turn, hold greater appeal to those operating under such designs.

Our work is also related to the literature on experiments regarding information

design and Bayesian persuasion (Kamenica and Gentzkow, 2011). These papers ask

whether subjects can use information structures that successfully correlate behavior

with some payoff-relevant state of the world (Aristidou et al., 2019; Au et al., 2023;

Fréchette et al., 2022; Wu and Ye, 2023; Ziegler, 2022). In our paper, we focus on
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complete information games (i.e., a single payoff-relevant state) and subjects seek to

create signal structures or recommendations that correlate the behavior of players in

that complete information game (i.e., implement correlated equilibria).

Finally, our work is related to studies exploring the ability of individuals to draw

inferences from correlated signals and the notion of correlation neglect (Enke and

Zimmermann, 2019; Hossain and Okui, 2021). These issues are more likely to affect

the players in the game who must decide whether to follow correlated recommenda-

tions made privately. We, instead, ask the reverse question: can subjects actually

create the correlated signals from which inferences must be drawn? As such, our

subjects need to think about signal correlation hypothetically rather than drawing

inferences from actual signal realizations.6

3 Theoretical Framework

A finite game of complete information can be described by the tuple

G = (N, (Ai)i∈N , (ui)i∈N),

where N is a set of players, Ai is a finite action set for player i ∈ N , and ui : A→ R is

the utility of player i defined over the set of action profiles A ≡
∏
i∈N

Ai. Let ∆(A) be

the set of probability distributions over A. For a game G, we can define a distribution

over action profiles µ ∈ ∆(A) to be a correlated equilibrium as follows.

Definition 1. Distribution µ ∈ ∆(A) is a correlated equilibrium for game G if∑
a−i

µ(ai, a−i)[ui(ai, a−i)− ui(a′i, a−i)] ≥ 0

for all i ∈ N , ai, a
′
i ∈ Ai.

In order to interpret a correlated equilibrium, one can think of µ as a statistical sum-

6This is an important distinction as there is evidence that thinking about hypothetical events is
fundamentally different from extracting information from actual events (Esponda and Vespa, 2014).
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mary of some recommendation device, where action profile a is drawn with probability

µ(a) and each player i is provided with only their own recommended action ai from

profile a. Then, µ constitutes a correlated equilibrium if and only if each player i finds

it optimal to follow every action recommendation they receive given that all other

players also follow their own recommendations from µ.7 Note that a Nash equilibrium

is a special case of a correlated equilibrium in which µ is the product of its marginal

distributions across players; that is, action recommendations are made independently

to the players in the game.

In our experiment, subjects will design recommendation devices in an attempt

to implement correlated equilibria. Since the sizes of sets of correlated equilibria

vary across games, we focus on one particular correlated equilibrium in each game.

Specifically, we are interested in the solution of the following optimization problem:

max
µ∈∆(A)

min
i∈N

∑
a∈A

µ(a)ui(a) ,

s.t. µ is a correlated equilibrium.

(1)

That is, we are interested in the correlated equilibrium that satisfies the Rawlsian

criterion of maximizing the minimum average payoff across players (Rawls, 1971).

Each of the games for which our subjects design recommendation devices is sym-

metric so that the problem in (1) is equivalent to finding the correlated equilibrium

that is both efficient (i.e., surplus maximizing) and fair (i.e., equal surplus shares

are allocated to each player). We call this distribution the desirable correlated

equilibrium (DCE) and denote it by µ∗.

We focus on the correlated equilibrium that is fair and Pareto efficient as it is a

natural objective in practice. For example, the traffic light is an example of a recom-

mendation device that implements a fair and efficient outcome, as discussed in the In-

7There are alternative theories of why observed behavior in games might constitute a correlated
equilibrium that do not require the interpretation of a recommendation device. For example, corre-
lated equilibria can simply arise as Bayes’ Nash equilibria when players can condition on extraneous
signals, or it can result from simple adaptive procedures with repeated play (Hart and Mas-Colell,
2000). We focus on the interpretation of a recommendation device as this is a natural role to place
an individual in to investigate their ability to implement correlated equilibria.
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troduction. Moreover, there is experimental evidence that individuals are more likely

to follow correlated-equilibrium recommendations when there are efficiency gains rel-

ative to Nash equilibrium (Duffy and Feltovich, 2010) and asymmetries in payoffs are

minimized Anbarcı et al. (2018) (i.e., they are fair). Consequently, recommendation

devices should be more effective at coordinating real-world behavior if they satisfy

the criterion in (1).

Throughout the paper, we will also often refer to the socially desirable out-

come which is the unconstrained solution to problem (1). In other words, this is the

probability distribution µ ∈ ∆(A) that is fair and efficient but not necessarily satis-

fying the constraint that µ is a correlated equilibrium. We denote this distribution

by µSD. The socially desirable outcome is not the DCE whenever µSD is not incentive

compatible. In such situations, we will say that the strategic incentives of the game

are not perfectly aligned with the socially desirable outcome.

4 Experimental Design

Our experiment employed a within-subjects design and was coded using oTree (Chen

et al., 2016). Each subject designed recommendation devices for five different games,

presented in random order. For each game, subjects were given five consecutive

attempts (which we call rounds) to design their device.8

Our subjects are 100 undergraduate students from the University of California,

Irvine, pursuing various programs of study. Thus, we collected, in total, 2, 500 de-

signed recommendation devices (100 participants × 5 games × 5 rounds in each

game). The study was gender balanced with 54 females and 46 males. Subjects had

8We opted for five games to explore how variations in the game structure impact subjects’
understanding of strategic incentives and the appropriate use of correlation and randomization. The
decision on the number of rounds per game was guided by a trade-off: fewer rounds meant less
opportunity to learn from mistakes, but each attempt carried higher stakes. Based on pilot studies
and with five different games in our study, we restricted gameplay to five rounds per game. This
choice allowed for maintaining high stakes for information design while also providing space for some
learning and keeping the experiment’s duration manageable at 90 minutes.
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no prior experience with our experiment; each subject participated in a single session

with five games. Payments were determined by converting points earned from the

adoption of their recommendation devices into USD (more details are provided in

Section 4.3). In addition, subjects earned a 10 USD show-up payment. Average total

subject earnings were 27.64 USD for an experiment lasting, on average, 90 minutes

(including approximately 25 minutes spent reading instructions and 20 minutes spent

on a comprehension quiz).

At the end of the experiment, we collected additional information from the sub-

jects in order to investigate whether there were any notable correlates with perfor-

mance in the design task. This additional information included standard demographic

information, field and year of study, performance on a five-question version of a cogni-

tive reflection test (CRT) (Frederick, 2005), a measure of strategic reasoning related

to the hypothetical play of the 11-20 game (Arad and Rubinstein, 2012), and the

self-reported strategy utilized by subjects.9

4.1 The Design Problem

Subjects designed recommendation devices for five 2×2 games which take the general

normal form in Fig. 1. Each player in the game has two actions, either Red (denoted

R) or Blue (denoted B). We chose colors as this provides a nice visual representation

of the recommendation device that subjects must design (see details below).

P1/P2 Red (R) Blue (B)

Red (R) (uRR1 , uRR2 ) (uRB1 , uRB2 )

Blue (B) (uBR1 , uBR2 ) (uBB1 , uBB2 )

Figure 1: Normal game form for an arbitrary 2× 2 game where both Player 1 and Player
2 choose between the actions Red and Blue.

An arbitrary recommendation device for a 2 × 2 game can be summarized as a

table presented in Fig. 2. One can interpret µa1a2 ≡ µ(a1, a2) in this table to be the

9For the precise wording of the CRT questions and the 11-20 question, see Online Appendix B.
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P1/P2 Red (R) Blue (B)

Red (R) µRR µRB

Blue (B) µBR µBB

Figure 2: Table representation of an arbitrary recommendation device for a 2× 2 game in
which both players choose between actions Red and Blue.

probability that the device jointly recommends actions a1 ∈ {R,B} and a2 ∈ {R,B}

to player 1 and player 2 respectively. The process that subjects used to design this

device is described in detail in the next section.

Subjects were told that their goal is to make recommendations to “intelligent”

robot players that would follow recommendations only if it is in their best interest

to do so (i.e., they strictly prefer to follow recommendations or are indifferent).10

4.2 Designing the Device

In this section, we describe in detail the protocol that subjects followed in order to

design their recommendation devices for each game. Subjects were provided on the

screen with a bucket of 24 balls, where each ball was labeled with ‘1’ on one half and

‘2’ on the other half.

In order to design the device, subjects were required to color in each half of these

balls with either the color red or blue. They were told that for each pair of robot-

players, a random ball is selected from the bucket and is split in half, with the half

labeled ‘1’ given to robot-player 1 and the half labeled ‘2’ given to robot-player 2.

The idea, which was explained to them, is that the color of the half given to each

robot-player would be the action recommended to that robot-player.

The balls were colored in by the subjects using sliders. First, subjects used a

slider to determine, for the half of balls labeled ‘1’, how many of the 24 balls to color

10Essentially we explained in layman’s terms that the robot players are Bayesian expected-utility
maximizers. See page 2 of the experimental instructions in the Online Appendix A for the precise
explanation. Pages 6-8 of the instructions provide examples of the robots’ reasoning.
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Figure 3: Example of the decision screen used by subjects to input a recommendation
device. The game shown here was used in the instructions and for practice rounds.

red with the reminder being colored blue. After doing this, subjects then used two

additional sliders to color the half labeled ‘2’: one for balls that have the half labeled

‘1’ colored red and another one for balls that have the half labeled ‘1’ colored blue.

After all balls are colored in, the design of the device is complete and subjects are

asked whether they would like to submit their design for possible use by the robot

players. Before confirming the submission of their device, they were able to continue

to make any alterations to their device as they saw fit (without time limits). See Fig. 3

for an example of the decision screen with a designed device. Note that the game that

the subjects were designing the recommendation device for, as well as a summary of

the recommendations their device would make in the form shown in Fig. 2 were also

provided to subjects; the latter was updated anytime subjects changed their color

choices for the two halves of the 24 balls.

While limited by the fact that the number of balls to color is finite, this device still

allows subjects to implement a large number of probability distributions. There were

precisely, 2925 probability distributions that subjects could feasibly design, which
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always included the DCE distribution. Hence, it was unlikely that subjects found the

desired DCE distribution of colored balls randomly in the five attempts afforded for

each game.

4.3 Incentivization

For each game, subjects were incentivized to design a recommendation device that

solves problem (1), i.e., a device that implements the DCE in which the minimum

payoff across the robot players is as large as possible. We did this by ensuring that the

points subjects earned from designing a particular device were incentive-compatible

for this objective.

Specifically, it was explained to subjects that a large number of pairs of robot-

players 1 and 2 would be drawn to play this game against each other.11 They were

told that if any single robot-player from all of these draws did not want to follow

one of the recommendations made by their device, then they would receive no points

for this device. Moreover, for each designed device in which all recommendations

were followed (i.e., constituted a correlated equilibrium), they were told that they

would earn a number of points equal to the minimum of the average payoff across all

robot-players 1 and robot-players 2. It is clear that, together, these two conditions

for payment are consistent with incentivizing subjects to solve problem (1), that is to

submit the DCE µ∗ for the game. Note that subjects receive a positive payoff for a

device if and only if all its recommendations are followed. In this sense, subjects are

also incentivized to target the set of correlated equilibria as a whole.

At the end of the experiment, a random game was chosen and subjects were paid

for the device that earned the highest number of points for that game taken across

all 5 rounds. We did this to ensure that subjects had sufficient incentives to continue

experimenting in order to find the device that implemented the desirable correlated

11Even though we explained how the device would be utilized in this dynamic way, we emphasized
that robots would treat each round as a one-shot game when deciding whether to follow recommen-
dations or not. See page 2 of the experimental instructions in the Online Appendix A for further
details on how this was explained to subjects.
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equilibrium.12 Subjects were paid at an exchange rate of 6 USD per point earned in

addition to their show-up fee of 10 USD.

4.4 Feedback

We provided feedback to subjects between rounds. In particular, for a given inputted

device, we told subjects whether or not all recommendations from their device were

followed (i.e., whether a correlated equilibrium was achieved or not). If a correlated

equilibrium was achieved, we additionally told them the number of points their device

earned and whether it could be further improved upon to earn more points (see

Figs. B1 and B2 in Online Appendix C). This, in conjunction with the fact that only

the best device across the five rounds in a given game was considered for payment,

incentivized subjects to experiment with their devices.

If a correlated equilibrium was not achieved, we provided subjects with a ball for

which one of the robot players did not follow the recommendation, randomly chosen in

proportion to their designed device. We explained that, for this ball, one of the players

did not follow the recommendation, emphasizing that subjects must think about their

device as a whole to ensure incentive compatibility.13 We chose to provide only one

ball at a time and opted not to present the calculations to avoid overloading subjects

with information. This approach allowed subjects to reason more deeply about the

correlated equilibrium device, without revealing the correct answer. Subjects could

always refer back to the instructions for full examples of reasoning.

12If we had chosen a random round within a random game, then subjects may have decided to
stop experimenting once they found some correlated equilibrium (not necessarily the DCE) in order
to maximize the probability of receiving some payment at the end of the experiment.

13See Fig. B3 in Online Appendix C, where the reasoning was “Given what P2 perceived about
what P1 was recommended, which is based on the composition of all the balls in the container, P2
decided that it is in its interest not to follow the recommendation.”
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4.5 Information about the Experimental Task

We went to great lengths to ensure that subjects understood the experimental task.

We provided detailed explanations as to how to use the interface we created to design

recommendation devices, how robot-players would respond to their devices, and how

their payment would be determined. Specifically, subjects were given written instruc-

tions that were read aloud at the start of the experiment (see Online Appendix A).

These instructions described in detail all important components of the experiment,

provided examples of recommendation devices for a specific game outside of those ex-

perimentally tested, and also described a simple algorithm that subjects could use to

implement any particular recommendation device they wanted in the form provided

in Fig. 2. Subjects were then required to complete a nine-question comprehension

quiz which involved answering questions about the salient aspects of the experiment

and also involved designing devices explicitly. Importantly, subjects were not allowed

to begin the actual experiment until this quiz was completed correctly and we pro-

vided detailed feedback for each answer. Finally, subjects were given three practice

rounds with the same game that we utilized as an example in the instructions. All

these opportunities, combined, gave subjects a degree of comfort with the experimen-

tal task that should have helped to ameliorate noise coming from subjects simply not

being able to use the interface we provided.

4.6 Games Considered in the Experiment

Subjects designed recommendation devices for five games: Prisoner’s Dilemma, Match-

ing Pennies, Battle of the Sexes, and two versions of the Chicken game. The exact

formulation of each game is presented in the left column of Table 1. In addition to the

matrix of each game, we report the volume of the set of all correlated equilibria (as a

fraction of the volume of the set of probability distributions over action profiles), and

the payoff in the desirable correlated equilibrium, i.e., in the probability distribution

that solves problem (1). We list here the DCE for each game as we will benchmark
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our results to these distributions.14

(i) Prisoner’s Dilemma: The DCE is µ∗RR = 1 and µ∗RB = µ∗BR = µ∗BB = 0.

(ii) Matching Pennies: The DCE is µ∗RR = µ∗RB = µ∗BR = µ∗BB = 1/4.

(iii) Battle of the Sexes: The DCE is µ∗RB = µ∗BR = 1/2, and µ∗RR = µ∗BB = 0.

(iv) Chicken, version 1: The DCE is µ∗RB = µ∗BR = µ∗BB = 1/3, and µ∗RR = 0.

(v) Chicken, version 2: The DCE is µ∗BB = 1/2, µ∗RB = µ∗BR = 1/4, and µ∗RR = 0.

Table 1 also provides a graphical representation of each game in both the joint

distribution space (middle panels) and the payoff space (right panels). In these plots,

white discs correspond to the Nash equilibria of the game, and the black dot shows

the DCE. The distribution space is a three-dimensional simplex that we represent

in coordinates (µRB, µBR, µBB). Therefore, the origin corresponds to the full weight

given to (R,R) recommendation. This is the Nash equilibrium of the Prisoner’s

Dilemma, for example. In the first two games, there is a unique correlated equilibrium,

and so their sets are singletons with zero volume. For the last three games, a set

of correlated equilibria is a proper polytope; its edges are drawn in black and the

faces are colored. We also indicated projections of the DCE to the axis by dashed

lines. The space of expected payoffs of two robot players is two-dimensional and thus

provides a better readable illustration. However, it should be emphasized that these

are projections from the distribution space. In all plots, we can see the set of feasible

payoffs in the game (the light-grey shaded area) and the set of correlated equilibria

in each game (the light-blue shaded area with a thick solid boundary). We also show

the convex hull of Nash equilibrium payoffs (the dark-blue shaded area). In both

Chicken games, the convex hull is a proper subset of the set of correlated equilibria,

but in the Battle of the Sexes, these two sets coincide.

14We derive these equilibria in Online Appendix D.
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Game Distribution Space Payoff Space

Prisoner’s Dilemma

PD Red Blue
Red (4, 4) (6, 1)
Blue (1, 6) (5, 5)

CE set volume: 0
Desirable CE payoff: 4

Desirable CE
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Matching Pennies

MP Red Blue
Red (5, 3) (3, 5)
Blue (3, 5) (5, 3)

CE set volume: 0
Desirable CE payoff: 4

Desirable CE
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Battle of the Sexes

BoS Red Blue
Red (0, 0) (6, 2)
Blue (2, 6) (0, 0)

CE set volume: 0.118
Desirable CE payoff: 4

Desirable CE
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Chicken - ver 1

C1 Red Blue
Red (0, 0) (6, 1)
Blue (1, 6) (5, 5)

CE set volume: 0.167
Desirable CE payoff: 4

Desirable CE
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Chicken - ver 2

C2 Red Blue
Red (0, 0) (6, 2)
Blue (2, 6) (5, 5)

CE set volume: 0.144
Desirable CE payoff: 4.5

Desirable CE
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Exp Payoff P1

E
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Table 1: Games used in the experiment.
19



Randomization Correlation Alignment of Incentives

PD No None Strongly Unaligned
MP Yes None Aligned
BoS Yes Perfect Aligned
C1 Yes Partial Weakly Aligned
C2 Yes Partial Weakly Aligned

Table 2: Differences in the types of reasoning required to solve for the DCE across games.

Online Appendix D shows how to design the device for each game using our

interface in order to earn a maximal payoff. Notice that, for each game, the DCE

corresponds to the correlated equilibrium that is both Pareto efficient and fair in

the sense that it is on the upper frontier of correlated equilibrium payoffs and the

expected payoffs of both robot-players are the same.

The DCE varies across games in a number of aspects: (a) whether randomization

is required, (b) the degree of correlation required, and (c) the extent to which strategic

incentives are aligned with the socially desired outcome, µSD, defined as the solution

of the unconstrained problem (1). These differences are described in Table 2.

All games require randomization except for Prisoner’s Dilemma where the unique

correlated equilibrium is the unique Nash equilibrium in pure strategies. Neither

Prisoner’s Dilemma nor Matching Pennies require correlation since the DCE in these

games is also the Nash equilibrium. Instead, Battle of the Sexes requires perfect cor-

relation (i.e., can be implemented using a public randomization device) while the two

Chicken games require more nuanced, partial correlation (i.e., private recommenda-

tions are required). Finally, strategic incentives are aligned with the socially desirable

outcome in Matching Pennies and Battle of the Sexes in the sense that their DCEs

are also socially desirable (i.e., the constrained and unconstrained version of (1) have

the same solution). Instead, in Prisoner’s Dilemma and both versions of Chicken

the socially desirable outcome is µSD
BB = 1, which is not a correlated equilibrium in

these games. However, we say that strategic incentives are weakly aligned with the

socially desirable outcome in Chicken as the DCE puts positive weight on this profile
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in each of these games (µSD
BB = 1/3 in C1 and µSD

BB = 1/2 in C2). Instead, we say that

incentives are strongly unaligned in the case of Prisoner’s Dilemma since µSD
BB = 0 in

this game.15

5 Results

Our experimental design allows us to address three main research questions:

(1) Can subjects design incentive-compatible recommendation devices that are fair

and efficient and how does their ability to do so vary across the 5 games?

(2) What sorts of recommendation devices do subjects design for each game and how

does this evolve with experience?

(3) How do the answers to (1) and (2) shed light on which aspects of strategic rea-

soning and equilibrium thinking are most difficult for people to understand?

We now present evidence that seeks to address these research questions in turn.

5.1 How Well Did Subjects Perform?

In this section we discuss the overall performance of subjects in the experimental

task, focusing on comparing performance across games.

5.1.1 Performance Measures

We first describe three measures that we use to analyze how successful subjects were

in designing their recommendation devices. We define each measure for a given game

and a given round. The first two measures are based on the number of points that

subjects earned with their recommendation devices, capturing the extent to which

15We provide a more quantitative measure of the extent to which strategic incentives and the
socially desirable outcome are aligned in Section 5.3.3.
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participants to close to or achieved the incentivized DCE objective. The third measure

is based on distance between probability distributions and complements the first two

measures by showing how close participants’ designed devices were to the DCE.

1. Score ∈ [0, 1] is the number of points a participant earned, relative to the maxi-

mum number of points that could have been earned for the game. Thus, Score = 1

if the DCE of the game is implemented and Score > 0 as soon as a correlated

equilibrium is reached.16

2. TopScore ∈ {0, 1} is a binary indicator variable that is equal to 1 when a subject

designed the DCE and is equal to 0 otherwise. Note that TopScore = 1 if and only

if Score = 1, as subjects get their maximum number of points in the DCE.

3. N-RMSE ∈ [0, 1] is a normalized measure based on the Root Mean Square Error

(RMSE) capturing the distance between two distributions.17 The RMSE between

two distributions µ and ν is defined as

RMSE(µ, ν) ≡
√ ∑

a∈{R,B}2
(µ(a)− ν(a))2 .

We will always use the following transformation of the RMSE to ensure that this

performance measure lies within the [0, 1] interval and increases as µ moves closer

to ν:

N-RMSE(µ; ν) ≡ 1− RMSE(µ, ν)

max
µ′

RMSE(µ′, ν)
.

We use the N-RMSE(µ;µ∗) to measure how close a subject’s designed distribution,

µ, is to the DCE, µ∗. This distributional measure is a useful complement to the

point measures that we use; subjects may be very close to the DCE in terms of

their device distribution but earn zero points if their device is not followed by robot

players. Throughout the paper, we use N-RMSE as a shorthand for this measure.

16Normalization is useful as the maximum number of points that could be earned varied across
the different games. Specifically, the second version of Chicken has a maximum payoff in points of
4.5 while all other games have a maximum payoff in points of 4.

17Normalization is made for the ease of comparison with the other two measures.
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Figure 4: The average (across all subjects) of the highest in five rounds of the three different
performance measures for each game. Error bars represent 95% confidence intervals.

Note that N-RMSE = 1 if and only if µ = µ∗ and N-RMSE = 0 if µ is maximally

distant from µ∗ in terms of Root Mean Square Error.

5.1.2 Aggregate Performance

We first analyze how subjects performed in the aggregate by looking at their best

attempt at finding the DCE in each game. To this end, we fix a participant and, for

each game, we compute all three performance measures for each of the five rounds

for that participant. Then, for each performance measure, we take the participant’s

maximum across the five rounds and average this across the entire sample of partic-

ipants. Fig. 4 provides a graphical comparison of the three aggregate performance

measures, constructed in this manner, across the five games of our study.

Inspecting Fig. 4, we see that performance is highest in Battle of the Sexes across

all three measures. Looking at TopScore, approximately 80% of subjects achieve the

DCE in Battle of the Sexes, which requires perfectly-correlated mixing between the
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two pure-strategy Nash equilibria of the game. Next, in terms of TopScore is Matching

Pennies, for which nearly 75% of participants found the DCE which coincides with

full randomization over action profiles. Aggregate performance in these two games

is nearly indistinguishable: for two out three performance measures (Score being

the exception), the aggregate performance measures for Matching Pennies are not

statistically different from Battle of the Sexes.18

In terms of the three performance measures, subjects found Prisoner’s Dilemma

and the two Chicken games more difficult. Looking at TopScore, we see that approxi-

mately 40% of subjects found the DCE in Prisoner’s Dilemma, 30% of subjects found

the DCE in Chicken 2, and nearly 20% of subjects found the DCE in Chicken 1.

However, in the two Chicken games, subjects appear to have struggled more with the

quantitative issue of calibrating their device precisely to meet the design objective,

rather than the qualitative issue of coordinating behavior within the game. Indeed,

Score is high in these two games, implying that subjects were able to consistently find

a correlated equilibrium that was suitable in terms of the objective function in (1).

Our distance-based performance measure suggests that Prisoner’s Dilemma was

the game in which subjects exhibited the least understanding of what was required

to solve the problem in a qualitative sense. This is supported by the observation that

the designed distributions for this game are the farthest from the DCE. Specifically,

the average of N-RMSE is the smallest for Prisoner’s Dilemma and is significantly

different from each of the other four games. By contrast, for Matching Pennies and

the Battle of the Sexes, N-RMSE is close to one, suggesting that even when subjects

could not find the DCE in these games, they were close to it. Finally, note that

N-RMSE in the two Chicken games is significantly less than in the Matching Pennies

and Battle of the Sexes games. Thus, for the distance-based measure, performance

was intermediate for the two Chicken games (bounded above by Matching Pennies

and Battle of the Sexes but significantly better than in Prisoner’s Dilemma).

18This is based on a standard two-sided t-test for the difference of two averages at the 5%
significance level, which we use hereafter unless specified otherwise.
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5.1.3 Performance Dynamics

We now proceed to describe how our aggregate performance measures evolved over

the five rounds within each of the five games. In order to do this, we first make a

simple amendment to our raw dataset and impute the DCE device for all rounds in

a given game following the round in which a subject first achieved that DCE.19

Fig. 5 displays the dynamics across rounds for TopScore and Score. Here, we

see that average performance improves across rounds. Indeed, performance under

both measures is significantly better in round 5 (R5) than it is in round 1 (R1) for all

games. However, these improvement increases tend to diminish within the five rounds

of experience: the difference between either TopScore or Score in round 5 (R5) and

round 3 (R3) is not significant for any game.

Given our amended dataset, we can interpret TopScore in a given round to be

the fraction of subjects that found the DCE in that round or before. With this

interpretation, from Fig. 5a one can see that the majority of subjects find the DCE

in both Battle of the Sexes and Matching Pennies quickly: on their first attempt in

Battle of the Sexes and by their second attempt in Matching Pennies. Moreover, the

rate at which subjects discover the DCE for the first time tapers off in subsequent

rounds. This suggests that these games were relatively intuitive for subjects to solve.

By contrast, for Prisoner’s Dilemma and the two Chicken games, the rate at which

subjects find the DCE is relatively constant across rounds. This is consistent with

the idea that solving these games requires more experimentation and deliberation on

the part of subjects – evidence that solving these games is relatively more complex.

We perform the same exercise using our distance-based performance measure,

19Subjects had to complete all five rounds for a game even if they achieved the DCE in an earlier
round. While in the majority of such cases (in 687 instances out of 711), subjects did not change their
device once they had achieved the DCE, in other cases, subjects decided to continue experimenting
with other recommendation devices. While doing so would have no impact on subjects’ payoffs (as
they were paid for the best round of the game and thus could not lose from experimenting), there
was no fundamental reason to continue experimenting (because, from the feedback, they knew that
they had already designed the best device). In these 24 instances (i.e., in 3.38% cases), we imputed
the use of the DCE in all rounds of the game after the DCE was found. If we would ignore these data
points, our statistics for the latter rounds would misrepresent subjects’ performance in the game.
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(a) Dynamics of TopScore.

PD MP BoS C1 C2
0

0.2

0.4

0.6

0.8

1

av
er

ag
e 

sc
or

e

Dynamics over 5 rounds

R1 R2 R3 R4 R5

(b) Dynamics of Score.

Figure 5: Evolution of the average of points-based performance measures, TopScore and
Score, across rounds for each game. Error bars represent 95% confidence intervals.
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Figure 6: Evolution of the average of distance-based performance measure, N-RMSE, across
rounds for each game. Error bars represent 95% confidence intervals.

N-RMSE, see Fig. 6. We observe a similar pattern to the points-based measures

of Fig. 5: performance significantly increases from round 1, but this improvement

tapers off relatively quickly. The difference between the N-RMSE in rounds 2 and 5

is insignificant in any game.

Overall, we conclude that the experimental task was something that our subjects

were able to learn and improve upon both through experience and by utilizing the

feedback we provided them between rounds. Nonetheless, there are diminishing re-

turns to performance-improvement and so one might expect full convergence to the

DCE to require a large number of rounds of experience. This is especially true for

games in which only a minority of subjects were able to find the DCE by Round 5

(Prisoner’s Dilemma and both versions of Chicken).
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Variable Average Description

Order 3.00 order in which the game was played (1-first : 5-last)
StudyYear 2.96 year of study of subject (1-Freshman : 6-PhD Student)
CRTNcorr 2.44 number of correct answers on CRT (0-least : 5-most)
StratSoph 0.73 =0 if answer is 20 for 11-20 game, else = 1
Gender 0.54 =1 if gender is Female, else = 0
Arts 0.03 =1 if major is Arts, else = 0
BiologicalSc 0.06 =1 if major is Biological Sciences, else = 0
Business 0.06 =1 if major is Business, else = 0
Design 0.01 =1 if major is Design, else = 0
Economics 0.12 =1 if major is Economics, else = 0
Engineering 0.11 =1 if major is Engineering, else = 0
HealthMed 0.02 =1 if major is Health and Medicine, else = 0
Inform&CS 0.10 =1 if major is Information and Computer Science, else = 0
PhysicalSc 0.03 =1 if major is Physical Sciences, else = 0
SocialSc 0.46 =1 if major is Social Sciences, else = 0

Table 3: List of all potential correlates with performance. The second column reports their
average values (proportions in case of categorical variables).

5.1.4 Correlate Analysis

We now investigate whether any of the post-experiment information that we collected

correlates with performance in the experiment. Since the game order was randomized

across subjects, we also check whether this had any impact on performance. Table 3

provides a list of all the correlates we consider.

We regress the highest (over five rounds) of each performance measure for each

subject in each game on the set of correlates. We also include dummies that control

for the exact game that the performance measure corresponds to. The regression

results are in Table 4.

The findings of our correlate analysis are consistent across three performance

measures. First, note that performance on the cognitive reflection test is a significant

indicator of success in the experimental task (at the 1% level for both points-based

performance measures and at the 5% level for the distance-based performance mea-

sure). This is consistent with the fact that our experimental task required substantial

contemplative effort rather than intuitive reasoning. In terms of majors, subjects that
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Regressors TopScore Score N-RMSE

PD 0.1094 0.1834∗∗ 0.6117∗∗∗

MP 0.4700∗∗∗ 0.5440∗∗∗ 0.8412∗∗∗

BoS 0.5303∗∗∗ 0.7148∗∗∗ 0.8519∗∗∗

C1 −0.0792 0.5874∗∗∗ 0.7395∗∗∗

C2 0.0396 0.6578∗∗∗ 0.6968∗∗∗

Order −0.0036 −0.0034 −0.0068
StudyYear 0.0289 0.0243 0.0099
CRTNcorr 0.0360∗∗∗ 0.0306∗∗∗ 0.0143∗∗

StratSoph 0.0867 0.0532 0.0319
Gender −0.0227 −0.0043 −0.0048

Arts −0.1360 −0.1086 −0.0498
BiologicalSc −0.0965 −0.1391∗∗ −0.0285
Business 0.1548 −0.0588 0.0279
Design 0.1328 0.1458 0.0650
Economics 0.0813 0.0904∗ 0.0212
Engineering 0.1693∗∗ 0.1035∗ 0.0688∗∗

HealthMed −0.1258 −0.2793∗∗ −0.0906
Inform & CS 0.0689 0.0055 −0.0053
PhysicalSc 0.0280 0.0667 −0.0283

Diagnostic: adjR2 0.2833 0.2734 0.2051

* 10%, ** 5%, *** 1% levels of significance (two-sided t-test)

Table 4: Regressions of the highest (over five rounds) TopScore, Score and N-RMSE on the
set of correlates collected in Table 3. Game-specific intercepts are represented by the coef-
ficients on the game dummies. The coefficients on majors are in deviations from the Social
Science major that is used as the base category. These coefficients are jointly significantly
different from zero (F -test at 5% level) only for the Score measure. Each regression uses
500 observations: one observation from each of the five games for each of the 100 subjects.

major in Engineering appear to be better than those that undertake other majors.

It is also informative to examine the potential correlates that do not end up ex-

hibiting a significant relationship. First, we see no evidence of gender effects. Second,

we do not observe any order effects. This means that performance within a particular

game did not appear to be impacted by precisely when subjects designed recommen-

dation devices for that game. Rather, improvements in performance mostly occur

with experience within a game across rounds, as discussed in Section 5.1.3.
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Figure 7: Average designed device for each game across rounds (from round 1 to round 5,
reading left to right within each game bin). The last bar within the bin (indicated by the
star ?) shows the DCE distribution for the game. Black circles indicate the average Score
per round.

5.2 What Devices Did Subjects Design?

We now explore in more detail the types of recommendation devices that subjects

designed in each game. Fig. 7 provides a graphical representation of the average

device designed in each round for each game. This is computed by simply taking the

average of the designed distributions in each round of each game across all players.20

We again use our amended dataset as described in Section 5.1.3.

Starting with Prisoner’s Dilemma, recall that the unique correlated equilibrium

in this case is the unique Nash equilibrium in pure strategies, i.e., where µ∗RR = 1.

While subjects are increasing the weight they put on action profile (R,R) round-by-

round, convergence to the DCE is slow: by round 5 the average device puts only

20Note that, if µi is a device designed by subject i, then the average over N subjects, µ ≡
N∑
i=1

µi/N ,

is itself a feasible distribution over action profiles {R,B}2; that is, µ̄ ∈ ∆({R,B}2).
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approximately 50% weight on (R,R). This is because subjects do not give up on

the profile that is socially desirable, (B,B), as average weight on this action profile

remains somewhat constant from round 2 to round 5. This is consistent with the fact

that subjects performed worst in Prisoner’s Dilemma in terms of the distance of their

designed distributions from the DCE (recall Fig. 4).

For both Matching Pennies and Battle of the Sexes we see that, by round 5, the

average recommendation device is very close to the DCE (1/4 probability on all action

profiles for Matching Pennies and 1/2 probability on profiles (R,B) and (B,R) for

Battle of the Sexes). This is in line with the performance results for both of these

games: subjects consistently implemented the DCE and were close to it when this

was not the case, as elucidated by Fig. 4.

Finally, for the two versions of the Chicken game, we see that subjects, on average,

were successful in eliminating the extremely undesirable action profile (R,R). How-

ever, they did not consistently implement the precise DCE distribution.21 In fact, by

round 5, it seems that subjects, on average, underestimate the extent to which they

can recommend the socially desirable profile in these games.

While inspecting the aggregate data provides insight into the average recommen-

dation behavior of participants, it is also informative to investigate the distribution

of recommendation devices designed at the individual level for each game. Doing so

allows us to more properly investigate how subjects attempted to solve each game.

Thus, for each game, we compare the distribution of recommendation devices de-

signed by subjects in round 1 (i.e., their first attempt) with the distribution in round

5 (i.e., their last attempt or the DCE if achieved in an earlier round). The results

(shown below in Figures 8-11) are illustrated both in the space of expected payoffs

to the two players (the top panels a-b of each figure) and in the distribution space in

coordinates (µRB, µBR, µBB) (the bottom panels c-d of each figure), cf. Table 1.

21Recall that for Chicken 1, DCE places 1/3 probability on (R,B), (B,R), and (B,B), and, for
Chicken 2, DCE places 1/4 probability on (R,B) and (B,R) and 1/2 probability on (B,B).
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(a) Payoff Space: Round 1
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(b) Payoff Space: Round 5
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Figure 8: Bubble plots displaying, in both the payoff-space and distribution-space, the
distribution of designed devices for Prisoner’s Dilemma in round 1 vs. round 5.

Prisoner’s Dilemma. Fig. 8c reveals that, in Round 1 of Prisoner’s Dilemma,

there are a number of salient distributions that subjects try to implement, including

both the DCE, (R,R), the socially desirable profile, (B,B), and a 50-50 mix between

these two profiles. In general, subjects are putting too much weight on the (B,B)

profile, as represented by a distinct number of devices implying expected payoffs in

the upper-right quadrant from the DCE in Fig. 8a. As Fig. 8d shows, by round 5,

the modal response of subjects is now clearly the DCE. Nonetheless, the majority of
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recommendation devices are sub-optimal and such devices appear almost randomly

dispersed in the distribution space. Thus, there does not seem to be any consistency

in the devices designed by subjects who were unable to find the DCE by round 5.

There is still a clear tendency, however, for devices in round 5 to heavily weight the

socially-efficient profile, (B,B), as illustrated by the fact that a significant number of

devices imply average payoffs that lie on the 45-degree line above the expected-payoff

pair implied by the desirable correlated equilibrium (Fig. 8b).

Matching Pennies. Recall that overall performance in Matching Pennies was high

according to all of our performance measures (Fig. 4). This suggests that individual

subjects were successful in their design of recommendation devices to meet the DCE

objective in this game. Fig. 9d illustrates this point: by round 5 the clear modal rec-

ommendation device is the DCE which coincides with the unique Nash equilibrium

in mixed strategies. Moreover, recommendation devices in round 5 that do not con-

stitute correlated equilibria appear to be distributed somewhat randomly around the

unique Nash equilibrium, with all of these implying expected payoffs close to those

implied by the DCE (Fig. 9b). Thus, subjects appear to recognize the zero-sum na-

ture of Matching Pennies and no additional recommendation devices emerge as focal

by the final round.

Battle of the Sexes. Battle of the Sexes was another game in which subjects per-

formed well in terms of finding the DCE (Fig. 4). From Figs. 10a and 10c, we see that

the DCE is the modal response already in round 1, although some subjects implement

one of the two asymmetric Nash equilibria with their device. Moreover, already in

round 1, there are very few recommendation devices that yield payoffs outside of the

set of correlated-equilibrium payoffs. Experience serves to consolidate this finding:

by round 5 designed distributions are almost entirely in the set of correlated equi-

libria (Fig. 10d) or the set of correlated equilibrium payoffs (Fig. 10b).22 The vast

22The percentage of subjects who designed the device implementing any correlated equilibrium
changed from 78% in round 1 to 97% in round 5.
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(b) Payoff Space: Round 5
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Figure 9: Bubble plots displaying, in both the payoff-space and distribution-space, the
distribution of designed devices for Matching Pennies in round 1 vs. round 5.

majority of these distributions fall on the DCE, as expected from the high aggregate

performance in this game.

Chicken, Version 1. Recall that in the Chicken 1 game, the DCE puts zero prob-

ability on profile (R,R) and equal probability on the remaining action profiles, in-

cluding the socially desirable profile, (B,B). From Fig. 11c, one can see that subjects

start out optimistic: they put more weight on the socially desirable profile than strate-
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Figure 10: Bubble plots displaying, in both the payoff-space and distribution-space, the
distribution of designed devices for Battle of the Sexes in round 1 vs. round 5.

gic incentives allow, strongly evidenced by the fact that the recommendation device

that puts probability one on (B,B) is the modal device and that many devices imply

expected payoffs that are to the upper-right of the DCE payoffs (Fig. 11a). By the

final round, however, subjects appear to have learned that they cannot recommend

(B,B) too often. Indeed, the majority of recommendation devices fall within the set

of correlated equilibria at this point (Fig. 11d).23 The two most salient recommenda-

23The percentage of subjects who designed the device implementing any correlated equilibrium
changed from 37% in round 1 to 93% in round 5.

35



Desirable CEMean R1 Desirable CE

1

2-5

6-10

10-15

16-20

20+

-1 0 1 2 3 4 5 6
0

1

2

3

4

5

6

Exp Payoff P1

E
xp
P
ay
of
f
P
2

(a) Payoff Space: Round 1

Desirable CEMean R5 Desirable CE

1

2-5

6-10

10-15

16-20

20+

-1 0 1 2 3 4 5 6
0

1

2

3

4

5

6

Exp Payoff P1

E
xp
P
ay
of
f
P
2

(b) Payoff Space: Round 5

(c) Distribution Space: Round 1 (d) Distribution Space: Round 5

Figure 11: Bubble plots displaying, in both the payoff-space and distribution-space, the
distribution of designed devices for Chicken 1 in round 1 vs. round 5.

tion devices at round 5 are the DCE (which is the modal device) and one that mixes

50-50 between the two asymmetric Nash equilibria, (R,B) and (B,R). There are also

a number of devices that imply expected payoffs on the 45-degree line between the

resulting payoffs from these two salient devices (Fig. 11b). This suggests that subjects

understood that partial correlation, in the form of mixing in some (B,B) with the

asymmetric action profiles, was desirable given the objective. Very few subjects still

design devices that over-weight the socially desirable action profile – if anything, the
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Figure 12: Bubble plots displaying, in both the payoff-space and distribution-space, the
distribution of designed devices for Chicken 2 in round 1 vs. round 5.

majority of subjects appear to under-estimate the extent to which (B,B) can be rec-

ommended which is consistent with the average recommendation device for Chicken

1 in Fig. 7.

Chicken, Version 2. Version 2 of Chicken is similar to version 1 in the sense that

the DCE puts zero weight on the inefficient action profile (R,R). The main difference

is that subjects can put more weight on the socially desirable profile in this version
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of Chicken (µ∗BB = 1/2 rather than 1/3 as in Chicken 1). Examining Fig. 12, we

can see that the distribution of designed devices for Chicken 2 is similar to what was

found in Chicken 1. In round 1, subjects over-estimate the extent to which they can

recommend the socially desirable action profile: the modal device puts probability

one on (B,B) (Fig. 12c). However, as was the case in Chicken 1, by round 5 subjects

appear to have qualitatively understood that they cannot recommend (B,B) too

often. Instead, most recommendation devices now constitute correlated equilibria.24

The modal device implements the DCE, but the device that mixes 50-50 between the

two asymmetric Nash equilibria, (R,B) and (B,R), also appears salient (Fig. 12d).

Fig. 12b also shows that there are a number of devices that implement expected

payoffs on the 45-degree line between these two salient devices, which again suggests

that subjects understood that partial correlation of the actions of the robot-players

was required to some extent. Consequently, similar to Chicken 1, the average designed

device puts insufficient probability on the socially desirable action profile, as was

observed in Fig. 7.

5.3 Discussion

Our analysis suggests that subjects succeeded more in some games relative to others,

as evidenced by significant differences in performance measures across the five games

(Fig. 4). In particular, subjects were very successful at finding the desirable correlated

equilibrium in Battle of the Sexes and Matching Pennies but struggled to do so in

Prisoner’s Dilemma and both versions of Chicken (although subjects were able to find

a correlated equilibrium in both Chicken 1 and Chicken 2). It is interesting to identify

whether there are defining features of these particular games and their corresponding

correlated equilibria that have led to these observations.

Recall that the DCE in each game required different aspects of equilibrium rea-

soning in terms of (a) the necessity of randomization, (b) the degree of correlation

24The percentage of subjects who designed the device implementing any correlated equilibrium
changed from 54% in round 1 to 96% in round 5.
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required, and (c) the alignment of strategic incentives with socially desirable out-

comes, see Table 2. We now discuss our results in light of these different aspects.

5.3.1 The Necessity of Randomization

We find no evidence that subjects are unable to design a device that generates random

recommendations. Performance is maximized for Matching Pennies and Battle of the

Sexes, both of which require randomization. Moreover, the only game for which the

DCE does not require randomization is Prisoner’s Dilemma which is the game for

which aggregate performance was lowest.25

We would not, however, necessarily conclude that it is the absence of randomiza-

tion that makes it difficult to grasp the equilibrium reasoning required for Prisoner’s

Dilemma. Indeed, one might wonder whether subjects were averse to designing a

device that made pure-strategy recommendations. We see no evidence of this – there

were a number of salient pure-strategy recommendation devices that subjects designed

including putting probability one on socially desirable action profiles in Prisoner’s

Dilemma and Chicken games (Fig. 8a, Fig. 11a, Fig. 12a) and on asymmetric pure-

strategy Nash equilibria in Battle of the Sexes and Chicken games (Fig. 10, Fig. 11,

Fig. 12). We also provided examples of devices that recommended only a single action

profile in the instructions in order to make salient that such devices could constitute

optimal devices (given the objective).

5.3.2 The Degree of Correlation

Our results suggest that the degree of correlation that the optimal recommendation

device needed to exhibit had a relatively minor impact on success. Subjects had

the most success with both the game that required perfect correlation (Battle of the

Sexes) and the game that required no correlation (Matching Pennies).

25This is consistent with the work of Romero and Rosokha (2023) that suggests individuals are
able to randomize by playing mixed strategies in repeated Prisoner’s Dilemma when provided with
an interface to do so.
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There is some evidence that subjects found it difficult to implement the partial

correlation of actions required to solve each version of the Chicken game. However,

this appears to be an issue of nuance: subjects did not find the precise quantification

of correlation required. They did appear to understand qualitatively that they needed

to correlate the actions of the robot players using private signals.

Again, the game that subjects had the least success in was the Prisoner’s Dilemma,

in which the DCE requires no correlation in the sense that it constitutes a pure-

strategy Nash equilibrium. However, it does not seem to be the absence of correla-

tion that leads subjects to low performance in the Prisoner’s Dilemma. As already

emphasized, subjects perform well in Matching Pennies, which also does not require

robot-player behavior to be correlated.

5.3.3 The Alignment of Strategic Incentives

The final aspect of equilibrium reasoning we discuss is the extent to which the strategic

incentives in each game are aligned with socially desirable outcomes, in the sense of

the social objective provided in (1). Recall that the socially desirable outcome is the

unconstrained solution to (1), which essentially reduces to finding the distribution

over action profiles that is fair and Pareto efficient. As summarized in Table 2, the

extent to which strategic incentives are aligned with the socially desirable outcome

varies significantly across the games considered. We believe that this variation has

substantial explanatory power for heterogeneity in design-success across games.

In order to facilitate this discussion, we provide a quantitative measure of the

alignment of strategic incentives. To do this, we measure how far the desirable cor-

related equilibrium, µ∗, is from the socially desirable outcome, µSD, for each game

using our distance measure, N-RMSE. This information is summarized in Table 5.

According to Table 5, in Matching Pennies and Battle of the Sexes strategic incen-

tives are perfectly aligned with the socially desirable outcome as µ∗ and µSD coincide

for these games. Instead, strategic incentives and the socially desirable outcome are
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µSD µ∗ N-RMSE(µSD;µ∗)

PD (0, 0, 0, 1) (1, 0, 0, 0) 0

MP
(

1
4
, 1

4
, 1

4
, 1

4

) (
1
4
, 1

4
, 1

4
, 1

4

)
1

BoS
(
0, 1

2
, 1

2
, 0
) (

0, 1
2
, 1

2
, 0
)

1

C1 (0, 0, 0, 1)
(
0, 1

3
, 1

3
, 1

3

)
0.293

C2 (0, 0, 0, 1)
(
0, 1

4
, 1

4
, 1

2

)
0.478

Table 5: The socially desirable outcome, µSD, the DCE, µ∗, and the normalized
distance (based on the Root Mean Square Error) between them for each game.

maximally unaligned for Prisoner’s Dilemma as µ∗ is maximally distant from µSD in

this game. Finally, for both versions of Chicken, strategic incentives and the socially

desirable outcome are partially aligned as N-RMSE(µ∗, µSD) is strictly greater than

zero for these games. Specifically, µ∗ is closer to µSD for C2 relative to C1. This im-

plies the following order on the extent to which strategic incentives and the socially

desirable outcome are aligned across games:

MP ∼ BoS � C2 � C1 � PD. (2)

We now interpret our results in light of the order in (2). First, note that Match-

ing Pennies and Battle of the Sexes are the games in which subjects performed the

best, and also happen to be the games in which strategic incentives and the socially

desirable outcome are perfectly aligned.

Next, we have the two versions of Chicken in which strategic incentives are only

weakly aligned with the socially desirable outcome. While subjects were not par-

ticularly successful in implementing the DCE for these games, they were able to

consistently find correlated equilibria that were close to the optimum (evidenced by

high Score and N-RMSE in Fig. 4). Moreover, on their final attempt, it does not

appear that subjects over-estimate the extent to which they can recommend (B,B)

but, rather, tend to under-weight this action profile as discussed in Section 5.2. This

suggests that subjects understand, at least qualitatively, the role of strategic incen-

tives in the Chicken games, which may be due to the fact these strategic incentives
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are weakly consistent with the socially desirable outcome. Moreover, by the rela-

tion in (2), strategic incentives are more closely aligned with the socially desirable

outcome in Chicken 2 relative to Chicken 1. From Fig. 4, our subjects were more

likely to find the DCE in Chicken 2 relative to Chicken 1 (approximately 10% more

subjects for Chicken 2) and achieved a higher Score, although these differences are

not statistically significant.

The game for which strategic incentives are completely at odds with the socially

desirable outcome is Prisoner’s Dilemma. This is because the DCE puts zero weight

on the socially desirable profile (B,B) in this game. Subjects struggled substantially

with Prisoner’s Dilemma: the majority don’t find the DCE and their designed devices

are relatively distant from the optimum (Fig. 4). This seems to be primarily driven

by the conflict between strategic incentives and the social objective in Prisoner’s

Dilemma. Indeed, subjects consistently design devices that put a positive probability

on (B,B) through to the last round (Figs. 8b and 8d) and the average weight placed

on this action profile does not fall significantly with experience over rounds (Fig. 7).

6 Conclusion

Our main contribution in this paper has been to provide a methodology for testing

how people reason about equilibrium while abstracting from issues that are usually

prevalent in such situations, such as strategic uncertainty and social preferences. We

do this by having subjects design recommendation devices for Bayesian, expected-

utility maximizing robot-players that only follow recommendations if it is a best

response to do so.

Overall, subjects in our study found success in the task of designing recommen-

dation devices for different games, under the objective of implementing correlated

equilibria that are Pareto efficient and fair. As discussed in Section 5.1.3, their per-

formance significantly improved across rounds, and our analysis in Section 5.2 suggests

that the modal device designed by subjects in every game implements the desirable
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correlated equilibrium.

There is, however, significant heterogeneity in performance across games. We find

that subjects perform well in designing recommendation devices for both Battle of the

Sexes and Matching Pennies: the majority of subjects find the desirable correlated

equilibria in these games, and those that don’t still design devices that are close to

optimal, given the objective. Subjects had less success finding the desirable corre-

lated equilibrium in Prisoner’s Dilemma and in the two versions of the Chicken game.

Nonetheless, they do successfully find a correlated equilibrium in Chicken even if they

don’t solve the quantitative problem of finding the correlated equilibrium that is pre-

cisely optimal. By contrast, for Prisoner’s Dilemma, subjects struggle significantly

with the qualitative aspects of equilibrium reasoning implied by the strategic incen-

tives in this game: those that do not solve Prisoner’s Dilemma tend not to give up

on the possibility that the socially desirable profile can be recommended with strictly

positive probability. We believe that these findings are consistent with the idea that

people find it hard to grapple with strategic incentives that run counter to achieving

socially desirable outcomes, as discussed extensively in Section 5.3.

Our findings suggest that people bring a cooperative mindset into reasoning about

equilibrium governed by non-cooperative incentives, at least in situations in which

the focus is on achieving socially desirable outcomes. It appears to be difficult for

subjects to reconcile the fact that strategic incentives can be so at odds with desirable

outcomes, and they do not come to the realization that there is no device that utilizes

the efficient profile in Prisoner’s Dilemma. Interestingly, this holds even though the

strategic incentives in Prisoner’s Dilemma are extremely strong: each robot player,

of course, has a strictly dominant strategy to choose Red. One might expect that,

as strategic incentives become weaker, it will become even more difficult for subjects

to recognize situations in which socially desirable outcomes cannot be achieved. It

would be interesting to investigate, however, whether this cooperative mindset can

be manipulated by changing the design objective.

Our framework is sufficiently flexible so as to investigate how individuals fare in

43



finding correlated equilibria in any two-player game. In this paper, we have focused

on a set of canonical games that are symmetric. It would be interesting, however, to

explore other games, including those that have asymmetric payoffs. It would also be

interesting to explore whether individuals can successfully coordinate the behavior of

more than two players.

Finally, while we have purposefully employed our experimental design with robot

players in order to isolate whether individuals can adeptly reason about equilibrium,

it would be interesting to understand whether people design devices differently when

making recommendations for other humans, rather than for robots. This would allow

us to separately identify the extent to which people themselves can strategically reason

from the extent to which they think others also have the ability to do so. This

interesting direction will be explored thoroughly in future research.
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Anbarcı, N., Feltovich, N. and Gürdal, M. Y. (2018) Payoff inequity reduces the
effectiveness of correlated-equilibrium recommendations, European Economic Re-
view, 108, 172–190.

Arad, A. and Rubinstein, A. (2012) The 11–20 money request game: A level-k rea-
soning study, American Economic Review, 102, 3561–3573.

Aristidou, A., Coricelli, G. and Vostroknutov, A. (2019) Incentives or persuasion? An
experimental investigation, Working paper.

Au, P. H., Kwon, O. and Li, K. K. (2023) A simple experiment on simple Bayesian
persuasion, Working Paper.

Aumann, R. J. (1974) Subjectivity and correlation in randomized strategies, Journal
of Mathematical Economics, 1, 67–96.

Aumann, R. J. (1987) Correlated equilibrium as an expression of Bayesian rationality,
Econometrica, 55, 1–18.

Bone, J., Drouvelis, M. and Ray, I. (2013) Coordination in 2 x 2 games by following
recommendations from correlated equilibria, Working Paper.

Cason, T. N. and Sharma, T. (2007) Recommended play and correlated equilibria:
An experimental study, Economic Theory, 33, 11–27.

Cason, T. N., Sharma, T. and Vadovic, R. (2022) Correlated equilibria and forecasts
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Appendix For Online Publication Only

A Experimental Instructions

Welcome

Welcome to this experiment in economic decision-making. Please read these instruc-

tions carefully as they explain how you earn money from the decisions you make. For

completing this experiment you are guaranteed the $10 show-up fee. Depending on

your actions, you can earn an additional amount as explained below. Your earnings

during the experiment will be computed in points that will be converted to the real

dollars at the end of the experiment at the rate of 1 point = $6, so more points means

more money.

Please do not talk with others for the duration of this experiment and silence all

mobile devices. If you have any questions, please raise your hand.

Overview

Your job will be to design recommendations to two intelligent robot players on how

they should play a game with one another. In this game, the two robot players have

to simultaneously choose between two actions, labeled Red and Blue. After making

their choices, each robot player receives a payoff in points that depends: (1) on the

action color they chose and (2) on the action color that the other player chose.

The payoffs of robot Player 1 and of robot Player 2 are shown in the payoff table

of the game. Each cell of the table corresponds to the chosen actions of both players.

The payoffs of robot Player 1 are shown in the lower left part of the cell, and the

payoffs of robot Player 2 are shown in the upper right part of the cell.

The figure below provides an example of the payoff table for a game. In this

case, if, say, Player 1 (P1) plays Blue and Player 2 (P2) plays Red, then the payoff
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to Player 1 is 2 points and the payoff to Player 2 is 5 points.

P1
P2 Red Blue

Red 0
1

3
3

Blue 2
5

3
1

Games will differ in their payoffs to each player. The specific payoffs will be known

to both the robot players and you.

The two robot players are not able to communicate with one another. Further,

each game will be played for multiple periods but the robot players in each period

will always be different (so that their actions will not depend on what was played in

the past).

Your task is to design a device that will make recommendations to both

players about which color action they should choose in each period. These recom-

mendations are separate, that is, each robot player knows only their own recommen-

dation from your device. However, the robot players know the design of your device

and use this knowledge to infer as much as possible about the recommendation the

other robot player received.

The robot players are not easily influenced and do not follow recommenda-

tions blindly. They are self-interested, intelligent and take into account that the

other robot player is self-interested and intelligent as well. When a particular color

action is recommended to a robot, it will investigate whether it is truly worthwhile

to follow this recommendation, using all the information from the design of your rec-

ommendation device. The robot player will do this by answering two questions: (a)

given the device and the recommendation received, what is the percentage chance

that the other robot player received each of their possible recommendations?; and

(b) given that the other robot player follows their recommendation, do I (the robot)

earn a higher payoff by following the recommendation given to me or by choosing the

other color action?
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You will design this recommendation device for five games that will differ in their

payoffs to the two players. You will design a separate device for each game. This will

happen sequentially. This means that you will first design the device for one game,

then, once completed, for the next game, and so on. For each game, there will be five

rounds during which you can update your recommendation device to try to increase

the amount of money that you take home with you today.

After reading these instructions, you will be asked several control questions. Next,

you will play three practice rounds. Right after the practice rounds, the main part

of the experiment (5 games with 5 rounds each) will start. After the main part, you

will be asked to answer several quiz questions and fill out a short survey. Following

completion of the survey, your participation in the study is over and you will be paid

your earnings.

Designing the recommendation device

For each game, your task is to design a device that makes separate recommendations

to Player 1 and to Player 2 as to which color action to choose, either Red or Blue.

With your device, the game will be played multiple periods. In each period, two

intelligent robot players will participate in the game, the row robot “Player 1” and

the column robot “Player 2”.

Your recommendation device will make use of a container filled with 24 balls.

Each ball can be split into two halves: one half is labeled 1 and the other half is

labeled 2. Your task is to select a color for each half of each ball, Red or Blue.

In other words, you will fill the container with 24 balls of four types, RR, RB, BR,

and BB, where the first letter corresponds to the half labeled 1 and the second letter

to the half labeled 2.

The picture below shows an example of the screen where you design a device.

You first choose the number of balls (out of 24) for which you want to color the half

labeled 1 Red or Blue. This choice is in the lower left part of your decision screen,
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labeled Recommendation to P1. Then, of those balls for which you colored the

half labeled 1 Red, you will chose the number of balls for which you want to color

the half labeled 2 Red or Blue. Similarly, out of those balls for which the half labeled

1 were colored Blue, you will chose the number of balls for which you want to color

the half labeled 2 Red or Blue. These two choices are in the upper right part of your

decision screen called Recommendation to P2. You can color the balls using either

a slider or by entering the exact number of Red balls in the box below the slider.

After you have made all selections, your device with the colored balls will be com-

plete. Below the device, the resulting Summary table will appear showing the total

number of balls of each type. You may wish to consult this summary table to better

comprehend how many balls of each type your device contains.

NOTE: you can achieve any desired device! For this, you do the following:

1. Count the number of balls in your desired device where the half labeled 1 is

Red. Insert this number as the Recommendation to P1.

2. Count the number of RR balls in the desired device, and insert this number in

the upper right part of the screen, under Recommendation to P2.

3. Count the number of BR balls in the desired device, and insert this number in

the middle right part of the screen, under Recommendation to P2.

4



In the previous example, the device has 15 balls where the left part is Red: you can

count them inside the container, and you also can find it as a sum of 10 RR and 5 RB

balls in the second row of the Summary table. This number 15 is entered in the lower

left part of the screen as the Recommendation to P1. There are 10 RR balls, and

10 is entered in the upper right as the Recommendation to P2. Finally, there are

2 BR balls, and 2 is entered in the middle right part as the Recommendation to

P2.

You can adjust your device as many times as you want, until you click on the Next

button, at which point your device is finalized for the round.

After you design the device, it will be used to provide recommendations for many

periods of the game. Each period, the game will be played by a new pair of robot

players. One ball will be drawn at random and will be split in two halves. The half

labeled 1 will be given to Player 1 and the half labeled 2 will be given to Player 2.

The color of the piece of the ball given to each player represents the recommended

color action for each player.

The robot players know the design of your device, that is, the proportion

of colored balls of each type in the container. They use this knowledge in deciding

whether or not to follow the recommendation they received. If they can do better

by not following the recommendation of your device, then they will not follow the

recommendation of your device. Otherwise, they will follow it.

Examples of Recommendation Devices and Robots’ Reasoning

We discuss three examples for the game we introduced earlier:

P1
P2 Red Blue

Red 0
1

3
3

Blue 2
5

3
1
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Example 1. Suppose you color all balls RR (i.e., both halves of all 24 balls are Red),

so that your resulting device looks as follows.

This device always recommends that Player 1 chooses Red and that Player 2 also

chooses Red. Even though Player 1 does not see the recommendation given to Player

2, by the design of the device, Player 1 knows that Player 2 is recommended to

choose Red. As such, Player 1 compares following the recommendation and receiving

a payoff of 0 points (Player 1’s payoff when both players play Red) to not following

the recommendation, choosing Blue instead and receiving a payoff of 2 points (Player

1’s payoff when Player 1 chooses Blue and Player 2 chooses Red). Since a payoff

of 0 from playing Red is smaller than 2 from playing Blue, Player 1 does not follow

the recommendation of Red. (Player 2 does not follow the recommendation as well.

Player 2 infers that Player 1 was recommended Red, and prefers to play Blue.)

In Example 1, Player 1 knew exactly what is recommended to Player 2 and Player

2 knew exactly what is recommended to Player 1. More generally, this will not be

the case.

Example 2. Suppose that you color 12 balls as RB and 12 balls as BB so that your

device is as shown below:
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Essentially, Player 2 is always recommended Blue, and Player 1 is recommended Red

or Blue with a chance of 50% each. While Player 1 knows that Player 2 is always

recommended Blue, Player 2 does not know the recommendation given to Player 1.

Player 2 only knows that Player 1 gets a recommendation of Red with a chance of

50% and gets a recommendation of Blue with a chance of 50%.

With this knowledge, Player 2 does not follow the recommendation of Blue. This

is because, if Player 2 chooses Blue, then Player 2 receives 3 points when Player 1

chooses Red (which occurs 50% of the time) and 1 point when Player 1 chooses Blue

(which occurs 50% of the time). This gives on average 0.5× 3 + 0.5× 1 = 2 points. If

Player 2 instead chooses Red, Player 2 receives 1 point when Player 1 chooses Red and

5 points when Player 1 chooses Blue, which is on average 0.5× 1 + 0.5× 5 = 3 points.

Hence, the average payoff from not following the recommendation and choosing Red

for Player 2 is higher than following the recommendation of Blue.

This illustrates the calculations that the self-interested, intelligent robots make in

deciding whether or not to follow the recommendations of your device. Note that the

ultimate reason Player 2 does not follow the recommendation of Blue in this example,

is because Player 1 is recommended to choose Blue too often (thereby incentivizing

Player 2 to play Red and grab the high payoff of 5). Just because Player 2 does

not follow the Blue recommendation does not necessarily mean Player 2 should be
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recommended to play Red!

Example 3. Consider the following device, where 18 balls are colored as RB and 6

balls are colored as BB.

Compared with Example 2, Player 2 is again always recommended Blue, but Player

1 is now more often recommended to play Red than Blue.

Consider the game from the perspective of Player 2. If Player 2 follows the rec-

ommendation to play Blue, and Player 1 follows its recommendations, then Player 2

will receive a payoff of 3 in 75% of all periods (that is when Player 1 is recommended

to play Red since 18/24 = .75 balls have the half labeled 1 colored Red) and a payoff

of 1 in 25% of all periods (that is when Player 1 is recommended to play Blue since

6/24=.25 balls have the half labeled 1 colored Blue). Player 2 thus expects to get 2.5

on average by following the recommendation (as 0.75×3+0.25×1 = 2.5). Not follow-

ing the recommendation and playing Red, will bring a payoff of 1 in 75% of all periods

and a payoff of 5 in 25% all periods i.e., 2 on average (as 0.75× 1 + 0.25× 5 = 2). It

is now better for Player 2 to follow the recommendation to play Blue.

We can also consider the game from the perspective of Player 1 who knows that

Player 2 was recommended Blue. Player 1 is indifferent between playing Red and

Blue, as the payoff will be 3 in either case (that is, when Player 2 plays Blue and

Player 1 plays either Red or Blue). Thus, Player 1 will follow the recommenda-
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tion Red, if received, and the recommendation Blue, if received. In this example,

all recommendations from this device will always be followed.

Your points for a round

For each game, you will participate in 5 rounds. At the beginning of the first round,

you will have to design the device. At the end of each round, you will receive feedback

on how well your device performed. At the start of each subsequent round, you will

have the opportunity to re-design the device.

Each round will give you a certain number of points, which convert into money

earnings at a fixed rate. We now describe how this amount of points is determined.

As stated, each round consists of robots playing the game for a very large number

of periods. In each period, a ball is drawn at random, which represents the recom-

mendation made to each robot player. The robot players decide whether or not to

follow their recommendations and play the game once. Then the ball is placed back

into the container, and a new period begins. A ball is drawn again for two new robot

players, and so on. The number of periods is so large that any particular ball in the

container will eventually be drawn at some point.

If in at least in one period, one of the robot players did not follow your recommen-

dation, then you will not receive any points in the round. That is, for you to receive

points, the robot players must always (that is, in all periods) follow the recommen-

dations that your device makes to them. In this case, your point earnings are equal

to the smallest of the two average payoffs, the average payoff earned by player

1 and the average payoff earned by player 2.

We return to our game and provide some examples of payoff calculations.
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P1
P2 Red Blue

Red 0
1

3
3

Blue 2
5

3
1

Example 1. If you color all balls RR, then neither Player 1 nor Player 2 would

follow the recommendations from this device. You earn no points.

Example 2. If you color 12 balls as RB and 12 balls as BB, then Player 2 would not

follow the recommendations, as previously discussed. You earn no points.

Example 3. If you color 18 balls as RB and 6 balls as BB, then players would follow

your recommendations. Player 1 gets 3 points always with this device, and player 2

gets 2.5 points on average, as we calculated. The minimum of 3 and 2.5 is 2.5. Thus,

you earn 2.5 points.

Example 4. If you color all balls BR, you get this device.

Player 1 knows that Player 2 is recommended Red and follows the recommendation

Blue (as the payoff of 2 is not less than the payoff of 0 from not following this

recommendation). Player 2 knows that Player 1 is recommended Blue and follows

the recommendation Red (as the payoff of 5 is not less than the payoff of 1 from not

following this recommendation). Hence, you earn additional points with this device.

The minimum average payoff of 2 and 5 is 2. Thus, you earn 2 points.
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Feedback and updating the device

Between rounds, you will have a chance to update the design of your device (that is,

re-color the balls in the container of 24 balls).

After each round, you will receive feedback consisting of two parts. Above all,

you will learn whether the recommendations produced by your device were always

followed by the robot players or not.

Then, in the case the robot players always followed the recommendations of your

device, you will also learn whether it is possible to improve your device to receive

more points or, instead, the maximum possible payoff has been achieved. In the

case where the robot players did not always follow the recommendations, you will see

an example of a one-period realization (i.e., one ball drawn from your device) when

the recommendations were not followed and why one player chose not to follow the

recommendation.

Your total payoff for the experiment

At the end of the experiment, the computer will choose one of the five games at

random and you will receive the number of points you earned in the round for that

game with the highest payoff. This amount will be converted into dollars at the

rate of 1 point equal to $6. You will be paid only if you complete all rounds of the

experiment, the quiz, and the short survey.

This means that you will definitely earn the show-up fee of $10 in this experiment.

If, in addition, your maximum round earnings in the randomly selected game is, for

instance, 3 points, then you will receive a payment of 3 × $6 = $18 (in addition to

your guaranteed earnings of $10).

To summarize, the payoff structure of this experiment implies:

• you will definitely earn $10 in this experiment

• you want to do your best in every game to earn an additional amount of points/-
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money.

• you want to design a recommendation device where both players always follow

the recommendations

• you can improve your payoff by improving your recommendation device in a

given round (if the device is not yet giving you the highest possible payoff)

• you are encouraged to experiment between rounds by changing the color of the

balls in order to try to improve your payoff.

B Experiment Questions

Pre-Experiment Quiz

Question 1: Suppose that the game that the robot players participate in has the

following specific payoffs:

P1
P2 Red Blue

Red 0
1

3
3

Blue 2
5

3
1

If Player 1 chooses Blue and Player 2 chooses Blue, then:

(a) The payoff to Player 1 is 3 and the payoff to Player 2 is 3.

(b) The payoff to Player 1 is 5 and the payoff to Player 2 is 2.

(c) The payoff to Player 1 is 3 and the payoff to Player 2 is 1. [Correct ]

(d) The payoff to Player 1 is 1 and the payoff to Player 2 is 3.
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Feedback: “The payoffs of two players are in the cell corresponding to their actions

(Red or Blue). The payoff of player 1 is in the lower left part of the cell and the

payoff of player 2 is in the upper right part of the cell.”

Question 2: Consider the same game

P1
P2 Red Blue

Red 0
1

3
3

Blue 2
5

3
1

Suppose that Player 2 thinks that Player 1 is going to choose Blue. Then,

(a) It is in Player 2’s best interest to choose Blue.

(b) It is in Player 2’s best interest to choose Red. [Correct ]

(c) It doesn’t matter whether Player 2 chooses Blue or Red.

(d) None of the above are true.

Feedback: “Player 2 thinks that player 1 plays Blue and thus look at the bottom row

of the table. Then, player 2 compares his/her payoff from playing Red (that is 5)

with his/her payoff from playing Blue (that is 1). Player 2 will choose the action

leading to the maximum of these two payoffs.”

Question 3: Consider the same game

P1
P2 Red Blue

Red 0
1

3
3

Blue 2
5

3
1

Suppose that Player 2 gets a recommendation to play Red. Then,

(a) Player 2 will follow this recommendation blindly.

13



(b) Player 2 will not follow this recommendation and will play Blue in any case.

(c) Player 2 will ask Player 1 what was recommended to Player 1 and will choose an

action depending on the response.

(d) None of the above are true. [Correct ]

Feedback: “Players cannot communicate. Also they do not follow their recommenda-

tions blindly but also do not reject all recommendations. Instead, players investigate

whether it is truly worthwhile for them to follow the recommendation using all the

information from the design of the recommendation device. They need information

about the recommendation device.”

Question 4: Your task in this experiment:

(a) To play four games, several times each, against humans.

(b) To play four games, several times each, against robots.

(c) To observe and describe how others play the games.

(d) To design recommending devices for given games that will be played by robots.

[Correct ]

Feedback: “As instructions explain, your task is to design recommendations to

two intelligent robot players on how they should play a game with one another. You

will go through a sequence of games and have several chances to improve the device.”

Question 5: The following picture displays a recommendation device.
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Suppose that one ball is drawn out of this container at random. What is the chance

that this ball recommends to player 1 to choose Blue and, at the same time, it

recommends to player 2 to choose Red.

(a) 2 out of 24.

(b) 5 out of 24.

(c) 7 out of 24. [Correct ]

(d) 10 out of 24.

Feedback: “To answer this question, you need to count the number of balls with the

left side (1) being Blue and the right side (2) being Red.”

Question 6: Suppose that the game that the robot players participate in has the

following specific payoffs:

P1
P2 Red Blue

Red 0
1

3
3

Blue 2
5

3
1
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Moreover, suppose that you design the following device:

Which of the following statements is true:

(a) Neither player 1 nor player 2 are willing to follow the recommendation made by

the device and you will earn no points in this round.

(b) Player 1 and player 2 are both willing to follow the recommendation made by the

device and you will earn 3.5 points in this round.

(c) Player 1 and player 2 are both willing to follow the recommendation made by the

device and you will earn 2 points in this round.[Correct ]

(d) Player 1 and player 2 are both willing to follow the recommendation made by the

device and you will earn 5 points in this round.

Feedback: “This device always recommends player 1 to play Blue and player 2 to play

Red. With this device, each player will have a certainty about the recommendation

to another player. Checking the table of payoffs, we can see that player 1 prefers to

follow the recommendation (when player 2 plays Red, it is beneficial to player 1 to

play Blue). Similarly, player 2 prefers to follow the recommendation.

According to the instructions, for this round, you would get points based on the

smallest of the two average payoffs of players 1 and 2. In this case, player 1 will

always (for any of the balls drawn) get 2 and player 2 will always get 5. The smallest

of 2 and 5 is 2.”
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Question 7: Suppose that in one of four games you are presented in the experiment,

in the first three rounds player 2 never followed the recommendation of the devices

you made.

Which of the following statements is true:

(a) You have a chance to get additional points for this game, only in the case when

you design a new device in the fourth round. [Correct ]

(b) You have no chance to get additional points for this experiment.

(c) You still can earn additional points in the experiment, but not for this game.

(d) If player 2 will follow the recommendation of the device you redesigned for the 4th

round in all periods of that round, you will get additional points in that round.

Feedback: “As the instructions explain, for a given game, you receive the number of

points you earned in the round for that game with the highest amount of points. This

means that if in the last round you will design such device that the recommendations

are always followed (by both players 1s and player 2s), you will get points from that

round and for this game.”

Question 8: Once you design your recommendation device in a round for a given

game, the game is played by robot players for multiple periods. Can a robot player

choose its action depending on how the game was played in previous periods?

(a) Yes, a robot player observes the actions played in the previous periods and can

react to them.

(b) Yes, if it allows a robot player to maximize a total payoff over all periods.

(c) No, in each period, two new robots play the game and they do not have informa-

tion about the previous periods. [Correct ]

(d) None of the above is true.
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Feedback: “Each game will be played for multiple periods but the robot players in

each round will always be different (so that their actions will not depend on what was

played in the past). In each period, when a particular color action is recommended

to them, they will investigate whether it is truly worthwhile for them to follow this

recommendation using all the information from the design of your recommendation

device.”

Question 9: Please follow the instructions shown on the screen below. [By moving

the sliders, subjects had to implement the distribution µRR = 11/24, µRB = 7/24,

µBR = 2/24 and µ∗BB = 4/24.]

Post-Experiment Cognitive Reflection Test (CRT)

• Question 1: Together, a mobile phone and laptop cost $1100. The laptop costs

1000 more dollars than the mobile phone. How much does the mobile phone

cost in dollars? [Correct: 50 ]

• Question 2: It takes 5 bakers 5 hours to bake 5 cakes. How many hours would

it take 100 bakers to bake 100 cakes? [Correct: 5 ]

• Question 3: In a field there is a group of rabbits. The population of the rabbits

doubles in size every day. If it would take 50 days for the rabbit population to
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completely cover the field, how many days would it take for the rabbits to cover

half of the field? [Correct: 49 ]

• Question 4: If Charlie drinks one gallon of milk in 3 days, and Emerson drinks

one gallon of milk in 6 days, how many days would it take them to drink one

gallon of milk together? [Correct: 2 ]

• Question 5: Simon decided to invest $2,000 in the stock market one day early

in 2008. Six months after he invested, on July 17, the stocks he had purchased

were down 50%. Fortunately for Simon, from July 17 to October 17, the stocks

he had purchased went up 75%. As of October 17, Simon has: [Answers: Lost

money in the stock market; Broken even in the stock market; Made money in

the stock market] [Correct: Lost money in the stock market ]

Post-Experiment 11-20 Game Question

Two highly intelligent and competitive individuals are playing the following game.

Each player must simultaneously announce an integer number between 11 and 20.

Then, the payoffs are determined as follows. Each player receives an amount of

dollars equal to the number the player announced. Moreover, if one of the players

announces a number that is exactly one less than their opponent, then this player

receives an additional reward of $20. Finally, if both players announce the same

number, each of them receives an extra $10.

For example, if player 1 says 17 and player 2 says 19, then player 1 receives 17

and player 2 receives 19. Or, if player 1 says 12 and player 2 says 13, then player 1

receives 32 and player 2 receives 13.

What do you think would be the number that one of these players would announce?

Or, in other words, if you were one of these two players which number would you

announce?
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C Feedback Screens

Figs. B1 to B3 display feedback provided to subjects.

Figure B1: Feedback for a device that implements a sub-optimal correlated equilibrium.

Figure B2: Feedback for a device that implements the desirable correlated equilibrium.
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Figure B3: Feedback for a device that is not a correlated equilibrium.

D Correlated Equilibria of Tested Games

All 5 games we tested, are presented in the left part of Table 1 in the paper. In

this appendix, for each of these games, we derive the set of correlated equilibria,

that is distributions over action profiles in {Red,Blue} × {Red,Blue} that satisfy

Definition 1. We also solve problem (1) and find the desirable correlated equilibrium

µ∗. Finally, we show the recommendation device that implements this DCE, i.e., the

device that gives subjects the maximal payoff in each game.

D.1 Prisoner’s Dilemma

In Prisoner’s Dilemma, each player has a strictly dominant strategy to choose the

action Red. As a consequence, in the unique correlated equilibrium (which is, indeed,

the unique Nash equilibrium) µRR = 1 and µRB = µBR = µBB = 0. Consequently,

this is also the DCE. Thus, the maximum achievable payoff that can be earned in

this game is 4. Fig. C1 shows the device that earns this maximal payoff.
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Figure C1: Optimal Device in Prisoner’s Dilemma

D.2 Matching Pennies

Using Definition 1, distribution µ is a correlated equilibrium in the Matching Pennies

game if it satisfies the following inequalities:

5µRR + 3µRB ≥ 3µRR + 5µRB , 3µBR + 5µBB ≥ 5µBR + 3µBB ,

3µRR + 5µBR ≥ 5µRR + 3µBR , 5µRB + 3µBB ≥ 3µRB + 5µBB,

which can be summarized as

µRR ≥ µRB ≥ µBB ≥ µBR ≥ µRR.

We conclude that there is a unique correlated equilibrium of this game with µ(a) = 1/4

for all a ∈ {R,B} × {R,B}. This is also precisely the unique Nash equilibrium in

mixed strategies, where each player independently randomizes over their available

actions. Consequently, this is also the DCE and the maximum achievable payoff for

this game is (1/2)× 5 + (1/2)× 3 = 4. Fig. C2 shows the device that would need to

be designed in the experiment to earn this maximal payoff.
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Figure C2: Optimal Device in Matching Pennies

D.3 Battle of the Sexes

Using Definition 1, distribution µ is a correlated equilibrium if it satisfies the following

four inequalities:

6µRB ≥ 2µRR , 2µBR ≥ 6µBB , 6µBR ≥ 2µRR , 2µRB ≥ 6µBB,

which is equivalent to the condition that

min{µRB, µBR} ≥ max

{
3µBB,

1

3
µRR

}
.

The DCE solves problem (1). Clearly, at the optimum, µBB = µRR = 0, as the

strategies (B,B) and (R,R) result in 0 payoff for both robot players. Finally, to

maximize the minimum expected payoff of both robot players, we should set µRB =

µBR = 1/2. This achieves a maximum payoff of (1/2)×6+(1/2)×2 = 4 in this game.

Figure C3 displays the device that would need to be designed in the experiment to

earn this maximal payoff.
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Figure C3: Optimal Device in Battle of the Sexes

D.4 Chicken Version 1

Using Definition 1, distribution µ is a correlated equilibrium if and only if it satisfies

the following four inequalities:

6µRB ≥ µRR + 5µRB , µBR + 5µBB ≥ 6µBB ,

6µBR ≥ µRR + 5µBR , µRB + 5µBB ≥ 6µBB,

which is equivalent to the condition

min{µRB, µBR} ≥ max{µRR, µBB}.

Given the payoff matrix, the objective function in (1) is maximized, when as much

weight as possible is put on µBB, as little weight as possible is put on µRR, and there

is a symmetry in the remaining two weights. Thus, the DCE in this case is

µRB = µBR = µBB = 1/3,

which earns a maximal payoff of (1/3)×1+(1/3)×6+(1/3)×5 = 4. Fig. C4 displays

the recommendation device that yields this maximal payoff.
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Figure C4: Optimal Device in Version 1 of Chicken

D.5 Chicken Version 2

Using Definition 1, distribution µ constitutes a correlated equilibrium in this case if

and only if the following four constraints are satisfied:

6µRB ≥ 2µRR + 5µRB , 2µBR + 5µBB ≥ 6µBB ,

6µBR ≥ 2µRR + 5µBR , 2µRB + 5µBB ≥ 6µBB ,

which is equivalent to the condition

min{µRB, µBR} ≥
{

2µRR,
1

2
µBB

}
.

As in the first Chicken game, the objective function in (1) is maximized, when as

much weight as possible is put on µBB, as little weight as possible is put on µRR, and

there is a symmetry in the remaining two weights. The solution has

µRB = µBR =
1

2
µBB,

so that µRB = µBR = 1/4 and µBB = 1/2. This yields a maximal payoff equal to

(1/4)× 2 + (1/4)× 6 + (1/2)× 5 = 4.5. Fig. C5 displays the device that yields this

maximal payoff.
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Figure C5: Optimal Device in Version 2 of Chicken
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