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1 Introduction

Cooperation in repeated interactions is important for much socio-economic activity. How-

ever, despite an extensive experimental literature, it is still unclear what exactly determines

cooperative behavior in prisoner’s dilemma settings (see Dal Bó and Fréchette (2018) for a

survey). One common observation is that subjects sometimes cooperate even in a one-shot

prisoner’s dilemma. Equally, subjects sometimes cooperate too little when a dilemma is

indefinitely repeated and the continuation probability is sufficiently high. However, rather

than interpreting either behavior as mistaken, the literature instead has focused on many

possible confounds, including diverse beliefs about opponents’ strategies, heterogeneous risk

attitudes, social preferences and cognitive limitations.

In an effort to simplify the analysis, this study introduces a novel experimental design that

deliberately eliminates various confounding factors. The experiment involves two subject

pools: a traditional group consisting of university students (referred to as ”Lab” subjects),

and a second group consisting of Amazon Mechanical Turk (AMT) workers (referred to as

”Mturkers”). Both sets of subjects play a series of indefinitely repeated prisoner’s dilemma

(IRPD) games with different continuation probabilities against a robot opponent known

to play the Grim trigger strategy.1 This design reduces or eliminates multiple equilibria,

strategic uncertainty, and social preferences as factors influencing cooperation. It enables a

focus on the cognitive task of trading off present gains against future rewards, relying on

basic dynamic programming arguments. Effectively, this design converts a strategic problem

into an individual decision-making problem where the optimal policy is simple in theory:

a subject should cooperate in each round if and only if the continuation probability δ is

above a critical level, here 0.5. Further, much existing experimental analysis of repeated

games focuses on first round behavior because behavior in subsequent rounds depends on

a subject’s experience of playing against her opponent. In our setting, opponent behavior

is perfectly predictable, and thus we can analyse whether subjects implement the optimal

1While Tit-for-Tat (TFT) seems to be a reasonable alternative to Grim Trigger strategy, it has a number
of disadvantages - see Section 3 for a discussion.
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policy over the entire supergame.

Despite this simple setup, we find that both the Lab student subjects and the more

representative population of Mturkers (AMT) behave in a manner that is strikingly different

from the predictions of the rational choice framework used to explain cooperative behavior.

Overall, across all supergames, only 2% and 1% of subjects (in the Lab and AMT pools,

respectively) behave consistently with the rational choice predictions, and only 5% and 3%

behave consistently with that theory at least 95% of the time (making no more than 2

suboptimal choices out of 48). The very low frequencies suggest that the rational choice

framework used to explain cooperative behavior, is less empirically relevant than previously

believed. These very low frequencies suggest that the rational choice framework used to

explain cooperative behavior is not as empirically relevant as commonly assumed. While

we acknowledge that our design overlooks a crucial aspect of repeated games, namely the

presence of other human players, it is difficult to imagine that subjects would make fewer

errors when confronted with the additional complexities of strategic uncertainty, the existence

of multiple equilibria and uncertainty regarding others’ preferences and beliefs, that are all

features of the standard setting.

Using subjects’ choices in the first rounds of each supergame as a clear upper bound

for the overall measure of rational play, we find that only 2% and 3% of subjects (in the

Lab and AMT pools, respectively) behave consistently with the rational choice predictions

at the start of each supergame. We further find that first round cooperation is strongly

increasing in the continuation probability δ, from 10% and 26% when δ = 0.1 to 76% and

74% when δ = 0.7 (again, in the Lab and AMT pools, respectively). This responsiveness to

the continuation probability δ (particularly in the Lab pool) is much greater than estimates

based on Dal Bó and Fréchette (2018) in standard subject versus subject experiments, which

suggests that our design is successful in reducing strategic uncertainty. However, on average,

subjects cooperate too much in the first round (48% and 52% of decisions rather than the

theoretically optimal value of 33%).

Our results thus show that subjects do respond to the payoffs – but only partially, fre-
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quently making significant mistakes. Thus, perhaps the simplest model to explain our find-

ings would be one that both responds to payoffs while allowing for biases and a substantial

error rate. For this reason, we introduce a behavioral inattention model that is described

below, and which also allows for rational behaviour as a special case.

As noted, our methodology allows for a detailed examination of behavior in rounds beyond

the initial one. Our analysis reveals significant deviations from the optimal strategy. First,

52% and 54% of subjects (in the Lab and AMT pools, respectively) cooperate at least

once after already having defected in a supergame, behavior that is difficult to rationalize.

Further, 24% and 30% of subjects make this type of mistake repeatedly, in at least 3 out of

13 relevant supergames. While the frequency of such behavior diminishes with experience,

it never completely disappears.

Second, subjects commonly defect after having begun the play of a supergame by co-

operating. Specifically, we find that cooperation is significantly decreasing with the round

number – when theory suggests that, given initial cooperative play, a player should continue

cooperating for the duration of the supergame. Although the supergames have an unknown

random end, subjects appear to be engaging in what we call “end-timing”, which is gambling

on the end of a supergame, defecting in the round they guess will be the last round of the

supergame.2 This “end-timing” strategy is similar to “sniping” in auctions (see Roth and

Ockenfels (2002)), and we find that such“end-timing” behavior increases with experience.

We are able to identify these behaviors only because of our novel, single-person experimen-

tal design, and our findings offer an alternative interpretation of results from other repeated

game experiments involving matched pairs of human participants.34

2As is standard in indefinitely repeated games, we employ a constant termination probability of 1 − δ,
where δ is fixed and known to subjects. Subjects may nonetheless hold the non-Bayesian belief that the
probability of termination increases with the expected length of a supergame. Alternatively, Mengel et al.
(2022) find that past realized supergame lengths matter for subjects’ decisions in subsequent supergames.

3This “end-timing” behavior was an unexpected finding - see pre-registeration of the project on the AEA
RCT registry, https://doi.org/10.1257/rct.6318-1.0.

4Romero and Rosokha (2018) and Cooper and Kagel (2023) also report decreasing cooperation rates
in indefinitely repeated prisoner’s dilemma game experiments. However in those settings, the decrease in
cooperation may be caused by beliefs that it is the cooperation by opponents which may be about to end.
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We further find that test scores from a cognitive reflection test (CRT) predict earnings

and are negatively associated with the error of cooperating after having defected, supporting

the idea that cognitive failures and/or lack of attention are a cause of the observed devia-

tions from optimal behavior. However, we also find that individuals with higher cognitive

test scores are more likely to “end-time”, or use timing strategies. More generally, our

findings indicate that cognitive factors play a crucial role in explaining the excess coopera-

tion observed when the continuation probability δ is low, as well as the insufficient level of

cooperation observed when δ is high.

Behind these aggregate results, there is considerable heterogeneity - some subjects never

cooperate while others always do. In an effort to explain this diversity, as well as the in-

cidence of dominated choices, we propose and test a novel model of behavioral inattention.

Specifically, we hypothesize that subjects might be inattentive to the payoff-generating pro-

cess, including the continuation probabilities δ, the opponent’s strategy, and so on. First, we

adapt the approach of Gabaix (2019) and assume that there is an unknown payoff associated

with an unknown state of the world, which the agent seeks to match with her action. As

we show, this formulation of inattention is convenient as it directly implies a probit choice

rule, under which subjects will only noisily respond to expected payoffs, with the error rate

decreasing in their cognitive ability. Second, inattention theory suggests that individuals

with less precise cognition about a decision problem will therefore be more influenced by

their own default prior payoff for that decision which is typically obtained in comparable

situations outside the laboratory.

We found this simple model to be particularly useful for explaining subjects’ choices in

the initial round of a supergame, before any response by the computer opponent. Indeed,

we find that choices to cooperate by subjects with lower cognitive test scores (particularly

for the Lab sample) are correlated with their intrinsic level of patience (which we elicited

and interpret as a default prior for cooperation) even though the only fundamental factor

relevant to making cooperate/defect decisions is the continuation probability δ. In contrast,

subjects with higher test scores respond more strongly to the continuation probability δ, and
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their choices are not influenced by their own patience level. Furthermore, only the choices

of subjects with high cognitive test scores correlate with their interpretation of the structure

of the game, as represented by another elicited measure, their prediction of the aggregate

frequency with which they will choose to cooperate in the first round of all supergames, after

they were informed about the set of continuation probabilities, but before they begin play

of the games.

Experimental economists have used robot players for control purposes in a number of

studies.5 Two prior studies, by Roth and Murnighan (1978) and Murnighan and Roth

(1983), are most closely related in having a population of subjects play the repeated PD game

against a fixed strategy, as well as being the first studies to run experiments on supergames

with an uncertain end. However, subjects in those studies were not informed of the strategy

they faced or that their opponent was in fact the experimenter. Thus, subjects in those

two studies, who participated in sessions along with other subjects, faced some strategic

uncertainty.6 By contrast, in this experiment we instruct subjects that they are playing

against a programmed opponent who plays the Grim trigger strategy, and precisely what

this means. In addition, these two prior studies did not allow subjects to play multiple

supergames with the same continuation probability. Dal Bó and Fréchette (2018) argue

that such repetition is an important feature, in that more recent experiments have found

significant learning effects with experience. Learning may be less important in our setting

where there is no strategic uncertainty, but nonetheless we think it is important to give

subjects an opportunity to learn by doing. In the most similar paper, Duffy and Xie (2016)

consider play against robot players known to play the Grim trigger strategy but in an n-

5For instance, Houser and Kurzban (2002) and Johnson et al. (2002) used robot players to remove the
influence of social preferences in applications involving finitely repeated games. For surveys of experiments
combining human subjects and robot players see March (2021) and Bao et al. (2022).

6In Roth and Murnighan (1978), subjects “were told that they played a programmed opponent, but were
not told what strategy he would be using” (p.194). The programmed opponent was in fact an experimenter
playing the Tit for Tat (or “matching”) strategy. In Murnighan and Roth (1983), subjects “were told that
they would be playing a different individual in each of the three sessions but that the person’s identity
would not be revealed. Actually all of the subjects played against the experimenter who implemented either
matching [Tit for Tat] or [the] unforgiving strategy [Grim trigger]” (p.289). Roth and Murnighan (1978)
explain that such design choices were made to “control for differences in subjects’ behavior due to differences
in their opponents” (p.194).
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player Prisoner’s Dilemma game under random matching, where they vary n and the stage

game payoffs but not δ. Also related is Andreoni and Miller (1993) who study play of finitely

repeated PD games when there is a known probability that the opponent could be a robot,

tit-for-tat player (and not another human subject). They find that cooperation increases

with the probability of facing such a robot player.

Of course, there are many experiments involving play of the indefinitely repeated pris-

oner’s dilemma game, where subjects play with other subjects. For example, Proto et al.

(2019) (see also Proto et al. (2022)) also find that individual personality differences between

subjects affect play, with higher cognitive ability players being more cooperative, making

fewer mistakes and earning higher payoffs. Individual differences across subjects also help to

explain differences in the frequency of cooperative behavior as documented, e.g., by Davis

et al. (2016), Kölle et al. (2020) and Gill and Rosokha (2022).

However, in all of these studies involving human vs. human subject pairings, there is no

unique optimum policy as there is in our study. Consequently, any errors must be inferred.

For example, Proto et al. (2019) assume that playing defect directly after both players chose

to cooperate is an error in implementation. However, our experiment reveals that such

behavior may represent an attempt to guess the final round of a supergame. Further, as

noted, with our design we can also identify the dominated behavior of cooperating after one

has previously defected.

Recently and independently, Normann and Sternberg (2023) and Reverberi et al. (2021)

also carry out experiments that involve human subjects playing repeated games against

robot strategies. Their designs and research questions are very different from ours, however.

In Reverberi et al. (2021), subjects played repeated games against robot opponents but

the game and the strategy faced could change randomly over time. They then look at the

interaction between the complexity of the strategy subjects face and their cognitive ability

in determining the frequency of mistakes. Normann and Sternberg (2023) investigates three

and four firm oligopolies in which one firm’s prices are determined by an algorithm. The

question is whether such algorithmic pricing facilitates collusion. This latter study indicates
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that interactions between humans and algorithms or robots may have increasing practical

importance.

Surprisingly, only a few experiments have been conducted to assess subjects’ capacity

for dynamic optimization, despite its fundamental importance in contemporary economic

theory. These experiments, such as Noussair and Olson (1997) and Carbone and Duffy

(2014), also reveal deviations from optimal behavior. However, in our study, the problem at

hand is even simpler than in these other studies as it does not involve conditioning on some

changing, continuous state variable such as capital or wealth. Further, the trade-off between

immediate gains and future cooperation in our experiment is arguably much more intuitive.

Our methodology shares similarities with the approach taken by Charness and Levin

(2009) who experimentally demonstrate the existence of the winner’s curse phenomenon in

a single-person bidding problem. In both their study and ours, simplifying the environment

enables the identification of individual cognitive failures that would be more challenging to

detect in the original strategic settings. In our case, the individual failure pertains to the

inability to adhere to a consistent strategy within a stationary environment, resulting in

suboptimal behavior even without strategic uncertainty. One key distinction (aside from

the different game under investigation) is our utilization of a within-subject design, wherein

subjects encounter situations where cooperation is optimal and situations where it is not. In

this way, our study of repeated interactions draws upon the methodology employed by Duffy

et al. (2021) and Charness et al. (2021), who also employed experimental designs involving

contrasting environments.

2 Theory and Hypotheses

In our experiment, subjects play the indefinitely repeated prisoner’s dilemma with known

continuation probability δ against a computer playing a known fixed strategy, the Grim
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trigger strategy. The specific payoffs subjects faced in the stage game are given in (1),

X Y

X 75, 75 15,120

Y 120, 15 30, 30

(1)

where X (Y ) denote the cooperate (defect) actions.

2.1 Insights from the Theory of Repeated Games

The main theoretical prediction tested in our experiment comes from the Folk Theorem for

repeated games which states that if players are sufficiently patient, then any pure-action

profile whose payoff strictly dominates the pure-action minimax is a subgame perfect equi-

librium of the repeated game in which this action profile is played in every period (Mailath

and Samuelson, 2006, p.69). This result carries over to the situation of indefinitely repeated

games by replacing “players are sufficiently patient” with “the continuation probability is

sufficiently high”. However, here for one player, the computer, the strategy is fixed to be the

Grim trigger strategy. This converts the problem from a game with multiple equilibria to

a single person decision problem with a unique optimum policy. Assuming that agents are

risk neutral, the optimal policy is to cooperate (defect) in every round of a supergame if the

continuation probability exceeds (is below) a critical level δ∗, which for our parameterization

(1) is 0.5.

To see this, note first that since the computer is programmed to play the Grim trigger

strategy, it begins each supergame by choosing to cooperate. It continues to cooperate so

long as all previous play by the human opponent has been to cooperate as well, but after

any defection by the human opponent, the computer program switches to defect for all

remaining periods of the supergame. Thus, any human player should understand, given that

the continuation probability is fixed at δ, that the return to playing cooperate (X) forever
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is

75 + 75δ + 75δ2 + ... =
75

1− δ
. (2)

In contrast, the expected return to defecting (Y) in period one is,

120 + 30δ + 30δ2 + ... = 120 +
30δ

1− δ
. (3)

Simple calculations reveal that (2) is greater than (3) if δ > 0.5. Thus, the critical continu-

ation probability is δ∗ = 0.5.

If we relax the assumption of risk neutrality and assume that agents have CRRA prefer-

ences, then one can verify numerically that the critical value δ∗ is increasing in the degree

of risk aversion. However, the risk-aversion parameter σ which is needed in order to make

defection optimal when δ = 0.7 (the highest continuation probability used in this experi-

ment), is 1.2. Thus, very risk-averse agents should not cooperate at all, but the degree of

risk aversion necessary for this to be true is rather high.7

Note that, because the continuation probability δ is constant over time, the problem is

stationary and so, if it is optimal to cooperate in period one, it is also optimal to cooperate in

all future periods. Thus, it cannot be optimal to switch within a supergame from cooperate

to defect. Further, given the fixed Grim trigger strategy of the computer, if a player ever

defects, it is always optimal to continue defecting and not to switch back to cooperating.

This brings us to a simple hypothesis.

Hypothesis 1. Rational Play: subjects should play Cooperate/X (Defect/Y ) in every round

of every supergame when δ > (<) δ∗ = 0.5.

Three important factors present in the standard two player repeated prisoner’s dilemma

are removed in our experimental design. First, our design eliminates the problem of multiple

equilibria. When the continuation probability δ is sufficiently high for cooperation to be

supported, there is typically an infinite number of equilibria which presents subjects with

7Andersen et al. (2008) estimate the average CRRA risk-aversion parameter using controlled experiments
with field subjects in Denmark as 0.741, and with estimated standard deviation of only 0.056.
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difficult coordination problems. Given that the opponent in our design is playing the Grim

trigger strategy, the set of equilibria is reduced to just a singleton – either always cooperate,

or always defect, depending on the continuation probability δ.

Second, our design minimizes strategic uncertainty. This type of uncertainty is always

present in the standard design because subjects do not know which strategy their opponent

is following. Indeed, a simplification used by Dal Bó and Fréchette (2018), following Blonski

et al. (2011), is to suppose that strategy choices are limited to the Grim trigger strategy and

the strategy of always defecting. They show that there is a δRD > δ∗ such that, if and only

if δ > δRD, it is risk dominant to choose the Grim trigger strategy and hence to start out

cooperating. Or, in other words, although it is an equilibrium to cooperate as long as δ > δ∗,

strategic uncertainty can make it difficult to cooperate unless δ > δRD, a higher hurdle.

Third, researchers have found evidence for social preferences being important in many

experimental settings (see, e.g., Camerer (2003) and Chaudhuri (2008)). In the repeated

prisoner’s dilemma, Bernheim and Stark (1988) and Duffy and Muñoz-Garćıa (2012) show

how social preferences, in the form of positive concerns for the other player, reduce the

critical continuation probability δ∗. Thus, in conventional experiments, subjects with social

preferences could cooperate even when δ < δ∗. Further, there is a second order effect of these

social preferences. Subjects who are entirely self-interested, but who believe that other sub-

jects have social preferences and are thus more likely to cooperate, will themselves be more

cooperative than in the absence of such beliefs (see, for example, Andreoni and Samuelson

(2006)). That is, strategic uncertainty and social preferences can potentially interact with

one another. However, in our design, since the opponent that subjects face is known to

always play the Grim trigger strategy, there is a unique optimum response and no strategic

uncertainty. Further, subjects are unlikely to feel altruism toward their computer opponent,

or believe that it has altruistic feelings for them. Thus, multiple equilibria, strategic uncer-

tainty and social preferences as well as any interactions between them are minimized, if not

eliminated by our design.
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2.2 A Simple Cognitive Model

In this section, we present a simple cognitive model that can be used to explain deviations

from optimality in single-person decision problems. The optimal strategy is to cooperate if

and only if the current δ exceeds a threshold of δ∗ = 1
2
. This cognitive model tries to place

some structure on deviations from this ideal so as to better understand how they may vary

with subjects’ cognitive abilities. The model is based on ideas about attention in Gabaix

(2019) and cognitive uncertainty in Enke and Graeber (2023).8 While our model doesn’t

account for all observed deviations, it is particularly useful for explaining subjects’ choices

in the initial round of a supergame.

The model works in the following way. A decision maker is faced with a single-person

decision problem. She has a default payoff which is derived from previous experience. But

she also attempts to determine the optimal action by introspection. This is modelled by

assuming that she receives a signal, the informativeness of which depends on her cognitive

ability which varies across individuals. A further assumption is that she is in effect aware

of her cognitive limitations and will place greater weight on her default payoff the higher is

her cognitive uncertainty.

We can represent this mathematically, adapting Gabaix (2019)’s simple Gaussian frame-

work, by saying that a subject i has an initial default payoff di, which we can think of as

a typical payoff to cooperation in situations outside the laboratory. Now in the laboratory,

faced with a supergame with a specific continuation probability δ, she must try to update

the payoff to cooperation to match the particular circumstances faced. Let the true relative

return to cooperation (that is, the payoff to cooperation minus the payoff to defection) in

a repeated game with continuation probability δ be π(δ) so that π(·) is a strictly increas-

ing function such that, given our chosen parameters, π(1
2
) = 0. Then assume a subject

i, faced with a specific decision problem where the continuation probability is δ, subjec-

8We show here that our model leads to the choice of cooperation as being characterized by a probit choice
rule, which is similar to the rational inattention model of Matějka and McKay (2015) which results in a logit
choice rule.
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tively estimates π(δ) as being normally distributed with expectation di and variance σ2, i.e.,

π(δ) ∼ N(di, σ
2). That is, the subject’s initial evaluation of the return to cooperation is

influenced by her outside default relative payoff di, and this default varies across subjects

(though we assume for simplicity that σ2 is constant and common to all subjects).

However, by further cognitive introspection, she can gain a potentially more accurate

estimate of π(δ). We model this by assuming the subject i receives a noisy payoff signal si

which is equal to the true value π(δ) plus noise εi, where εi ∼ N(0, σ2
i ), so that

si(δ) = π(δ) + εi. (4)

The noisiness of the payoff signal varies across individuals with σ2
i being the variance of the

noise εi for individual i. The hypothesis is that the higher is the subject’s cognitive ability,

the lower is the variance σ2
i , and the more precise is the signal.

Following Gabaix (2019) and by standard Bayesian updating, one can derive that the

subject’s posterior estimate of π(δ) is a weighted average of the signal and the prior estimate,

Pi(π(δ)|si) = λisi(δ) + (1− λi)di (5)

where the weight λi is determined by the relative variances,

λi =
σ2

σ2 + σ2
i

.

Note that as the cognitive noise σ2
i goes to zero, the weight λi goes to one and the

posterior estimate Pi is closely clustered around the true value of the payoff π. However,

for a subject with a high σ2
i , the posterior estimate is in fact very close to the individual’s

default payoff di.

Remember that, given our definition of π as the relative payoff to cooperation, the indi-
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vidual estimates that cooperation is preferable to defection if the posterior estimate Pi > 0.9

Thus, when the subject faces a decision problem with an arbitrary continuation probability

δ, the subject’s probability of cooperation Ci is the probability that the posterior estimate

Pi is positive which is,

Ci(δ) = Pr

(
si +

1− λi

λi

di > 0

)
= Φ

(
π(δ) +

σ2
i

σ2
di

)
(6)

where Φ is the normal CDF of εi with variance σ2
i . So, the individual’s actions are given by

a probit in which the probability of cooperation is influenced both by the true payoff and

the individual specific default payoff.

Further, one can see that those individuals with higher cognitive ability, and thus with

lower cognitive noise σ2
i , will place less weight on the default payoff di and more weight on

the true payoff π. Because π(δ) is increasing in the continuation probability δ, one can draw

a similar conclusion: those with higher cognitive ability/lower noise should be more sensitive

to δ in their choice of cooperation.10

Hypothesis 2. Cognitive Ability and Cooperation:

1. for high cognitive ability (low noise) subjects the probability of cooperation will be less

influenced by their default payoff value to cooperation than for low ability (high noise)

subjects;

2. the probability of cooperation for high cognitive ability (low noise) subjects will be more

influenced by the true payoff to cooperation (and, thus, the current continuation prob-

ability δ) that they face than for low ability (high noise) subjects.

A related, natural hypothesis is that higher ability (lower noise) individuals earn higher

payoffs. This is implied by the model in that the probability of cooperation C will be closer

to its optimal value, the larger the relative weight on the true payoffs (holding the default

9We depart a little from Gabaix (2019) at this point, because he considers a continuous action space,
rather than the discrete choice of cooperation versus defection here.

10Note that, specifically, ∂C/∂δ is proportional to Φ′(·) which is decreasing in σi around the critical point
π(δ) = 0, by the properties of the normal distribution.
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payoff di constant). As we have seen, this is the case when σ2
i is lower, which is associated

with higher cognitive ability.

Hypothesis 3. Cognitive Ability and Payoffs: subjects with higher cognitive ability (lower

noise) will earn higher average payoffs than those with lower cognitive ability (higher noise).

3 Experimental Design

The main experimental task consisted of the play of 24 indefinitely repeated prisoner’s

dilemma games or “supergames” against a computer program known by subjects to play

the Grim trigger strategy. We chose to represent the stage game using a normal form payoff

matrix, where both players’ payoffs are common knowledge so that our results would be

comparable to other human versus human studies of the prisoner’s dilemma, which typi-

cally present the game in this manner. The payoff matrix for the prisoner’s dilemma stage

game was held constant across all treatment conditions and is shown in (1). Subjects were

instructed that the rows referred to their action and the columns referred to the computer

opponent’s actions and that the first number in each cell (in bold) was their payoff in points

and the second number in each cell (in italics) was the computerized opponent’s payoff in

points.

The 24 indefinitely repeated games were chosen with the following considerations. First,

we wanted subjects to have some experience with the same continuation probability, and we

also wanted to vary the continuation probability δ so as to assess the subject’s attentiveness

to the nature of the supergame they were playing. We chose to have them face 6 different

continuation probabilities 4 times each, which yields the 24 supergame total.

The set of 6 continuation probabilities, δ ∈ {0.1, 0.25, 0.33, 0.4, 0.67, 0.7}, were selected

using several criteria. First, given specification (1), the expected total theoretical payoff

averaged across this set of continuation probabilities is the same for subjects who are bi-

ased towards either always cooperating or always defecting. Second, the expected payoff
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from always following the theoretically optimal strategy relative to either of the fully bi-

ased strategies is substantial and results in a clear difference. Finally, since the threshold

probability for sustaining cooperation in the stage game (1), δ∗ = 0.5, we did not want the

simple heuristic of cooperating in 50% of the supergames to correspond to the optimal pol-

icy. Instead, optimal play would involve cooperating in just 8 of the 24 supergames (those

with δ = 0.67 or 0.7) and always defecting in the other 16 supergames. Thus, in contrast

to most existing studies, our set of continuation probabilities δ is biased towards producing

supergames with a shorter duration.

We ran the current experiment with Grim Trigger as the only programmed strategy.

While Tit-for-Tat (TFT) seems a reasonable alternative to Grim, it has the following diffi-

culties. First, as it gives a weaker punishment than Grim, cooperation is only a best response

for higher continuation probabilities (c.f., the critical continuation probability δ∗ = 0.75 for

the current parameters). We would therefore have to run supergames with a higher expected

length. Second and more importantly, TFT provides a much weaker restriction on optimal

strategies: cooperation after defection is not necessarily an error against TFT while it is

against Grim. Thus, the identification of optimal play is significantly more difficult if the

robot player plays TFT rather than Grim.

The experiment was computerized and conducted entirely online, programmed using

oTree (Chen et al. (2016)). Example screenshots are provided in Appendix C. Subjects

were always informed of the probability that the supergame (sequence) would continue with

another round. They were also reminded of the strategy (X or Y ) that their computer

opponent would play in each round (following the Grim trigger strategy and based on the

history of play in all prior rounds of the current supergame) on the same decision screen

where they made their own action choice (X or Y ) for that same round. Thus, any strategic

uncertainty should have been eliminated.

Subjects were first asked to provide demographic information. Next, they answered 7

questions on economic preferences (e.g., “Patience”, “Risk”, and so on) on an 11-point Likert

scale (taken from Falk et al. (2018)), followed by 7 cognitive reflection test (CRT7) questions
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(based on Toplak et al. (2014) and Ackerman (2014) – see Appendix C for these questions).

Subjects were then presented with written instructions regarding the 24 IRPD games

(referred to neutrally as “sequences”) they would play. Then they had to successfully com-

plete a comprehension quiz that tested their understanding of payoff outcomes, the Grim

trigger strategy that the computer program would follow in various scenarios, and how the

continuation probability affected the duration of a game (the instructions and quiz are found

in Appendix C). While the quiz was not incentivized, subjects were not allowed to move on

to the main experimental task until they had successfully answered all quiz questions.

After subjects were presented the list of all continuation probabilities δ, they were asked

to provide their belief as to the proportion of times they would choose the cooperative

action (referred to neutrally as action “X”) in each of the first rounds of the 24 sequences

(supergames) that they would face, given knowledge that they would face 4 supergames for

each of the 6 different δ values. After this “Prediction” belief was elicited, they played the 24

supergames against the computer opponent. We collected this prediction belief to measure

how much/little attention subjects paid to the experimental instructions, and indeed, we use

this prediction data later on in the evaluation of our model of inattentive behavior.11

For half the subjects, the sequence of randomly drawn continuation probabilities δ and

the realised durations (in parentheses) for each of the 24 supergames (4 supergames of each

of the 6 δ values) were as follows:12 0.67 (4), 0.33 (1), 0.4 (2), 0.25 (1), 0.7 (3), 0.33 (2), 0.7

(5), 0.4 (1), 0.67 (2), 0.1 (1), 0.25 (1), 0.1 (1), 0.25 (2), 0.1 (1), 0.4 (1), 0.67 (4), 0.33 (2),

0.25 (1), 0.7 (2), 0.4 (3), 0.67 (2), 0.1 (1), 0.7 (4), 0.33 (1), resulting in a total of 48 decisions

(see Table A2 in Appendix A). For the other half of subjects, the order of these supergames

was reversed.13

Subjects were instructed that at the end of the session, six supergames would be chosen

11While one could argue that such elicitation may anchor subsequent behavior, as we will show later,
consistently with the inattention model, this “Prediction” variable is correlated with the behavior of only a
certain subset of subjects.

12These supergame lengths were drawn using a random number generator. Subjects were instructed of
this procedure. To reduce noise across subjects, we used the same supergame lengths across all subjects.

13See Appendix B.1 for a discussion of order effects.
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from all 24 played, one from each of the six different values for δ.

3.1 Subject Pools and Experimental Earnings

We recruited two gender-balanced subject samples, university students (Lab) and Mturkers

(AMT), and we used the same program for both subject groups.

The first pool (henceforth, the Lab subjects) involved 100 undergraduate students, 52%

female, recruited using Sona system from the Experimental Social Science subject pool at

the University of California, Irvine. The mean age of these subjects was 21.5 years with

a range of 18-34. All subjects were university students from a diverse set of majors, with

36 subjects reported majoring in engineering, 25 in social sciences, 21 in life sciences, 9 in

physical sciences, 7 in education, 5 in arts and humanities, and 3 in business studies (double

majors double counted).

The Lab subjects were instructed that their total point earnings from the six randomly

chosen supergames (one for each δ value) would be multiplied by USD $0.01 and this amount

would comprise their monetary earnings from the repeated PD games. Subjects were guar-

anteed $7 for showing up and completing the study. The student subjects’ total earnings

averaged $17.90 for a 1 hour experiment.14

We also recruited 149 subjects from Amazon Mechanical Turk (AMT) who resided in

the United States (henceforth the AMT subjects). There was an equal number of AMT

subjects who reported to be males and females; one subject preferred not to report their

gender (coded as 0.5). The age of the AMT subjects is dramatically different from that of

the Lab subjects, with a mean age of 39.8 years and a range of 21-75. (See Table B3 for a

formal comparison of the two subject pools.) The AMT subjects also had more dispersed

levels of educational attainment including 2 subjects who reported not having a high school

diploma.

14Following the 24 repeated PD games, the Lab subjects (and only the Lab subjects) were randomly paired
to participate in another two-player task which we do not report on in this paper, and where the subjects
could earn an additional $1.00-1.70 payment.
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Like the Lab sample, the AMT subjects were instructed that at the end of the study, their

total point earnings from the six randomly chosen supergames (one for each continuation

probability δ value) would be multiplied by USD $0.01 and that this amount would comprise

their monetary earnings from the repeated PD games. Thus, the Lab and AMT subjects

faced the same variable earnings potential in the repeated PD games of the study, which

facilitates comparisons. However, the fixed show-up payments to the Lab and the AMT

subjects were $7 and $1, respectively. This difference in show-up payments reflects different

payment norms in the recruitment of the conventional pool of laboratory subjects versus

online workforces such as the AMT sample – see, e.g., Rand (2012). The AMT subjects’

total earnings averaged $10.37 for a 1 hour experiment.

Exactly half of the Lab subjects (50/100, or in 4 out of 8 sessions) and almost half of the

AMT subjects (74/149) faced the “long” order (where the first supergame involved δ = 0.67),

and the remaining subjects faced the reverse order (starting with δ = 0.33).

4 Results

In this section we report on the main results of our experiment, which we present as a number

of different findings. For each finding, we analyze and report on data from the Lab and AMT

samples separately.

The design for both subject populations required completion of 24 supergames each

involving the play of at least 1 round. Given the randomization, 11 of these 24 supergames

ended after 1 round. The remaining 13 supergames lasted 2-5 rounds. Thus, each subject

made 24 first round choices and (by chance) 24 non-first round choices for a total of 48

choices. (see Table A2). Given the parameters of our design, the theoretically optimal

strategy is to cooperate in all rounds of the 8 supergames where δ = {0.67, 0.7} (and thus,

a total of 26 choices to cooperate), and to defect in all rounds of the other 16 supergames.
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4.1 The Headline Result

We will start with our main result. As Figure 1 shows, only a small fraction of subjects behave

according to the standard game-theoretic predictions (see Hypothesis 1). Specifically, only 2

subjects out of 100 (or 2%) in the Lab student sample and only 1 subject out of 149 (or 0.7%)

in the AMT sample behaved perfectly as predicted. Furthermore, in both subject pools, no

more than 5% of subjects made no more than 3 mistakes out of 48 total choices (i.e., at least

45 optimal choices out of 48, or 93.75% of choices). And about 10% in each sample (10% in

Lab, 10.7% in AMT) made at least 42 optimal choices out of 48 (or 87.5% of all choices).

(See Appendix B.2 for the juxtaposition with the per-subject counts of cooperative choices).

Figure 1: Left: Frequency distributions and kernel densities of per-subject counts of optimal choices
across all supergames (48 decisions total): Lab (N=100) vs. AMT (N=149) subjects. Right: Cumulative
distributions of optimal choice counts for both the Lab and AMT samples in the same graph.

Finding 1. Across all 48 decisions in all 24 supergames, the fraction of subjects who behaved

according to standard game-theoretic predictions (either perfectly or near-perfectly) does not

exceed 5%. About 90% in both samples made fewer than 42 theoretically optimal choices out

of 48 (87.5%).

Interestingly, while the Lab subjects behaved significantly more theoretically optimally

than the AMT subjects (using a Kolmogorov-Smirnov one-sided test D = 0.1799, p = 0.021),

the differences between samples are less pronounced among subjects with greater tendencies

to make theoretically optimal choices as revealed in Figure 1.
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In what follows we will attempt to decompose the observed deviations from the standard

game-theoretic predictions.

4.2 Response to the Continuation Probability δ in the First Rounds

Following the established tradition, we look at subjects’ response to the continuation prob-

ability δ in the first rounds of all supergames.

As the leftmost group of bars in the left panel of Figure 2 reveals, cooperation is strongly

increasing with the continuation probability δ. This finding is confirmed by mixed-effects

probit regression results reported in Table 3, specifications (1)-(2). First round cooperation

rates are as low as 9.5% for the Lab subjects and 25.5% for the AMT subjects when δ = 0.1,

and as high as 76.25% for the Lab subjects and 73.83% for the AMT subjects when δ = 0.7.

For the Lab subjects, this responsiveness is much greater than is observed in standard subject

versus subject experiments.15 In contrast, the AMT subjects are less responsive, particularly

for δ = 0.1.

However, as the right panel of that Figure 2 shows, the theory of the first-round behaviour

performs worse when the continuation probabilities are intermediate. Specifically, subjects

tend to defect when δ is relatively low (δ ∈ {0.1, 0.25}) and cooperate when δ is relatively

high (δ ∈ {0.67, 0.7}) - as predicted by the theory. However, they cooperate excessively when

δ ∈ {0.33, 0.4}, despite these values are below the critical value of δ∗ = 0.5 (which was, of

course, unknown to the subjects). This excessive cooperation was pronounced particularly

at δ = 0.4 where fewer than half of subjects in both pools choose to cooperate suboptimally.

Note that such excessive cooperation cannot be explained by risk aversion - because, as

noted earlier in Section 2.1, risk aversion should push subjects towards excessive defection

instead. Rather, such apparent mistakes might be better explained by the behavioral inat-

15Using the probit estimates in (Dal Bó and Fréchette, 2018, p.66, Table 4), we calculate that in subject-
to-subject experiments that used our continuation probabilities, cooperation would be predicted to vary only
from 45.5% (when δ = 0.1) to 56% (when δ = 0.7) among inexperienced subjects. Even after 25 supergames,
cooperation in such experiments is predicted only to vary from 16.1% (δ = 0.1) to 62.7% (δ = 0.7).
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tention theory described in Section 2.2. In stochastic choice models such as this (or in simple

Probit or Logit), the rate of optimal choice is lowest when the difference in expected payoffs

is small and thus here is expected to be lowest around the critical value of δ∗ = 0.5. This is

indeed what we see in the right panel of Figure 2.16

Figure 2: Patterns of optimality, cooperation and defection: Left panel: Average per-subject counts of
cooperation versus defection, split by continuation probability δ (the first row of the horizontal axis scale)
and by the round number of a supergame (the second row of the horizontal axis scale). Starting from round
2, a distinction is made between undominated cooperation and dominated cooperation after defection (CaD).
The later rounds were never reached for some δ values (see Table A2). Right panel: population shares of
theoretically optimal choices in the first rounds of all supergames, split by continuation probability δ (see
also the leftmost set of bars in the left panel). (Lab: 100 subjects, 2,400 supergames, AMT: 149 subjects,
3,576 supergames).

Finding 2. For every round of a supergame, the rate of cooperation (defection) tends to

increase (decrease) with the continuation probability δ. The Lab subjects are more responsive

to the continuation probability δ than are the AMT subjects. However, there is a pronounced

tendency towards excessive cooperation at the “intermediate” continuation probabilities δ ∈

{0.33, 0.4}.

16Note that, due to non-linearity of payoffs, the mistake rate predicted by stochastic choice models will
be asymmetric around the critical δ∗ = 0.5, with optimal behaviour being more frequent at δ = 0.67 than
at δ = 0.33.
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4.3 Cooperation and Optimality in the First Rounds of Each Su-

pergame

Following the previous literature, we look closely at what subjects do in the first round of each

supergame (before any knowledge of the opponent’s actual play). Given the parameters of

our design, the theoretically optimal strategy involves choosing to cooperate in all rounds of

the 8 supergames where continuation probability δ = {0.67, 0.7}, and to defect in all rounds

of the other 16 supergames. Thus, perfect theoretically optimal behavior involves exactly

8 counts of cooperation across all first rounds of 24 supergames, and exactly 18 counts of

cooperation in the subsequent 24 decisions, amounting to exactly 26 counts of cooperation

overall, out of 48 choices (see Figure 2, also Table A2). That is, by design, the theoretically

optimal choices should be skewed towards defection initially, since most δs are less than 0.5

and then skewed towards cooperation later on, as it is in the longer games where cooperation

is the optimal policy.

While the earlier Figure 1 showed the behavior of subjects across all 24 supergames,

Figure 3 shows similar distributions, but only for the first rounds across all 24 supergames.

As it can be seen, only a small fraction of subjects behave according to the equilibrium

predictions in the first rounds across all 24 supergames. Specifically, only 2 subjects out of

100 (2% of subjects) in the Lab sample and only 5 subjects out of 149 (3.36% of subjects) in

the AMT sample behaved perfectly as predicted for round 1. Furthermore, in both subject

pools, no more than 17% of subjects made no more than 3 mistakes out of 24 first round

choices (i.e., at least 21 optimal choices out of 24, or 87.5% of choices). The Lab subjects

behaved significantly more optimally than the AMT subjects (Kolmogorov-Smirnov one-

sided test D = 0.2197, p = 0.003), yet this difference is less pronounced at the upper end of

optimal choices.

Finding 3. For both subject pools, in the first rounds, subjects cooperate excessively – on

average by 44.1% in the Lab sample and by 55.9% in the AMT sample – compared to the

theoretical optimum.
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Figure 3: Left: Frequency distributions and kernel densities of per-subject counts of optimal choices in
first round choices across all 24 supergames (24 decisions total): Lab (N=100) vs. AMT (N=149) subjects.
Right: Both cumulative distributions on the same graph.

4.4 Strategic Error of Cooperating after Defection (CaD)

Our design allows us to explore what happens beyond the first rounds of the supergames.

Given our parameterization and random realizations, 11 supergames finished after the first

round, and 13 supergames continued beyond (see Tables A1 and A2 in the Appendix).

Since the robot opponent was programmed to play the Grim trigger strategy, a defection

at any time in a given supergame would trigger subsequent defection by the automated

opponent in all remaining rounds. Subjects were quizzed on their understanding of the grim

trigger strategy prior to play of the games. Further, subjects were explicitly informed of the

strategy the robot would play in each round before making a choice between cooperate or

defect. Therefore, choosing cooperation after defecting earlier within the same supergame

(CaD) is dominated for any δ, and is a strategic error. In the right panel of Figure 2 such

suboptimal cooperation is distinguished from un-dominated/non-erroneous cooperation in

the cooperation counts. Among the relevant observations (i.e., in the 13 supergames lasting

more than one round), the share of CaD errors is 7.57% for the Lab subjects and 11.47% for

the AMT subjects.

As Figure 4 (left) shows, slightly less than half of subjects (48% for Lab and 45.64%

for AMT) never made the strategic error of CaD, and 20% of the Lab subjects and 28.86%
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Figure 4: Strategic errors of dominated cooperation after defection (CaD) in 13 relevant supergames (i.e.,
those lasting longer than one round). Left: Distribution of per-subject counts of instances of cooperation
after defection (CaD). Right: Per-subject counts of CaD instances vs. count of supergames with those
instances. Bubble size is proportional to the share of subjects (100 Lab subjects, 149 AMT subjects).

of the AMT subjects made at least 4 dominated CaD choices. Some such choices could be

intentional, e.g., due to a desire to verify the computer opponent’s behavior.17 Others could

be due to a genuine “trembling hand” error of accidentally pressing the “defect” button

without noticing it. In either case, an attentive payoff-maximizing subject would likely

refrain from repeatedly making dominated choices in multiple supergames.18

Given the possibility of trembling hand behavior, we consider the number of supergames

where the strategic error of CaD happens at least once. Figure 4 (right) compares the total

count of strategic errors (CaD) per subject (vertical axis) versus the count of supergames

where such errors were made (horizontal axis). While most strategic errors were made only

once in a supergame (as revealed by the bubbles located on the diagonal in the figure), the

extent of strategic errors is substantial, with 24% of the Lab subjects and 29.53% of the

AMT subjects making errors in at least 3 out of the 13 relevant supergames (those lasting

more than one round), suggesting that some of the dominated CaD behavior could instead

be due to inattention or a lack of strategic understanding of the game (though recall that

17Recall, however, that the computer program’s action choice of X or Y for the current round, based on
the history of play and following the Grim trigger strategy, was shown to subjects on their decision screen
in advance of their entering a choice for that same round so this uncertainty should have been minimized.

18Kloosterman (2020) also finds that subjects in repeated, human vs. human prisoner’s dilemma games,
can surprisingly return to cooperation after defection.
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subjects had to pass a quiz before proceeding to the play). While the prevalence of CaD

errors is relatively small, it nevertheless complicates the interpretation of the deviations from

the theoretically optimal behavior.

Finding 4. A majority of subjects (52% in Lab and 54.36% in AMT) made at least one

strategic error of choosing to cooperate after defecting (CaD) earlier within the same su-

pergame, i.e., after triggering a “grim” response. Overall, suboptimal, excessive cooperation

amounts to 7.58% for Lab and 11.47% for AMT of the relevant observations, with 24% of

the Lab subjects and 29.53% of the AMT subjects making dominated choices in at least 3 out

of 13 relevant supergames (i.e., those lasting longer than one round).

4.5 Overall Point Totals

In this section we focus on total awarded points, which is the sum of points earned over

all 48 decisions. This serves as a theoretical measure of the payoff consequences resulting

from subjects’ behavior. First, recall that the theoretically optimal policy of cooperating

(defecting) in every round of every supergame when δ > (<)0.5 (see Hypothesis 1) is derived

ex ante, before the lengths of each supergame are realised. One can calculate that, given the

realization of random supergame terminations, the ex ante optimal play would result in an

overall total of 4,050 points ex post.19

Figure 5 reports on subjects’ point totals. As this figure shows, empirically overall point

totals range from 3, 285 to 4, 185 points for the Lab sample and from 3, 195 to 4, 185 for the

AMT sample with a mean (st. dev.) of 3,835.05 (203.38) for Lab and 3,766.21 (240.58) for

AMT. Note that the lowest ex post point total that is achievable here is quite substantial

at 2,745 points.20 This ex post lower bound can be seen as the “fixed” component of the

19The theoretically optimal point total of 4,050 points is calculated as follows: A player earns 75 points in
each round of supergames with δ ∈ {0.67, 0.7} (26 decisions) plus 120 points in the first rounds (16 decisions)
and 30 points in the subsequent rounds (6 decisions) of the supergames with δ ∈ {0.1, 0.25, 0.33, 0.4}.

20This ex post theoretical minimum of 2,745 points arises from making the strategic mistake of cooperating
after defecting and is calculated as follows. In the 11 supergames lasting only one round one achieves the
lowest payoff of 75 by cooperating (11 decisions). But in the supergames lasting longer than one round, the
lowest payoff is obtained by defecting in the first round and earning 120 (13 decisions) and earning only 15
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overall point total, and any overall point total in excess of that amount can be seen as the

“variable” component. It is easy to see that, on average, the Lab subjects earned only 83.5%

and the AMT subjects only 78.3% of the “variable” component of the overall point totals

that could be achieved by following the theoretically optimal policy.

As Figure 5 further reveals, some Lab subjects earned as little as 41.4% and some AMT

subjects as little as 33.7% of the “variable” component which could be achieved by following

the optimal policy. Furthermore, 16% of the Lab subjects and 28.86% of the AMT subjects

could have increased their total point earnings to the level of 3,600 points by simply choosing

either to always cooperate (All-C) or to always defect (All-D),21 which is 65.5% of the

“variable” component that could be achieved by following the theoretically optimal policy.

This observation suggests that, among other deviations, strategic errors (CaD) reduce overall

point totals.

As Figure 5 further shows, the mode for the Lab sample is at the theoretically optimal

point total of 4,050, and this point total is also relatively frequent among the AMT subjects.

Yet, strikingly, the maximum point total is still higher in both samples. Overall, 19% of the

Lab subjects and 16.11% of the AMT subjects were able to achieve at least the theoretically

optimal point value of 4,050, despite only two subjects in the Lab sample and one subject in

the AMT sample actually behaving in a way that was fully theoretically optimal (in all 48

choices). Thus, given the random realization of the supergames, some subjects were able to

achieve at least as much as the theoretically optimal point total despite pursuing strategies

that were not theoretically optimal. A potential explanation for this mystery is provided in

the next Section 4.6.

Finding 5. The Lab subjects earned only 83.5% and the AMT subjects only 78.3% of what

could be achieved relative to the ex post theoretical minimum by following the ex ante opti-

mal policy. 16% of the Lab subjects and 28.86% of the AMT subjects achieved lower point

from cooperating thereafter (24 decisions).
21Recall that the expected payoffs to these two extremely biased strategies are the same by design. Ex

post, by cooperating always, in every round of every supergame, one would earn 75 in each of 48 decisions;
and by defecting always one would earn 120 in all first rounds (24 decisions) and 30 thereafter (24 decisions).
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Figure 5: Distribution of overall point totals, or the sum of point earnings across all 48 decisions. Ex
post theoretical point total from following the ex ante optimal policy is 4,050, while the ex post theoretical
minimum and (omniscient) maximum point totals are 2,745 and 4,680, respectively.

totals than what they could have achieved by either always cooperating or always defecting.

Importantly, 17% of the Lab subjects and 15.43% of the AMT subjects were able to achieve

point totals at least as high as the theoretically optimal point totals – without always following

the theoretically optimal strategy.

4.6 “End-Timing” (DaC)

Note that in our study, when playing against a robot that uses the Grim trigger strategy,

one could potentially earn a higher total of 4,680 points as compared with the theoretically

optimal strategy which earns only 4,050 points. Such a higher point total can only be

achieved by knowing exactly when each supergame would end and using a perfect “end-

timing” strategy. This omniscient end-timing strategy involves cooperating in all rounds

before the final round of a supergame, and then defecting in the final round to earn the

temptation payoff without triggering the grim punishment. Since subjects in our study did
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not know when a supergame would end, they could not execute this end-timing strategy

perfectly.22 Nevertheless, some subjects appear to be pursuing this type of strategy. While

we refer to this as “end-timing” behavior, that phrasing is short-hand for succumbing to

the “gambler’s fallacy” – the mistaken belief that the probability of an event occurring is

lowered when that event has occurred more frequently in the recent past, even though the

probability remains the same (see, e.g., Cowan (1969)). While our subjects did not know

when a supergame would end, they may have formed expectations about the possibility of

it ending, leading to the use of this timing strategy.

We formally define the “end-timing” strategy as consistently defecting after the earlier

play of cooperation in the same supergame, or DaC for short. Such an end-timing strategy

involves riding a cooperative wave and gambling on its end. Thus this end-timing strategy is

risky as it is most profitable if the first defection happens in the final round of the supergame.

It is thus possible that subjects employ a δ-specific “end-timing” strategy, believing that

the supergame is highly likely to end at its expected length, even though the continuation

probability δ in reality does not change. Note, however, that risk attitudes of subjects cannot

in themselves explain this behavior. As noted earlier, under CRRA preferences the threshold

δ∗ is increasing in risk aversion, so that risk averse agents would be less likely to cooperate

in our experiment. However, such risk averse agents would not wait to defect as in the end-

timing that we observe, but would instead begin defecting from the first round. 23 Further,

given that in reality the stopping probability is constant, a rational highly risk-averse subject

should defect from the beginning of a supergame or not at all.24

Indeed, Figure 6 (left) shows that, for some continuation probabilities δ, some subjects

22Note that in both subject pools the maximum realised overall point total was 4,185 points – which is far
below the (omniscient) maximum 4,680 points from perfect play of the end-timing strategy. This suggests
that there was no information exchange/leakage across subject in our experiment, and/or such potential
information was not used in a payoff-maximizing fashion.

23Dal Bó and Fréchette (2018) report that existing experiments find no clear link between risk aversion
and cooperation.

24Suppose a subject believes that the continuation probability is δ in the initial rounds but (incorrectly)
believes that the experimenter will stop the supergame with probability one at some final round T . Then
one can calculate that, when δ > δ∗ = 1

2 , the optimal strategy is to cooperate in every round up to round T
but defect at round T .
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Figure 6: Patterns of cooperation and defection. Left: Average per-subject counts of first defection within a
supergame by δ and round number. Right: The population shares of the behavioral patterns in a supergame,
by δ value. By construction, the four strategies, CaD, DaC, All-D and All-C are mutually exclusive. (Lab:
100 subjects, 2,400 supergames; AMT: 149 subjects, 3,576 supergames.)

defect for the first time (thus triggering subsequent defection by the automated opponent)

later in the sequence, rather than in the first round (if ever) as predicted by the theory.25

Furthermore, as Figure 6 (right) shows, the shares of the supergames where subjects

always defected (All-D) are declining as the continuation probability δ increases. However,

this does not translate into an increase in the prevalence of the always cooperate (All-C)

strategy as the continuation probability δ increases. Instead, as δ (and thus the expected

duration of a supergame) increases, both the prevalence of strategic errors (CaD) and “end-

timing” (DaC) strategies increase. Note that interpreting All-C strategies is complicated by

attrition, as a subject might have intended to time their defection, but a supergame ended

earlier than expected. Similarly, All-D strategies in low δ supergames may not only be due

to theoretically optimal behavior, but might also be observationally equivalent to the use of

an end-timing strategy.

Indeed, if the behavior were theoretically optimal, then in the mixed-effects probit re-

gressions reported on in Table 3 (specifications 1-2), the coefficients on the continuation

probabilities δ = {0.25, 0.33, 0.4} would have been insignificantly different from the baseline

25Note that the expected duration of a sequence, 1
1−δ , as calculated from the perspective of round 1, as

well as the average realized final round of a sequence, are both increasing with δ – see Table A2. Mengel
et al. (2022) report that subjects respond to the realized supergame length, and are more likely to cooperate
when they have experienced supergames of longer duration.
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of δ = 0.1, and would only be significantly different for δ = {0.67, 0.7}. In addition, the

round dummies would all be insignificantly different from the baseline of the first round.

Instead, as Table 3 reveals, subjects’ tendency to choose cooperation increases with δ, but

decreases significantly with the round number, which is consistent with the use of the end-

timing strategy.

Figure 7: Left: Distribution of per-subject counts of supergames with “end-timing” (DaC), among 13
relevant supergames. Right: Per-subject counts of supergames with strategic errors (CaD) vs. supergames
with end-timing (DaC). Bubble size is proportional to the share of subjects (100 Lab subjects, 149 AMT
subjects)

The left panel of Figure 7 shows that only 22% of the Lab subjects and 30.9% of the

AMT subjects never switched from cooperation to defection within the same supergame

(CaD), i.e., never engaged in behavior consistent potentially with the end-timing strategy.

However, as the right panel of Figure 7 shows, some potential end-timing behavior may

be unintentional, amounting to “mistakes” by subjects who make frequent strategic errors

(CaD), i.e., those with higher counts on the horizontal axis of the scatterplots. Yet a few

subjects who never or almost never commit strategic errors (CaD) (those closer to zero on

the horizontal axis indicating CaD errors) appear to be engaged in end-timing behavior.

Finding 6. Some subjects appear to use a non-optimal “end-timing” strategy where they

attempt to time their first defection to the unknown final round of a supergame. Following

this risky strategy enabled a few subjects by chance, to earn more than the theoretically optimal

payoff.
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4.7 Learning Over Time

In this section, we explore whether subjects acquire the ability to play the theoretically op-

timal strategy and/or make fewer errors such as dominated CaD as they gain experience.

As Table 1 shows, subjects in both pools change their behavior in the second half of the

experiment (in the last 12 supergames) relative to the first half (first 12 supergames). Specif-

ically, they make fewer dominated CaD errors26 and cooperate less over time. Interestingly,

over time, the AMT subjects move towards the theoretically optimal behavior and earn

marginally more total points. However, both subject pools exhibit a pronounced increase in

their end-timing activity (DaC), and, overall, the improvement in the frequency of optimal

play, while significant, is not very large, rising from 64% (59%) in the first half to just 66%

(62%) in the second half for the Lab (AMT) samples.

Learning
1st Half 2nd Half

t-stat df pvalue
Mean StDev Mean StDev

Lab Cooperate 0.52 0.50 0.48 0.50 2.63 4798 0.01***
Per Round Optimal 0.64 0.48 0.66 0.47 -1.72 4798 0.09*
(N=4,800) CaD 0.05 0.22 0.03 0.16 4.24 4798 0.00***†

Optimal (All-D+All-C) 0.59 0.49 0.62 0.49 -1.33 2398 0.18
Lab Optimal All-D 0.42 0.49 0.44 0.50 -1.44 2398 0.15

Optimal All-C 0.17 0.38 0.17 0.38 0.16 2398 0.87
Per Supergame Suboptimal All-D 0.04 0.20 0.05 0.22 -1.15 2398 0.25

Suboptimal All-C 0.19 0.39 0.15 0.36 2.55 2398 0.01**
(N=2,400) CaD 0.08 0.27 0.04 0.20 3.89 2398 0.00***†

DaC (End-Time) 0.10 0.30 0.14 0.35 -3.11 2398 0.00***
Point Total 158.20 71.33 161.40 71.46 -1.08 2398 0.28

AMT Cooperate 0.57 0.50 0.54 0.50 2.07 7150 0.04**
Per Round Optimal 0.59 0.49 0.62 0.49 -2.51 7150 0.01**
(N=7,152) CaD 0.07 0.25 0.05 0.22 3.05 7150 0.00***

Optimal (All-D+All-C) 0.52 0.50 0.57 0.50 -2.55 3574 0.01**
AMT Optimal All-D 0.35 0.48 0.40 0.49 -2.87 3574 0.00***

Optimal All-C 0.17 0.38 0.17 0.38 0.31 3574 0.76
Per Supergame Suboptimal All-D 0.04 0.20 0.04 0.20 0.17 3574 0.87

Suboptimal All-C 0.25 0.44 0.21 0.41 3.38 3574 0.00***†
(N=3,576) CaD 0.10 0.30 0.07 0.25 3.54 3574 0.00***†

DaC (End-Time) 0.08 0.27 0.12 0.32 -3.96 3574 0.00***†
Point Total 154.70 71.72 159.20 72.50 -1.85 3574 0.06*

Table 1: The effect of learning, first half (first 12 sequences) vs second half (last 12 sequences): Means and
standard deviations, and t-tests of differences between the two halves. DF stands for degrees of freedom or
Satterthwaite’s degrees of freedom in case of unequal variances for Age and Quiz Errors. Pvalue stands for
Pr(|T | > |t|) = 0. (Significance * 0.10 ** 0.05 *** 0.01 ***† 0.001.)

Finding 7. Over time, subjects learn to commit fewer dominated CaD errors, and move

26As Figure B3 in the Appendix shows, while the incidence of dominated CaD errors decline over time,
they do not disappear entirely, with the CaD errors comprising 4% for the Lab subjects and 7% for the AMT
subjects across the supergames in the second half of play.
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closer to theoretically optimal behavior. However, the play of dominated CaD does not dis-

appear over time, and, moreover, the frequency with which subjects engage in end-timing

behavior (DaC) increases over time.

4.8 Classifying the Patterns of Play Within Each Supergame

The complex pattern of non-constant intra-supergame play (discussed earlier in Section 4.6)

highlights the difficulties in interpreting each type of play in isolation, calling for a more

holistic approach. Indeed, our two design innovations allow us to interpret each subject’s

entire play across all supergames. It turns out that we can classify subjects’ patterns of

play within each supergame into 6 mutually exclusive types: optimal All-C, optimal All-D,

suboptimal All-C, suboptimal All-D, strategic errors (CaD), and end-timing (DaC).27

As Figure 8 shows, there is no prevalent pattern to subjects’ play. The two (out of 100)

Lab subjects and eight (out of 149) AMT subjects who always cooperated are represented

by dark green and light green bars meeting at the solid red line on the far left side of each

panel. Single subjects in each pool who always defected are represented by dark blue and

light blue bars meeting at the solid red line on the far right side of each panel. The two Lab

subjects and the one AMT subject who always made perfect, theoretically optimal choices

are represented by dark green and dark blue bars meeting at the solid red line, towards the

right hand side end of each panel.

Furthermore, as Figure 8 shows, both types of non-constant play (CaD and DaC) as

well as both optimal and suboptimal constant play (All-C and All-D) all tend to co-exist in

subjects’ patterns of play.

Finding 8. There is a notable heterogeneity in subjects’ choices to cooperate or defect,

without any representative pattern. Only two out of 100 Lab subjects and just one out of 149

AMT subjects always followed the theoretically optimal strategy. Two (one) Lab subjects and

27Note that if the robot opponent was programmed to play Tit-for-Tat instead, the number of possible
patterns of play would increase to at least eight, further complicating the interpretation and analysis of
subject behavior.
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Figure 8: Subject heterogeneity in patterns of choices within supergames, out of 24 supergames, by
subject, ordered by the count of supergames with (combined optimal and sub-optimal) All-Defect choices
(100 Lab subjects and 149 AMT subjects). The theoretically optimal strategy involves always defecting in 16
supergames and always cooperating in the remaining 8 supergames (represented by the solid red horizontal
line).

eight (one) AMT subjects are fully biased towards cooperation (defection). The rest of the

subjects appear to pursue strategies that are neither theoretically optimal nor purely biased.

5 Individual Differences and Behavioral Inattention

In this section we provide an analysis of the individual determinants of subjects’ behavior.
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5.1 The Effect of Cognitive Abilities

As noted earlier, we asked all of our subjects to answer 7 cognitive reflection test (CRT7)

questions as part of the study, and we use subjects’ total score on this 7-item test as a

measure of their reflective cognitive styles. The mean (st. dev.) of the CRT7 score was 3.78

(2.26) for the Lab subjects and 3.58 (2.17) for the AMT subjects, with a median of 4 for

both (see Figure B5, left panel). In terms of CRT7 scores, there is no significant difference

between the two subjects pools (two-sided t-test= 0.72, p = 0.48).

Overall Point Totals Dominated(CaD) Theor.Optimal End-Time(DaC) Th.Opt.+End-T(DaC)
(OLS) (Tobit, ll=0) (Tobit, ul=24) (Tobit, ll=0) (Tobit, ul=24)

(1) Lab (2) AMT (3) Lab (4) AMT (5) Lab (6) AMT (7) Lab (8) AMT (9) Lab (10) AMT
CRT7 26.37*** 61.74***† -0.51*** -0.94***† 0.32* 0.98***† 0.11 0.04 0.46** 1.06***†

(9.32) (7.05) (0.16) (0.17) (0.19) (0.16) (0.14) (0.12) (0.19) (0.16)
Female -65.92 -81.49** 1.40** 2.15*** 0.09 -1.05 -0.88 0.51 -0.52 -0.74

(41.98) (31.99) (0.69) (0.70) (0.80) (0.71) (0.59) (0.53) (0.82) (0.74)
Age -4.85 -0.67 0.12 0.02 0.25 0.05 -0.24* -0.04 0.07 0.02

(9.17) (1.50) (0.14) (0.03) (0.18) (0.04) (0.14) (0.03) (0.18) (0.04)
Order Long 57.11 -44.90 -0.22 -0.30 0.87 -1.16 0.34 -0.25 1.01 -1.42*

(38.27) (32.17) (0.68) (0.73) (0.79) (0.72) (0.59) (0.53) (0.78) (0.74)
Constant 3845.38***† 3635.03***† -1.03 2.11 7.46* 8.58***† 7.47** 3.00** 13.78*** 11.82***†

(212.24) (70.31) (3.06) (1.60) (3.95) (1.59) (3.09) (1.18) (4.19) (1.60)
F 5.47 25.26 4.52 10.11 1.44 14.89 1.80 0.76 2.72 15.18
p 0.00 0.00 0.00 0.00 0.23 0.00 0.14 0.56 0.03 0.00
Nobs. 100 149 100 149 100 149 100 149 100 149

Table 2: Individual differences in rationality. (Significance: * 0.10 ** 0.05 *** 0.01 ***† 0.001).

As Table 2 shows, the CRT7 score predicts the rational aspects of subjects’ behavior

rather well. Specifically, it is positively correlated with their overall point totals (specifica-

tions 1-2) and negatively with a count of the number of supergames with strategic errors

(dominated CaD) (specifications 3-4). Interestingly, for the AMT subjects only, the count of

theoretically optimal choices (specification 6) is positively correlated with the CRT7 score.

(For the Lab subjects in specification 5, the relationship is marginal, but the overall fit

represented by the F statistics, is poor.) For both subject pools, the count of apparent

end-timing behavior (DaC) (specifications 7-8) is not correlated with the CRT7 score, or

with any other characteristic. Note however, that by construction, these last two counts

(theoretically optimal and DaC) are mutually exclusive. However. as discussed earlier in

Section 4.6, some choices which are consistent with following the theoretically optimal strat-

egy are also observationally equivalent to an end-timing strategy. Thus, it is not a surprise

34



that the combined count of whether subjects follow either the theoretically optimal strategy

(which involves either All-D for δ < 0.5 or All-C for δ > 0.5), or engage in end-timing (which

involves consistent defection after cooperation, or DaC) is positively correlated with the

CRT7 score for both subject pools (see specifications 9-10).

In contrast, the CRT7 score on its own has no effect on the choice to cooperate which

can be seen in specifications 3-4 of Table 3, which contains average marginals (dy/dx) from

mixed-effects probit regressions of the choice to cooperate or defect in all 48 rounds of the

prisoners’ dilemma game, controlling for demographics, CRT7 score, and other personal

characteristics.28,29

Finding 9. Subjects with higher CRT7 scores are more likely to behave in a payoff-maximizing

fashion, and engage in end-timing behavior.

5.2 Behavioral Inattention

Recall the main hypotheses of the simple inattention theory presented in Section 2.2. In

deciding whether to cooperate or defect, individuals with lower cognitive ability (lower at-

tention) will tend to be influenced more by their default values. In contrast, those with

higher cognitive ability (higher attention) will tend to be influenced by the structure of the

game.

To explore these hypotheses, we split our samples in two, according to the median CRT7

score (equal to 4 in both samples). Table 3 presents average marginals (dy/dx) from mixed-

effects probit regressions of the choice to cooperate or defect in all 48 rounds of the prisoners’

dilemma game (for odds, see Table B5 in the Appendix). As specifications 7-8 show, subjects

with relatively high proxies for cognitive ability (CRT7>4), tend to respond more strongly

28Note that Table 3 presents marginals, rather than odds, so that the same explanatory variable in different
models can have different statistical significance despite similar coefficients and robust errors.

29Note that while the coefficient on the female dummy in specifications 3-4 of Table 3 is signifi-
cantly negative, and the CRT7 score is negatively correlated with being female for the Lab subjects
(r = −0.2365, p = 0.0178) but not for the AMT subjects (r = −0.0625, p = 0.4497), the coefficient on
the CRT7 score remains insignificant if we exclude the age and gender demographic variables, or other
individual characteristics (results available on request).
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Cooperate All CRT7 ≤ 4 CRT7 > 4
(Marginals, dy/dx) (1) Lab (2) AMT (3) Lab (4) AMT (5) Lab (6) AMT (7) Lab (8) AMT
δ=0.25 0.23***† 0.08***† 0.22***† 0.08***† 0.24***† 0.08*** 0.18***† 0.09**

(0.03) (0.02) (0.03) (0.02) (0.04) (0.03) (0.04) (0.03)
δ=0.33 0.31***† 0.18***† 0.30***† 0.18***† 0.31***† 0.14***† 0.28***† 0.24***†

(0.03) (0.03) (0.03) (0.03) (0.05) (0.03) (0.05) (0.04)
δ=0.4 0.47***† 0.28***† 0.46***† 0.28***† 0.44***† 0.21***† 0.46***† 0.37***†

(0.04) (0.03) (0.04) (0.03) (0.05) (0.04) (0.06) (0.04)
δ=0.67 0.66***† 0.42***† 0.65***† 0.42***† 0.61***† 0.29***† 0.68***† 0.60***†

(0.04) (0.03) (0.04) (0.03) (0.06) (0.04) (0.06) (0.04)
δ=0.7 0.69***† 0.46***† 0.68***† 0.45***† 0.62***† 0.33***† 0.73***† 0.63***†

(0.04) (0.04) (0.04) (0.04) (0.06) (0.04) (0.06) (0.05)
Round 2 -0.04 0.03 -0.04 0.03 -0.00 0.03 -0.09** -0.02

(0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.04) (0.03)
Round 3 -0.12***† 0.04 -0.12***† 0.04 -0.06 0.06* -0.20***† -0.06

(0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.05) (0.04)
Round 4 -0.19***† -0.02 -0.18***† -0.02 -0.10* 0.04 -0.28***† -0.16***†

(0.04) (0.03) (0.04) (0.03) (0.05) (0.04) (0.06) (0.04)
Round 5 -0.17*** -0.13*** -0.17*** -0.13*** -0.13* -0.10* -0.23*** -0.23***†

(0.05) (0.04) (0.05) (0.04) (0.07) (0.06) (0.08) (0.06)
Supergame -0.06*** -0.06*** -0.06*** -0.06*** -0.09*** -0.04 -0.03 -0.09****

(0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03)
Order Long 0.05 0.03 0.06 0.04 0.07 0.06 0.04 0.04

(0.04) (0.04) (0.04) (0.04) (0.06) (0.06) (0.05) (0.06)
Prior Defect -0.20***† -0.23***† -0.20***† -0.23***† -0.17***† -0.19***† -0.23***† -0.22***†

(0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.05) (0.03)
CRT7 -0.00 0.01

(0.01) (0.01)
Prediction 0.24*** 0.19*** 0.19 0.08 0.23**** 0.24***

(0.09) (0.06) (0.15) (0.08) (0.07) (0.09)
Female -0.08** -0.08** -0.08 -0.11** -0.07 -0.05

(0.04) (0.04) (0.06) (0.05) (0.06) (0.05)
Age -0.01 -0.00 -0.01 -0.00 -0.01 0.00

(0.01) (0.00) (0.01) (0.00) (0.01) (0.00)
Risk -0.00 -0.01 -0.01 -0.02* 0.00 -0.00

(0.01) (0.01) (0.02) (0.01) (0.02) (0.02)
Patience 0.02 0.01 0.04***† 0.03* -0.02 -0.01

(0.01) (0.01) (0.01) (0.02) (0.02) (0.02)
Punishment 0.00 -0.01 0.01 0.00 -0.01 -0.02**

(0.01) (0.01) (0.02) (0.01) (0.01) (0.01)
Altruism -0.02 -0.00 -0.02 -0.01 -0.02 -0.00

(0.01) (0.01) (0.02) (0.01) (0.02) (0.01)
Reciprocity 0.02 -0.01 0.01 -0.02 0.05 0.00

(0.02) (0.01) (0.02) (0.01) (0.04) (0.01)
Retribution -0.01 0.01 0.00 0.01 -0.02** 0.01

(0.01) (0.01) (0.02) (0.01) (0.01) (0.01)
Trust 0.00 0.01 -0.01 0.00 0.02* 0.00

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
chi2 266.09 203.19 406.22 231.92 227.73 110.77 200.85 218.72
p 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N 4800 7152 4800 7152 2688 4512 2112 2640

Table 3: Choices to cooperate: mixed-effects probit regressions, marginals (dy/dx), robust errors in paren-
theses. (See Table B5 for the corresponding odds.) “Supergame” is the supergame number in the sequence
of supergames (scaled down by 24),“Order Long” is a dummy variable for whether the first supergame in
the sequence had δ = 0.67, “Prior Defection” is a dummy variable for whether the subject defected in prior
rounds of a given supergame, “Prediction” is the subjects’ predictions of the share of their own cooperative
choices in Round 1 across all 24 supergames (scaled down by 100). Chi2 and corresponding p-values are
from the odds regressions (see Table B5). (Significance * 0.10 ** 0.05 *** 0.01 ***† 0.001.)
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to the continuation probability δ, less likely to cooperate after defection in the same su-

pergame (i.e., make relatively fewer strategic errors CaD), and exhibit a stronger tendency

for following the end-timing strategy as their coefficients on the round dummies tend to be

negative and strongly significant. In contrast, as specifications 5-6 show, subjects with rela-

tively lower proxies for cognitive ability (CRT7≤4) do not exhibit any systematic sensitivity

to the round number.

These regressions further reveal that both lower and higher CRT7 groups each have a

single significant factor that consistently correlates with their decision to cooperate in both

subject samples. In the lower CRT7 group (Table 3, specifications 5-6), those with higher

self-reported Patience tend to cooperate more frequently (and, vice versa, those with higher

self-reported impatience tend to defect more frequently)30 – significantly among the Lab

subjects and marginally for the AMT subjects. Interestingly, Fehr and Leibbrandt (2011)

find that patience measures are very highly correlated with cooperative behavior in a field

experiment. Patience has also previously been found to influence cooperation in laboratory

experiments (Davis et al. (2016)).

Importantly, the Patience measure was marginally higher for the higher CRT7 group in

the Lab subject pool (one-sided t = 1.3718, p = 0.0866), and there was no difference between

the two CRT7 groups in the AMT subject pool (two-sided t = 0.2802, p = 0.7798). Fur-

thermore, for the AMT subjects but not for the Lab subjects, being female was significantly

negatively correlated with choices to cooperate, and risk-prone AMT subjects cooperated

marginally less frequently.31

In contrast, in the higher CRT7 group (Table 3, specifications 7-8), there are no personal

characteristics that systematically explain subjects’ choices to cooperate - as a behavioral

inattention theory would predict. (Though cooperation was significantly negatively corre-

30The proxy for Patience is taken from Falk et al. (2018): “How willing are you to give up something that
is beneficial for you today in order to benefit more from that in the future?” (see Appendix C).

31The Risk measure is also taken from Falk et al. (2018): “In general, how willing are you to take risks?”
(see Appendix C). Notice that, as the regression Table 3 shows, there is no robust significant relationship
between this proxy for being risk-prone and cooperation in the first rounds. This is contrast to the theoretical
predictions of Section 2.1 that risk averse subjects are expected to cooperate less (and vice versa, risk prone
subjects are expected to cooperate more.
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lated with Retribution for the Lab subjects and with Punishment for the AMT subjects.)

Instead, subjects’ choices in Round 1 (which is the regression baseline) are strongly and

systematically correlated with the “Prediction” variable (elicited from subjects before any

choices were made), possibly reflecting their understanding of the task.32

Finding 10. Subject behaviour is broadly consistent with a simple model of inattention. Co-

operative choices made by subjects with a lower proxy for cognitive ability (higher attention)

correlate with an elicited proxy for their degree of patience. In contrast, cooperative choices

made by those with a higher proxy for cognitive ability (lower attention) are more affected

by the structure of the game, and do not correlate with their individual characteristics, but

with an elicited proxy for their understanding of the structure of the game.

5.3 Comparison of Lab and AMT Subjects

The above regression results are summarized visually in Figure 9, which shows that the two

groups of subjects exhibit different patterns of play. Subjects in the lower CRT7 group (the

two top panels of Figure 9) make relatively more frequent strategic errors (CaD) and engage

in suboptimal consistent defecting behavior (Suboptimal All-D). By contrast, subjects in the

higher CRT7 group (bottom two panels) are closer to the theoretically optimal policy and

engage in end-timing behavior (DaC) more often.

Interestingly, Figure 9 further reveals differences in patterns of behavior between the two

subject pools. The top two panels showing behavior by subjects with CRT7 scores less than

or equal to the median score are consistent with the earlier insights of Arechar et al. (2018)

32Before any choices were made, subjects were asked what percentage of their Round 1 choices across all 24
supergames would be cooperative (see Section 3). The mean (st. dev.) of this “Prediction” variable for the
Lab subjects was 60.96 (29.57) with a median of 62, while for the AMT subjects it was 66.64 (27.04) with a
median of 72, with no significant difference between the two subjects pools (two-sided t-test= 1.56, p = 0.12,
see Figure B5, right panel). By comparison, the optimal choice is 1

3 (33.33%). In a tobit regression, this
measure is significantly negatively correlated with the “Altruism” measure (at p = 0.01) and marginally (at
p = 0.10) positively correlated with “Retribution” - but only for the AMT subjects, as for the Lab subjects
there is no correlation whatsoever (results available on request). Finally, we note that the Prediction variable
is significantly correlated with subjects’ actual first round choices (r = 0.3517, p = 0.0003 for the Lab sample
and r = 0.2350, p = 0.0039 for the AMT sample).
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Figure 9: Inattention: subjects’ patterns of choices within supergames (out of 24 supergames), split by
median CRT7. Patterns are presented for each subject, ordered by the count of supergames with (combined
optimal and sub-optimal) All-Defect choices. The theoretically optimal strategy involves always defecting
in 16 supergames and always cooperating in the remaining 8 supergames (represented by a horizontal line).
(100 Lab subjects and 149 AMT subjects)
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and Snowberg and Yariv (2021) that the Lab subjects are less prone to pro-social behaviour

and less likely to make mistakes as compared with the AMT subjects. However, the bottom

two panels, showing behavior by subjects whose CRT7 scores are strictly above the median

suggest that there is hardly any difference in patterns of behavior across the two subject

pools, despite apparent individual differences in non-cognitive characteristics. Indeed, this

visual observation is further confirmed by formal t-tests in Table B4.

Finding 11. AMT subjects with relatively high cognitive costs (CRT7 scores weakly below

the median score) behave markedly different from the corresponding group of low CRT7 Lab

subjects. In contrast, there is little difference in the behaviour of subjects with relatively low

cognitive costs (CRT7 scores above the median score) across the two subject pools, despite

differences in their non-cognitive individual characteristics.

6 Conclusion

We have reported on an experiment where we test the most elemental aspects of the standard,

game-theoretic model of repeated interactions employing both student subjects and a more

representative sample of AMT subjects. In our experiment, subjects play the repeated

prisoner’s dilemma game against a robot player known to play the Grim trigger strategy. This

design converts the original strategic situation into a single-person decision problem for which

there is a unique optimal strategy, and eliminates other confounding factors such strategic

uncertainty, social preferences and multiple equilibria. We use a within-subject design in

which subjects play many different supergames with differing continuation probabilities.

Our design enables us to classify subjects’ within-supergame play according to one of 6

mutually exclusive patterns, and to separate theoretically optimal behaviour from bias. We

can therefore identify systematic errors made by subjects and relate them to individual

characteristics, and, in particular, to their cognitive abilities.

Surprisingly, we find that only 1-2% of subjects behave consistently with the rational

choice predictions, and only 3-5% behave consistently with those predictions more than 95%
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of the time. These very low frequencies essentially amount to noise and suggest that a strict

rational choice framework for understanding cooperative behavior may not be empirically

relevant. The use of behavioral models such as logit, QRE and level-k has become common

in analyzing static games but they may be suited for repeated games as well. Indeed, our

results suggest that models that explicitly allow for mistakes or for stochastic choice, are

better suited to fit actual subject behavior. In particular, the behavioral inattention model

introduced here, allows for errors and biases, relates them to cognitive ability and allows for

subject heterogeneity in all these aspects.

As noted, our stripped-down individual-choice experimental design enables us to “zero-

in” on the nature of subjects’ mistakes at a granular level and to further explore whether and

how individual subject characteristics may play a role in explaining these mistakes. We find

first that a majority (52-54%) of our subjects make at least one strategic error of cooperating

after defection. Second, some subjects employ an end-timing strategy, consistently defecting

after initially choosing to cooperate (DaC) in the same supergame that can yield them

higher payoffs than the theoretically optimal strategy. This finding reveals how subjects

can be clever in ways that go beyond the confines of the standard theory and thus why it

is important to conduct an experimental evaluation. Third, we show that these different

behaviors are correlated with our proxy measure for cognitive ability. Finally, we find a

qualitative difference between subjects with high and low proxies for cognitive abilities, and

argue that this is consistent with a simple model of inattention.

There are several possible directions for future research using variants of our experimental

design. For instance, it would be of interest to consider whether social preferences play some

mitigating role for end-timing, perhaps by having the robot player play on the behalf of

another human subject. It would also be useful to investigate the robustness of end timing

to games with a longer expected duration than those we have considered, or whether greater

experience with the same continuation probability and/or different payoff matrices would

matter for subject behavior.

We hope that our findings stimulate further theoretical and empirical work on how players
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interact in repeated, strategic settings and that our findings will be useful for differentiating

intentional strategies from errors in repeated games more generally.
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Matějka, F. and A. McKay (2015): “Rational inattention to discrete choices: A new
foundation for the multinomial logit model,” American Economic Review, 105, 272–98.

Mengel, F., S. Weidenholzer, and L. Orlandi (2022): “Match Length Realization
and Cooperation in Indefinitely Repeated Games,” Journal of Economic Theory, 200,
105416.

Murnighan, J. K. and A. E. Roth (1983): “Expecting continued play in prisoner’s
dilemma games: A test of several models,” Journal of Conflict Resolution, 27, 279–300.

Normann, H.-T. and M. Sternberg (2023): “Human-Algorithm Interaction: Algorith-
mic Pricing in Hybrid Laboratory Markets,” Tech. rep.

Noussair, C. and M. A. Olson (1997): “Dynamic decisions in a laboratory setting,”
Southern Economic Journal, 978–992.

Proto, E., A. Rustichini, and A. Sofianos (2019): “Intelligence, personality, and gains
from cooperation in repeated interactions,” Journal of Political Economy, 127, 1351–1390.

——— (2022): “Intelligence, Errors and Cooperation in Repeated Interactions,” Review of
Economic Studies, 89, 2723–2767.

Rand, D. G. (2012): “The promise of Mechanical Turk: How online labor markets can help
theorists run behavioral experiments,” Journal of Theoretical Biology, 299, 172–179.

Reverberi, C., D. Pischedda, M. Mantovani, J.-D. Haynes, and A. Rustichini
(2021): “Strategic Complexity And Cognitive Skills Affect Brain Response In Interactive
Decision-Making,” Scientific Reports, 12, 1–18.

Romero, J. and Y. Rosokha (2018): “Constructing strategies in the indefinitely repeated
prisoner’s dilemma game,” European Economic Review, 104, 185–219.

Roth, A. E. and J. K. Murnighan (1978): “Equilibrium behavior and repeated play of
the prisoner’s dilemma,” Journal of Mathematical Psychology, 17, 189–198.

Roth, A. E. and A. Ockenfels (2002): “Last-Minute Bidding and the Rules for End-
ing Second-Price Auctions: Evidence from eBay and Amazon Auctions on the Internet,”
American Economic Review, 92, 1093–1103.

45



Snowberg, E. and L. Yariv (2021): “Testing the waters: Behavior across participant
pools,” American Economic Review, 111, 687–719.

Toplak, M. E., R. F. West, and K. E. Stanovich (2014): “Assessing miserly informa-
tion processing: An expansion of the Cognitive Reflection Test,” Thinking and Reasoning,
20, 147–168.

46



Appendices (For Online Publication Only)

A Experimental Design: Continuation Probabilities and

Realizations

Tables A1 and A2 report on the continuation probabilities δ for each of the 24 sequences
along with the actual number of rounds played for the two treatment orders.

OrderShort OrderLong
Sequence δ No.Rounds δ No. Rounds

1 0.33 1 0.67 4
2 0.7 4 0.33 1
3 0.1 1 0.4 2
4 0.67 2 0.25 1
5 0.4 3 0.7 3
6 0.7 2 0.33 2
7 0.25 1 0.7 5
8 0.33 2 0.4 1
9 0.67 4 0.67 2
10 0.4 1 0.1 1
11 0.1 1 0.25 1
12 0.25 2 0.1 1
13 0.1 1 0.25 2
14 0.25 1 0.1 1
15 0.1 1 0.4 1
16 0.67 2 0.67 4
17 0.4 1 0.33 2
18 0.7 5 0.25 1
19 0.33 2 0.7 2
20 0.7 3 0.4 3
21 0.25 1 0.67 2
22 0.4 2 0.1 1
23 0.33 1 0.7 4
24 0.67 4 0.33 1

Totals 48 48

Table A1: Continuation probabilities δ and the number of rounds played for each of the 24 sequences, both
treatment orders (one order is just the reverse of the other).

Delta Duration Duration (Rounds) Number of

δ Expected
(

1
1−δ

)
Realized (Ave.) 1 2 3 4 5 Supergames Choices

.1 1.11 1.00 4 0 0 0 0 4 4

.25 1.33 1.25 3 1 0 0 0 4 5

.33 1.49 1.50 2 2 0 0 0 4 6

.4 1.67 1.75 2 1 1 0 0 4 7

.67 3.03 3.00 0 2 0 2 0 4 12

.7 3.33 3.50 0 1 1 1 1 4 14
Total Supergames 11 7 2 3 1 24
Total Choices 24 13 6 4 1 48

Table A2: The distribution of the supergames, split by continuation probabilities δ. That is, out of 24
supergames, 11 lasted only 11 rounds, 7 only two rounds, and so on. The average theoretical and realized
supergame durations are 1.99 rounds and 2 rounds, respectively.
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B Further Results

B.1 Order Effects

As was documented recently by Mengel et al. (2022), early exposure to relatively long se-
quences could affect subsequent behavior in the prisoner’s dilemma, potentially leading to
an order effect.

We start with the Lab subject pool. While the mean (st. dev.) first round per-subject
counts of cooperation in the reverse and long orders are 10.96 (6.48) and 12.10 (4.86), re-
spectively (out of 24), this difference is insignificant (t = 1.00, Kolmogorov-Smirnov one-
sided p = 0.278). The corresponding mean (st.dev.) overall counts are, respectively, 25.52
(9.29) and 22.66 (12.83) (out of 48), with the difference remaining insignificant (t = 1.28,
Kolmogorov-Smirnov one-sided p = 0.198). As for the optimal choices, the first round counts
are higher in the long treatment, with mean (st. dev.) being, respectively, 16.2 (3.49) and
17.42 (3.91), but this difference is only significant according to the Kolmogorov-Smirnov test
(one-sided p = 0.034), and only marginally according to t-test (t = 1.65, p = 0.051). The
overall optimal choice counts are, again, higher in the long order treatment (with mean (st.
dev.) of 32.54 (8.16) in long order, and 29.56 (7.76) in reverse), but this is marginally signifi-
cant only according to t-test (t = 1.87, p = 0.032), but not according to Kolmogorov-Smirnov
test (one-sided p = 0.135).

We now turn to the AMT subject pool. While the mean (st. dev.) first round per-
subject counts of cooperation in the reverse and long orders are 11.96 (5.96) and 12.99 (6.16),
respectively (out of 24), this difference is insignificant (t = 1.03, Kolmogorov-Smirnov one-
sided p = 0.217). The corresponding mean (st.dev.) overall counts are, respectively, 25.96
(11.21) and 27.38 (11.97) (out of 48), with the difference remaining insignificant (t = 0.75,
Kolmogorov-Smirnov one-sided p = 0.410). As for the optimal choices, the first round mean
(st. dev.) counts are, respectively, 16.45 (4.45) and 14.53 (4.40), thus – in contrast to the
Lab – significantly lower in the long treatment (t = 2.68, p = 0.0042, Kolmogorov-Smirnov
one-sided p = 0.011). The overall optimal choice counts are, again, lower in the long order
treatment (with mean (st.dev.) of 27.12 (9.03) in long order, and 30.71 (9.21) in reverse),
and this is significant (t = 2.40, p = 0.0089, Kolmogorov-Smirnov one-sided p = 0.038.

Importantly, for both subject pools, once one controls for subjects’ individual differences,
the order effect is not discernible in mixed effects panel regressions in Table 3.

Finding 12. There is no consistent order effect in either subject sample.

B.2 More on Cooperation and Optimality

In this experiment, each subject had to make a decision whether to cooperate or defect in
each round of the 24 supergames, total of 48 decisions. These choices are then interpreted

48



in terms of whether cooperation was the equilibrium response to the Grim Trigger strategy
given the continuation probability. In Sections 4.3 and 4.1 we presented the distributions of
subjects’ optimal choices at the very beginning of each supergame and overall, respectively.
We now look at these choices in more details.

We start with the decisions in Round 1 of each supergame. For each subject pool, Figure
B1 presents the frequency distributions of choices to cooperate (bottom left panels) and
of optimal choices (top panels). The bottom right panels further provide two-dimensional
distributions of the cooperative and optimal choices, where the possible choice combinations
are restricted to the polygons delineated by the dashed lines. As the histograms show,
subjects in both pools tend to excessively cooperate in the first round of each supergame,
far above the theoretical prediction of 8. The mean (st. dev.) count of cooperative choices is
11.53 (5.73) for Lab and 12.47 (6.06) for AMT (with no significant difference across the two
pools, see Table B3). As a result, the mean (st.dev.) count of theoretically optimal choices
per subject is 16.81 (3.74) for Lab, which is significantly higher than 15.50 (4.52) for AMT.
Both pools are prominently short of the theoretical prediction of 24.

Turning to the overall choice counts, Figure B2 presents the two-dimensional distributions
of cooperative and optimal choices and the corresponding marginal distributions for all 48
choices in all 24 supergames. The mean (st. dev.) of the overall count of cooperative choices
is only 24.09 (11.24) for Lab, which is significantly lower than the theoretical prediction of
26 (one-sided t = 1.670, p = 0.046). Interestingly, the AMT subjects’ choice to cooperate are
26.66 (11.58), and thus on average are not significantly different from the predicted value of
26 (two-sided t = 0.701, p = 0.4847). However, for both subject pools, cooperative choices
are often sub-optimal – as depicted by the two-dimensional distributions in the bottom right
panels for each subject pool in Figure B2. (The shapes of the polygons for the overall
choices in the bottom right panels are due to the possibility of dominated CaD choices,
described in Section 4.4.) Indeed, for both subject pools, the overall optimal choice counts
are significantly short of the theoretical prediction of 48, with a mean (st. dev.) of 31.05
(8.06) for Lab, which is marginally greater than 28.93 (9.27) for AMT (see Figure B3).

In other words, while subjects start by cooperating excessively in the first rounds, this
early excessive cooperation in the first rounds is followed by the subsequent defection. The
mean (st. dev.) of cooperation counts in the subsequent rounds (given by the difference in
the overall and first round cooperation counts) is only 12.56 (6.29) for Lab and 14.19 (6.58)
for AMT, both significantly lower than the theoretical prediction of 18 (p = 0.000). Note
that this is despite the excessive cooperation of 1.82 counts per Lab subject and 2.75 counts
per AMT subject on average due to strategic (CaD) errors.

Finding 13. For both subject pools, compared with the theoretical predictions, on average,
subjects cooperate too much at the beginning of supergames with δ < 0.5 and stop cooperating
too early in supergames with δ > 0.5, with only 64.69% for Lab and 60.27% for AMT of all
choices being theoretically optimal.

As Figures B1 and B2 show, there is a significant heterogeneity in subjects’ behavior
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Figure B1: Choices in the first rounds each supergame: Lab (N=100) vs. AMT (N=149) subjects.
Two-dimensional distributions of per-subject counts of cooperation and of optimal choices across all 24
supergames, together for the frequency distributions of cooperative (bottom left) and optimal (top right)
choices. Bubble size is proportional to the share of subjects.
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Figure B2: Choices in all rounds: Lab (N=100) vs. AMT (N=149) subjects. Two-dimensional distribu-
tions of per-subject counts of cooperation and of optimal choices across all 24 supergames, together for the
frequency distributions of cooperative (bottom left) and optimal (top right) choices. Bubble size is propor-
tional to the share of subjects.
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(particularly for AMT), without any clear “representative” pattern. The initial heterogeneity
of play in the first rounds in Figure B1 (bottom right panels for each subject pool) is further
amplified by the heterogeneous strategies employed by the subjects in the subsequent rounds,
depicted in the corresponding panels in Figure B2.

As the bottom right bottom panels of Figure B2 for each subject pool show, there are
three similarly sized clusters (about 3-7% of each subject pool) at each of the three corners
of the polygon. One can see that there are only two (out of 100) and one (out of 149)
subjects who made perfect theoretically optimal choices, located in the far right corners of
the polygons for the Lab and AMT pools, respectively. There are further only three and five
such subjects, respectively, who made up to three suboptimal choices.

In the top corner, there are two subjects in Lab and eight subjects in AMT who always
cooperated, and two further subjects in each pool who defected up to three times. In the
bottom corner, there is a single subject in each pool who always defected, and further four
subjects in each pool who cooperated up to three times. The presence of strategic CaD errors
complicates the interpretation of the remaining subjects, most of whom are located away
from the boundaries, in the center of the figures. Many of those observations represent the
overall early excessive cooperation in the first rounds followed by the subsequent defection
within a supergame, possibly due to some form of previously under-reported “end-timing”
strategies (see Section 4.6).

Finding 14. In both subject pools, perfect and near-perfect theoretically optimal behavior
is rare, with only 5% of the Lab and 4.69% of the AMT subjects making no more than
3 theoretically sub-optimal choices. These shares are of similar order of magnitude as the
shares of subjects who defected no more than 3 times in both pools (4% Lab and 6.71% AMT),
and the share of subjects who cooperated no more than 3 times in both pools (5% Lab and
3.36% AMT).

B.3 Learning

In Figure B3, one can observe an increase in the “end-timing” activities in the both subject
pools by comparing those in the first few supergames to that in the last few (further supported
by the tests in Table 1). As this same Figure reveals, while the incidence of dominated CaD
errors decline over time, they do not disappear entirely. Figure B4 further presents the
patterns of intra-supergame play across all 24 sequences, split by the sequence order.

B.4 Comparison of Lab and AMT

Table B3 compares the two subject pools, Lab and AMT. Table B4 compares the two subject
pools, Lab and AMT, split according to the median CRT7.
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Figure B3: Subject behavior over the sequence of 24 supergames, by subject pool. Both supergame
sequence orders are pooled together so a supergame with a given number could involve different continuation
probabilities δ and corresponding optimal actions, depending on the sequence order.

Figure B4: Subject behavior over the sequence of 24 supergames, by sequence order and subject pool.
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Lab vs. AMT
Lab (N=100) AMT (N=149)

t-stat df pvalue
Mean StDev Mean StDev

Female 0.52 0.50 0.50 0.50 0.31 247 0.76
Age* 21.49 2.46 39.74 10.49 -20.42 171.45 0.00***†
CRT7 3.78 2.26 3.58 2.17 0.71 247 0.48
Risk 6.28 1.87 5.15 2.69 3.64 247 0.00***†
Patience 7.72 1.97 7.62 1.84 0.42 247 0.67
Punishment 4.84 2.51 4.07 2.97 2.14 247 0.03**
Altruism 7.10 2.26 7.44 2.50 -1.08 247 0.28
Reciprocity 9.08 1.23 8.38 1.93 3.20 247 0.00***
Retribution 3.42 2.32 3.15 2.99 0.77 247 0.44
Trust 4.48 2.22 5.73 2.58 -3.97 247 0.00***†
Prediction 60.96 29.57 66.64 27.04 -1.56 247 0.12
Quiz Errors* 1.40 3.38 2.69 7.34 -1.86 222.91 0.06*
Points Total 3835.10 203.40 3766.20 240.60 2.35 247 0.02**
Round 1: Cooperate 11.53 5.73 12.47 6.06 -1.23 247 0.22
Round 1: Optimal 16.81 3.74 15.50 4.52 2.40 247 0.02**
Total: Cooperate 24.09 11.24 26.66 11.58 -1.74 247 0.08*
Total: Optimal 31.05 8.06 28.93 9.27 1.87 247 0.06*
Total: CaD 1.82 2.56 2.75 4.09 -2.03 247 0.04**
Supergames: Optimal 14.44 3.92 13.07 4.88 2.34 247 0.02**
Supergames: Optimal All-D 10.31 3.96 8.95 4.67 2.40 247 0.02**
Supergames: Optimal All-C 4.13 2.83 4.13 2.96 0.01 247 0.99
Supergames: Suboptimal All-D 1.14 2.18 1.02 1.85 0.47 247 0.64
Supergames: Suboptimal All-C 4.09 3.59 5.52 4.58 -2.63 247 0.01*
Supergames: CaD 1.50 2.05 2.05 2.82 -1.66 247 0.10*
Supergames: DaC (End-Time) 2.83 2.37 2.34 2.26 1.66 247 0.10*

Table B3: For each subject pool: Means and standard deviations of key variables, and t-tests of differences
between the means for two pools (all equal variance tests except for Age and Quiz Errors). df stands for
degrees of freedom or Satterthwaite’s degrees of freedom in case of unequal variances for Age and Quiz
Errors, pvalue stands for Pr(|T | > |t|) = 0. (Significance * 0.10 ** 0.05 *** 0.01 ***† 0.001.)

B.5 Behavioral Inattention: Further Results

Figure B5 presents the distributions of the two key variables for the inattention model, CRT7
and Prediction variable. As Table B3 shows, the two subject pools do not differ significantly
in the means of these two variables.

Figure B5: Frequency distributions of CRT7 scores (left panel) and of the “Prediction” variable (right
panel).
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Lab vs. AMT: CRT7 > 4
Lab (N=44) AMT (N=55)

t-stat df pvalue
Mean StDev Mean StDev

Female 0.41 0.50 0.46 0.50 -0.54 97 0.59
Age* 21.45 2.39 39.95 10.09 -13.14 61.45 0.00***†
CRT7 5.96 0.78 5.95 0.80 0.06 97 0.95
Risk 6.39 2.08 4.42 2.08 4.68 97 0.00***†
Patience 8.02 1.52 7.67 1.53 1.14 97 0.26
Punishment 5.11 2.54 3.71 2.39 2.83 97 0.01***
Altruism 6.55 2.54 7.42 2.23 -1.82 97 0.07*
Reciprocity 9.09 1.07 8.60 1.54 1.80 97 0.08*
Retribution 3.55 2.05 2.75 2.17 1.87 97 0.06*
Trust 4.16 1.88 5.42 2.28 -2.95 97 0.00***
Prediction 59.52 31.98 70.35 26.41 -1.84 97 0.07*
Quiz Errors 0.66 1.45 0.51 1.03 0.60 97 0.55
Points Total 3898.00 176.80 3917.50 183.80 -0.53 97 0.59
Round 1: Cooperate 12.32 5.26 13.02 5.34 -0.65 97 0.52
Round 1: Optimal 17.41 3.49 17.56 4.52 -0.19 97 0.85
Total: Cooperate 25.32 10.29 29.09 10.03 -1.84 97 0.07*
Total: Optimal 33.50 7.17 34.87 7.81 -0.90 97 0.37
Total: CaD 0.86 1.50 0.98 1.80 -0.35 97 0.73
Supergames: Optimal 15.16 3.95 15.51 4.55 -0.40 97 0.69
Supergames: Optimal All-D 10.43 3.88 9.98 4.54 0.52 97 0.60
Supergames: Optimal All-C 4.73 2.52 5.53 2.62 -1.54 97 0.13
Supergames: Suboptimal All-D 0.86 2.16 0.42 1.29 1.27 97 0.21
Supergames: Suboptimal All-C 4.05 3.29 4.84 4.52 -0.97 97 0.33
Supergames: CaD 0.71 1.23 0.82 1.44 -0.42 97 0.68
Supergames: DaC (End-Time) 3.23 2.61 2.42 2.37 1.62 97 0.11

Lab vs. AMT: CRT7 ≤ 4
Lab (N=56) AMT (N=94)

t-stat df pvalue
Mean StDev Mean StDev

Female 0.61 0.49 0.52 0.50 1.02 148 0.31
Age* 21.52 2.53 39.63 10.77 -15.59 109.43 0.00***†
CRT7 2.07 1.40 2.19 1.35 -0.52 148 0.60
Risk 6.20 1.69 5.59 2.91 1.43 148 0.15
Patience 7.48 2.24 7.59 2.00 -0.29 148 0.77
Punishment 4.63 2.50 4.28 3.25 0.69 148 0.49
Altruism 7.54 1.94 7.45 2.65 0.22 148 0.83
Reciprocity 9.07 1.35 8.26 2.13 2.58 148 0.01**
Retribution 3.32 2.52 3.38 3.37 -0.12 148 0.91
Trust 4.73 2.44 5.92 2.74 -2.66 148 0.01
Prediction 62.09 27.77 64.47 27.30 -0.51 148 0.61
Quiz Errors* 1.98 4.25 3.96 8.98 -1.82 142.15 0.07*
Points Total 3785.60 210.70 3677.70 225.90 2.90 148 0.00***
Round 1: Cooperate 10.91 6.05 12.15 6.45 -1.16 148 0.25
Round 1: Optimal 16.34 3.89 14.30 4.07 3.02 148 0.00***
Total: Cooperate 23.13 11.93 25.24 12.22 -1.04 148 0.30
Total: Optimal 29.13 8.26 25.45 8.26 2.64 148 0.01***
Total: CaD 2.57 2.95 3.79 4.66 -1.75 148 0.08*
Supergames: Optimal 13.88 3.83 11.65 4.51 3.09 148 0.00***
Supergames: Optimal All-D 10.21 4.05 8.34 4.66 2.50 148 0.01**
Supergames: Optimal All-C 3.66 2.99 3.31 2.85 0.72 148 0.47
Supergames: Suboptimal All-D 1.36 2.19 1.37 2.04 -0.04 148 0.97
Supergames: Suboptimal All-C 4.13 3.83 5.93 4.59 -2.47 148 0.01**
Supergames: CaD 2.13 2.34 2.77 3.17 -1.31 148 0.19
Supergames: DaC (End-Time) 2.52 2.13 2.29 2.20 0.63 148 0.53

Table B4: For each subject pool: Means and standard deviations of key variables, and t-tests of differences
between the means for two pools (all equal variance tests except for Age and Quiz Errors). df stands for
degrees of freedom or Satterthwaite’s degrees of freedom in case of unequal variances for Age and Quiz
Errors, pvalue stands for Pr(|T | > |t|) = 0. (Significance * 0.10 ** 0.05 *** 0.01 ***† 0.001.)

Table B5 presents the odds corresponding to the regressions of Table 3.
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Cooperate All CRT7 ≤ 4 CRT7 > 4
(Odds) (1) Lab (2) AMT (3) Lab (4) AMT (5) Lab (6) AMT (7) Lab (8) AMT
δ=0.25 0.90***† 0.31***† 0.89***† 0.31***† 0.92***† 0.28*** 0.87***† 0.43**

(0.14) (0.08) (0.13) (0.08) (0.17) (0.10) (0.23) (0.18)
δ=0.33 1.23***† 0.68***† 1.22***† 0.68***† 1.17***† 0.50***† 1.36***† 1.21***†

(0.15) (0.10) (0.15) (0.10) (0.20) (0.11) (0.25) (0.20)
δ=0.4 1.88***† 1.04***† 1.87***† 1.04***† 1.67***† 0.73***† 2.22***† 1.86***†

(0.17) (0.12) (0.17) (0.12) (0.20) (0.13) (0.33) (0.24)
δ=0.67 2.65***† 1.56***† 2.65***† 1.56***† 2.30***† 1.00***† 3.29***† 3.03***†

(0.21) (0.15) (0.21) (0.15) (0.25) (0.16) (0.40) (0.29)
δ=0.7 2.76***† 1.70***† 2.76***† 1.70***† 2.32***† 1.15***† 3.53***† 3.15***†

(0.22) (0.15) (0.22) (0.15) (0.26) (0.16) (0.44) (0.33)
Round 2 -0.14 0.10 -0.14 0.09 -0.02 0.09 -0.43** -0.10

(0.10) (0.08) (0.10) (0.08) (0.12) (0.10) (0.20) (0.15)
Round 3 -0.47***† 0.15 -0.47***† 0.15 -0.22 0.23* -0.98***† -0.29

(0.14) (0.10) (0.14) (0.10) (0.17) (0.12) (0.26) (0.18)
Round 4 -0.74***† -0.06 -0.75***† -0.07 -0.39* 0.14 -1.37***† -0.83***†

(0.17) (0.12) (0.17) (0.12) (0.21) (0.13) (0.30) (0.23)
Round 5 -0.69*** -0.48*** -0.70*** -0.49*** -0.48* -0.35* -1.09*** -1.14***†

(0.22) (0.16) (0.22) (0.16) (0.28) (0.20) (0.40) (0.33)
Supergame -0.26*** -0.23*** -0.26*** -0.23*** -0.33*** -0.15 -0.16 -0.47****

(0.09) (0.09) (0.09) (0.09) (0.12) (0.11) (0.16) (0.14)
Order Long 0.18 0.12 0.22 0.14 0.26 0.22 0.22 0.19

(0.17) (0.14) (0.16) (0.16) (0.21) (0.21) (0.23) (0.31)
Prior Defect -0.81***† -0.86***† -0.80***† -0.85***† -0.64***† -0.65***† -1.13***† -1.13***†

(0.12) (0.11) (0.12) (0.11) (0.14) (0.14) (0.22) (0.18)
CRT7 -0.00 0.03

(0.04) (0.03)
Prediction 0.97*** 0.72*** 0.70 0.27 1.12*** 1.21**

(0.36) (0.24) (0.54) (0.29) (0.37) (0.48)
Female -0.33* -0.31** -0.32 -0.39** -0.35 -0.25

(0.17) (0.15) (0.22) (0.19) (0.28) (0.25)
Age -0.03 -0.01 -0.03 -0.01 -0.05 0.01

(0.02) (0.01) (0.04) (0.01) (0.04) (0.02)
Risk -0.01 -0.05 -0.03 -0.09* 0.02 -0.02

(0.06) (0.04) (0.08) (0.05) (0.09) (0.08)
Patience 0.07 0.03 0.14*** 0.11* -0.09 -0.04

(0.04) (0.05) (0.04) (0.07) (0.09) (0.10)
Punishment 0.01 -0.02 0.03 0.02 -0.03 -0.11*

(0.05) (0.04) (0.07) (0.04) (0.06) (0.06)
Altruism -0.06 -0.02 -0.09 -0.04 -0.09 -0.01

(0.05) (0.03) (0.06) (0.04) (0.08) (0.07)
Reciprocity 0.07 -0.04 0.04 -0.06 0.26 0.02

(0.07) (0.03) (0.08) (0.05) (0.18) (0.06)
Retribution -0.04 0.05 0.01 0.04 -0.10* 0.06

(0.04) (0.03) (0.06) (0.05) (0.05) (0.07)
Trust 0.01 0.02 -0.03 0.00 0.09 0.02

(0.03) (0.03) (0.04) (0.04) (0.05) (0.05)
Constant -1.61***† -0.73***† -2.05*** -0.68 -1.67 0.11 -2.31 -1.85*

(0.19) (0.13) (0.78) (0.51) (1.07) (0.55) (1.80) (1.11)
chi2 266.09 203.19 406.22 231.92 227.73 110.77 200.85 218.72
p 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
N 4800 7152 4800 7152 2688 4512 2112 2640

Table B5: Choices to cooperate: mixed-effects probit regressions, odds, robust errors in parentheses.
(See Table 3 for the corresponding marginals.) “Supergame” is the supergame number in the sequence of
supergames (scaled down by 24), “Order Long” is a dummy variable for whether the first supergame in the
sequence had δ = 0.67, “Prior Defection” is a dummy variable for whether the subject defected in prior
rounds of a given supergame, “Prediction” is the subjects’ predictions of the share of their own cooperative
choices in Round 1 across all 24 supergames (scaled down by 100). (Significance * 0.10 ** 0.05 *** 0.01 ***†
0.001.)
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C Appendix: Experimental Questions and Instructions

Personality Questions

Subjects were asked to complete the following “questionnaire” by clicking on radio buttons
from 0,1,2,..10 to report their answers to each question.33

Questionnaire

We now ask for your willingness to act in a certain way in 2 different areas. Please indicate
your answer on a scale from 0 to 10, where 0 means you are “completely unwilling to do so”
and a 10 means you are “very willing to do so”. You can also use any numbers between 0
and 10 to indicate where you fall on the scale, like 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

1. In general, how willing are you to take risks?

2. How willing are you to give up something that is beneficial for you today in order to
benefit more from that in the future?

3. How willing are you to punish someone who treats you unfairly, even if there may be
costs for you?

4. How willing are you to give to good causes without expecting anything in return?

How well do the following statements describe you as a person? Please indicate your answer
on a scale from 0 to 10. A 0 means “does not describe me at all” and a 10 means “describes
me perfectly”. You can also use any numbers between 0 and 10 to indicate where you fall
on the scale, like 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

5. When someone does me a favor I am willing to return it.

6. If I am treated very unjustly, I will take revenge at the first occasion, even if there is
a cost to do so.

7. I assume that people have only the best intentions.

CRT questions

Subjects were asked to provide numerical answers to the following cognitive reflection test
(CRT) questions.34

33Taken from Falk et al. (2018).
34Based on Toplak et al. (2014) and Ackerman (2014).
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1. The ages of Anna and Barbara add up to 30 years. Anna is 20 years older than Barbara.
How old is Barbara?

2. If it takes 2 nurses 2 minutes to check 2 patients, how many minutes does it take 40
nurses to check 40 patients?

3. On a loaf of bread, there is a patch of mold. Every day, the patch doubles in size. If
it takes 24 days for the patch to cover the entire loaf of bread, how many days would
it take for the patch to cover half of the loaf of bread?

4. If John can drink one barrel of water in 6 days, and Mary can drink one barrel of water
in 12 days, how many days would it take them to drink one barrel of water together?

5. A man buys a pig for $60, sells it for $70, buys it back for $80, and sells it finally for
$90. How much profit has he made, in dollars?

6. Jerry received both the 15th highest and the 15th lowest mark in the class. How many
students are in the class?

7. A turtle starts crawling up a 6-yard-high rock wall in the morning. During each day it
crawls 3 yards and during the night it slips back 2 yards. How many days will it take
the turtle to reach the top of the wall?

Repeated PD Game Instructions

You will participate in 24 sequences. Each sequence consists of one or more rounds.

In each round, you play a game.

Specifically, you will have to choose between action X or action Y. Your opponent also
chooses between action X or action Y.

The combination of your action choice and that of your opponent results in one of the four
cells shown in the payoff table below (which will be the same table in each round).

X Y
X 75, 75 15,120
Y 120, 15 30, 30

In this table, the rows refer to your action and the columns refer to your opponent’s actions.
The first number in each cell (in bold) is your payoff in points and the second number in
each cell (in italics) is your opponent’s payoff in points. Thus for example, if you choose X
and your opponent chooses Y, then you earn 15 points and your opponent earns 120 points.

In all 24 sequences, you will play this game against the computer. That is, your opponent
is a computer program.
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The rule the computer follows in choosing between action X or Y is this:

• In the first round of each sequence the computer will always choose X.

• Starting from the second round of each sequence, the computer’s choice will be com-
pletely determined by your previous choices in that sequence:

– If you have ever chosen Y in previous round(s) of the current sequence, the com-
puter will choose Y in all remaining rounds of the current sequence.

– Otherwise, the computer will choose X.

There is no randomness in the computer’s choice, and its choice does not depend on your
choices in any sequences other than the current one.

After choices are made by you and the computer, you learn the results of the round, specif-
ically, your point earnings and those earned by the computer. A random number generator
is used to determine whether the current sequence continues on with another round, or if
the current round is the last round of the sequence.

Whether the sequence continues with another round or not depends on the probability (or
chance) of continuation for the sequence. This continuation probability for a sequence is
prominently displayed on your decision screen and remains constant for all rounds of a
given sequence. However, this continuation probability can change at the start of each
new sequence, so please pay careful attention to announcements about the continuation
probability for each new sequence. Whether a sequence continues depends on whether at
the end of a round the random number generator drew a number in the interval [1,100] that
is less than or equal to the continuation probability (in percent).

For example, if the continuation probability in a sequence is 40%, then, after round 1 of
the sequence, which is always played, there is a 40% chance that the sequence continues
on to round 2 and a 60% chance that round 1 is the last round of the sequence. Whether
continuation occurs depends on whether the random number generator drew a number from
1 to 100 that is less than or equal to 40. If it did, then the sequence continues on to round
2. If it did not, then round 1 is the final round of the sequence. If the sequence continues on
to round 2, then after that round is played, there is again a 40% chance that the sequence
continues on to round 3 and a 60% chance that round 2 is the last round of the sequence,
again determined by the random number generator for that round. And so on.

Thus, the higher is the continuation probability (chance), the more rounds you should expect
to play in the sequence. But since the continuation probability is always less than 100%,
there is no guarantee that any sequence continues beyond round 1.

At the end of the experiment, you will be paid your point earnings from six sequences,
randomly selected so that each selected sequence has a different continuation probability.
Each point you earn over all rounds in each of the 6 randomly selected sequences is worth
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$0.01 in US dollars, that is, the greater are your point earnings, the greater are your money
earnings.

Comprehension quiz

Now that you have read the instructions, before proceeding, we ask that you answer the
following comprehension questions. For your convenience, we repeat the payoff table below,
which you will need to answer some of these questions. In this table, the rows indicate your
choice and the columns indicate the computer’s choices.

X Y
X 75, 75 15,120
Y 120, 15 30, 30

The first number in each cell (in bold) is your payoff in points and the second number in
each cell (in italics) is the computer’s payoff in points.

Questions

1. If, in a round, you chose X and the computer program chose X, what is your payoff in
points for the round? What is the computer program’s payoff?

2. If, in a round, you chose Y and the computer program chose X, what is your payoff in
points for the round? What is the computer program’s payoff?

3. If, in a round, you chose Y and the computer program chose Y, what is your payoff in
points for the round? What is the computer program’s payoff?

4. If you have chosen Y in any prior round of the current sequence, what will the computer
program choose in the current round of the sequence? Choose: X or Y

5. True or false: At the start of each sequence, you will know exactly how many rounds
will be played in the sequence. Choose: True or False

6. True or false: If, in a sequence, the continuation probability is 75%, then you can
expect that there will be more rounds in that sequence, on average, than in a sequence
with a continuation probability of 25%. Choose True or False

Belief Elicitation

After a subject had successfully completed all quiz questions, they were asked to provide
their belief as to the proportion of times they would choose action X (the cooperative
action) in each of the first rounds of the 24 sequences (supergames) that they would play.
Prior to making this choice they were told that they would play 4 supergames for each of
the 6 different delta values. After submitting their belief regarding their overall play of the
cooperative action, the experiment proceeded on to the first indefinitely repeated PD game.
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Repeated PD Games: Screenshots

For each indefinitely repeated PD game (referred to as a “sequence”) subjects were clearly
instructed about the continuation probability for that repeated game. For instance, the
screenshots shown in Figures C1-C2 provide an illustration of the screens that subjects faced
in the first round (Figure C1) and in continuation rounds (Figure C2) of the first supergame
of the “orderlong” treatment, which had a continuation probability of 0.67 and lasted for 4
rounds. In this illustration, the subject chooses Y (defect) in all 4 rounds and the computer
program responds accordingly. Note that subjects were always informed in advance about
the computer opponent’s decision for each round based on the round number, the history of
play and the prescriptions of the Grim trigger strategy. For instance, in round 1 (Figure C1)
the subject is instructed: “Since this is the first round of a sequence the computer will always
choose X.” After the subject chose Y in the first round of Sequence 1, in the second round
of the sequence (Figure C2) the subject is instructed: “Based on your choices in previous
rounds of this sequence the computer will choose Y”.
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Figure C1: (Top) Start screen for a new sequence. (Middle) Main decision screen for a period
in the sequence. (Bottom) Results screen for a period in the sequence.
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Figure C2: (Top) Decision screen for a continuation period in the sequence, noting what the
robot player will do, based on the history of play. (Bottom) Screen for the final period of a
sequence noting that based on the random drawn, the sequence has ended.
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