Model Solutions for Odd-Numbered Problems in Section 2.4

Problem 2.4.1 Prove that for all vectors \(u \) and \(v \) in \(V \),

\[\|u + v\|^2 + \|u - v\|^2 = 2(\|u\|^2 + \|v\|^2). \]

Proof Let \(u \) and \(v \) be vectors in \(V \). Then

\[\|u + v\|^2 + \|u - v\|^2 = \langle u + v, u + v \rangle + \langle u - v, u - v \rangle = 2\langle u, u \rangle + 2\langle v, v \rangle = 2(\|u\|^2 + \|v\|^2). \]

Problem 2.4.3 (The measure of a straight angle is \(\pi \).) Let \(p, q, r \) be (distinct) collinear points, and suppose that \(q \) is between \(p \) and \(r \) (i.e., \(\overrightarrow{pq} = \lambda \overrightarrow{pr} \) with \(0 < \lambda < 1 \)). Show that \(\angle(p, q, r) = \pi \).

Proof Since \(\overrightarrow{pq} = \lambda \overrightarrow{pr} \), we have \(\overrightarrow{qp} = -\lambda \overrightarrow{pr} \) and \(\overrightarrow{qr} = (1 - \lambda) \overrightarrow{pr} \). Hence,

\[\langle \overrightarrow{qp}, \overrightarrow{qr} \rangle = \langle -\lambda \overrightarrow{pr}, (1 - \lambda) \overrightarrow{pr} \rangle = -\lambda(1 - \lambda)\|\overrightarrow{pr}\|^2 \]

and, since \(0 < \lambda < 1 \),

\[\|\overrightarrow{qp}\|\|\overrightarrow{qr}\| = \| -\lambda \overrightarrow{pr}\|\|(1 - \lambda) \overrightarrow{pr}\| = \lambda(1 - \lambda)\|\overrightarrow{pr}\|^2. \]

It follows that

\[\cos(\angle(p, q, r)) = \frac{\langle \overrightarrow{qp}, \overrightarrow{qr} \rangle}{\|\overrightarrow{qp}\| \|\overrightarrow{qr}\|} = -1. \]

The only number between 0 and \(\pi \) whose cosine is \(-1\) is \(\pi \). So, \(\angle(p, q, r) = \pi \).

Problem 2.4.5 (Right Angle in a Semicircle Theorem) Let \(p, q, r \) be (distinct) points such that (i) \(p, o, r \) are collinear, and (ii) \(\|\overrightarrow{op}\| = \|\overrightarrow{or}\| = \|\overrightarrow{dr}\| \). (So \(q \) lies on a semicircle with diameter \(LS(p, r) \) and center \(o \).) Show that \(\overrightarrow{qp} \perp \overrightarrow{qr} \), and so \(\angle(p, q, r) = \frac{\pi}{2} \).

Proof By (i), we have \(\overrightarrow{op} = a \overrightarrow{or} \) for some \(a \). Hence, \(\|\overrightarrow{op}\| = |a| \|\overrightarrow{or}\| \) and, therefore, by (ii), \(|a| = 1 \). Now \(a \) cannot be \(1 \). For if \(\overrightarrow{op} = \overrightarrow{or} \), then

\[\overrightarrow{op} = \overrightarrow{or} + \overrightarrow{rp} = \overrightarrow{op} + \overrightarrow{rp}. \]
And so it would follow that $\vec{r}_p = 0$, which is impossible since p and r are distinct. So $a = -1$ and $\vec{a}_o = -\vec{o}_o$. This implies that

$$\vec{q}_r = \vec{q}_o + \vec{o}_r = -\vec{o}_q - \vec{o}_p.$$

We also clearly have

$$\vec{q}_p = \vec{q}_o + \vec{o}_p = -\vec{o}_q + \vec{o}_p.$$

Hence, by (ii) again,

$$\langle \vec{q}_p, \vec{q}_r \rangle = \langle -\vec{o}_q + \vec{o}_p, -\vec{o}_q - \vec{o}_p \rangle = \langle -\vec{o}_q, -\vec{o}_q \rangle - \langle \vec{o}_p, \vec{o}_p \rangle$$

Thus, $\vec{q}_p \perp \vec{q}_r$ and

$$\cos(\angle(p,q,r)) = \frac{\langle \vec{q}_p, \vec{q}_r \rangle}{\|\vec{q}_p\| \|\vec{q}_r\|} = 0.$$

The only number between 0 and π whose cosine is 0 is $\frac{\pi}{2}$. So, $\angle(p,q,r) = \frac{\pi}{2}$. □