The 'Minimax Blame' Rule for Voter Choice: Help for the Undecided Voter
on November 8, 1988

A Wuffle

Stable URL:
http://links.jstor.org/sici?sici=1049-0965%28198822%2921%3A3%3C639%3AT%27BRFV%3E2.0.CO%3B2-7

PS: Political Science and Politics is currently published by American Political Science Association.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/apsa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
The ‘Minimax Blame’ Rule for Voter Choice: Help for the Undecided Voter on November 8, 1988*

A Wulle
School of Social Sciences
University of California, Irvine

Consider an election in which all the choices are dismal, albeit some perhaps even more dismal than others.1 How should voters in such an election choose whom to vote for or whether or not to vote?

It has been suggested (Riker and Ordeshook, 1973; cf. Weisberg and Grofman, 1981) that a voter is unlikely to vote if no choice exists whose election would yield him any appreciable degree of delight. Such a voter is alienated from the system. Consider, now, an election whose outcome is virtually certain. The conventional wisdom is that such certainty as to outcome should depress turnout, since ceteris paribus, voters who come to see their vote as making no difference should be less likely to vote than when they saw themselves as having a chance, however remote, to influence the outcome.

We believe that there are circumstances under which voter alienation and an election whose outcome is certain are both conditions which will increase rather than decrease turnout. Following the insightful lead of Ferejohn and Fiorina (1974; cf. Wulle, 1984; Grofman, 1983) we wish to propose a minimax blame theory of voting. "Minimax blame" voters believe that whichever candidate will be elected will do an awful job. For such voters the object of the voting act is to avoid voting for a winning candidate, lest one be accused of having helped to elect him. If we, for simplicity, neglect the intrinsic costs and benefits of voting, the calculus of voting for "minimax blame" voters is straightforward; they seek to minimize the blame they'd get, on the assumption that, if they voted for a candidate who won, they'd have to take full responsibility for that candidate's election.

"Minimax blame" voters believe that whichever candidate will be elected will do an awful job.

There is clear empirical evidence that the set of minimax-blame voters is not an empty set. Mary McGrory (February 1984), in a syndicated column on the 1984 New Hampshire Democratic Primary, notes that three registered voters in the small New Hampshire town of Nashua "will not vote at all, because, as one distracted young mother said, ‘then you don’t need to worry about picking the wrong one.’"

Clearly,

Expected Maximum Blame

\[(\text{Voting for } c_i) = p_i D(c_i) \] \hspace{1cm} (1)

where \(p_i\) is the probability that the \(i\)th candidate, \(c_i\), will be elected and \(D(c_i)\) is the disutility of electing that candidate, i.e., \(D(c_i) = -\text{utility}(c_i)\).

Hence, if they vote at all, rational "minimax blame" voters vote for that candidate for whom \(p_i D(c_i)\) is minimum. If \(D(c_i) \equiv D(c_j)\) for all \(i\) and \(j\), then "minimax blame" voters vote, if they vote at all, for...
Features

that candidate who is least likely to get elected. More precisely, minimax blame voters vote for \(c_i \) rather than \(c_j \) iff

\[
\frac{D(c_i)}{D(c_j)} > p_i \quad (2)
\]

The value of abstention is equally straightforward.

Expected Maximum Blame (Abstention)

\[
= \sum_p p_i D(c_j) \quad (3)
\]

... the calculus of voting

for "minimax blame"

voters is straightforward;

they seek to minimize the

blame they'd get. . . .

In other words, "minimax blame" voters act as if they believe that a voter who stays at home will be fully blamed for whatever happens, since the voter didn't do anything to prevent it.3

Under these assumptions it is easy to prove that, for "minimax blame" voters, the closer the election, the lower the turnout.3

Notes

*This research was not supported by NSF Grant SES 80-07915. I am indebted to Morris Fiorina for calling to my attention the strong empirical support (N = 3) for the existence of the minimax-blame voters in Nashua, New Hampshire (as attested to by Mary McCrory in 1984).

1. The nature of the correspondence between this picture and any recent/forthcoming election(s) is left to the reader's imagination.

2. As in the usual minimax regret argument (Ferejohn and Fiorina, 1974), we posit that votes neglect the probability of certain events and focus only on their possibility. For a defense of this seemingly ridiculous point of view, see Ferejohn and Fiorina (1975).

3. Of course, if we neglect the net intrinsic costs/benefits of voting, rational "minimax blame" voters always vote, since

\[\sum_i p_i D(c_i) > p_i D(c_j) \quad \text{for all } i \]

Taking intrinsic costs, C, and benefits, B, into account, a "minimax blame" voter votes iff

\[
B - C - p_i D(c_i) > -\sum_i p_i D(c_j) \quad (4)
\]

where \(c_i \) is the voter's preferred (i.e. "minimizing expected blame") choice. We may rewrite equation (4) to assert the rule that "minimax blame" voters should vote if

\[
B - C > -\sum_{i \neq i} p_i D(c_i) \quad (5)
\]

Ceteris paribus, the closer the election, the higher the value of \(p_i \) and thus the higher the value of \(p_i D(c_i) \). Hence, the closer the election the lower the value of

\[
\sum_{i \neq i} D(c_i).
\]

Therefore, the closer the election, the higher the value of

\[
-\sum_{i \neq i} D(c_i),
\]

and the less likely it is that equation (5) will be satisfied.

References

