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Abstract

Systematic measurements of perceptual learning were performed in the presence of external or stimulus noise. In the new
external noise method (Dosher, B, & Lu, Z.-L. (1997). In6estigati6e Ophthalmology and Visual Science, 38, S687; Lu, Z.-L., &
Dosher, B. (1998). Vision Research, 38, 1183–1198), increasing amounts of external noise (white Gaussian random noise) is added
to the visual stimulus in order to identify mechanisms of perceptual learning. Performance improved (threshold contrast was
reduced) over days of practice on a peripheral orientation discrimination task—labelling Gabor patches as tilted slightly to the
right or left. Practice improvements were largely specific to the trained quadrant of the display. Performance improved at all levels
of external noise. The external noise method and perceptual template model (PTM) of the observer identifies the mechanism(s)
of performance improvements as due to stimulus enhancement, external noise exclusion, or internal noise suppression. The external
noise method was further extended by measuring thresholds at two threshold performance levels, allowing identification of
mixtures in the PTM model. Perceptual learning over 8–10 days improved the filtering or exclusion of external noise by a factor
of two or more, and improved suppression of additive internal noise—equivalent to stimulus enhancement—by 50% or more.
Coupled improvements in external noise exclusion and stimulus enhancement in the PTM model may reflect channel weighting.
Perceptual learning may not reflect neural plasticity at the level of basic visual channels, nor cognitive adjustments of strategy, but
rather plasticity at an intermediate level of weighting inputs to decision. © 1999 Elsevier Science Ltd. All rights reserved.
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1. Mechanisms of perceptual learning

Performance on perceptual tasks often improves with
practice or training, but the mechanisms which underlie
perceptual learning are still under debate. Training
improves performance over a wide range of perceptual
tasks in the visual domain, and some of what is learned
is specific to stimulus factors such as retinal location,
spatial frequency, or orientation. Perceptual learning
that is highly specific to retinal location and stimulus
has been claimed to reflect neural plasticity in basic
visual processing mechanisms. In this paper, we report
a new set of empirical observations of perceptual learn-
ing under systematic variations of environmental noise.

Theoretically, this allows a systems analysis of the
mechanisms of improvements in performance with
practice. The results are consistent with perceptual
learning that reflects plasticity in the weighting of in-
puts from basic visual mechanisms to decision.

Perceptual learning is quantified within a perceptual
template model (PTM) which has recently been used to
identify the mechanisms of voluntary perceptual atten-
tion to a spatial location (Dosher & Lu, 1997; Lu &
Dosher, 1998a). This approach considers stimulus en-
hancement, external noise exclusion, and internal (mul-
tiplicative) noise reduction as possible mechanisms of
improvement in performance of perceptual tasks. An
external noise paradigm calibrates processing inefficien-
cies in the visual system in terms of equivalent internal
noise. Using the external noise manipulation and a
training paradigm, the nature of perceptual learning
may be operationally characterized. This paper applies
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the external noise paradigm and PTM model to an
orientation discrimination (or identification) task. Per-
ceptual learning in this task is shown to reflect improve-
ment in both stimulus enhancement and external noise
exclusion. The variants of PTM model and the relation-
ship of the empirical signatures to processing in visual
system are also considered.

1.1. Learning in perceptual tasks

Improvements in task performance with training or
with practice occur in a range of perceptual tasks. As
early as 1973 (see Gibson (1969) for a review of earlier
work), orientation-specific learning effects in adults
were reported for the time to perceive patterns in
random dot stereograms (Ramachandran & Braddick,
1973). In the succeeding years, perceptual learning ef-
fects have been reported in detection and discrimination
of visual gratings (DeValois, 1977; Fiorentini & Be-
rardi, 1980, 1981; Mayer, 1983), stimulus orientation
judgments (Vogels & Orban, 1985; Shiu & Pashler,
1992), motion direction discrimination (Ball & Sekuler,
1982, 1987; Ball, Sekuler & Machamer 1983), texture
discrimination (Karni & Sagi, 1991, 1993), stereoacuity
(Fendick & Westheimer, 1983), and hyperacuity and
vernier tasks (McKee & Westheimer, 1978; Bennett &
Westheimer, 1991; Fahle & Edelman, 1993; Kumar &
Glaser, 1993; Beard, Levi & Reich, 1995; Saarinen &
Levi, 1995).

Improvement in performance is said to reflect percep-
tual learning, as opposed to cognitive learning, strategy
selection, or motor learning, when the improvement
exhibits specificity to either a retinal location or to a
basic stimulus dimension such as spatial frequency,
orientation, or scale. For example, improvement in a
texture discrimination task was found to be specific to
the orientation of the background texture elements and
to retinal location (Karni & Sagi, 1991, 1993); improve-
ment on motion direction discrimination for random
dot fields was specific to the training direction (Ball &
Sekuler, 1982); and improvements in discrimination of
compound gratings were reported to be specific to both
orientation and spatial frequency (Fiorentini & Berardi,
1980). Thus, failures of transfer to different retinal
locations and to different stimuli are critical to conclu-
sions about the nature and locus of perceptual learning.
(The conditions of transfer specificity have, however,
been challenged (Ahissar & Hochstein, 1997; Liu &
Vaina, 1998).) There is a strong case for the perceptual
nature of learning in many of these tasks. However, it
is far more difficult to unambiguously identify the
mechanism of the improvements. Transferability ad-
dresses generalizability and not the mechanisms
themselves.

One recent attempt to further specify the nature of
perceptual learning (Saarinen & Levi, 1995) performed

a series of masking studies to evaluate whether im-
provements in vernier acuity reflect ‘‘‘fine tuning’ of the
visual mechanisms’’ in orientation-tuned visual chan-
nels. They measured the dependence of mask effective-
ness on mask orientation and concluded that
orientation-specific channels may have been tuned dur-
ing the course of practice on a vernier task (but see
Beard and Ahumada (1997) for an alternative conclu-
sion). This paper takes a different approach. An exter-
nal noise paradigm is used to identify the mechanisms
of perceptual learning. (For a preliminary report, see
Dosher & Lu, 1998.)

1.2. The perceptual template model

A noisy perceptual template model (PTM) combined
with the manipulation of external noise in the stimulus
characterizes improvements in performance with per-
ceptual learning. In a prior application of the PTM to
a spatial attention task (Dosher & Lu, 1997; Lu &
Dosher, 1998a), distinctive performance signatures were
derived for improvements associated with stimulus en-
hancement, external noise exclusion, and internal noise
reduction. In this section we outline the perceptual
template model. Some readers may choose to proceed
directly to the following section, which details the sig-
nature patterns associated with different mechanisms of
improvement with practice.

The PTM model describes the input–output relation-
ships of the perceptual and decision process for the
observer as a system. Perceptual task performance by
human observers near threshold reflects various pro-
cessing inefficiencies, which may include coarse coding
of stimulus properties, loss during information trans-
mission, neural randomness, etc. as well as stimulus
sampling limits such as photon noise, receptor noise
and sampling noise. These processing inefficiencies and
limits can be characterized in terms of the equivalent
internal noise—the amount of random internal noise
necessary to reduce performance to the observed level
(Barlow, 1956; Nagaraja, 1964; Pelli, 1981; Ahumada &
Watson, 1985). Equivalent internal noise is estimated
by comparison to the effects of external noise in the
stimulus.

To illustrate the impact of external noise on perfor-
mance, a signal—in this case an oriented Gabor
patch—is shown with several levels of external noise in
Fig. 1a, b. Addition of external noise to signal has a
characteristic impact on task performance. Task perfor-
mance is measured by the signal contrast necessary to
reach a threshold or criterion level of accuracy in a
detection, discrimination or identification task. Graphs
of threshold contrast as a function of external noise
level (Fig. 1c), often called threshold versus contrast
(TVC) functions, are generally flat in the region of low
external noise, and then increase in regions of higher
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Fig. 1. Signal detection and discrimination are limited by external environmental or image noise. (a) Examples of external noise of increasing
contrast levels. (b) Oriented Gabor signals embedded in external noise. (c) A typical performance function showing increases in signal contrast
required to achieve threshold in increasing levels of external noise. Performance is limited by internal noise or processing limits at low levels of
external noise, and by image noise at high levels of external noise. The smooth functions are hypothetical performance functions under the
perceptual template model at three criterion levels of d %.

external noise. In the flat region of lower external noise,
performance is limited not by the external noise, but by
internal noise. In the region of higher external noise,
external noise (and the consequent multiplicative inter-
nal noise) limits performance. The upper limb of the
function reveals the impact of external noise while the
lower limb of the function reveals the equivalent inter-
nal noise.

Functions of precisely this kind arise from a percep-
tual template model (PTM) illustrated in Fig. 2. The
PTM characterizes human performance in perceptual
tasks in terms of a signal processing filter or template,
an optional transducer nonlinearity, an internal addi-
tive noise source, and an internal multiplicative noise
source. The stimulus consists of a signal plus external
noise. The internal additive noise source is independent
of the contrast of the stimulus; the internal multiplica-
tive noise source increases directly with the contrast of
the stimulus (signal plus external noise). All noise
sources are assumed to be independent. Several variants
of this basic model with alternative arrangements of
noise sources are considered in detail in Section 5 and
Appendix A. The conclusions are consistent over broad
classes of models.

The basic equations of the PTM model (see Lu and
Dosher (1998a), Lu & Dosher (1999) for a develop-
ment) are summarized briefly here. In the PTM model,

accuracy of perceptual task performance is indexed by
d %, in which signal strength, S, is compared with the
standard deviation of the total noise (external and
internal), sN, or d %=S/sN. The signal plus external
noise is processed by a task-relevant template or filter.
The strength of response of the perceptual template is
bc, where c is the contrast of the signal, and b is the
gain on a signal-valued stimulus processed through the
template or filter1. Multiplicative noise is proportional
to the signal plus external noise contrast.

System output is not always a linear function of the
input, reflecting either contrast gain control nonlineari-
ties or nonlinear transduction. If the slope of the rising,

1 The contrast of a signal is a function of space and time:
S(x, y, t)=cS0(x, y, t) rescaled such that 			 S0

2(x, y, t)dxdydt=1.0.
The contrast of the external noise is N(x, y, t)=NextG(x, y, t), where
the value of G(x, y, t) is drawn from a Gaussian distribution
with mean 0 and standard deviation 1. Given a template
function T(x, y, t), matching the template to the signal yields output
TS=			 T(x, y, t)S(x, y, t)dxdydt=c 			 T(x, y, t)S0(x, y, t)dxdydt,
which for a chosen template and signal is cTS 0

, where TS 0
is a

constant. Correspondingly, matching the template to the external
noise yields output TN=			 T(x, y, t)N(x, y, t)dxdydt=
Next 			 T(x, y, t)G(x, y, t)dxdydt. TG=			 T(x, y, t)G(x, y, t)dxdydt
is a Gaussian random variable with mean 0 and standard deviation
sTG

. We can rescale so that TN=NextG(0, 1) and TS=bc, where
b=TS 0

/sTG
. That is, b is directly proportional to the correlation of

the template and the signal.
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Fig. 2. A schematic diagram of the perceptual template model. Signal plus noise in the stimulus is processed through a task-relevant perceptual
template, followed by nonlinear transducer functions applied to the signal and to the control of multiplicative noise, multiplicative and additive
internal noises and a decision process. The internal noise sources quantify processing inefficiencies in the observer.

high external noise limb of the performance functions
have slopes significantly different from one, e.g.
(Dosher & Lu, 1997; Lu & Dosher, 1998a), or if
performance at different criterion levels does not scale
directly with the ratio of d %s (Lu & Dosher, 1999),
nonlinearities must be considered. The precise form of
nonlinearities in visual system is still being actively
investigated in studies of pattern masking and contrast
gain control (Legge & Foley, 1980; Wilson, 1980; Foley
& Legge, 1981; Foley, 1994). Nonlinearities may occur
in both the signal and the multiplicative noise paths of
the PTM model (Fig. 2). Following the approach in the
pattern masking literature, the nonlinearities are mod-
eled as power functions. The nonlinearity ��·��g1 applies
in the signal path and nonlinearity ��·��g2 applies in the
multiplicative noise path.

The signal strength including nonlinearity is (bc)g1.
And, since all noise sources are assumed to be indepen-
dent, then s2

N=s2
ext+s2

mul+s2
add, or N ext

2g1+
Nm

2 (b2g2c2g2+N ext
2g2)+Na

2. The N2.s refer to the
variances of the external, internal additive and internal
multiplicative noise sources which limit performance
accuracy.

Overall performance is described by Eq. (1):

d %=
(bc)g1


N ext
2g1+Nm

2 (b2g2c2g2+N ext
2g2)+Na

2
. (1)

For the case of g=g1=g2, a simple solution for the log
form of the TVC (Fig. 1c) is derived by choosing a
threshold d % and solving for a threshold level of con-
trast, ct.2 In log form (Eq. (2)),

log(ct)=
1
2g

log((1+Nm
2 )N ext

2g +Na
2)

−
1
2g

log(1/d %2−Nm
2 )− log(b). (2)

1.3. Mechanisms of perceptual task impro6ement

The signature patterns of perceptual learning in an
external noise paradigm for three pure mechanisms of
improvement are shown in Fig. 33. These signatures,
developed qualitatively below, illustrate forms of im-
provement in performance which might result from
attention or from perceptual learning.

One possible mechanism of improvement given either
attention or perceptual learning involves stimulus en-
hancement—turning up the gain on the output of the
signal-relevant perceptual template (see Fig. 3a, b).
Stimulus enhancement is generally indistinguishable
from reductions in internal additive noise (Lu &
Dosher, 1998a) and this is the model form used in the
current development. The signature pattern is improve-
ment in the lower noise limb of the TVC functions:
Turning up the gain on the stimulus (signal plus exter-
nal noise), or equivalently reducing internal additive
noise, improves performance at low external noise lev-
els when internal noise is the limiting process. It cannot

those model fits were equivalent in pattern and the cross product
terms were small. The model was also evaluated for independent g1

and g2 by iterative solution; the g=g1=g2 solutions gave a good
account of the current data.

3 These pure mechanisms are empirically achievable in the current
form of PTM model, but may not be in other forms (see Appendix
A). Nonetheless, these pure forms serve as a descriptive basis set.

2 Cross products in the form (b2c2+Next
2 )g2 are eliminated in order

to yield direct solutions. Model fits were also performed on the full
cross product form by methods of iterative solution. The results of
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Fig. 3. Three mechanisms of perceptual learning and the corresponding performance signatures. (a) Practice that turns up the gain on the stimulus,
corresponding to stimulus enhancement. (b) Stimulus enhancement is associated with improvements in performance in the lower noise limb of the
contrast threshold functions. (c) Practice that affects the amount of external noise processed through the perceptual template by narrowing the
filter tuning, corresponding to external noise exclusion. (d) External noise exclusion improves performance only in the high noise limb of the
contrast threshold functions. (e) Practice that reduces the gain on multiplicative internal noise, or internal multiplicative noise reduction. (f)
Internal (multiplicative) noise reduction improves performance somewhat over both limbs of the contrast threshold functions.

improve performance at high levels of external noise
where external noise is the limiting factor, because
increasing the gain on the signal increases the gain on
external noise exactly to the same degree.

Another mechanism of improvement given either
attention or perceptual learning involves external
noise exclusion—eliminating some of the external
noise by tuning the perceptual template or filter more
narrowly around the signal-valued stimulus. This
mechanism produces a signature pattern of improve-
ment in the higher external noise limb of the TVC
functions (see Fig. 3c, d). Narrowing the perceptual
filter or template around the signal serves to exclude
external noise in the stimulus, primarily affecting per-
formance in the high external noise conditions where
external noise is the limiting factor.

Finally, another possible mechanism of improve-
ment in performance is internal noise suppression—the
reduction of (multiplicative) internal noise. In this
case, the signature pattern in performance involves
improvement in both the low and high external noise
regions (see Fig. 3e, f). The extent of improvement
increases slightly at high external noise, since multi-
plicative noise is determined in part by the level of
external noise.

Assuming that all three mechanisms of improve-
ment may be operative (and that g=g1=g2), the
PTM equation, in log form, is Eq. (3):

log(ct)=
1
2g

log((1+Am
2 (k)Nm

2 )Af
2g(k)N ext

2g +Aa
2(k)Na

2)

−
1
2g

log(1/d %2−Am
2 (k)Nm

2 )− log(b). (3)
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This equation is identical to the earlier equation except
for the inclusion of multipliers A ·(k), generally propor-
tions less than one. The index k is a condition index.
Aa(k) are multipliers on internal additive noise associ-
ated with stimulus enhancement (internal additive noise
reduction). The Af(k) are multipliers on the output of
the perceptual filter applied to external noise, reflecting
the width of the perceptual filter around the signal
valued stimulus, corresponding to external noise exclu-
sion. The Am(k) are multipliers on internal multiplica-
tive noise associated with (multiplicative) internal noise
reduction.

The PTM model and an attention plus external noise
paradigm were applied to an orientation identification
task in which the subject decided whether peripheral
Gabor patches were tilted top to the right or top to the
left (912°) (Dosher & Lu, 1997; Lu & Dosher, 1998a).
Instructions to attend to a stimulus on either the right
or left of fixation improved performance on the at-
tended relative to the unattended side only in low
external noise conditions; attention had no effect in the
high external noise conditions. This is the signature for
a stimulus enhancement mechanism, or, equivalently,
the reduction of additive noise. Thus, this case of
voluntary attention to a peripheral spatial location in a
two-location orientation discrimination task is a
demonstration of a single mechanism signature, wherein
only Aa varies with condition. In contrast, precuing of
report location affects performance only in high exter-
nal noise conditions of a four-location, four-alternative
identification task (Dosher & Lu, 1999), the signature
for external noise exclusion. This provides a demonstra-
tion of the single mechanism case wherein only Af

varies with condition.
Mixtures of more than one mechanism may underlie

improvement in performance associated with either at-
tention or perceptual learning in some tasks. An exam-
ination of Fig. 3 suggests that a mixture of stimulus
enhancement and external noise exclusion signatures
might look very similar to the signature for multiplica-
tive internal noise suppression. For situations with non-
linearities affecting the slope of the TVC function
(g1"g2) mixtures may be discriminated relatively di-
rectly in the model (Lu & Dosher, 1998a). In other
cases, additional data may be required. The issue of
identifying mixtures is considered in detail after the
presentation of Experiment 1.

1.4. Summary

The PTM model provides an analysis at a whole
system level of the observer in a particular task. The
external noise paradigm allows the identification of
improvements in performance with perceptual learning,
with one or more of the system mechanisms, stimulus
enhancement, external noise exclusion, and internal

(multiplicative) noise reduction. Linking hypotheses are
required to relate the whole system analysis to the
operation of basic mechanisms in visual processing
(Graham, 1989). Patterns of performance of our ob-
servers in the presence of external noise are related in
Section 5.4 to the processing of analysers or filters in
early visual system.

2. Experiment 1

The goal of this research was to discover the mecha-
nisms underlying the improvement in performance in a
perceptual learning task using the external noise
paradigm. The pattern of improvement at both low and
high external noise levels can be used to identify the
mechanisms of improvement with practice. For this
initial study, we chose a paradigm which is similar to
the perceptual learning studies of Karni and Sagi (1991,
1993), who found that perceptual learning was specific
to retinal location.

As in prior studies, the observer is asked to perform
two tasks: In the central task, fixation is maintained on
a central point and the observer discriminates an S
from a 5 in a rapidly presented string of small charac-
ters (see Fig. 4). Simultaneously, the perceptual task is
presented in the visual periphery. The perceptual task
was an orientation discrimination task, essentially re-
quiring identification of which of two stimuli was pre-
sented. A Gabor patch was tilted either 912° from
vertical, and the observer reported whether the patch
tilted top to the right or top to the left. The patch was
combined with external noise, and the contrast required
for threshold performance was measured. The task was
similar to, but easier than, that of Lu and Dosher
(1998a)4.

The mechanism(s) of perceptual learning at the whole
system level may be associated with stimulus enhance-
ment, external noise exclusion, or internal noise sup-
pression, or some combination. Certain earlier claims
about neural plasticity (Karni & Sagi, 1991, 1993) have
focused on lack of transfer to other retinal locations.
Therefore, transfer to untrained locations in the periph-
ery is also examined.

2.1. Method

2.1.1. Stimulus and display
The signals in the perceptual learning task were

Gabor patterns tilted either u° to the right or left of
vertical:

4 The current task was easier than the task in Lu and Dosher in
that it presented a larger pixel grid with more sidebars per Gabor
than the previous stimulus. The overall luminance levels at threshold
were correspondingly lower.
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Fig. 4. A typical trial sequence. The observer detects whether an S or a 5 appeared in a rapidly presented digit/letter string at fixation (the central
task). At the same time, noise and signal frames of the orientation identification task (top to the right or left) appear in the lower-right (training)
quadrant. Transfer tasks included orientation identification in the corresponding positions of the upper-left and upper-right quadrants.

l(x, y)= l0
�

1.0+c sin(2pf

(x cos u9y sin u))exp
�

−
x2+y2

2s2

� �
In this experiment, u was 912°. Each Gabor ex-
tended 1.54°×1.54°, with a center frequency of f=
2.3 cycle/deg, and a standard deviation s=0.385°. It
was rendered on a 64×64 pixel grid. The mean lumi-
nance lo was 71 cd/m2. The maximum contrast of each
Gabor varied according to a staircase tracking a crite-
rion level of performance (see below). Viewing dis-
tance was approximately 76 cm. The initial training
stimulus was displaced to the lower-right quadrant
relative to fixation by 2.3° vertically and 3.1° horizon-
tally. In subsequent transfer tests, the stimulus was
displaced to the upper-left and -right quadrants rela-
tive to fixation.

The pixel graylevels for each external noise frame
were constructed by sampling from a Gaussian distri-
bution with mean 0 and variance depending on the
amount of external noise for each noise condition.
Noise frames had the same size as that of the signal
frames with each pixel subtending 0.024°×0.024° vi-

sual angle. To guarantee that the external noise did
conform to the Gaussian distribution, the maximum
standard deviation of the noise was kept below 33%
maximum achievable contrast. Each noise element
consisted of a 2×2 pixel region.

The central task consisted of alphanumeric charac-
ters (times font) subtending approximately 0.144°×
0.288° of visual angle. All displays were viewed
binocularly with natural pupil at a viewing distance of
approximately 76 cm in a dimly lighted room.

2.1.2. Apparatus
Signal and noise frames for the perceptual task were

generated off-line using the HIPS image processing
software (Landy, Cohen & Sperling, 1984a,b). Fixa-
tion and central task characters were generated online,
and the precomputed signal and noise frames were
displayed, using a program based on a software pack-
age (Runtime Library, 1988) on an Leading Technol-
ogy monitor controlled by an AT-Vista videographics
board in an IBM 486 PC computer. The monitor has
a P4 phosphor, and the monitor was tuned to yield a
square aspect ratio for horizontal and vertical pixels.
A special circuit combined two output channels of the
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AT-Vista board to produce 4096 distinct grey levels (12
bits).

Luminance calibration was performed both with psy-
chophysical matching judgments and by measurement
with a Photo Research Spectra Colorimeter (Model
PR-650). The luminance of the monitor was 1 cd/m2

when every pixel was assigned the minimum grey level,
and was 144 cd/m2 when every pixel was assigned the
maximum grey level. The background was set at 71
cd/m2. A lookup table was constructed to allow linear
divisions of the entire range into 256 programmable
grey levels. Finer grey levels are accomplished by
interpolation.

2.1.3. Design
The central task, discriminating an S from a 5, was

the same for all trials. Subject’s threshold contrasts
were estimated for the perceptual task at each external
noise level. There were eight external noise levels (0,
0.02, 0.04, 0.08, 0.12, 0.16, 0.25, and 0.33). The experi-
mental conditions were intermixed. Threshold contrasts
were measured using a staircase procedure (Levitt,
1971) (see below), which estimates the contrast corre-
sponding to a two alternative forced choice accuracy
level of 0.793. There were 800 trials per session, consist-
ing of 100 trials per staircase; two sessions were run per
day. The perceptual task, discriminating the orientation
of a Gabor patch, appeared in the lower-right quadrant
for all training sessions. Data were collected for 8 days
(16 sessions). Transfer data were also collected in which
the perceptual task appeared in the upper-left and
upper-right quadrants. The transfer conditions were
tested for 2 days (four sessions) each.

2.1.4. Procedure
The display sequence of a typical trial is shown in

Fig. 4. Following a subject keypress, a fixation display
appeared for 0.5 s. The fixation display is a small
central square. Frames for the central task and the
peripheral perceptual task appeared during the same
time interval. The central task display consisted of a
sequence of three letters and numbers with the middle
letter either an S or a 5 appearing at the same location
as the fixation point. The perceptual task appeared in
the lower-right quadrant of the monitor, and consisted
of two frames of random noise, a signal frame with a
Gabor patch tilted either left or right, and two addi-
tional frames of random noise. All noise samples in
each trial are independent samples with the same con-
trast (variance). The noise is combined with the signal
through temporal integration. Each frame appeared for
16.7 ms. After the stimulus sequence, the subject was
cued for two responses: the central task (S vs. 5) and
the peripheral perceptual task (left vs. right). Trials
ended with a fixation display and auditory feedback
(brief beeps after each correct response).

2.1.5. Staircase method
The psychophysical staircase procedure decreased

signal contrast after three successive correct responses
and increased signal contrast after every error (a three
down–one up, or 3/1 staircase), which asymptotically
estimates an accuracy level of 0.793 (d % of 1.634). Trials
for the staircases associated with each condition were
intermixed randomly. The number of reversals (where
contrast changes) depends on the pattern of accuracy of
the responses. The initial stepsize was adjusted for each
external noise condition, and was decreased to half
after the first reversal and again after the third reversal.
The average contrast was calculated, after excluding the
first two to three reversals, to yield an estimate of
threshold contrast.

2.1.6. Obser6ers
Observers were three undergraduate students naive to

the purposes of the experiment. All had normal or
corrected-to-normal vision.

2.2. Results

2.2.1. Central task
The visual conditions of the central task, discriminat-

ing an S from a 5, were identical throughout the
experiment. The size and presentation rate of the cen-
tral task was chosen to require fixation to allow ade-
quate performance. Performance in the central task was
reasonably good: a mean of 98% (range over sessions
91–99), 93% (87–96), and 80% (65–88) for observers
DH, GM, and SP, respectively. The external noise level
in the perceptual task did not effect accuracy on the
central task (the effect of noise level was significant for
observer GM, but that effect was very small, with
differences of approximately 1%). Performance in the
central task improved somewhat over sessions, with the
largest improvement from the first to the second day,
and relatively stable performance thereafter. With re-
spect to perceptual learning, there was no systematic
indication that accuracy on the central task was in-
creasingly sacrificed to produce improved accuracy on
the perceptual task over practice.

A contingency analysis based on the 2×2 table
relating accuracy on the central task to accuracy on the
peripheral perceptual task was performed to examine
possible tradeoffs in attention between the central task
and the perceptual task. If observers were trading accu-
racy in the central task, for accuracy in orientation
discrimination, a negative relationship would obtain.
Instead, the performance on the central task and orien-
tation discrimination were positively related (x2(1) for
N of 12 800 of 10.15, PB0.001, 10.97, PB0.001, and
1.764, n.s., for subjects DH, GM, and SP). Orientation
discrimination was approximately 4% (6, 4, and 1%,
respectively) more accurate on trials with a correct as
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Fig. 5. Contrast threshold functions improve at all levels of external noise with practice over days for Experiment 1. The curves represent average
performance over 2 day sets. (a), (c), and (e) show performance in the trained (lower-right) quadrant for three observers, while (b, d), and (f) show
performance for transfer conditions for the corresponding observers. The smooth curves are fits of the PTM model. (Note that curves for day 5/6
and day 7/8 in panel (e) were virtually identical.) Transfer 1 tested the upper-left quadrant, while transfer 2 tested the upper-right quadrant.
Dashed lines in (b, d), and (f) correspond to the initial and final performance in the original trained quadrant.

compared to an incorrect response on the central task.
This pattern could arise from fluctuations in fatigue or
alertness which affect both tasks similarly. Although a
small negative relationship due to tradeoff, theoreti-
cally, might have been masked by positive correlations
due to coupled fatigue and alertness effects, there is no
evidence that attention tradeoffs provide an alternative
explanation for perceptual learning improvements.

2.2.2. Orientation discrimination
The mechanisms of perceptual learning are studied

with the perceptual task of orientation discrimination in
the periphery. Fig. 5 shows threshold estimates (average
contrast for criterion accuracy) for three observers as a
function of external noise level. The variation in exter-
nal noise produces curves which have the typical struc-
ture of TVC functions, flat at low levels of external
noise and increasing at higher levels of external noise.
Separate curves show performance over practice aver-
aged over 2 day periods (four sessions). Data for the
training location (lower-right quadrant) are shown on
the top panels of the graph, while the data for the
transfer conditions (upper-left and upper-right quad-

rants) are shown in the bottom panels5. The same data
are regraphed in the more typical form as a function of
practice in Fig. 6, with data from the transfer condi-
tions shown on the right. In this case, the separate
curves represent data for each of the external noise
conditions.

The contrast required to achieve threshold perfor-
mance increases with increasing external noise level
(Fig. 5). Averaged over observers and practice, the
thresholds range from about 2% for no external noise
to about 8% for the highest external noise condition, a
412% increase in threshold6. There are a number of

5 The accuracy of performance averaged over trials contributing to
the threshold estimates showed noticeable variation about the theo-
retical asymptotic accuracy of 0.793, as well as some evidence for bias
in identification of direction (e.g. bias to say right or left). However,
the sample sizes within a session were not large enough to justify a
full analysis.

6 Percent increase figures are calculated from the ratio of average
contrasts between two conditions, in this case high noise and zero
noise conditions. Approximate contrasts at threshold are rounded to
the nearest percent. Percent increases or decreases are more precise.
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ways to evaluate these effects statistically. An analysis
of variance over observers found that the effect of the
external noise manipulation was significant (F [7, 14]=
105.11, PB0.001 on the log of threshold contrasts7).
An analysis of variance for individual observers (using
session within day as the random factor, see below)
showed significant effects of noise level for each subject
(F [7, 7]=556.89, PB0.001, F [7, 7]=166.04, PB0.001,
F [7, 7]=25.42, PB0.001, for DH, GM, and SP, re-
spectively, on log values). The quantitative form of the
TVC functions is evaluated within the context of the
PTM model in a subsequent section.

There is substantial improvement in the contrast
required to achieve threshold performance over the 8
days of practice. Threshold, averaged over observers
and noise level, drops from about 9% contrast on the
first day of practice to about 3% contrast on the eighth
day of practice, an improvement of approximately 70%.
The largest improvements occurred early in practice,

however continued practice appeared to be associated
with incremental improvements. Contrast thresholds
decreased significantly over the 8 days of practice
(F [7, 14]=21.18, PB0.001 on log thresholds; F [7, 7]=
556.89, PB0.001, F [7, 7]=2.15, P:0.15, and
F [7, 7]=5.83, PB0.02, for individual subjects).

Examination of the data indicate that practice re-
duces threshold at all noise levels. For log contrast
values, the interaction between noise level and day of
practice was not significant (F [49, 98]=0.660, P�
0.10), corresponding approximately (but not exactly) to
vertical shifts on log axes of the performance functions
over days. This observation is central in subsequent
model analyses.

At a descriptive level, the data pattern is consistent
either with the signature pattern of decreasing multi-
plicative internal noise over practice, or with a combi-
nation of increasing stimulus enhancement (additive
internal noise suppression) and external noise exclusion
over practice. This issue is also evaluated quantitatively
within the PTM model in a subsequent section.

Sessions within a day did not differ reliably, nor did
session interact with any other factor, in any analysis
performed (over observers, within individual observers,
on raw thresholds or log thresholds; all F ’s:1, P\
0.10). This result is consistent with previous observa-
tions of a number of authors that improvements with
practice may require a period of consolidation (Karni &
Sagi, 1993; Polat & Sagi, 1994) (but see Fiorentini &
Berardi, 1981; Poggio, Fahle & Edelman, 1992 for
examples of rapid learning). There is an ongoing discus-
sion about whether learning requires a period of con-
solidation (overnight), or whether this pattern reflects
more continuous learning which is offset by fatigue
within a session or between sessions on the same day
(Shiu & Pashler, 1992; Levi, Polat & Hu, 1997). Our
result is consistent with prior reports, but cannot distin-
guish between these explanations.

2.2.3. Transfer of orientation discrimination
Karni and Sagi (1991, 1993) found that training on

their perceptual task yielded improvements which were
in large degree specific to the retinal position of train-
ing. Other researchers (Kapadia, Gilbert & Westheimer,
1994; Beard et al., 1995; Schoups, Vogels & Orban,
1995) have reported similar findings (but see Beard,
Klein, Ahumada & Slotnick, 1996). Our results demon-
strate in a simple orientation discrimination task the
same pattern previously reported for texture discrimina-
tion tasks. The orientation discrimination task was
trained in lower-right quadrant displays. Two transfer
conditions were examined: upper-left quadrant displays
(first) and upper-right quadrant displays (second). The
thresholds on transfer locations, especially for the up-
per-left quadrant, are quite similar to those at the
beginning of the training on the lower-right quadrant,

Fig. 6. The data of Experiment 1 graphed as a function of days of
practice for each of three observers. Each curve represents data at one
external noise level. T1 and T2 refer to transfer to the upper-left and
upper-right quadrants, respectively.

7 Not surprisingly given the range of threshold values, there was
some inhomogeneity of variance. Variances relevant for main effect
tests were relatively homogeneous in the raw values; however, vari-
ances relevant to interactions showed more inhomogeneity, which is
approximately corrected by taking the log. Analyses on raw values
yielded essentially equivalent patterns of significance as those re-
ported for log threshold analyses.
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and significantly above the thresholds near the end of
the 8 days of training (Figs. 5 and 6). Averaged over
subjects, noise level and session, the threshold in initial
performance was about 6.5% contrast, and at the end
of performance was reduced to about 3% contrast. The
threshold for the upper-left quadrant transfer condition
was about 7% contrast (approximately equal to the
initial level) and the threshold for the upper-right quad-
rant transfer condition was about 4 % contrast.

The thresholds for the transfer tasks and the initial
sessions of the original task were generally similar.
(Observer GM showed better performance on transfer 1
than other observers in these experiments, while observ-
ers DH and SP showed transfer 1 performance worse
than initial performance. These may reflect genuine
differences between observers or may merely reflect
statistical variations.) Analyses over observers were per-
formed on 2-day data groups8. The initial performance
and the two transfer conditions differed only mar-
ginally (F [2, 4]=6.13, P:0.06 on log thresholds). This
marginal difference reflected slightly improved perfor-
mance of the transfer to the upper-right quadrant,
which yielded a pattern of occasional significance com-
pared with either initial performance or the upper-left
quadrant transfer in both the group and individual
subject data. In total, transfer performance was gener-
ally similar to initial, unpracticed task performance,
although the upper-right quadrant transfer showed
some benefit of practice. Whether this reflects partial
transfer between retinal locations within a hemifield, or
improvements associated with learning to learn (Liu &
Vaina, 1998) cannot be determined in the current data
because the same-hemifield transfer was always tested
second.

Transfer performance was always worse than the
final, practiced performance on the original retinal loca-
tion. Final after-practice performance and the two
transfer conditions differed significantly (F [2, 4]=
14.30, P:0.01 on log thresholds). Final performance
on the lower-right quadrant (standard) was better than
the transfer to the upper-left quadrant (F [1, 2]=19.88,
PB0.05 on log thresholds) and better than the transfer
to the upper-right quadrant (F [1, 2]=141.67, PB0.01
on log thresholds). This pattern was replicated in the
individual subject analyses.

In total, the pattern of transfer demonstrated practice
improvements on the orientation discrimination task
which generally showed substantial specificity to the
retinal location. This fact is important, because similar
findings have previously been used to argue for a basis
of perceptual learning in retinally specific neural
plasticity.

2.2.4. PTM model analysis
Thresholds for the orientation discrimination task

show improvements with practice at all levels of exter-
nal noise. At the system level, this pattern is qualita-
tively consistent with improvements in (multiplicative)
internal noise suppression or with some mixture of
improved stimulus enhancement (additive internal noise
suppression) and improved external noise exclusion or
filtering, or a mixture of all three.

The data were quantitatively modeled using the equa-
tion (in log form, Eq. (3)) for mechanisms of perceptual
learning, as developed earlier. In the model, log
threshold contrast (log(ct)) is a function of: d %, the
chosen threshold level; Next, the level of external noise
in a display condition; Nm, the power of multiplicative
internal noise; Na, the power of additive internal noise;
b, the gain on a signal-valued stimulus; and nonlinear-
ity parameters g1 and g2. Finally, there are multipliers
on multiplicative internal noise (Am); on additive inter-
nal noise (Aa); and on the width of the external noise
filter (Af). The levels of Next and the criterion d % values
are selected by the experimenter. The remaining
parameters are free to vary in a fit of the model to data
for each observer. The values of Na, Nm, b (in this
case), and nonlinearity parameters g1 and g2, are the
same for all conditions in the experiment. Only the
values of A· vary from condition to condition. The A·

parameters are attenuators which capture the improve-
ments in performance with practice. Values of the A·’s
are (by definition) set to one for the first (unpracticed)
session(s); hence performance after various amounts of
practice is referred back to the initial level of
performance.

The model was fit to the data with a procedure
implemented in Matlab. Each observer’s data were fit
separately. Model parameters were adjusted using a
gradient descent method so as to minimize the error
function, the sum of the squared differences between
the predicted (log c t

theory) and observed (log c t
obs)

threshold contrasts. The goodness-of-fit is evaluated by
the r2 measure of percent variance accounted for by the
model (Eq. (4)):

r2=1.0−
% (log(c t

theory)− log(ct))2

% (log(ct)−mean(log(ct)))2

(4)

where S and mean ( ) apply to all data points for a
particular subject.

In order to evaluate the mechanism(s) underlying
perceptual improvement, versions of the model with
different mechanisms of improvement with learning (A·

parameters) must be compared. Models which are
nested (whose parameters are proper subsets or super-
sets of one another) may be statistically compared by

8 Subject DH performed only 1 day of tests on each transfer, so his
analyses were performed on single day sets. His single days were
replicated with noise for the group analyses.
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application of an F-test comparing a fuller to a reduced
model (Eq. (5)):

F(df1, df2)=
(r full

2 −r reduced
2 )/df1

(1−r full
2 )/df2

(5)

where df1=kfull−kreduced, and df2=N−kfull−1. The
k ’s are the number of parameters in each model, and N
is the number of predicted data points (Wannacott &
Wonnacott, 1981).

The PTM model was fit to the 2-day average data
shown in Figs. 5 and 6. Although nonlinearities were
present in this situation, the Experiment 1 data were
not sufficient to constrain the estimates of nonlinearity.
(Lu and Dosher (1998a) found evidence for nonlinear-
ity in the non-unit slope of the high noise region of the
external noise functions; nonlinearities are revealed for
the displays in Experiment 2 by data at two d % criteria.)
The fits we describe here eliminate nonlinearities (set
g=1). The conclusions, however, are essentially un-
changed by the consideration of nonlinearities (see Sec-
tion 4.2.4). A full lattice of nested model fits were
performed. The fully saturated linear model has 12 free
parameters, including Nm, Na, and b, and nine percep-
tual learning attenuation parameters A· (Am, Aa, and Af

for each of days 3/4, 5/6, and 7/8; days 1/2 set at 1.0).
The minimal model, corresponding to no perceptual
learning, requires only the first three free parameters.
The lattice explores all models in between. The minimal
model fits the same function to all four performance
curves in Fig. 5. The quality-of-fit of the models is
summarized by the r2. The minimal model produces
midrange r2 (r2=0.777, 0.550, 0.687, respectively, for
DH, GM, and SP) because it accounts for the general
level of performance and for the substantial effects of
external noise level.

Any model which allowed attentuation parameters
(Af, Aa, or Am) to vary with practice significantly
improved the quality of the fits. No single mechanism
of perceptual learning was able to fully account for the
pattern of improvement with practice. One or more
mixture model(s) fit the data significantly better (PB
0.01) than pure stimulus enhancement (additive internal
noise suppression), external noise exclusion, or (multi-
plicative) internal noise suppression. Therefore, percep-
tual learning was accomplished by a mixture of
mechanisms. Unfortunately, while we could unambigu-
ously determine that more than one mechanism was
necessary to explain the improvements in performance
with perceptual learning, the precise mechanism mix-
ture could not be determined. Not only were a number
of the mixture models statistically indiscriminable, sev-
eral produced exactly the same maximum r2 as the fully
saturated model (maximum r2 of 0.9879 for three mix-
ture models for DH; of 0.9672 for four mixture models
for GH; and of 0.9160 for three mixture models for
SP). These mixtures are true aliases for one another: fits

of equivalent quality result from rather different
parameter values. The data of Experiment 1 and a set
of more constrained parameter estimates are reconsid-
ered after estimating nonlinearity parameters from Ex-
periment 2.

2.3. Discussion

Perceptual learning produced substantial improve-
ments over 8 days of practice, and these improvements
were in large degree specific to the trained retinal
location. Tradeoffs between orientation discrimination
and central task performance were not a contaminating
factor. Perceptual learning improved performance at
both low and high levels of external noise, by an
approximately equal amount on log contrast axes. This
pattern of perceptual learning reflects a mixture of
mechanisms. However, in this case we cannot determine
the exact nature of the mixture, or the exact nature of
nonlinearities, without further constraints on the model
by data. The discrimination of mixtures presents a
challenge. One approach to this challenge is described
in Section 3.

3. Discriminating mechanism mixtures

The identification of mixtures of stimulus enchance-
ment (additive internal noise suppression), external
noise exclusion, and multiplicative internal noise sup-
pression is important to a full understanding of the
perceptual mechanisms underlying performance
whenever two conditions exhibit differences at both
high and low levels of noise in the environment. One
method of discriminating such mechanism mixtures is
based on the phenomenon shown in Fig. 7, which
illustrates predictions of the PTM model for contrasts
at two different thresholds for each of the signature
mechanism patterns shown in Fig. 3.

A higher level of threshold performance, for example
a d % of 1.5 instead of 1.0, requires higher contrast
signals to achieve. Fig. 7 illustrates contrast threshold
differences at lower (dashed lines) and higher (solid
lines) criterion threshold values between conditions dif-
fering in stimulus enhancement (changed Aa), in exter-
nal noise exclusion (changed Af), and in multiplicative
internal noise reduction (changed Am). For conditions
differing only in stimulus enhancement (additive inter-
nal noise reduction) (Fig. 7a) or only in external noise
exclusion (Fig. 7b), the size of the effect is the same (on
the log contrast axis) at both the higher, more stringent
threshold and the lower, less stringent threshold. This
property follows from Eq. (3), in which the threshold
(criterion) d % occurs only in the second term,
− (1/2g) log(1/d %2−Am

2 (k)Nm
2 ). So long as Am and g are

constant, all differences in criterion produce a vertical
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Fig. 7. Patterns of stimulus enhancement, distractor exclusion, and
internal noise reduction for two different criterion d % levels. Multiple
d % criteria allow the discrimination of mechanism mixtures; stimulus
enhancement and external noise exclusion produce condition differ-
ences that are vertically shifted relative to one another on log axes
(have a constant contrast ratio), whereas multiplicative noise reduc-
tion predicts larger condition differences at high than low criteria.

mechanism mixtures in the PTM model. The measure-
ment of two or more sets of threshold contrasts places
extremely strong constraints on the fits of the PTM
model which are key to identifying mixtures. Measure-
ment of performance at more than one performance
criterion is the strategy for disambiguation of mecha-
nism mixtures followed in Experiment 2.

The additional information provided by the measure-
ment of two or more sets of threshold contrasts in the
perceptual learning paradigm also serves to constrain
the estimates of visual system nonlinearities. The ratios
between performance at several threshold levels can be
used to estimate the nonlinearity parameters. The inde-
pendence of these ratios over external noise level pro-
vides a consistency test of the model form9. The
departure of the ratios from the ratio of d % mandates
g"1 and constrains the estimate of the nonlinearity.
Finally, the equality of these ratios over days of prac-
tice indicate a constant g and Am (see above). The
theoretical development of strong ratio tests for nonlin-
earity and experimental applications to identification
and detection tasks are described in detail in Lu and
Dosher (1999).

4. Experiment 2

The goals of this experiment were to replicate the
finding that perceptual learning improves performance
in both high and low external noise, and to more fully
characterize the nature of the mechanism (or mixture of
mechanisms) mediating learning using a two criterion,
or two threshold, protocol.

4.1. Method

This experiment is identical to Experiment 1 except
that two thresholds were estimated for each condition.
Experiment 1 used a psychophysical staircase procedure
which decreased signal contrast after three successive
correct responses and increased signal contrast after
every error (a three-down one-up or 3/1 staircase);
which tracked a two alternative forced choice threshold
value of 0.793 proportion correct (d % of 1.634). In this
Experiment, an additional staircase was used which
decreased signal contrast after two successive correct
responses and increased signal contrast after every error
(a two-down, one-up or 2/1 staircase); this tracked a
two alternative forced choice threshold value of 0.707
proportion correct (d % of 1.089).

shift on log axes, independent of changes in either Aa or
Af, which appear in only the first term of Eq. (3). This
shift-invariance on log axes is labeled the criterion-inde-
pendent effect size property of stimulus enhancement
and external noise exclusion.

However, threshold contrast differences between two
conditions at lower and higher criterion threshold val-
ues are strongly dependent upon criterion level in the
case where conditions differ in internal multiplicative
noise reduction. In Eq. (3), changes in Am impact the
second term, in which criterion d % and Am interact. This
is labelled the criterion-dependent effect size property of
multiplicative noise reduction.

The differential pattern of increases in threshold con-
trasts for more stringent criteria compared to less strin-
gent criteria provide a means to distinguish between

9 In particular, the constancy of threshold ratio at two d % criterion
levels over changes in external noise is consistent with the
Nm

2 (b2gc2g+Next
2g ) form of multiplicative noise which eliminates cross

terms.
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Fig. 8. Contrast threshold functions improve at all levels of external noise with practice over days for Experiment 2. The curves represent average
performance over 2 day sets. Curves correspond to days of practice. Panels (a, e, i), and (j) present the training performance from the high
criterion staircases for four observers, and (c, g, k), and (1) present the corresponding data from the lower criterion staircases. Panels (b, f) and
(d, h) present the transfer data for two of the observers. Smooth curves are the fits of the PTM model. Dashed lines in (b, d, f), and (h) correspond
to the initial and final performance in the original trained quadrant.
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Fig. 9. The data of Experiment 1 graphed as a function of days of practice for each of four observers. Each curve represents data at one external
noise level. Data from the higher criterion staircases are shown in panels (a, c, e), and (g), and from the lower criterion staircases in panels (b,
d, f), and (h). T1 and T2 refer to transfer to the upper-left and upper-right quadrants, respectively.

Experiment 2 differed from Experiment 1 in several
other ways. Experiment 2 was run in a single session
per day, with 1440 trials per session, consisting of 100
trials for each 3/1 staircase and 80 trials for each 2/1
staircase. Finally, the starting values for sessions after
the first one were set equal to the final values from the
previous session, with stepsize set to 0.9 of the initial
stepsize of the previous session10.

4.1.1. Obser6ers
The observers were four undergraduate students with

normal or corrected to normal vision and naive to the
purposes of the experiment. Subjects JH and NK did
not participate in transfer condition tests due to time
constraints on their participation.

4.2. Results

4.2.1. Central task
Performance on the central task, discriminating an S

from a 5, was reasonably high, with an accuracy level
of 89% (range over sessions 85–90), (88 (84–90), 89

(85–91), 94 (89–96), and 84 (69–91), for JH, JZ, KM,
and NK, respectively). Accuracy was very similar
across sessions (with the exception of NK, who had
lower accuracies for the first two sessions). Accuracy of
the central task was essentially unaffected by the exter-
nal noise level of the orientation discrimination task.

As in the previous experiment, the contingency anal-
ysis of these data provided no evidence of attentional
tradeoffs between the central task and the orientation
discrimination task. The accuracy of orientation dis-
crimination was approximately 9% (7, 10, 7, and 12%
for JH, JZ, KM, and NK, respectively) higher for trials
with accurate compared to inaccurate central task re-
sponses (x2(1) for N of 14 400 of 43.67, 77.94, 21.21,
and 154.22, all PB0.001, respectively). Overall, the
pattern of accuracy and contingency is similar to that
of Experiment 1.

4.2.2. Orientation discrimination
The data for the orientation discrimination task are

again shown in two formats. Fig. 8 shows threshold
contrasts as a function of external noise level, and Fig.
9 shows threshold contrasts as a function of days of
practice. The data for the two different thresholds are
shown in separate panels.

As expected, the less stringent staircase (2/1), which
tracks an asymptotic accuracy of 0.707, required lower

10 Starting values for staircases estimating thresholds for modestly
differing conditions are sometimes chosen randomly within a range.
In this case, performance differences over days were so large that
using a common range for starting values would have led to estima-
tion instability.
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contrasts than the more stringent staircase (3/1), which
tracks an asymptotic accuracy of 0.793. Averaged over
observers and conditions, the contrasts were about 3
and 4%, a 46% proportional increase from the lower to
the higher threshold. This was significant in the analysis
of variance over observers on log of contrast thresholds
(F [1, 3]=22.139, PB0.01) and for each observer indi-
vidually (F [1, 3]=94.33, 176.42, 57.70, and 163.91, all
PB0.001, for JH, JZ, KM, and NK, respectively).

The contrast required to achieve threshold perfor-
mance increases with increasing external noise. Aver-
aged over observers, criterion level and practice, the
thresholds range from about 2 to 7% contrast, and
increase of approximately 500%, from the no-noise to
highest external noise condition. The external noise
manipulation was significant in an analysis of variance
over observers (F [7, 21]=195.70, PB0.001, on log
threshold contrast), and for each observer (F [7, 35]=
224.43, 209.42, 503.30, and 192.38, all PB0.001, for
JH, JZ, KM, and NK, respectively).

As in Experiment 1, there is a substantial decrease in
the contrast required to achieve threshold performance
over the 10 days of practice. Thresholds, averaged over
observers, criterion level, and noise condition, im-
proved by about 67%, from about 7% contrast to 2%
contrast. Individual observer improvements were gener-
ally comparable. As before, improvements were largest
early in practice11. An analysis of variance over observ-
ers (criterion level, noise condition, 2-day practice set,
and day within set as factors) showed a significant
improvement over practice sets (shown in Fig. 8 as day
1/2, day 3/4, …) (F [4, 12]=9.35, PB0.001) and for
days within practice sets (F [1, 3]=13.12, PB0.05).
Analyses for individual observers similarly showed sig-
nificant effects of practice set (F [4, 12]=5.01, 36.34,
6.02, and 33.58, all PB0.01, for JH, JZ, KM, and NK,
respectively12).

4.2.3. Transfer of orientation discrimination
Improvements due to practice in the lower-right

quadrant task did not transfer substantially to task
performance in the transfer quadrants. Thresholds for
the transfer tasks are higher than those for the prac-
ticed levels of the original task. Only observers JZ and
KM participated in the transfer conditions. The pattern
was equivalent for the two observers: neither transfer
condition differed significantly from the performance in
the first practice set of the standard training (all FB

1.0); and both transfer conditions were reliably above
the performance in the last practice set (day 9/10)
(F [1, 1] of 138.033, PB0.05 and 150.03, PB0.05 for
JZ; F [1, 1] of 1069.28, PB0.01 and 18.63, P:0.10 for
KM). In total, as in Experiment 1, the pattern of
transfer showed practice improvements in the orienta-
tion discrimination task which were reasonably specific
to the retinal location.

4.2.4. PTM model analysis
Practice improved threshold contrasts for the orien-

tation discrimination task at all levels of external noise.
In Experiment 1, no single signature mechanism by
itself accounted for improvements in orientation dis-
crimination with practice. However, with single
threshold data, the mixture of mechanisms underlying
the improvements could not be unambiguously deter-
mined. In Experiment 2, performance at two thresholds
provided strong constraints on the model that allow the
discrimination of mechanism mixtures. As before, the
PTM model was applied to the data from 2-day aver-
ages, shown in Fig. 8. The data from the two thresholds
(staircases) are shown in separate panels.

Models that constrained either g1 or g2 or both to 1.0
were easily rejected. The data from the two d % threshold
conditions exhibit strong and constraining regularities
(see Lu & Dosher, 1999 for a related analysis). In the
current data, the ratio of contrasts at the two threshold
levels was approximately constant over noise level. This
corresponds to the observation that the threshold
curves for the higher criterion (Fig. 7a) and the
threshold curves for the lower criterion (Fig. 7b) are
approximately shifted versions of one another on the
log contrast axis. The only term in Eq. (3) that is a
function of threshold d % is −1/2g log(1/d %2−
Am

2 (k)Nm
2 ). In the absence of multiplicative noise and

nonlinearity (Nm=0, g=1), the ratio of threshold con-
trasts for two d % criteria is just the ratio of the two d %s
(Lu and Dosher, 1999) in this case 1.5, corresponding
to a difference of 0.405 in the log form. To accomodate
the observed value of the ratio (1.27, 1.75, 1.23, 1.35 for
JH, NK, JZ, and KM, respectively), a nonlinearity is
required. The threshold ratio is predicted to be the
same over all external noise levels, which follows from
the absence of Next in the Eq. (3) term above. This
prediction forms an internal test of the model which
was validated in the current data in the independence of
the observed threshold ratio over noise level (all P\
0.10). Similarly, the threshold ratios were essentially
constant over days of practice. (The only exception was
the day 1/2 data of NK, which exhibited a slightly
higher ratio. These data were, however, extremely
noisy, and so this possible difference should be viewed
with caution.) The fact that the threshold ratios were
essentially equal over practice requires that nonlinearity
in transducer functions and the value of multiplicative

11 Apparent minor differences in the rate of improvement as a
function of practice in Experiments 1 and 2 may reflect differences in
the training schedule or in differential experience with examples at
different thresholds. However, these experiments were not designed to
allow serious comparisons.

12 These analyses used a composite of days within practice set and
criterion level to produce a random factor (four levels).
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Table 1
Parameter estimates for the Aa–Af mixture modela

Parameter Experiment 2 Experiment 1

SPGMJH JZ KM NK DH

1.7001.700 1.700g 2.0481.381 1.999 1.370
0.545 0.019 0.015 0.173Nm 0.020 0.042 0.001

0.0190.0320.004Na 0.0020.033 0.003 0.019
3.579 3.756b 4.522 4.977 3.702 1.649 3.018

0.3930.1010.705Aa (2) 0.9920.369 0.755 0.329
0.210 0.630 0.093 0.270Aa (3) 0.403 0.401 0.347

0.108 0.2710.433Aa(4) 0.1330.436 0.507 0.339
0.101 – – –Aa (5) 0.401 0.443 0.363

0.7750.5630.467Af (2) 0.5460.666 0.628 0.501
0.231 0.387 0.511 0.565Af (3) 0.535 0.475 0.459

0.474 0.5680.366Af (4) 0.2180.502 0.491 0.423
0.166 – – –Af (5) 0.524 0.432 0.467

0.992 0.971r2 0.957 0.967 0.977 0.929 0.899
0.9610.989 0.863R2 0.9190.950 0.961 0.974
0.137 1.457Aa (ul) – 1.583 0.474 – 2.629

1.4920.9821.206Af (ul) –– 0.918 0.781
– 0.675 0.177Aa (ur) – 0.3541.499 0.481
– 0.539 0.708Af (ur) – 0.7930.893 0.655

a Assumed values, Aa (1)=Af (1)=Am(k)=1.0. The value g=1.700 for subjects in Experiment 1 was set by the average g from Experiment
2.

noise, g and Nm, remain unchanged over practice. This
observation contradicts the criterion-dependent effect
size property of the multiplicative noise reduction
mechanism. It is this strong ratio constraint between
thresholds of the two criterion levels which rules out
multiplicative internal noise reduction as a mechanism
of perceptual learning in these data. The constancy of
this ratio over days also rules out significant changes in
the nonlinearity g with perceptual learning.

The models that assumed a single g (g=g1=g2)
yielded good fits to the data. Estimating independent g1

and g2 neither improved the fits nor altered the conclu-
sions. Hence, we report in detail only the single g fits. A
full lattice of nested model fits was performed. The fully
saturated model has 16 free parameters, g, Nm, Na, b

and 12 A· (three parameters, Af, Aa, and Am, for each
curve after the first day). The minimal model has four
free parameters (g, Nm, Na, and b); this fits the same
function to all five curves within each d % criterion set
(r2=0.804, 0.774, 0.787, and 0.430, respectively, for JZ,
JH, KM, and NK; compare to full model r2 in Table
1).

Consistent with the ratio tests described above, in no
case did allowing multiplicative internal noise reduction
(Am) to vary with practice systematically improve the fit
of the model in comparison to the same model without
changes in multiplicative noise reduction. Allowing ei-
ther changes in external noise exclusion (Af) with prac-
tice or changes in stimulus enhancement (Aa) with
practice improved the fit relative to the minimal model
(PB0.01 for all observers). Stimulus enhancement im-

proves performance only at low levels of external noise
and external noise exclusion improves performance
only at high levels of external noise. However, practice
improved performance at all levels of external noise. A
combination of the two mechanisms accounts for per-
ceptual learning better than either alone (F [4, 67]=
54.60 and 12.03, PB0.01, for JZ; 24.75 and 21.37,
PB0.01, for JH; 54.64 and 34.12, PB0.01, for KM;
and 29.73 and 15.88, PB0.01, for NK; for compari-
sons to Aa and Af changes alone).

The parameter values for the model that accounts for
improvement in performance with practice by a combi-
nation of improved external noise exclusion and im-
proved stimulus enhancement (reduced additive internal
noise) are listed in Table 1. The Af(k) and Aa(k)
correspond to multipliers for days where the value of
1.0 for day 1/2 serves as a baseline. Values less than 1.0
represent an improvement in performance.

Each observer in this experiment exhibited some
nonlinearity (g of 1.99, 1.38, 1.36, 2.04, respectively for
JZ, JH, KM, and NK). The average g of 1.7 was used
to constrain a reanalysis of the data from Experiment 1.
These constrained model fits of Experiment 1 were
completely consistent with the model fits of Experiment
2. The resulting parameter estimates are also listed in
Table 1.

The perceptual learning parameters Aa(k) and Af(k)
for different observers (see Table 1) essentially quantify
percentage reductions in the performance-limiting
noise. Over observers, perceptual learning improves the
exclusion of external noise (Af) by a factor of two or
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more while simultaneously reducing additive internal
noise (Aa) (improved stimulus enhancement) by 50% or
more.

Performance on transfer tests for quadrants other
than the lower-right (trained) quadrant were fit sepa-
rately by estimating Aa and Af assuming values of g, Na

and b estimated from the main perceptual learning
data. These values are listed at the bottom of Table 1.
Transfer performance which was equal to that of the
first training set (days 1/2) would yield Aa and Af

estimates of 1.0. The estimated parameters for the
transfer data are consistent with the statistical analysis
of the data provided previously. Multiplier values for
the transfer conditions were without exception larger
than the comparable multipliers for the last practice set
on the standard quadrant, and with one exception were
larger that those of day 2.

4.3. Discussion

Perceptual learning produced substantial location-
specific improvements in peripheral orientation identifi-
cation over the ten days of practice. There is no
evidence that central task performance traded off with
performance on the peripheral task. Orientation iden-
tification improved with practice at both low and high
levels of external noise, corresponding to improvements
in both external noise exclusion and stimulus enhance-
ment. An analysis of Experiment 1 using nonlinearity
estimated from Experiment 2 yielded consistent results.
Furthermore, evaluating performance at two (or more)
criterion threshold levels was an effective method of
providing strong constraints on models of perceptual
learning.

5. General discussion

5.1. Perceptual learning in external noise

The current experiments measured perceptual learn-
ing associated with practice over days in an orientation
identification task. Perceptual learning was largely spe-
cific to the visual quadrant in which the training oc-
curred. Specificity of learning to the trained position
has been used in previous research to argue that percep-
tual learning reflects neural plasticity in adult visual
system (e.g. Karni & Sagi, 1991, 1993). Our data docu-
ment the mechanisms of perceptual learning in our task
and suggest hypotheses about the functional level of the
observed plasticity.

Previous investigations in humans have generally
studied perceptual learning only in noiseless environ-
ments. These experiments are the first to systematically
apply an external noise paradigm in perceptual learn-
ing. Perceptual learning in this task improved perfor-

mance over a wide range of levels of environmental or
external noise in the displays, indicating a mixture of
learning mechanisms. In contrast, manipulations of
spatial attention have been shown to selectively impact
only low noise regions (Dosher & Lu, 1997; Lu &
Dosher, 1998a) under some circumstances and only
high noise regions (Lu & Dosher, 1998b) under others.
Quantification of perceptual learning in the presence of
environmental noise is of both empirical and theoretical
interest.

5.2. PTM model of perceptual learning

The perceptual template model (PTM) describes the
performance of the observer in terms of a perceptual
template, a nonlinear transducer function, multiplica-
tive internal noise, and additive internal noise. The
PTM considers the observer as a whole system. Im-
provements in performance with perceptual learning (or
due to attentional state) are characterized as stimulus
enhancement (equivalently, additive internal noise sup-
pression), external noise exclusion, multiplicative inter-
nal noise suppression, or more generally, as mixtures of
these mechanisms.

The PTM model and its extension to multiple crite-
rion levels allowed strong identification of the effects of
perceptual learning. Perceptual learning in the orienta-
tion discrimination tasks reflected: (1) The observer’s
ability to exclude external noise, by changing the shape
of the perceptual filter, improved with practice; (2) The
observer’s ability to enhance the stimulus, or equiva-
lently to reduce additive internal noise, improved with
practice. In the current experiments, perceptual learning
narrowed the perceptual filter approximately by a fac-
tor of two or more, and reduced additive internal noise
by 50% or more. The ratio of contrast threshold for the
two criterion levels was essentially constant over levels
of external noise, an internal consistency constraint of
the model, and over days of practice, a constraint that
eliminates significant reductions in internal multiplica-
tive noise as a mechanism of improvement. The ap-
proximate constancy of this ratio over days of practice
also rules out systematic changes in nonlinearity as a
mechanism of learning. That neither multiplicative
noise nor transduction nonlinearity change over days
suggests that contrast gain control properties of the
system remain essentially constant.

Our results are consistent with previous results on
transfer of perceptual learning, but go far beyond those
findings. They identify two mechanisms of improve-
ment. At this point, the generality of the finding that
perceptual learning reflects improvements in stimulus
enhancement and in external noise exclusion is un-
known. These experiments are the first to apply the
external noise paradigm to reveal the mechanisms of
improvement with perceptual learning. Further experi-
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mentation on a range of perceptual tasks is required to
further specify the nature of perceptual learning in
other contexts.

5.3. Variants of the PTM model

This section, which may be omitted, considers techni-
cal variations of the PTM model: the model conclusions
are quite general. The PTM model of Fig. 2 shows
additive noise following multiplicative noise and non-
linearities. Yet some forms of noise considered by
earlier investigators, such as photon noise or sampling
noise (de Vries, 1943; Rose, 1948; Pelli, 1981; Liu &
Vaina, 1998) plausibly occur early in the visual system,
possibly preceding the perceptual template or filter.
Indeed, there are three places in the model where
additive noise might be introduced: (1) prior to the
perceptual template; (2) after the perceptual template
but before nonlinearity and multiplicative noise; or (3)
after nonlinearity and multiplicative noise. Although
these locations of additive noise may correspond to
different physiological possibilities, Appendix A
demonstrates that, at the level of functional equations,
additive noise in locations (1) and (2) may be equiva-
lently rewritten as an additive noise in location (3), the
form considered throughout this paper. In practical
terms, Appendix A shows that all additive noise may be
collected together and expressed as one noise in loca-
tion (3)13. This holds at the systems level of the current
analysis, although other methods or approaches may
provide additional information. One consequence is
that estimated additive internal noise in the current
PTM model may reflect a combination of locations of
additive noise. The advantage of this PIM form is that
it yields independent estimates of external noise exclu-
sion and additive internal noise reductions.

However, additive internal noise in location (3), can-
not in general be rewritten as noise in location (1)
(Appendix A). In particular, if all internal additive
noise reflected performance limits prior to the template,
then the amount of additive noise reduction (stimulus
enhancement) and the amount of external noise exclu-
sion would be required to be exactly coupled. Although
the two are loosely coupled in this case of perceptual
learning, they are not perfectly coupled in the manner
required by a model with additive noise in location (1),
prior to the template. In the case of our Experiment 2
data where the model form is constrained by two d %

threshold levels, this ‘early noise’ model was tested as a
nested form of the full PIM model (Aa=Af), and was
rejected (PB0.001) for all observers. This observation
is crucial because it allows us to rule out a model in
which all additive noise is early, and perceptual learning
consists only in retuning the perceptual template. Al-
though this is in some sense a modest constraint on the
location of processing limits represented by additive
internal noise, previous treatments of limiting noise
properties provided no constraints on early versus late
noise contributions (Pelli, 1981; Ahumada & Watson,
1985).

Considering the current data in isolation, strictly
speaking the conclusion is that the additive noise reduc-
tions cannot be solely early, but might include both
early and late components. In fact, we believe that the
important additive internal noise limits primarily reflect
contributions of additive noise following nonlinearity,
late in the system. This is based on data from experi-
ments in attention in quite similar perceptual tasks. In
these experiments, stimulus enhancement (additive in-
ternal noise reduction) was observed without external
noise exclusion (Lu & Dosher, 1998a; Lu, Liu, &
Dosher, 1999) and in others, external noise exclusion
was observed without stimulus enhancement (Lu &
Dosher, 1998b; Dosher & Lu, 1999). Neither observa-
tion should be possible if the additive noise sources
prior to the template were contributing significantly to
the limiting internal noise processes.

5.4. Relation to neural mechanisms

The visual system is often modeled in terms of an
array of early channels sensitive to different spatial
frequencies, and orientations, at each of many locations
in retinal space (Graham, 1989). In contrast, the PTM
considers the observer in terms of a whole system,
input–output analysis. It is useful to expand the linking
relationship between the two levels of description.

External noise exclusion in the PTM model corre-
sponds to tuning the filter or template in such a way
that more external noise is filtered or removed from the
decision variable. However, template or filter tuning at
the level of the whole system need not correspond to
the tuning of individual filters corresponding to chan-
nels at the level of a multiple channel model. Instead,
increasingly more successful external noise filtering
might be accomplished by reducing the weight on the
decision outputs from irrelevant channels, and increas-
ing the weight given to those channels that are most
relevant to the task. Similarly, additive internal noise
reduction in the PTM model might reflect a reduction
in the connection between irrelevant channels, each of
which is limited by its own additive internal noise, and
the final decision structure. The strengthening of con-

13 In fact, given the form of model utilized here noise prior to
(location 2) or after (location 3) nonlinearity and multiplicative noise
are completely indistinguishable. If g1"g2 and crossproducts are
included in the formulation of multiplicative noise, additive internal
noise before and after nonlinearity may be distinguishable. In Lu and
Dosher (1998a) required g1"g2, and it was possible to rule out
additive noise before the nonlinearity in favor of additive noise after
the nonlinearity.
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nections between relevant basic visual channels and
the decision unit, and corresponding reduction of
connection between irrelevant channels and the deci-
sion unit, are illustrated in Fig. 10.

Reweighting the connections between basic visual
channels and a decision unit has the consequence of
reducing contributions of external noise and also re-
ducing additive internal noise (improving stimulus en-
hancement) at the level of the observer, as described
by the PTM model. Whenever the inputs from irrele-
vant channels are reduced, both aspects of improve-
ment specified by the PTM model analysis must
follow: the external noise passing through an irrele-
vant channel and the additive internal noise in that
channel are reduced simultaneously. A channel
reweighting model of perceptual learning provides an
explicit rationale for the mixture of filtering or exclu-
sion of external noise and additive internal noise sup-
pression at the level of the observer14. Channel
reweighting predicts that external noise exclusion and
stimulus enhancement (additive internal noise reduc-
tion) should co-occur (although they need not be ex-
actly coupled). Changes in external noise exclusion
with practice in the absence of changes in additive
internal noise would either rule out channel reweight-
ing as an explanation, or would imply that individual
channels are free of additive internal noise.

Retuning of the template at the whole system level
may naturally seem to suggest retuning of individual
channels during perceptual learning. Indeed, we can-
not rule out the possibility that individual channels
were retuned during perceptual learning. However,
the perceptual learning results can be accommodated
by changes associated with channel reweighting alone.
Taking the PTM model seriously, the bandwidth of
the PTM filter at the end of training can be estimated
(Appendix B). Spatial frequency bandwidths early in
training were estimated to be on the order of almost
two octaves. Final bandwidths were estimated to be
on the order of one octave or less (see Appendix B
for details), a value which is broadly consistent with
the estimated bandwidths for a single channel (Gra-
ham, 1989). This observation is consistent with physi-
ological observations that perceptual learning of
auditory frequency may remap cortex by extending
regions of active neurons tuned to a trained fre-
quency (Kilgard & Merzenich, 1998) while not neces-
sarily reducing the tuned bandwidth of any individual
neuron (Weinberger, 1995).

Channel reweighting could be accomplished in a
learning network by a method which changes the

weights from each channel to a decision unit depend-
ing on its relationship to a correct decision. This idea
is similar to ideas of Schiffrin and Schneider (1977),
Schneider and Schiffrin (1977), who argued that im-
provements in performance related to automaticity es-
sentially strengthened the connections between stimuli
and responses. A similar conclusion resulted in an
analysis of expertise in the identification of the sex of
newborn chicks (Biederman & Shiffrar, 1987).

If perceptual learning is primarily accomplished by
a reweighting of channel inputs, then perceptual
learning may reflect neural plasiticity neither at the
level of the basic visual mechanisms themselves, nor
at the level of a general cognitive strategy or decision
mechanism, but at an intermediate level of connecting
basic visual mechanisms to a decision structure. We
favor this speculative linking structure postulate : initial
components of perceptual learning involve neural
plasticity at the intermediate level wherein the connec-
tions between basic level visual processing channels
and later decision units are modified. That is, percep-
tual learning initially constructs or modifies percep-
tual categorization structures which support
perceptual decisions. This explanation has the advan-
tage that perceptual learning of one task need not
affect the performance of previously learned but simi-
lar tasks. If perceptual learning retuned basic visual
mechanisms then learning one task would necessarily
affect previously learned tasks. Certain perceptual
learning phenomena clearly support the training of
intermediate structures. For example, there is evidence
from prism experiments that perceptual learning of
several prism conditions establishes correction struc-
tures which can then coexist, allowing the rather
rapid selection and switching between prisms (Welch,
Bridgeman, Anand & Browman, 1993). Another ex-
ample that argues against the direct retuning of basic
channels is the ability to simultaneously learn related
but different perceptual tasks (Liu & Vaina, 1998).
Channel reweighting is one form of template relearn-
ing (Ahumada & Beard, 1997).

This model of perceptual learning suggests several
testable extensions or developments. If the reweight-
ing of channels includes selection of location, this
would offer an explanation for the location specificity
of the training. The rate of perceptual learning, and
the asymptotic performance after extensive learning
might depend on stability of spatial frequency and
orientation of the Gabor stimuli and the stability of
the training location. Further experimentation and
modeling will be necessary to fully explore both the
generality and specificity of the channel reweighting
model and the linking structure postulate as general
explanations of learning in basic perceptual tasks.

14 When the gain on multiplicative noise is unchanged with prac-
tice, the multiplicative noise in channels not tuned to the stimulus is
a direct reflection of external noise only and is hence not distinguish-
able from external noise.
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Fig. 10. Perceptual learning reweights the inputs to a decision process from basic visual channels. (a) Early in practice, the decision process weights
multiple visual channels. (b) Late in practice, the decision process weights the stimulus-relevant visual channels more heavily. The signal plus noise
image is shown on the left, and is subsequently processed through standard spatial frequency tuned visual channels shown schematically, to yield
the filtered images shown. The image power is passed through the nonlinear transducer functions. Each visual channel is illustrated with its own
internal multiplicative and additive noise sources representing processing inefficiencies. Finally, the integrated output of these visual channels is
input to a decision process, illustrated at right. Channel reweighting is one possible account of perceptual learning in this task.
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Appendix A. Analysis of model variants

This appendix outlines the relationship between PTM
variants with additive internal sources at three locations
in the model: (1) before the template or filter; (2) after
the template but before multiplicative noise; and (3)
after multiplicative noise; or (4) all three. The develop-
ment in Fig. 2 placed additive internal noise following
multiplicative noise, location (3).

Equivalent additive internal noises quantify perfor-
mance limitations which may include photon noise,
sampling noise, noise in neural transmission, decision
noise, and other forms of processing inefficiencies. Cer-
tain of these, such as photon noise, must occur early
before the template, while other inefficiencies plausibly
occur later in the processing system.

Here we demonstrate that these multiple sources of
additive noise can be reparameterized as a rescaled late
additive noise (3) of the form considered in this paper
(see also Lu & Dosher, 1998a, 1999; Dosher & Lu,
1999). This reparameterization provides a model struc-
ture which allows reductions in internal additive noise
(stimulus enhancement) and exclusion of external noise
(filter or template retuning) to be separately estimated.

For this development, we consider the d % form of the
essential PTM signal detection relationships for any
single condition. These relationships may be expressed
for multiple conditions by the addition of weighting
parameters Am, Aa, or Af, indexed by c ondition. The
key simplifying aspects of this approach involve the
replacement of random variables by expectations, and
the elimination of cross products in determining multi-
plicative noise. This was justified in the case of this
experiment by the similarity of fitted models with and
without crossproducts.

The signal detection relation in the PTM model
considers one source of additive internal noise after
multiplicative noise (3) Eq. (1):

d %2=
(bc)2g1

Af
2N ext

2g1+Am
2 Nm

2 (b2g2c2g2+Af
2N ext

2g2)+Aa
2Na

2.

Now consider a complex model with three internal
additive noises, N1, N2, and N3, as defined above, and
an internal multiplicative noise N %m (Eq. (6)):

d %2=
(b %c)2g%1

{A %f 2(N ext
2g%1+N1

2g%1)+A2
2N2

2g%+A %m2N %m2(b %2g%2c2g%2

+A %f 2N ext
2g%2+A %f 2N1

2g%2+A2
2N2

2g%2)+A3
2N3

2}. (6)

(As in Eq. (1), we chose a simplified form of multiplica-
tive noise without crossproducts.) A· are in general
further subscripted by condition, e.g. Af (1), …

This more complex form (Eq. (6)) can be reorganized
(Eq. (7)):

d %2=
(b %c)2g%1

{A %f 2N ext
2g%1+A %m2N %m2+ (b %2g%2c2g%2+A %f 2N ext

2g%2)

+A %m2N %m2(A %f 2N1
2g%2+A2

2N2
2g2% )+A %f 2N1

2g%1+A2
2N2

2g%1

+A3
2N3

2}. (7)

This is functionally equivalent to the original form (Eq.
(1)), with (Eq. (8)):

Aa
2Na

2=A %f 2N1
2g%1+A2

2N2
2g%1+A %m2N %m2(A %f 2N1

2g%2+A2
2N2

2g%2)

+A3
3N3

2. (8)

Functional equivalence requires the equation of co-
efficients of external variables, Next and c. Equivalence
of the parallel (first two) forms of Eqs. (1) and (7) yield
the mappings:

b=b %

g1=g %1

g2=g %2

Af(1)=A %f(1)
1

···

Af(K)=A %f(K)

Am(1)=A %m(1)
1

···

Am(K)=A %m(K)

Nm=N %m

Aa
2(1)Na

2=A %2f (k)N1
2g%1+A2

2(1)N2
2g%1+A %2m (1)N %2m

(A %2f (1)N1
2g%2+A2

2(1)N2
2g%2)+A3

3(k)N3
2

···

Aa
2(k)Na

2=A %2f (k)N1
2g%1+A2

2(k)N2
2g%1+A %2m (k)N %2m

(A %2f (k)N1
2g%2+A2

2(k)N2
2g%2)+A3

3(k)N3
2

Aa(1)
1

The quantity A %m2N %m2 in Eq. (7) serves the same
function as Am

2 Nm
2 in Eq. (1), and if only one condition

were available Am would be subsumed into Nm. How-
ever, our applications focus on the comparison of at
least two conditions. In this case, one condition (k=1)
is always selected as a reference condition for the other
K−1 conditions, and A.(k)
1. If the parameter val-
ues for the more complex model with three noises N1,
N2, and N3 (right side) (Eqs. (6) and (7)) were known,
the 3K+5 variables in the simpler model (Eq. (1))
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would be solved from the 3K+5 equations, and there
exists one unique solution for the simple model parame-
ters. On the other hand, if the parameter values for the
simpler model (left side) (Eq. (1)), were known, the
5K+5 variables in the more complex model (Eqs. (6)
and (7)) are under constrained given only 3K+5 equa-
tions, and there exist nonunique solutions. The simple
model (left) is always one of these solutions.

That is, every complex model with three locations of
additive noise, or any model with any one or two
locations of noise, may be re-expressed in terms of a
model with additive noise after multiplicative noise (Na)
Conversely, any model with additive noise after multi-
plicative noise can also be re-expressed as some form of
model with all three noises (case 4), although there is
no unique solution. The practical consequence is that it
will be impossible to rule out the model where all
additive noise in any system is after multiplicative noise
(location 3) and it will not be possible on the basis of
whole system behavior to uniquely partition additive
noise into these three sources. Certain patterns of con-
dition differences may, however, place constraints on
the partition.

In general, in the current model, it is not possible to
distinguish additive noise at locations (2) and (3). (They
may be distinguished in certain circumstances if g1"g2

and the model including full crossproducts in multi-
plicative noise were considered, but these conditions do
not apply in this experiment.) Hence, it is sufficient to
consider distinctions between additive noise at location
(1) (early) and location (3) (late). Certain patterns of
condition effects may place constraints, ranging from
modest to full, on the partitioning of noise between pre-
and post-template locations. These follow from the
requirement that conditions differing in external noise
exclusion (Af(i )) require equal reductions in additive
noise in location (1). Hence, a finding that condition
differences are larger in high noise than in low noise
constrains some additive noise, and the processing lim-
its it represents, to be localized following the template.
In the extreme case where conditions are identical in
low noise (where performance is limited by additive
internal noise), but differ in high noise (controlled by
the perceputal filter), this rules out limiting additive
noise prior to the template. This pattern has in fact
been observed in several attentional paradigms in some
tasks (Lu & Dosher, 1998b; Dosher & Lu, 1999).

Appendix B

Estimates of the bandwidth of spatial frequency tun-
ing under the PTM model are developed here. These
calculations are necessarily approximate.

Independent Gaussian (white) pixel noise theoreti-
cally has a uniform power spectrum over achievable

frequencies from 0 to fmax, where fmax is determined by
the pixel grid of the display ( fmax=1/minimum–pe-
riod, in degrees of visual angle). The total power in the
noise, N ext

2 = text 	fmax
0 h df, where h is the height of the

uniform power spectrum, so h=N ext
2 /( fmaxtext).

The signal stimulus is a Gabor patch with center
frequency f0. We assume that the perceptual filter shape
is a scaled Gaussian over spatial frequencies, g( f)=
be− ( f− f0)2/2s2

.15 This has a gain of b at f0, which
corresponds to the PTM assumption that the percep-
tual filter has a gain (height) of b for a signal valued
stimulus, f0.

The PTM model chooses b (scales the filter) so that
the noise power passed through the perceptual filter is
set equal to N ext

2 , an arbitrary free scaling which avoids
the necessity of carrying a cN ext

2 through the PTM
equations. Thus, the PTM model chooses b such that
text 	fmax

0 h [be− (f− f0)2/2s2

]2df=N ext
2 . The value text repre-

sents the temporal window over which noise frames are
sampled. This can be rewritten as: N ext

2 =
texthb2
2ps 	fmax

0 1/ 
2ps e− ( f− f0)2/s2

df. Assuming that
fmax\ f0+2.5s and 0B f0−2.5s, the integral can be
approximated as 1.0. Rearranging, s= fmax/
pb2.

In order to provide a numerical estimate from this
formula, we must give reasonable estimates of values of
fmax, text, and b. Our 64×64 pixel display subtended
1.54°×1.54°, so fmax:1/(2(1.54/64))=20.83 cycle/deg.
The display sequence included external noise before and
after the signal frame. Finally, the average b for our
observers was approximately 3.6. Using these values for
fmax and b, the estimate of s is 0.91 cycle/deg.

Bandwidth is calculated at half height. Since the filter
is a scaled Gaussian, half height occurs at 1.2s. At the
beginning of practice (As=1.0), the spatial frequency
bandwidth of the filter is calculated at 2.391.2(0.91)
cycle/deg, or 1.2–3.4 cycle/deg, for a ratio of 2.84,
corresponding to between one and two octaves. The
spatial frequency bandwidth is calculated in a similar
way for performance at the end of training, where
approximately 1/2 Next is passed through the retuned
filter. This yields an estimate of s of 0.46, correspond-
ing to a bandwidth of 1.7–2.8, for a ratio of 1.7 or
approximately one octave.
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