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Abstract

This paper studies long-run inflation targets and stability in an imper-
fect information environment. When central banks set an inflation target
that is not fully communicated, agents draw inferences about inflation from
recent data and remain alert to structural change in their econometric model
by forming expectations from a forecasting model that is estimated via dis-
counted least squares. Inflation targets can lead agents’ beliefs to depart
from rational expectations through two channels. First, implementing a
higher inflation target can lead to overshooting of the target. Second, there
can be nearly self-fulfilling inflation, disinflation, or deflation that arises as
an endogenous response to shocks.
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Policy makers have generally chosen a 2 % (inflation rate target). But
there was no very good reason to use 2 % rather than 4 %. Two percent
doesn’t mean price stability. Between 2 % and 4 %, there isn’t much
cost from inflation. If I were to choose an inflation target today, I’d
strongly argue for 4%.

– Interview with Olivier Blanchard in WSJ 2/11/2010

In this context, raising the inflation objective would likely entail much
greater costs than benefits. Inflation would be higher and probably more
volatile under such a policy, undermining confidence and the ability of
firms and households to make longer-term plans, while squandering
the Fed’s hard-won inflation credibility. Inflation expectations would
also likely become significantly less stable, and risk premiums in asset
markets–including inflation risk premiums–would rise.

–Chairman Ben S. Bernanke, remarks at the 2010 Jackson Hole Sym-
posium

Since the economic crisis erupted, statistical properties of UK core CPI
have swung markedly. From 2008 onwards, UK core inflation cannot
be modelled as a stationary process. This shift may indicate that the
MPC has become more tolerant of inflation deviating from target as
a pragmatic reaction to the recession. However, it would also be con-
sistent with the tolerance of persistently higher inflation – effectively
raising the inflation target. We believe the former is the more accurate
description of reality, but the danger is that wage and price setters take
the latter view, and higher inflation expectations become self-fulfilling.

– Barclays Capital, Global Economics Weekly 10/15/2010

1 Introduction

The recent global economic crisis has renewed debate over the appropriate long-
run inflation rate that monetary policymakers should target. Some have argued
(see Krugman (1998), Summers (1991)) that in “normal” times monetary author-
ities should pursue a higher average inflation rate in order to provide a cushion
that facilitates a lowering of nominal interest rates so as to avoid a liquidity
trap due to a binding zero-lower-bound constraint on interest rates. Subsequent
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analyses, that are typically based in models with explicit micro-foundations, find
little support for higher average inflation rates. For example, Woodford (2003),
Schmitt-Grohe and Uribe (2011), Eggertsson and Woodford (2003) and Coibion,
Gorodnichenko, and Wieland (2010) find that the optimal inflation rate in New
Keynesian models are close to zero, even after accounting for the protection that
higher inflation rates provide in avoiding the zero lower bound. Nevertheless,
among many economists there is the view that the added stability that might be
achieved from a higher inflation target outweighs any of the distortionary losses
associated with inflation.

Policymakers, though, are reticent to depart from a commitment to low and
stable rates of inflation. Chairman Bernanke, in the quote above, expresses the
view that higher average inflation rates will lead to more volatile inflation and
“inflation expectations would also likely become significantly less stable.” Most
research into optimal long-run inflation rates and optimal policy in the presence of
a zero lower bound constraint do not have a channel through which higher average
inflation leads to the disanchoring of inflation expectations. Conventional models
assume perfect information (and rational expectations) which have the feature
that, away from the zero lower bound, inflation will be a stationary process around
the long-run target.1

This paper re-examines the stability of long-run inflation targets in an envi-
ronment with imperfect information and adaptive learning. As a benchmark, the
paper takes as its economic framework a simple dynamic Fisherian model where
nominal interest rates are adjusted, in accordance with a Taylor rule, whenever in-
flation deviates from its long-run target rate. Private-sector agents in the economy
know the form of the Taylor rule. However, they do not know – or harbor some
doubt about – the precise values for the response coefficient or the value and/or
timing of the long-run inflation target. Instead, agents draw inferences about the
inflation process from recent data by adopting an econometric forecasting model
whose reduced-form nests the full class of rational expectations equilibria. These
agents are Bayesian and, because of their uncertainty about the inflation target,
they place a prior on structural change in their econometric model. This imperfect
information framework implies that private sector agents adopt a simple AR(1)
forecasting model the parameters of which are updated in real time with a form of
discounted least squares (“constant gain learning”). The priors of this model are
specified in such a way that beliefs are, on average, close to rational expectations.

The primary results of this paper are as follows. First, although over time be-

1An important exception is Williams (2006) who examines whether higher inflation targets
can make liquidity traps occur less often when rational expectations are replaced with a constant
gain, or perpetual, learning rule.
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liefs tend to converge toward rational expectations, the combination of constant
gain learning and a positive inflation target can lead agents in the economy to
temporarily believe that inflation follows a random walk without drift. Under
these beliefs, agents will interpret recent innovations to inflation as permanent
shifts in the mean inflation rate. Random walk beliefs arise for a very intuitive
reason. The long-run inflation target, and imperfect information about that tar-
get, lead agents to estimate the mean inflation rate from historical data. As a
thought experiment, suppose there is a slight (temporary) upward drift in the in-
flation rate. Agents’ econometric models will pick up that drift, leading to higher
inflation expectations that feed back into higher inflation rates. This process is
self-reinforcing and in some cases can lead agents to believe that inflation follows
a random walk.

Second, random-walk beliefs, as we will show below, are nearly self-fulfilling,
and consequently such beliefs tend to persist for a substantial period of time.
Furthermore these beliefs tend to generate considerable economic volatility, char-
acterized by significant bursts of inflation, disinflation, and even deflation. Third,
implementing a higher target – say by moving the target from 2% to 4% – will
introduce just the type of drift in inflation that can lead to random-walk beliefs
and cause a substantial overshooting of the inflation target.

An important feature of our analysis is that imperfect information of infla-
tion targets can generate instability in inflation rates even though the departure,
on average, from rational expectations is small. The framework employed here
is related to an extensive literature that employs adaptive learning in macroeco-
nomics. Most closely related are papers that incorporate constant gain learning
in studies of monetary policy and asset pricing (see, for example, Branch and
Evans (2011); Sargent (1999); Adam, Marcet, and Nicolini (2010); Orphanides
and Williams (2005a); Cho, Williams, and Sargent (2002); Williams (2004); Cho
and Kasa (2008); Eusepi and Preston (2010b)). Branch and Evans (2011), in par-
ticular, find that when risk-averse agents in an asset pricing model forecast both
the risk and return of stock prices using a forecasting model whose parameters are
updated with constant gain least squares then traders may also come to temporar-
ily believe that stocks follow a random walk. These nearly self-fulfilling random
walk beliefs lead to recurrent bubbles and crashes in stock prices. The intuition
for why inflation targets are destabilizing in an adaptive learning environment is
similar to the existence of bubbles and crashes in stock markets.

Is it reasonable to assume that the private-sector might have imperfect infor-
mation, or doubts, about the long-run inflation target? The answer is yes, for a
variety of reasons. First, the Federal Reserve Bank does not have a stated infla-
tion target and, in fact, it faces a dual mandate legislated by congress. In recent
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FOMC meetings, there has been debate about communicating an explicit long-run
target, while ultimately concluding that the Summary of Economic Projections
(reported once each quarter by the FOMC) conveys the central bank’s target.
However, there is considerable uncertainty about that target value due to diverse
views in the composition of the FOMC. In the Summary of Economic Projections,
the central tendency ranges from 1.5-2% (though recently more concentrated at
2%). In the Survey of Professional Forecasters, there is considerable disagreement
about average annual inflation over a 10 year period. SPF participants expect a
2.5% long-run inflation rate and the dispersion across forecasters ranges from 0.4%
to 0.8% in each survey quarter. Even in countries with an explicit target, such as
England, the Barclays quote above shows that sophisticated market participants
might hold doubts about the long-run target.

The results in the current paper provide a caution to proposals for higher
long-run inflation targets as a safeguard against hitting the zero lower bound. In
an extension of our basic analysis, we show that a New Keynesian model, closed
with a standard Taylor rule and subject to imperfect information about the long-
run target, may exhibit endogenous crashes in the inflation rate that bump up
against the zero lower bound in nominal interest rates. These self-fulfilling paths
exhibit rapid deflation and large negative output gaps. These liquidity traps only
last for a finite period of time as the global stability of the rational expectations
equilibrium eventually prevails.

There are important policy implications from these results. Only credibly
and completely informing the private-sector about the long-run inflation target
and the timing of when that target will be implemented can avoid the unstable
dynamics associated with positive inflation targets. When agents know the mean
inflation rate, and need only forecast its persistence, random-walk beliefs do not
arise. This result is related to a finding by Eusepi and Preston (2010a), who show
that central bank communication about the policy-setting process can affect the
stability of rational expectations equilibria, and Orphanides and Williams (2005b),
who emphasize the importance of a credible inflation target.2 The analysis below
also considers other popular policy proposals, such as price-level targeting and
optimal discretionary policy rules, and demonstrates that these policies are not
immune to instability. The key message is that environments with imperfect
information that cause agents to forecast both the mean and persistence of inflation
will lead to unstable inflation dynamics.

Finally, the results in this paper are also related to the literature on global
Taylor rules and liquidity traps (e.g. Benhabib, Schmitt-Grohe, and Uribe (2001)).

2Neither of these papers looks at the impact under learning of a change in an imperfectly
communicated inflation target.
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In this literature, the zero lower bound typically implies the existence of two
steady states, one corresponding to the inflation target and the other associated
with a liquidity trap. Evans, Guse, and Honkapohja (2008) examine the learning
dynamics in this setting and find that if a pessimistic expectations shock moves the
economy far enough from the targeted steady state, then the trajectory diverges
to a liquidity trap with stagnation and deflation. Evans, et al. focus on the
global learning dynamics that result from large expectations shocks, while the
current paper focuses on learning rules that are, on average, close to the targeted
equilibrium but that are subject to occasional departures from equilibrium.

This paper proceeds as follows. Section 2 presents the main results in a simple
Fisherian model. Although, the basic result is far more general, and likely to
arise in any linear, forward-looking model, the Fisherian model can illustrate the
mechanics of the learning process in a transparent manner. Section 3 considers
extensions and policy implications and, in particular, demonstrates that the main
qualitative results from Section 2 carry over to the New Keynesian model.

2 A Simple Model of Inflation Targets and Im-

perfect Information

This paper begins by considering a simple Fisherian model, which can emerge as
a special case from richer models that incorporate real and nominal frictions. The
Fisherian model illustrates the main points and provides analytic results. As will
be seen below, our results can arise in more practical models, such as the New
Keynesian model.

2.1 Fisherian Model and Imperfect Information

The Fisherian model emerges from a constant endowment economy that abstracts
from frictions. The Fisher relation arises from a household’s first-order condition
that prices one period nominal bonds. Monetary policy adjusts nominal interest
rates according to a Taylor rule. In this simple (log-linearized) environment,
inflation is determined by the following two equations

it = Êt (πt+1 − π̄) + rt (1)

it = α (πt − π̄) (2)

where it is the nominal interest rate in log deviation from steady-state form, πt+1

is the inflation rate and π̄ is the central bank’s long-run inflation target. For
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simplicity the exogenous shock rt is assumed to be (unobserved) white noise.
Equation (1) is the Fisherian relation and (2) is the Taylor rule. The operator Ê
is the (possibly) non-rational expectations operator, highlighting that imperfect
information can affect the economy through the self-referential nature of the asset
pricing equation (1).

Combining (1) with (2) leads to an expectational difference equation that
determines the path for inflation:

πt =
(α− 1)

α
π̄ + α−1Êtπt+1 + α−1rt (3)

A rational expectations equilibrium is any (non-explosive) solution to (3). Under
rational expectations, Ê = E, there are two classes of equilibria that satisfy (3),
the minimum state variable solution

πt = π̄ + α−1rt

and a non-fundamentals solution

πt = (1− α)π̄ + απt−1 − rt−1 + ξt

where ξt is a martingale difference sequence, i.e. Et−1ξt = 0. Provided that
α > 1, the non-fundamentals solution is explosive, and the MSV is the unique
(non-explosive) rational expectations equilibrium. The condition α > 1 is often
referred to as the “Taylor principle” as it prescribes nominal interest rates to be
adjusted more than one-for-one when inflation deviates from target, and in many
models it is a key condition ensuring equilibrium determinacy. Throughout this
paper, we focus on policy rules that satisfy the Taylor principle.

Households must have full information about the distribution of the endoge-
nous variables in order to form rational expectations. This includes knowing the
details of the policy rule, such as the long-run target π̄ as well as the reaction
coefficient α. An alternative to rational expectations is to assume that agents
behave like econometricians who hold a (correctly) specified model of the econ-
omy but they must recover the parameters, in real time, from data. An extensive
literature studies the conditions under which an economy with adaptive learning
will converge to a rational expectations equilibrium (see Evans and Honkapohja
(2001)). The imperfect information approach adopted in this paper builds on this
approach.

When there is imperfect information about the economy, it is reasonable to
expect households to form forecasts in the same way as an econometrician. Fol-
lowing this logic, agents are assumed to form expectations based on a perceived
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model of the economy that in effect nests the full class of rational expectations
equilibria:

πt = a+ bπt−1 + εt (4)

where εt is a (perceived) white noise error. Notice that for suitable parameter
values (a, b) this perceived model of the economy coincides with either class of
equilibria. Given the forecasting model (4), conditional expectations are formed

Êtπt+1 = a(1 + b) + b2πt−1 (5)

To calculate these expectations it is assumed that endogenous variables are not
observed contemporaneously.3 With expectations in hand, inflation is determined
by plugging expectations (5) into the temporary equilibrium equation (3),

πt = α−1(α− 1)π̄ + α−1a(1 + b) + α−1b2πt−1 + α−1rt (6)

≡ T (a, b)′Xt−1 + α−1rt (7)

where T (a, b)′ =
(

(α−1)
α

π̄ + α−1a(1 + b), α−1b2
)

and X ′ = (1, π). It is straightfor-

ward to verify that a fixed point to T (a, b) is a rational expectations equilibrium.

The map T , which takes perceived coefficients (a, b) to the actual coefficients in
(6), plays a prominent role in analyses of the expectational stability (“E-stability”)
of rational expectations equilibria. The T-map can be interpreted in the following
way. If agents held beliefs in the form of the perceived law of motion (4), with
parameters (a, b) held constant over time at (possibly) non-RE values, then their
forecast rule would be (5). The stochastic process for inflation (6) takes the same
form as the perceived process, but with the coefficients T (a, b) replacing (a, b) in
(4). Since a rational expectations equilibrium aligns perceptions with outcomes,
it is not surprising that a rational expectations equilibrium is a fixed point of the
T-map.

Under real-time learning the parameters (a, b) are updated over time, e.g. with
least squares, in response to new data. Evans and Honkapohja (2001) has shown
that one can easily compute from the T-map a stability condition, E-stability,
which governs whether the rational expectations equilibrium is locally stable under
learning and that the ordinary differential equation, used to define E-stability,
also provides information on the global learning dynamics. More formally, the
E-stability Principle states that Lyapunov stable rest points of the E-stability
ordinary differential equation

d(a, b)′

dτ
= (T (a, b)− (a, b))′ (8)

3A frequently-used timing convention in adaptive learning models is that agents cannot ob-
serve contemporaneous endogenous variables. This timing protocol eliminates the simultaneity
of inflation and expected inflation.
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are locally stable under least squares learning and other closely related learning
algorithms. Here τ denotes “notional” time, which can, however, be linked to real
time t.

That the E-stability condition governs stability of an equilibrium under learn-
ing is intuitive, since (8) states that the estimated coefficients (a, b) should be
adjusted in the direction of the actual law of motion parameters that generate the
data. Local stability of (8) thus addresses whether a small perturbation in the
perceived coefficients (a, b) will return to their rational expectations equilibrium
values.

In the Fisherian model, it is fairly simple to compute the E-stability of the
rational expectations equilibrium. A rational expectations equilibrium will be
E-stable provided the roots of DT (a, b), evaluated at their equilibrium values,
have real parts less than one. In the current case, it is straightforward to verify
that provided the Taylor principle is satisfied, i.e. α > 1, the unique rational
expectations equilibrium is E-stable. Figure 1 illustrates the intuition by plotting
the resting points of the E-stability ODE and the associated vector field. The
solid lines indicate the values for which ȧ = 0, ḃ = 0 and the arrows indicate the
direction of adjustment in (8). The figure illustrates the two rational expectations
equilibria. The b = α equilibrium is explosive and is also unstable under the
E-stability dynamics. In contrast, the unique non-explosive rational expectations
equilibrium is a sink under learning.

Figure 1 illustrates two further features. First, the fundamentals equilibrium
is E-stable and it’s basin of attraction includes all initial conditions with b < α.
Second, most analyses of policy under learning focus on the E-stability properties
of a particular equilibrium. The figure also demonstrates that the transitional
dynamics might be of independent interest. The vector field indicates that some
transitional paths may include non-linear paths to the rational expectations equi-
librium.

2.2 Inflation Targets and the Dynamics of Imperfect In-
formation

The E-stability dynamics govern the stability of the rational expectations equi-
librium. However, they do not give the full picture of global learning dynamics.
This subsection details the learning dynamics and illustrates how long-run infla-
tion targets can alter the qualitative nature of learning dynamics. The central
idea is the following: private sector agents are aware of the form of the policy
rule but the specifics, such as the size of the reaction coefficient and/or the value
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and timing of the long-run inflation target, are unknown. An agent in this setting
would be wise to remain alert to potential changes in the size and timing of the
implementation of the long-run inflation target. Such an agent will then place a
prior probability on drifting coefficients in their forecasting model. There are two
central ingredients to the results that come below: a positive long-run inflation
target that is imperfectly known by agents, and a prior belief of possible structural
change.

Let θ′ = (a, b), X ′ = (1, π). Agents are assumed to update their parameter
estimates according to the following recursive algorithm

θt = θt−1 + γSt−1Xt−1
(
πt − θ′t−1Xt−1

)′
(9)

St = St−1 + γ (XtX
′
t − St−1) (10)

The equations in (9)-(10) are the updating equations for recursive least squares
where the data are discounted by a constant “gain” γ. Here St is an estimate
of EXtX

′
t, the second moment matrix of the regressors. Least-squares updating

arises when the constant gain γ is replaced by a decreasing sequence γt = t−1.

Sargent and Williams (2005) demonstrate that constant gain least squares can
arise from an (approximate) Kalman Filter when agents believe that the process
for the drifting coefficients θt follows a random walk, a standard assumption in
applied econometric work. Specifically, the constant gain learning equations (9)-
(10) arise from an approximate Bayesian learning process in which the prior on
parameter drift is proportional to the ratio of observation noise variance to the
covariance of the regressors, with the speed of drift controlled by the constant
gain γ. An alternative interpretation of (9)-(10) is that agents use least squares
modified to discount past data due to a concern about possible structural change
of an unknown form.

The asymptotic behavior of θt is a non-trivial issue because the model is self-
referential. It turns out, though, that for small gains γ it is possible to obtain
results on the asymptotics by studying a continuous time approximation to the
recursive algorithm. More specifically, results from stochastic approximation the-
ory show that asymptotically the dynamics are governed by the “mean dynamics”
ordinary differential equation (ODE)

dθ

dτ
= S−1M(θ) (T (θ)− θ) (11)

dS

dτ
= M(θ)− S (12)

where τ = γt, M(θ) is the unconditional covariance matrix of the regressors
holding θ fixed. The ordinary differential equation governing the evolution of
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θ is identical to the E-stability differential equation with the exception that it
includes weighting terms that depend on estimates of the regressors covariance
matrix. See the Appendix for further details on the derivation of the ODE. It is
straightforward to see that a rational expectations equilibrium is a rest point of
the ODE, and in fact the fundamentals REE (ā, b̄) = (π̄, 0) is a locally stable rest
point provided α > 1. Thus, the stability of a rational expectations equilibrium
can be determined by the local stability of rest points to the ODE.

Under decreasing gain learning γ is replaced with 1/t and it can be shown that
provided the fundamentals REE is E-stable, i.e. α > 1, then in the limit as t→∞
the learning dynamics converge with probability one to the rational expectations
equilibrium. This paper focuses on constant gain learning, in which parameter
estimates weight recent data more heavily than past. We next summarize the
analytical results for constant gain learning.

2.3 Analytic Results

The first result establishes that for a sufficiently small constant gain the perceived
coefficients θt will be an approximately normal random variable with a mean
equal to its rational expectations values and a variance that depends on both the
constant gain and the long-run inflation target π̄. The second result shows that
from a given initial condition (θ0, S0) the solution to the “mean dynamics” of
the ODE (11)-(12) give the expected transition path to the rational expectations
values.

Proposition 1 Let |α| > 1. The belief parameters θt are approximately dis-
tributed as θt ∼ N

(
θ̄, γV

)
for small γ > 0 and large t, where θ̄ = (π̄, 0)′ and

V =

(
(α− 1)π̄2 + ασ2

r −π̄/2
−π̄/2 1/2

)

Proposition 2 Let |α| > 1 and define φt = (θt, vec(St))
′. For any φ0 within a

suitable neighborhood of the unique, non-explosive rational expectations equilib-
rium, define φ̃(τ, φ0) as the solution to the differential equation (11)-(12), with
initial condition φ0. Fix T > 0. The mean dynamics of (9)-(10) satisfy Eφt ≈
φ̃(γt, φ0) for γ sufficiently small and 0 ≤ t < T/γ.

There are several important consequences from Proposition 1. First, the ra-
tional expectations equilibrium provides a benchmark solution in the sense that
the coefficients for the forecast rule under learning are centered on the rational
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expectations values. Second, for a constant gain γ → 0, the learning dynamics
are close to the rational expectations equilibrium with high probability. Third, to
gain insight into the global learning dynamics, for finite periods of time, one can
study the solution paths to the mean dynamics differential equation, given initial
conditions. The remainder of the paper uses these tools to study the implications
for learning dynamics of inflation targets.

2.4 Learning Dynamics and Random-Walk Beliefs

Under constant gain learning there can be significant, temporary departures from
RE. These departures can arise either by a (imperfectly announced) change in the
long-run target or as an endogenous response to exogenous shocks. This section
illustrates these possibilities in the Fisherian model with constant gain learning.

Proposition 1 shows that the real-time estimates θt are approximately normal
with a mean equal to the rational expectations equilibrium and a standard de-
viation that is increasing in the constant gain γ. To illustrate the implications
this has for learning dynamics, Figure 2 plots the 95% confidence ellipses around
the REE of the constant gain learning coefficients for various values of the long-
run inflation target π̄. This figure was generated by setting α = 1.1, σ2

r = 0.1
and a constant gain γ = 0.05, though the qualitative results hold for alternative
parameterizations

Figure 2 demonstrates the finding in Proposition 1 that the constant gain
parameter estimates are distributed around the rational expectations equilibrium,
which is (ā, b̄) = (π̄, 0). For small long-run inflation targets, the principal axis
of the confidence ellipse is close to horizontal. For higher inflation targets, the
confidence ellipses feature a decreasing principal axis. The slope of the principal
axis is important since one can expect many trajectories moving in the direction
of the axis. Note that even for high inflation targets, the ellipses are pointed in
the direction of a random walk without drift, with larger values of b associated
with smaller values of a. The relative size of these ellipses depends on the sizes
of the constant gain; however, the direction in which the ellipses point depend on
the size of the long-run inflation target. The confidence ellipses pointing toward
a random walk without drift does not imply that actual learning dynamics will
converge to a random walk model. The slope of the principal axes suggest that
one can expect many trajectories moving in the direction of a random walk. Then
the mean dynamics can help illustrate what happens subsequently for trajectories
that move along the principal axis.

Proposition 2 shows that for any initial condition, and finite period of time,
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the expected transition path to the rational expectations equilibrium will be the
solution path to the mean dynamics. One can think of constant gain learning
dynamics as re-initializing the mean dynamics. Figure 3 plots representative mean
dynamics where initial values for a, b > 0 are selected from the principal axis of the
confidence ellipse in Figure 2 for a 4% inflation target. The initial values a = 3.3
and b = 0.55 correspond to an increase in the perceived mean and perceived serial
correlation in inflation. The top panel plots the perceived value for the mean of
inflation, a, while the bottom panel plots the perceived lag coefficient b.

The fundamental rational expectations equilibrium is a stable rest point of
the mean dynamics, implying that along a learning path the mean dynamics will
converge to the rational expectations equilibrium. Additionally, as anticipated in
Figure 2, the transition path for the mean dynamics is interesting in its own right.
At first the estimate for b moves toward the rational expectations equilibrium,
slightly overshooting b = 0, but then reverses course and increases to a value of
b = 1, where it remains for some time before returning to its rational expectations
equilibrium value. At the same time, the value of a increases before abruptly
decreasing to zero and then converging to its equilibrium value as b converges to
zero. Note, in particular, that a ≈ 0 at the same time that b ≈ 1. Therefore, the
mean dynamics show that private-sector agents come to believe temporarily that
the inflation process is approximately a random walk. Importantly, while there is
a path to b ≈ 1 for initial b = 0.55 and a drawn from the principal axis for a 4%
inflation target, there is no such path for a lower 2% inflation target.

Random-walk beliefs play a key role in the learning dynamics. In essence,
agents come to believe that recent innovations in inflation are permanent shifts
and not mean-reverting fluctuations. These random-walk beliefs are nearly self-
fulfilling. A detailed argument is presented in Branch and Evans (2011), but an
overview of the argument is useful. Suppose that agents hold random walk beliefs
in terms of a forecasting model of the form

πt = πt−1 + εt

which will arise in the learning model when a = 0, b = 1. Given these beliefs,
actual inflation outcomes will be

πt = α−1(α− 1)π̄ + α−1πt−1 + α−1rt

If α > 1 is close to α = 1, then the actual law of motion for inflation is a
stationary but highly persistent process that is difficult to distinguish from a
random walk.4 Also, the mean inflation rate is the same under random walk beliefs

4For larger values of α, the random-walk model provides a progressively worse approxima-
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as it is in the unique REE. That random-walk beliefs are nearly self-fulfilling has
been pointed out in other settings by Sargent (1999) and Lansing (2009). Random
walk beliefs introduce serial correlation into a model that is not serially correlated
under rational expectations, as the random walk model uses higher order moments
to track low frequency drift in inflation.

The mean dynamics show that random walk beliefs only can last for finite
stretches of time. However, because the random walk beliefs are nearly self-
fulfilling, it is difficult to detect the misspecification except using a long history of
data. Most importantly, the random walk model provides a robust way to capture
a time-varying conditional mean. When this drift is large enough then random-
walk beliefs will fit the data well. Thus, random-walk beliefs can be long-lasting
and, as will be seen below, they have important implications for the dynamics of
inflation.

2.5 Implications of Inflation Targets

Having established the possibility of random-walk beliefs emerging under learning,
we turn briefly to real-time simulations.

Consider the following experiment. The central bank is going to implement
an increase in its long-run annual target from 2% to 3%. Assume that the econ-
omy is initially in a rational expectations equilibrium, but the private-sector has
imperfect information about when the central bank will implement its new target
and is unsure about the central bank’s commitment to the new target. Figure 4
plots the resulting dynamics.5 At time 0, the central bank’s target π̄ increases
and leads to an increase in inflation without a corresponding increase in inflation
expectations (which are determined by the adaptive learning rule). Then initially
inflation is below target and the central bank begins reducing nominal interest
rates in order to bring inflation up to target. The increase in the inflation rate is
tracked by agents’ econometric model as an increase in the persistence of inflation.
As the mean dynamics predict, eventually agents’ beliefs are that inflation follows
a random walk. At this point, there is a burst as inflation increases to nearly 8%
before returning to its new long-run value. Thus, implementing a higher target,
as many observers have recommended, can lead to an overshooting of the new

tion to actual inflation dynamics. Thus, for α sufficiently, large random-walk beliefs will not
emerge from the learning dynamics. A somewhat related point has been made by Orphanides
and Williams (2005b). However, in the New Keynesian model below, inflation persistence is
increasing in the target rate of inflation.

5This figure was generated as the average time-path across 1000 stochastic simulations of
length 1000.
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target. This overshooting arises because the initial upward drift in inflation, as
the central bank implements its new target, leads to a nearly self-fulfilling belief
that inflation follows a random walk.6

Even without a change in the long-run target, inflation may deviate substan-
tially from its rational expectations equilibrium value as an endogenous response
to fundamental shocks. For example, Figure 5 plots two real-time simulations of
inflation dynamics in the Fisherian model with a 4% inflation target. As before,
the figure is computed setting α = 1.1, σ2

r = .1, and as in Figure 2 the constant
gain is set γ = .05. To generate this figure the model is initialized at the REE,
expectations are generated according to (5) with parameters updated via constant
gain least-squares, and inflation is determined by (3). Figure 5 plots the results
for two different typical simulations. The top two panels plots at, bt, respectively,
and the bottom panel plots inflation. The left panels are for the case where the
deviation from equilibrium results in a burst of inflation, while the right panels
show a rapid disinflation.

Under constant gain learning the economy hovers around its rational expec-
tations equilibrium value. Then there is an abrupt qualitative change in the dy-
namics with bursts of inflation or disinflation before returning to a neighborhood
of the rational expectations equilibrium. The pattern of beliefs correspond with
what was observed in Figure 3, and Proposition 2, in that for finite stretches of
time private-sector agents believe inflation follows a random walk. In simulations,
these large deviations from rational expectations are recurrent.

Unlike Figure 4, the deviations away from the rational expectations equilibrium
in Figure 5 are an endogenous response to fundamentals rather than to a change
in the long-run inflation target of the central bank. Using techniques employed
by Cho, Williams, and Sargent (2002), it is possible to examine which “escape
paths” are most likely to drive the system away from the REE and to generate
random walk beliefs by looking for the “most likely unlikely sequences” of shocks
that move the system a given distance away from the equilibrium. In principle one
can compute these escape paths analytically in special cases, but more typically
it is necessary to resort to simulations.

However, it is intuitive that random walk beliefs can arise for the right sequence
of shocks. Take the case of positive inflationary shocks. These shocks place
inflation on an upward path leading agents’ econometric model to pick up this
trend with higher estimated values of bt and lower values of at. In turn, inflation
expectations will increase leading to a further upward drift in inflation, higher

6These results are reminiscent of McGough (2006) who examines changes to the natural rate
of unemployment in the model of policymaker learning developed in Sargent (1999).
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estimated values of bt, until the estimated coefficients arrive at a random walk
model which, as argued above, is nearly self-confirming. Moreover, the mean
dynamics predict that even if beliefs are, on average, close to rational expectations
this is the expected transition path following a series of these “most likely unlikely”
sequences of shocks.

There is one strong conclusion to draw from Figures 4-5: in the Fisherian
model, when the central bank implements a long-run inflation target with im-
perfect information, then inflation will deviate significantly from its equilibrium
values (i) when the target is first implemented and (ii) as an endogenous response
to certain sequences of shocks. The remainder of the paper demonstrates that
these results are found in standard New Keynesian models under a wide range of
policy rules.

3 Application to the New Keynesian Model

The previous section adopted a simple Fisherian model of inflation to illustrate
that setting policy to implement a long-run inflation target in an imperfect infor-
mation environment can lead to substantial deviations of inflation from its rational
expectations equilibrium value. We now show that similar results obtain in the
New Keynesian model with trend inflation (see Ascari and Ropele (2007)). The
richer setting of the New Keynesian model facilitates a wider exploration of the
generality of the results as well as policy implications.

3.1 A New Keynesian Model with Imperfect Information

Ascari and Ropele (2007) take a standard New Keynesian setting log-linearized
around a non-zero steady-state rate of inflation. (See Appendix for details.) They
show that this leads to the following equations that determine aggregate output
and inflation

x̂t = Etx̂t+1 − σ−1 (it − Etπ̂t+1 − rnt ) (13)

π̂t = θ1x̂t + θ2Etπ̂t+1 +
∑
j≥0

ξj2 (θ3Etx̂t+1+j + θ4Etπ̂t+1+j) + ut (14)

where the reduced-form parameters θk, k = 1, ..., 4 and ξ2 are complicated expres-
sions that depend on the underlying structural parameters. (See the Appendix
for details). x̂t, it, π̂t are log deviations of the output gap and the inflation rate,
respectively, from steady-state. The shocks rnt , ut are assumed for simplicity to
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be zero-mean iid with variance σ2
r , σ

2
u. The model is closed by assuming that

monetary policy sets nominal interest rates according to the Taylor rule:

it = απ (πt − π̄) + αx (xt − x̄)

Stacking these equations, it is possible to represent the economy in vector form

Yt = H + FEtYt+1 +M

∞∑
j=0

ξj2EtYt+1+j +Gzt

with Y = (x̂, π̂)′ and z = (rn, u)′. When the inflation factor Π = 1, i.e. when
there is zero steady-state inflation, these equations reduce to the benchmark New
Keynesian model:

xt = Etxt+1 − σ−1 (it − Etπt+1 − rnt ) (15)

πt = βEtπt+1 + κxt + ut (16)

Ascari and Ropele demonstrate that, under most parameterizations, steady-state
inflation lowers steady-state output and it alters the determinacy conditions when
monetary policy follows a Taylor rule. Kobayashi and Muto (2010) show that E-
stability properties of the model can also differ from the New Keynesian model
linearized around a zero steady-state inflation rate. Throughout, monetary policy
will be assumed to guarantee the model is determinate and E-stable.

As in the previous section, it is assumed that there is imperfect information
about the economy, and so private-sector agents base forecasts on a perceived
law of motion whose reduced-form is consistent with a rational expectations equi-
librium. In the bivariate New Keynesian model, agents are assumed to forecast
based on a simple VAR(1) model:

Yt = A+BYt−1 + εt (17)

where εt is a perceived white noise error. From this perceived law of motion,
conditional expectations can be computed. As before, expectations conditional
on the forecast model (17) are

ÊtYt+1 = (I +B)A+B2Yt−1. (18)

As in the Fisherian model, the actual law of motion can be found by substituting
the forecasts (18) into the expectational difference equation:

Yt = H + F (I +B)A+ (1− ξ2)−1M
[
I + (I − ξ2B)−1B

]
A (19)

+
[
F +M(I − ξ2B)−1

]
B2Yt−1 +Gzt (20)

≡ T (At−1, Bt−1)
′
[

1
Yt−1

]
+Gzt (21)
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Analytic results on E-stability, and convergence of constant gain learning, are
unavailable in the New Keynesian model with trend inflation. Instead, the fol-
lowing sections focus on a calibrated version of the model and present numerical
results that illustrate the theoretical possibilities. The model’s parameters are
calibrated in Table 1. The parameter values are chosen so that a time period
corresponds to a quarter. The value of ζ implies a mark-up of 11%, the policy
coefficients are equivalent to Taylor (1993) original policy prescription, the fre-
quency of price adjustment α is in line with most empirical studies, while the
values of σ2

r , σ
2
u come from Smets and Wouters (2007). The basic qualitative re-

sults do not hinge on the specifics of the calibration. The necessary ingredients
are a non-zero inflation target, imperfect information, and a sufficiently strong
feedback from expectations.7

3.2 Inflation Dynamics in the New Keynesian Model with
Learning

The “mean dynamics” for the New Keynesian model take the same form as in the
Fisherian model with the exception that the multivariate model complicates the
expressions. Nevertheless, as in the Fisherian model a great deal can be learned
about learning dynamics by examining the mean dynamics for the calibrated New
Keynesian model. The mean dynamics are the solution path to the ordinary
differential equation (11)-(12) where θ′ = (A,B).

Figure 6 plots the mean dynamics, with the parameters calibrated as in Table
1, and a 4% inflation target. The initial values for all coefficients, except the
constant and the own lag coefficient in the inflation component of the forecasting
model, are set to their REE values. The remaining initial conditions were chosen so
that the mean inflation rate is above its equilibrium value. There are 6 coefficients
in θ, the two constants and the four coefficients in the lag matrix B. Each panel
plots a different component of θ, while the bottom two panels plot the roots of the
matrix B along the mean learning path. The key result to notice in Figure 6 are
the first two panels on the right hand side of the figure. These plots are equivalent
to the mean dynamics plots in the Fisherian model. Notice that agents come to
believe that the process for inflation, but not the output gap, is a random-walk
without drift. Private-sector agents can hold these beliefs temporarily before they
converge to the rational expectations equilibrium. The bottom panel on the right
shows that along the mean path there is, in fact, a unit root in the perceived

7In the Fisherian model, for sufficiently large values of α, a random-walk forecasting model
provides a poor approximation to the implied inflation dynamics. In the New Keynesian model
with trend inflation, similar results obtain for large values of απ and small inflation targets.
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coefficient matrix B.

Figure 7 solves the mean dynamics just as in Figure 6 for long-run targets of
0%, 1%, 2%, and 4%, with the same starting values for the coefficient matrix B.8

The figure plots just the constant and the own lag coefficient from the inflation
forecasting equation, while suppressing the other coefficient paths. As can be seen
in the figure, when there is a zero inflation target the beliefs converge monotoni-
cally and rapidly to the rational expectations equilibrium. For successively larger
values of the inflation target, the estimates for B(2, 2) begin to move towards the
REE value and then reverses course and approaches B(2, 2) ≈ 1 when the target
π̄ = 4%. At the same time, the estimated A(2) moves towards zero before con-
verging to the mean value. When the inflation target is 4% random walk beliefs
emerge.

One view of the US Federal Reserve Bank is that it has an implicit inflation
target of approximately 2%. One popular argument to avoid the possibility that
in the future the zero lower bound will again bind, is to increase the target to
4%. Figure 8 conducts this experiment in the New Keynesian model with im-
perfect information. The model is calibrated according to Table 1, initialized in
the unique REE when π̄ = 2%. The central bank then increases its target to
4% and the private-sector must learn in real time about the new higher average
rate of inflation. The figure plots the time-series averaged across 1000 stochastic
simulations. The figure demonstrates that, as in the Fisherian model, there is a
significant overshooting of inflation as agents come to believe that inflation follows
a random walk. In this experiment inflation increases to above 10% per annum
before returning to the new targeted value of 4%.

Many of those who advocate higher inflation targets do so in order to avoid
abrupt disinflationary episodes. The results from the Fisherian model suggest
that this may not be the case with imperfect information. Figure 9 simulates
the real-time learning of the calibrated New Keynesian model with a 4% inflation
target for two separate simulations. In each panel, the model is initialized in
a rational expectations equilibrium, within which inflation will always remain
bounded in a small neighborhood of the inflation target. Under constant gain
learning, however, there is an abrupt qualitative change as agents come to believe
that inflation follows a random walk and there is a rapid disinflation, in the left
panel, and an abrupt inflationary episode in the right panel. These types of
destabilizing dynamics are recurrent in the model when the central bank sets a
sufficiently large inflation target. In this case, sufficiently large is 4%.

8The remaining coefficients A,S were initialized at their REE values.
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3.3 Zero Lower Bound

One of the primary reasons that some economists and policymakers advocate for a
higher long-run inflation target is to avoid the zero lower bound from binding. In
New Keynesian models, e.g. Eggertsson and Woodford (2003), Eggertsson (2008),
the zero lower bound on nominal interest rates can bind when there are sufficiently
large and persistent negative shocks. A liquidity trap with deflation can arise,
under rational expectations, since the persistent shocks generate expectations of
deflation. Under learning Williams (2006) and Williams and Reifschneider (2000),
shows that the zero lower bound may be reached even more often. In both cases,
increasing the inflation target makes it less likely that the zero lower bound will
bind.

So far, we have not analyzed the issue of the zero lower bound, since the main
message of this paper is the destabilizing learning dynamics that can arise under
long-run inflation targets. However, it is straightforward to extend the framework
to incorporate a zero lower bound and examine whether a higher inflation target
can rule out a binding zero lower bound on nominal interest rates. To a certain
extent, this is not a fair comparison: in our model, under rational expectations,
the zero lower bound will almost never bind since all shocks are iid with small
variances. However, if there can be deflationary spirals under learning when there
is no liquidity trap under rational expectations, there is even greater reason to
suspect that inflation targets can lead to destabilizing economic dynamics.

To study this issue consider the “benchmark” version of the New Keynesian
model:

xt = Etxt+1 − σ−1 (it − Etπt+1 − rnt )

πt = βEtπt+1 + κxt + ut,

where the central bank employs the Taylor rule subject to the zero lower bound:

it = max{̄i+ απ (πt − π̄) + αx (xt − x̄) , 0}

and where x̄ = (1 − β)π̄/κ ensures the steady-state inflation rate equals the
central bank’s target. This is the framework adopted in Eggertsson and Woodford
(2003), though here it is assumed rnt are iid shocks, and can be derived from the
New Keynesian model above by setting the steady-state inflation equal to zero.
Woodford (2003) argues that these equations are valid approximations in a low
inflation environment so long as the central bank’s inflation target is not too large.

Calibrating the model as above, which implies a value for κ ≈ 0.16, and
simulating it under constant gain learning leads to occasional departures from a
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neighborhood of the rational expectations equilibrium and a deflationary spiral.9

At first, the economy fluctuates around the long-run inflation target. Then a
qualitative change in the dynamics arises as agents come to believe inflation follows
a random walk and inflation (and expected inflation) rapidly disinflates as was
seen earlier. However now, when the zero lower bound binds, rapid deflation sets
in, resulting in a severe recession, with output gaps approaching −10%. The spiral
does not persist forever as the mean dynamics take over and the economy returns
to a neighborhood of the steady-state.10

The deflation episode in Figure 10 suggests that a higher inflation target cannot
rule out paths that collapse to the zero lower bound. However, it is not obvious
whether a higher target will lead to a binding zero lower bound more or less often
than a lower target. To shed light on this question, we simulated the model 1000
times for 5000 periods in each simulation and recorded the first time in which the
economy was at the zero lower bound and the average time spent at the zero lower
bound. We did this exercise for a 2% inflation target and a 3% inflation target.
Table 2 reports the results. While the quantitative difference between a 2% and
3% target is slight, these results indicate that a higher inflation target may not
be useful in avoiding the liquidity trap.

4 Extensions

The paper concludes with several important extensions to the New Keynesian
model with learning.

4.1 Implications for Policy Communication

The previous results assumed that monetary policy is set to satisfy the Taylor
rule. The results do not hinge on this assumption: the key is that the target
is not perfectly communicated. This section considers implications for policy
communication of the present learning framework with long-run inflation targets.

The assumption maintained in this paper is that the central bank cannot
completely communicate the long-run inflation target. The private-sector has im-

9These deflationary spirals are similar to the paths in Evans, Guse, and Honkapohja (2008).
10To prevent deflationary paths that fall without bound, we impose the following restrictions

on the learning and economic dynamics: (i) agents’ only update their parameter estimates of B
if the roots lie inside the unit circle, and (ii) the deflation rate and the output gap have ceilings
of 8% and 10% per annum, respectively. The latter restriction is consistent with Evans (2011)
and Bullard and Cho (2005).
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perfect information about the economic environment and the policy target. It
suffices that they do not know the timing of when the central bank will imple-
ment its target. If there is imperfect information about the economy, but perfect
information about the long-run inflation target then the random-walk beliefs will
not arise and the instability witnessed in the previous sections will not exist.

To illustrate this point, assume that agents know the mean values for inflation
and the output gap. Thus, their perceived law of motion does not require them
to estimate the mean rates of inflation and the output gap, but just the lag
coefficients. That is, assume a perceived law of motion of the form:

Ŷ = BŶt−1 + εt

where the perceived law of motion is written in deviation from mean form, Ŷ .
It is straightforward to verify that the actual law of motion will be of a similar
form, except written in deviation from mean form. Thus, the B component of the
T-map is unchanged. Figure 11 plots the mean dynamics path for the calibrated
model and various long-run inflation targets when the long-run average inflation
rate is perfectly communicated. The figure clearly demonstrates that in this case
the long-run inflation target does not have much impact on the learning dynamics
and that random-walk beliefs do not arise.

4.2 Optimal Discretionary Policy

The Taylor rules considered previously prescribe that nominal interest rates should
be adjusted whenever inflation deviates from its long-run target value. One might
instead imagine a central bank facing a dual mandate of stabilizing both prices
and output, with deviations from long-run targets made explicit according to an
optimal policy problem. This subsection demonstrates that random-walk beliefs
also arise in such a setting under optimal discretionary policy, i.e. optimal policy
without commitment. The next subsection will show that even with commitment
it is possible for random-walk beliefs to arise.

For simplicity, assume the economy can be represented by the benchmark New
Keynesian equations (15)-(16). The objective function of the central bank is

max
πt,xt
−(1/2)E0

∑
t≥0

βt
[
λ(xt − x̄)2 + (πt − π̄)2

]
where x̄ is the long-run output gap consistent with the inflation target π̄. The cen-
tral bank takes the New Keynesian Phillips Curve (16) as its constraint. Without
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commitment, the central will set policy to satisfy it’s first order condition

πt − π̄ = −λ
κ

(xt − x̄) (22)

Combining (22) with (16) gives an expectational difference equation that generates
the stochastic process for inflation

πt = α0 + α1Êtπt+1 + νt (23)

where α0 = κ2+λ(1−β)
λ+κ2

π̄, α1 = βλ
λ+κ2

, and νt is an appropriately defined white-noise
shock. The reduced form (23) is identical to the Fisherian model of section 2 with
α1 determined by β, λ, κ. Proceeding in the same manner as in section 2, agents
form their expectations from an AR(1) model of inflation. Figure 12 plots the
resulting mean dynamics.

Figure 12 was created by solving the mean dynamics under the following pa-
rameterization: β = 0.99, κ = .14, λ = .15, σu = .05. As before, the learning
coefficients a, b, S were initialized above their rational expectations equilibrium
values, and then the mean dynamics are solved to find the transition path back to
the unique rational expectations equilibrium. The transition path leads temporar-
ily to random-walk beliefs despite the fact that policy is now set optimally.11 We
remark, however, that small values of λ yield small values of α1, which will make
random-walk beliefs less likely. Since smaller values of λ implies a greater relative
weight on inflation stabilization, this last remark is consistent with Orphanides
and Williams (2005b) who show that policy that optimal policy when private
agents are learning should place greater emphasis on inflation stabilization.

4.3 Price-level Targeting

The results in this paper demonstrate that, in addition to the other consequences
of having a higher long-run inflation target, the target will be destabilizing in an
imperfect information environment. One popular alternative to inflation targeting
is price-level targeting. Woodford (2003) and Vestin (2006) shows that a policy
to target a price-level path can implement the optimal policy with commitment.

11Evans and Honkapohja (2003) show that the “fundamentals-based” nominal interest-rate
rule, which aims to implement the optimal discretionary equilibrium using a rule that assumes
rational expectations, will lead to indeterminacy and instability under learning. They also show
that if policymakers use a suitable “expectations-based” rule consistent with optimal policy, then
the optimal rational expactations equilibrium will be determinate and stable under learning.
However, random-walk beliefs can still sometimes arise under their policy rule if agents use
constant-gain learning.
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Eggertsson and Woodford (2003) show that a price-level target can be an effective
policy for pulling an economy away from the zero-lower bound.

However, what if, as with the inflation target, the central bank is unable to
perfectly communicate the precise value or timing for the price-level target? Can
price-level targeting lead to temporarily unstable learning dynamics just as in the
case of long-run inflation targets? To address this issue, this section considers a
central bank that acts in accordance with the following price-targeting rule:

κpt + λxt = p∗ (24)

where pt is the (log) price-level and p∗ is the target value for the (log) price-
level. This policy rule will implement the optimal policy under commitment for
a zero long-run inflation target. The qualitative results below carry over to the
case where the central bank targets a price-level path consistent with a non-zero
long-run inflation target.

Using the identity πt = pt − pt−1, plugging (24) into the benchmark NK ag-
gregate supply equation (16) leads to the following equation for the price-level

pt = α0 + α1Êt (pt+1 − pt) + α2pt−1 + ηt (25)

where α0 = (κ2/(λ + κ2))π̄, α1 = βλ/(λ + κ2), α2 = λ/(λ + κ2). Notice that pt
depends on Êtpt under imperfect information because we assume that pt is not
contemporaneously observable. Again, suppose that private-sector agents forecast
the price level according to the forecasting model

pt = a+ bpt−1 + εt ⇒ Etpt = a+ bpt−1, Etpt+1 = a(1 + b) + b2pt−1.

The actual price-level process is found by plugging these expectations into (25),
yielding

pt = T (a, b)′Xt−1 + νt

where T (a, b)′ = (α0 + α1ab, α1b(b− 1) + α2).

Figure 13 plots the mean dynamics for the price-level targeting rule case under
the same calibrated parameter values as the previous subsection (Figure 12) and
p∗ = 10. A key difference with the price-target rule, compared to the rules consid-
ered earlier, is that the rational expectations equilibrium exhibits non-zero serial
correlation. For the chosen parameter values the REE value of b is approximately
0.7. Figure 13 initializes the learning coefficients at 0.77. The transition path
first leads away from the rational expectations equilibrium, and then abruptly
changes course heading towards a random-walk model for the price-level before
finally converging to the rational expectations equilibrium. Thus, the results of
this section demonstrate that if there is imperfect information about the price-
level target, then price-level targeting policy rules can also lead to temporarily
unstable inflation dynamics.
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5 Conclusion

Long-run inflation targets, on the order of 4% per annum, have sometimes been
recommended to guard against liquidity traps and binding zero constraints on
nominal interest rates. These recommendations persist even though many welfare
analyses caution against this approach since the distortions resulting from higher
average inflation are often found to outweigh any gains from stabilizing inflation.
Both the arguments for and against higher inflation targets have typically been
made under the rational expectations assumption. This paper has revisited the
issue of raising the inflation target, focusing on the question of whether higher
targets do, in fact, lead to greater stability.

The primary results of this paper are as follows. First, although over time
beliefs converge toward rational expectations, the combination of constant gain
learning and a positive inflation target can lead agents in the economy to tem-
porarily believe that the inflation process follows a random walk without drift.
Such beliefs are temporarily (almost) self-confirming. When agents perceive the
inflation process to be a random walk they will interpret recent innovations to in-
flation as permanent shifts in the mean inflation rate. These random walk beliefs
arise for a very intuitive reason. The long-run inflation target, and imperfect in-
formation about that target, lead agents to estimate the mean inflation rate from
real-time data. If data lead to a slight upward drift in the inflation rate, agents’
econometric model will pick up that drift, leading to higher inflation expectations
that feed back into higher inflation rates. This process is self-reinforcing and in
some cases agents eventually come to believe that inflation follows a random walk.
Crucially, we have shown that these beliefs are nearly self-fulfilling.

Implementing a higher target – say by moving the target from 2% to 4%
– will introduce just the type of drift in inflation that can lead to random walk
beliefs. These random walk beliefs cause a substantial overshooting of the inflation
target. Finally, occasional “unlikely” sequences of shocks can introduce drift to
the inflation process that trigger random-walk beliefs and large deviations from the
rational expectations equilibrium. Such departures from rational expectations can
generate significant bursts of inflation, disinflation, and even deflation, and these
are more likely at higher inflation targets. In summary, higher inflation targets, in
an imperfect information environment, increases the chances of unstable inflation
dynamics.
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Appendix
Proof to Propositions 1-2.

Propositions 1 and 2 provide asymptotic approximations to the learning algo-
rithm

θt = θt−1 + γSt−1Xt−1
(
πt − θ′t−1Xt−1

)′
St = St−1 + γ (XtX

′
t − St−1)

and where πt = T (θt−1)
′Xt−1 + α−1rt. It is possible to re-write the equations for

real-time learning in the form

φγt = φγt−1 + γH(φγt−1, X̄t)

where X̄t = (1, pt, pt−1, rt)
′. Verifying many of the technical conditions required

for convergence of the learning algorithm is simplified by the fact that the state
dynamics are conditionally linear and can be written as

X̄t ≡

 Xt

Xt−1
rt

 =

 A(φt−1) 0 0
I 0 0
0 0 0

 X̄t−1 +

 B 0
0 0
0 1

Wt

where I, 0 are conformable matrices, and

Xt = A(φt−1)Xt−1 +BWt

Here Xt = (1, pt)
′ and Wt = (1, rt)

′. The superscript γ highlights the depen-
dence of the parameter estimates on γ. The stochastic approximation approach
is to compare the solutions to the continuous time ODE and the discrete time
algorithm, and then study the convergence of the continuous time approximating
ODE. Thus, define the corresponding continuous time sequence for φγt as φγt = φγt
if τ γt ≤ τ < τ γt+1 where τ γt = γt.

This Appendix sketches the proof to the propositions by making use of Propo-
sitions 7.8 and 7.9 of Evans and Honkapohja, and using arguments in Chapter 14
of Evans and Honkapohja and Branch and Evans (2011). The “mean dynamics”
are the solution to the ODE

dφ

dτ
= h(φ)

where h(φ) = EH(φ, X̄t). Notice, in particular, that this is the mean dynamics
ODE given in the text:

dθ

dτ
= S−1M(φ) (T (θ)− θ)

dS

dτ
= M(φ)− S
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Let φ̃(τ, φ0) be the solution to the mean dynamics differential equation φ̇ =

h(φ) from an initial condition φ0. Define Uγ(τ) = γ−1/2
(
φγ(τ)− φ̃(τ, φ0)

)
. The

two propositions in the text are based on Uγ converging to a Gaussian variable, in
a sense made precise below. In particular, for small γ the probability distribution
of Uγ(τ) converges to the probability distribution of the solution U(t) to the
differential equation

dU(τ) = Dφh(φ̃(τ, φ0))U(τ)dτ +R1/2(φ̃(τ, φ0))dW (τ)

The results below establish that EU(τ) = 0 so that, as γ → 0, Eφγ(τ) = φ̃(τ, φ0)
and limτ→∞ φ̃(τ, φ0) = φ∗. Thus, key properties of the learning dynamics arise
from a study of (i.) the asymptotic distribution for θt around the rational expec-
tations equilibrium and (ii.) the mean dynamic path φ̃(τ, φ0) where φ0 are drawn
from the asymptotic distribution.

The validity of the propositions in the text depend on verifying a set of techni-
cal conditions. The conditions required for Proposition 2 can be verified by using
the arguments in Branch and Evans (2011), and so they are omitted here.

Proposition 2 uses the following result from Evans and Honkapohja (2001):

Proposition 3 (EH(2001)) Consider the normalized random variables Uγ(τ) =

γ−1/2
(
φγ(τ)− φ̃(τ, φ0)

)
. As γ → 0, the process Uγ(τ), 0 ≤ τ ≤ T , converges

weakly to the solution U(τ) of the stochastic differential equation

dU(τ) = Dφh(φ̃(τ, φ0))U(τ)dτ +R1/2(φ̃(τ, φ0))dW (τ)

with initial condition U(0) = 0, where W (τ) is a standard vector Wiener process,
and R is a covariance matrix whose i, jth elements are

Rij(φ) =
∞∑

k=−∞

Cov
[
Hi(φ, X̄φ

k ),Hj(φ, X̄φ
0 )
]

Moreover, the solution to the stochastic differential equation has the following
properties

EU(τ) = 0 (26)

dV ar(U(τ))

dτ
= Dφh(φ̃(τ, φ0))Vu(τ) + VuDφh(φ̃(τ, φ0))

′ +R(φ̃(τ, φ0)), (27)
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where Vu = V ar(U(τ)). This result indicates that, for finite periods of time, the
learning dynamics weakly converge to the solution of the ODE θ̇ = h(θ), thus
establishing Proposition 2.

Proposition 1 relies on the stochastic differential equation in the above result
to have a stationary distribution asymptotically. Establishing this result requires
stronger conditions. In particular,

A1 φ∗ is a globally asymptotically stable resting point of the ODE φ̇ = h(φ).

A2 Dφh(φ) is Lipschitz and all of the eigenvalues of Dφh(φ∗) have strictly neg-
ative real parts.

A3 There exist q1, q2, q3 ≥ 0 such that, for all q > 0 and all compact sets Q,
there is a constant µ(q,Q) such that for all x ∈ Rd, a ∈ Q,

i. supnEx,a(1 + |X̄n|q) ≤ µ(1 + |x|q),
ii. supnEx,a(|H(φγn, X̄n+1)|2) ≤ µ(1 + |x|q1),
iii. supnEx,a(|νφγn(X̄n+1)|2) ≤ µ(1 + |x|q2), where νφ =

∑
k≥0(Π

k
φHφ −

h(φ))(y), and Πφ is the stationary transition probability associated to
the stationary Markov process X̄n,

iiii. supnEx,a(|φγn|2) ≤ µ(1 + |x|q3).

As noted in the text, there are two resting points to the ODE φ̇ = h(φ),
corresponding to the two REE one with b = 0 the other with b = α. The b = α
REE is unstable under learning, and for some values of φγt the dynamics are
explosive. For initial conditions sufficiently close to b = 0, and sufficiently small
gain parameters γ, then the MSV REE is a stable resting point to the learning
dynamics. However, to apply the approximation theorem below, the algorithm
needs to rule out trajectories in the explosive region. Thus, the learning algorithm
is supplemented with a “projection facility” that projects the iterates φγt into a
confined set (see Evans and Honkapohja (2001) and Kushner and Yin (1997)). As
a result of these assumptions the RE solution (ā, b̄) = (π̄, 0) is a globally stable
resting point of the ODE that satisfies (A1)-(A2).

It remains to verify (A3). Write X̄n = Ā(φn−1)X̄n−1 + B̄Wt, where the ex-
pressions for Ā, B̄ are given above. The eigenvalues of Ā are zero and A, and
the projection facility along with the conditional linearity ensures that X̄n re-
mains in a compact subset of D, an open set around the REE (π̄, 0), which has a
unique resting point to φ̇ = h(φ). Thus (A3.i) is immediate. Verifying conditions
(A.ii)-(A.iv) is tedious, but given a projection facility that constrains φt to lie in a
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compact subset of D, it is straightforward to extend the arguments in Evans and
Honkapohja (2001) (pg.335-336) for the Cobweb model to the present setting.

Proposition 1 arises from the following result in Evans and Honkapohja:

Proposition 4 (EH(2001)) Consider the normalized random variables Uγk(τ) =

γ
−1/2
k (φγk(τ)− φ∗). For any sequences τk → ∞, γk → 0, the sequence of random

variables (Uγk(τk))k≥0 converges in distribution to a normal random variable with
zero mean and covariance matrix

C =

∫ ∞
0

esBR(θ∗)esB
′
ds,

where B = Dφh(φ∗).

It follows then that θt ∼ N(θ∗, γC) for small γ and large t. Using arguments
in Evans and Honkapohja (2001), Chapter 14.4, C is the solution to the matrix
Riccati equation

Dθh(φ∗)C + C (Dθh(φ∗))′ = −Rθ(φ
∗)

where R = EH(φ∗, X̄)H(φ∗, X̄)′. Straightforward calculations then lead to the
expression for V in the text.

Overview of the New Keynesian Model with Trend Inflation.

The reduced-form equations (13)-(14) were derived by Ascari and Ropele
(2007) from a standard New Keynesian framework and log-linearized around a
non-zero steady-state inflation rate. This Appendix provides a brief overview of
the model in Ascari and Ropele (2007).

There are a continuum of (identical) households whose flow utility is given by

U(C,N) =
C1−σ
t

1− σ
− χNt

Households maximize lifetime utility subject to the constraint,

PtCt +Bt ≤ PtwtNt + (1 + it−1Bt−1 + Πt + Tt

where Pt is the price of the final good, Bt are risk-free one period bonds with
nominal net return it−1, Πt are profits returned to households and Tt are lump-
sum transfers. This formulation assumes the “cashless limit” that abstracts from
money balances in the household’s problem. The household will select sequences of
consumption, labor hours, and bond holdings to satisfy the first-order conditions

C−σt = βÊt

(
C−σt+1(1 + it)

Pt
Pt+1

)
(28)

χCσ
t = wt (29)
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When Ê = E, i.e. agents hold rational expectations, the conditions (28)-(29) have
the usual interpretation. When Ê 6= E, then (28) is a behavioral relation that dic-
tates that boundedly rational households will choose their consumption holdings
so as to equate their expected marginal rate of substitution with the marginal rate
of transformation. This is called Euler equation learning and is the benchmark
approach in the learning literature. An alternative approach has been advanced
by Preston (2006) where boundedly rational agents solve their perceived dynamic
programming problem, assuming that their beliefs will not change over time. The
infinite horizon approach implies a reduced-form IS equation that depends on
expectations of interest rates and inflation over all future horizons. The reduced-
form equation (13) only requires boundedly rational agents to forecast one period
ahead. This assumption was made for technical convenience. The results in that
section do not hinge on the assumption of Euler equation learning.

The final good Yt is produced by perfectly competitive firms using intermediate

goods Yt(i) produced using a CES production function Yt =
(∫ 1

0
Yt(i)

(ζ−1)/ζdi
)ζ/(ζ−1)

,

ζ > 1. The final goods firms choose their inputs to maximize profits, taking prices
as given, resulting in the demand for input i Yt(i) = (Pt(i)/Pt)

−ζYt. Intermediate
goods are produced by a continuum of firms with technology Yt(i) +Nt(i). Inter-
mediate goods producers take the demand for their good as given when setting
prices optimally. However, they also face the Calvo risk where with probability α
the firm’s price will remain unchanged each period. This leads to an expression
for price setting that is identical to that of Woodford, except that the optima
re-set price also depends on the cumulative gross inflation rates over the period
that a price might remain fixed.

Ascari and Ropele (2007) show that the steady-state properties depend on the
trend inflation rate and, in particular, under most plausible parameterizations pos-
itive trend inflation leads to a lower steady-state output. Ascari and Ropele then
demonstrate that a log-linearization, around a steady-state with gross inflation Π,
of the equilibrium conditions lead to the following reduced-form equations:

x̂t = Etx̂t+1 − σ−1
(
ît − Etπ̂t+1 − r̂t

)
π̂t = κx̂t + βΠEtπ̂t+1 + (Π− 1)β(1− αΠζ−1)Et

(
(ζ − 1)π̂t+1 + φ̂t+1

)
,

φ̂t = (1− αβΠζ−1)(1− σ)x̂t + αβΠζ−1Et

(
(ζ − 1)π̂t+1 + φ̂t+1

)
where x̂, π̂, î are log deviations from a steady-state with gross inflation factor Π.
Iterating forward on the φ equation leads to the equations in the text. Ascari
and Ropele show that κ = (Π − 1)(σ − 1)β(1 − αΠζ−1) + σλ(Π), λ(Π) = (1 −
αΠζ−1)(1− αβΠζ)/αΠζ−1.
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By setting Π = 1, i.e. linearizing around a zero inflation steady-state, these
equations reduce to the benchmark New Keynesian model

x̂t = Etx̂t+1 − σ−1
(
ît − Etπ̂t+1 − rt

)
π̂t = βEtπ̂t+1 + κx̂t
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Table 1: Calibration. Note: For definitions of parameters, see Appendix.

β 0.995
θ 10
απ 1.5
αx 0.125
α 0.67
σ 1.00
χ 1.00
σ2
r 0.1
σ2
u 0.003

Table 2: Zero lower bound frequencies.

π̄ 1st time to ZLB mean time at ZLB
2% 393.38 3%
3% 347.34 14%
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Figure 1: T-map dynamics in the Fisherian model.
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Figure 2: Confidence Ellipses around REE for constant gain learning.
Each ellipse corresponds to a different inflation target. The targets are
.5%, 1%, 2%, 3%, 4%, 5%, expressed in annualized rates.
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Figure 3: Mean Dynamics in the Fisherian Model. Initial conditions are drawn
from the confidence ellipse.
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Figure 4: Change in inflation target from 2% to 3%. Economy begins in the REE.
α = 1.1, σ2

r = .003, γ = .02.
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Figure 5: Fisherian inflation dynamics with a 4% target. Left panel plots an
inflationary episode, right panel plots a disinflationary episode.
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Figure 6: Mean dynamics in NK Model with a 4% target.
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Figure 7: Mean dynamics in NK Model with alternative inflation targets.
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Figure 8: Increasing the Inflation target from 2% to 4%.
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Figure 9: Inflation dynamics in NK Model with a 4% target.
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Figure 10: Inflation dynamics in NK Model with a 4% target and a zero lower
bound.
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Figure 11: Policy target communication.

0 10 20 30 40
−2

0

2

4

6

8

10
x 10

−4

B
(1

,1
)

β=.995,θ=10,α=.67,σ=1.5,σ
r

2
=.1,σ

u

2
=.003, α

π
=1.5,α

x
=.125, γ∈{0,.01,.02,.04}

0 10 20 30 40
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

B
(1

,2
)

0 10 20 30 40
−1

0

1

2

3

4
x 10

−3

B
(2

,1
)

0 10 20 30 40
−0.2

0

0.2

0.4

0.6

0.8

B
(2

,2
)

Figure 12: Mean dynamics in NK Model with a 4% target and optimal policy
without commitment.
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Figure 13: Mean dynamics in NK Model with a price-level targeting rule.
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