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Abstract

We introduce the concept of Misspecification Equilibrium to dynamic macroeconomics. Agents
choose between a list of misspecified econometric models and base their selection on relative forecast
performance. A Misspecification Equilibrium is a stochastic process in which agents forecast opti-
mally given their choices, with forecast model parameters and predictor proportions endogenously
determined. Under appropriate conditions, the Misspecification Equilibrium will exhibit Intrinsic Het-
erogeneity, in which all predictors are used at all times, even in the neoclassical limit in which only
the most successful predictors are used. This equilibrium is attainable under least-squares learning
and dynamic predictor selection based on average profits.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Despite its dominance in dynamic macroeconomic models, the Rational Expectations
Hypothesis has limitations. A frequently cited drawback to the rational expectations ap-
proach is that in effect it assumes that agents know the underlying economic structure. In
response to this criticism one popular alternative is to model agents as econometricians
(Evans and Honkapohja [11]). This adaptive learning approach typically assumes agents
have a correctly specified model with unknown parameters. Agents then use a reasonable
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estimator to obtain their coefficient estimates. In many models these beliefs converge to
rational expectations.

In practice, however, econometricians often misspecify their models. Economic forecast-
ers who use VARs purposely limit the number of variables and the number of lags because
of degree of freedom problems. If agents are expected to behave like econometricians then
they can also be expected to misspecify their models. Evans and Honkapohja [11, Chap-
ter 13] consider models with agents underparameterizing the law of motion, and show the
existence of a Restricted Perceptions Equilibrium (RPE) in which agents form their be-
liefs optimally given their misspecification. ! The issue of underparameterization is also
emphasized by Evans and Ramey [14], who examine the implications of optimally chosen
expectations within the simple adaptive expectations class.

In this paper, we examine expectation formation in an environment where agents must
forecast using an underparameterized econometric model. More specifically we confront
agents with a list of misspecified econometric models, but, given this restriction, assume
that agents forecast optimally. Agents choose between these optimal underparameterized
models based on their relative mean success.

We investigate this approach in a linear stochastic framework, developing the analysis
in the context of the cobweb model. Because the economic model is self-referential, in the
sense that expectation formation affects the law of motion for the endogenous variables, the
optimal parameters of each misspecified econometric model depend on the proportions of
agents using the different models. We define a new equilibrium concept, called a Misspec-
ification Equilibrium, in which these proportions are consistent with optimal forecasting
from each econometric model. We show that for some economic model parameters and ex-
ogenous driving variables, agents will be distributed heterogeneously between the various
predictors, even as we approach the limiting case in which agents choose only between the
best performing statistical models. We say that a Misspecification Equilibrium with such a
property exhibits Intrinsic Heterogeneity.

Heterogeneity in expectations has been considered previously in papers by Townsend
[23], who takes a fully rational learning approach, starting with given priors, and Halti-
wanger and Waldman [16] who assume that a certain fraction of agents are not rational. In
adaptive learning models Honkapohja and Mitra [17] allow agents to have different spe-
cific learning rules. The seminal least-squares learning paper by Bray and Savin [4] also
allows for heterogeneity in priors. However, these papers all assume an ad hoc degree of
heterogeneity, and, with least squares or Bayesian learning, the heterogeneity disappears in
the limit. Evans et al. [12] allow for stochastic heterogeneity in learning rules, but again the
heterogeneous expectations is only transitory.

Brock and Hommes [7] were among the first to model heterogeneous expectations as an
endogenous outcome. > Brock and Hommes [7] examine a cobweb model in which agents
choose a predictor from a set of costly alternatives. Agents base this choice on the most

1 Sargent [20] developed the implications of policy makers estimating and forecasting using a misspecified
model.

2 Sethi and Franke [21] also find heterogeneity, as an outcome of evolution in a model of stochastic strategic
complementarities, and Evans and Ramey [13] permit heterogeneous expectations due to heterogeneous calculation
costs.
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recent realized profits of the alternatives in a cobweb model. If agents are boundedly rational
in the sense that their ‘intensity of choice’ between predictors is finite (that is, they do not
fully optimize), then there will be heterogeneity and the degree of heterogeneity will vary
in a complex manner.

Brock and Hommes illustrate these results in a particular case of rational versus myopic
beliefs. Because agents always react to recent changes in profits their predictor choice
will oscillate along with the equilibrium price. Our model is closely related to Brock and
Hommes. Like their model, we assume that the map from predictor benefits to predictor
choice resembles a multinomial logit. The multinomial logit has proven to be an important
approach to modeling economic choices,> and has been increasingly employed in recent
work in dynamic macroeconomics. Extensions of the Brock and Hommes [7] predictor
selection dynamic appear in [1,2,6,8—10]. Brock and Durlauf [5] extend the framework so
that agent specific choices depend on the expected choices of others.

There are three important departures in our model. First, agents do not choose between
a costly accurate forecast and a costless unsophisticated forecast; rather, they are forced to
choose between equally misspecified costless models. Second, in line with the econometric
learning literature, each forecasting model depends on parameters, which are chosen to
minimize the mean square forecast error. In equilibrium, each forecasting model is opti-
mal, given the misspecification. Third, we assume that agents make their choices based on
unconditional mean payoffs rather than on the most recent period’s realized payoff. This is
more appropriate in our stochastic environment since otherwise agents would frequently be
misled by single period anomalies. We will show that even if agents optimally choose be-
tween these misspecified models heterogeneity can arise. Given that agents base decisions
on mean profits it is not at all obvious that heterogeneity would be possible if the ‘intensity
of choice’ is large. Indeed, we will show that instances of asymptotically homogeneous
expectations also arise.

The main difference in our results is that, unlike previous work, we derive heterogeneity
as a possible equilibrium outcome of a self-referential model in which agents are constrained
to underparameterize. In particular, we examine the case in which agents are fully rational
except that they misspecify by omitting at least one relevant variable or lag. We focus on
the cobweb model for two reasons. First, we want to stay close to Brock and Hommes
[7] in order to highlight the key differences. Second, the cobweb model is the simplest
self-referential model that effectively illustrates the intuition of Intrinsic Heterogeneity.

We obtain conditions under which there is an equilibrium with agents heterogeneously
split between the misspecified models even as the ‘intensity of choice’ becomes arbitrarily
large. The intuition for this possibility is as follows. Suppose the cobweb price is driven
by a two-dimensional vector of demand shocks. If both components of the demand shock
matter for predicting prices, and if the feedback through expectations is sufficiently large,
then there will be an incentive to deviate from homogeneity. If all agents coordinate on the
same model the negative feedback through expectations will make the consensus model
less useful for forecasting. In these instances an agent could profit by forecasting with the
alternative model. With Intrinsic Heterogeneity the equilibrium is such that beliefs and
predictor proportions drive expected profits to be identical.

3 See, for example, Manski and McFadden [19].
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A related issue discussed in the literature is whether speculative market forces are stabi-
lizing or destabilizing. The conjecture that speculation is generally stabilizing was first put
forth by Friedman [15] in an argument favoring a system of flexible exchange rates. This
issue was considered at length by Brock and Hommes [8], who show that in some cases
there could be cycles or complex dynamics around the steady state with agents shifting
between forecast rules. Brock and Hommes [8] examine the “Friedman hypothesis” in the
context of an asset pricing model, but the points they raise are also relevant in our setup.

To explore this issue we study the stability of a Misspecification Equilibrium under
learning. In a Misspecification Equilibrium agents use only the best performing statistical
models and are, thus, fully ‘smart’ given their underparameterization, and they choose to rely
on the forecast rules with highest mean profits. If the equilibrium arises through a process of
econometric learning and dynamic predictor selection, then the Friedman hypothesis holds
in the sense that the equilibrium is dynamically stable. We show that if agents, in real time,
estimate model parameters by least squares and mean predictor profits by sample averages,
then the Misspecification Equilibrium will be attained. However, dynamic stability depends
critically on the method for estimating mean profits. If agents place a high weight on recent
realized profits, as in Brock and Hommes [7,8], then the system can generate dynamics
around the equilibrium, with rapid switching between forecast rules.

The plan for this paper is as follows. Section 2 introduces the setup in a general cobweb
model. We obtain an existence result for Misspecification Equilibria, and give conditions
under which the model exhibits Intrinsic Heterogeneity. Section 3 extends and illustrates
these results for the special case of a process driven by a two-dimensional VAR(1) shock
with agents choosing between two underparameterized models. Section 4 studies the cir-
cumstances in which a Misspecification Equilibrium can be attained in real time under
econometric learning and dynamic predictor selection. Section 5 concludes and describes
future work.

2. Model

In this section we consider a self-referential stochastic process that is driven by vector
autoregressive exogenous shocks. We assume that agents’ expectations are based on one of a
set of misspecified models of the economy, each taking the form of an underparameterization
of the process. In the terminology of Brock and Hommes [7] we are in effect treating
forecasts based on a fully correctly specified model as prohibitively costly, and those based
on the misspecified models are equally and much less costly. (For convenience we will
normalize this cost to zero.) Much previous work has assumed a particular structure of
agents’ misspecification. We allow the choice of the misspecified model to be endogenous.

We develop our model as a version of the Adaptively Rational Equilibrium Dynamics
(ARED) of Brock and Hommes [7] in which we constrain agents to choose between under-
parameterized models. Agents consider the unconditional expected payoff of the various
possible underparameterizations and select between them according to their relative payoffs.
Using the selected model they form their expectations as the optimal linear projection given
this choice. In our Misspecification Equilibrium, the projection parameters and predictor
proportions are jointly determined and generate the equilibrium stochastic process.
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We think that our emphasis on underparameterization is reasonable. The adaptive learn-
ing literature has argued in favor of modeling agents as econometricians as a plausible
deviation from the rational expectations assumption. However, econometricians misspecify
their econometric models. Computational time and limits on degrees of freedom make it
impossible for an econometrician to include all economically relevant variables and lags.
Our model in effect imposes such restrictions on agents, but otherwise requires them to
behave optimally. A striking finding of our framework is that this can lead to the use of
heterogeneous forecasting models.

We develop the model in stages. We first show that, for given predictor proportions, there
exists a Restricted Perceptions Equilibrium (RPE) in which agents’ misspecified beliefs
are verified by the actual equilibrium process. We next allow for predictor proportions to
be endogenously determined, and show the existence of a Misspecification Equilibrium.
Finally, we formally define Intrinsic Heterogeneity and state a condition under which this
will arise.

2.1. Setup
We consider a cobweb model of the form

pr=—¢p; +9'z + v, 1)

where v; is white noise. Although there are several well-known economic models that fit
form (1), we focus on the “cobweb” model in order to keep a close connection between
our model and Brock and Hommes [7]. z; is a vector of observable demand disturbances,
which will be further specified below.

We normally expect ¢ > 0 in the cobweb model, which corresponds to upward sloping
supply curves and downward sloping demand curves. Bray and Savin [4] showed that
¢ > —1 was the condition for the model to be stable under least-squares learning. In this
paper we focus on the negative feedback case of ¢ > 0 and leave ¢ < 0 for future work. *

In the cobweb model firms have a one-period production lag. We assume that firms have
quadratic costs given by F O + %G(Q;“)z, where QF is planned outputand F >0, G > 0.
In addition we allow for exogenous productivity shocks realized after production decisions
are made so that total quantity is Q; = Qf + «;. Here ; is iid with zero mean. Firms aim
to maximize expected profits. > Thus their problem is

1
Trg}} Ei1m = E;—) [Pt (Qf + Kt) - FQ;F — EG(Q:‘)Z]

t

* * 1 *\2
= Q; E_1pr + Er—1(piKt) — FQ; - EG(Qt) .

4 Eq. (1) with —1 < ¢ < 0 takes the same form as a Lucas-type monetary model. In future work we will pursue
the possibility of heterogeneity in that model.

5 Tt would be possible to extend the model to incorporate risk by assuming agents respond to variances of profits
as well as expected profits. We make the expected profits assumption to keep the model as simple as possible.
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Solving this problem leads to the supply relation ©
Qf =G7"pf, 2)

where p; = E;_1 p;. Firms differ by forecasting model. If pjt denotes the expectation of

a firm of type j, then actual supply follows Q; = G~! Zj ”jP?,, + i, where n; is the
proportion of firms of type j and the total number of firms has been normalized to one. Here
we are treating k; as a market-wide shock.

Demand is given by

0, =C—Dp, +h'(,, 3)

where {, is an m x 1 vector of demand shocks that follows a zero-mean stationary VAR (n)
process and D > 0. The {, process is assumed independent of ;. Setting demand equal to
actual supply we have the following stochastic equilibrium price process:

pr=—DG)" Y njpS, + D' — D, )
J

where, for convenience, we have expressed p; and pj ; in deviation from the mean form.
It is convenient to rewrite the model in terms of an exogenous VAR(1) process. Defining

Z; = (4’;7 C;_ly e C;—n+1)v
we can write z, in its standard VAR(1) form
7t = Az + & &)

for appropriately defined A and appropriately defined ¢;, which is exogenous white noise.
Here z; is mn x 1 and A is mn x mn. We denote the covariance matrix of z; as Q = EzZ/,
and Q is assumed to be positive definite. Setting

¢ = DG,y ='W, o0,...,0), Py = anpit, and v, = —D ',
J

we can rewrite (4) in form (1).”

2.2. Model misspecification

To close the model we need to specify the determination of p7. We assume that there are
K econometric models available to form expectations and that model j = 1, ..., K uses

6 We have set, without loss of generality, F = 0. We are also assuming that agents treat E;_1 (psK;) as a constant
independent of the choice of QF. That this is a reasonable assumption can be verified by (4) below.

7 Note that the dependence of p; on the weighted average market expectation pj arises from the dependence
of p; on aggregate supply and from the linear supply relation.
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kj < mn explanatory variables. The “market expectation” is given by the weighted sum of
the individual expectations

K
pE= ] nipS,. ©)
j=1

where p;‘t ;= bl xtj_l, x,] =ulz,. The k j X m matrix u’ is a selector matrix that picks out
those elements of z, used in predictor j and b/ is k j x 1. Thus, k; is the number of elements
in z, that predictor j uses. We can rewrite (6) as

K

e .

P = E njbf u’z,_l.
j=1

This setup forces agents to underparameterize the variables included in their information
set and/or the number of lags of those variables. We believe this is a reasonable approxima-
tion of actual expectation formation. Cognitive and computing time constraints (as well as
degrees of freedom) restrict the number of variables even the most diligent econometricians
use in their models. Our form of misspecification makes agents be (at least somewhat)
parsimonious in their expectation formation.

We next specify the determination of the parameters b/ . In a fully specified econometric
model, and under rational expectations, all variables z; would be included and the coeffi-
cients used to form p; would be given by the least squares projection of p; on z;. Here each

predictor is constrained to use a subset x; of relevant variables, and thus each predictor
differs from rational expectations. However, we will insist that the beliefs b/ are formed
optimally in the sense that b/ is the least squares projection of p, on u’/z,_;. That is, b/
must satisfy

Eulziy (= bulzy) =0.

Even though agents will never be “fully” accurate, they will be as accurate as possible given
the variables in their information set.

2.3. Restricted perceptions equilibrium

Given the belief process (6), the VAR in (5), and the equilibrium price (1), the actual law
of motion (ALM) for this economy is

K
Pt YA —¢ anbj/“j -1+ Ve +

J=1

or

pe=Cz_1+7 e+, @)
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where
K
d=yA—¢ Z nib’ul | . 8)
j=1
For convenience we write n = [ny, ..., ng] for the vector of predictor proportions and
b=1[b', ..., bX]forthe matrix giving the forecast coefficients. Given Eqgs. (7)—(8) and the

parameter orthogonality condition we obtain
. N
b = (ufguf ) W Q¢. )

We now introduce the concept of RPE.® An RPE is an equilibrium process for p; such
that the parameters b/ are optimal given the misspecification. Note that, like a rational
expectations equilibrium, an RPE is self-referential in that the optimal beliefs » depend on
the vector of parameters ¢ which depend in turn on the vector of beliefs b. Thus, an RPE
can be defined as a process (7) such that ¢ is a solution to (8) and (9) for fixed n.

Substituting (9) into (8) yields

K
N L
f’:y/A—(/)ané"Qu]’(u/Qu]’> u’
j=1

or
—1

K
) . N1
E=|1+¢ Z njul' <u/Quf/) ul Q Aly. (10)
j=1

For a given n an RPE exists (and is unique), provided the inverse in (10) exists.

In the Misspecification Equilibrium, which we define below, n is determined endoge-
nously. Eq. (10) gives a well-defined mapping £ = &(n) provided the indicated inverse
exists for all » in the unit simplex. We therefore assume that the following condition holds:

Condition 4. A # 0 for all n in the unit simplex S = {n € RK . n; >0and Zszl n; =1},
where

K
N B
A=det| I+ ¢ Z njul’ (uJQuV) u Q
Jj=1
Condition 4 is a necessary and sufficient condition for the existence of a unique RPE for

alln € S.

8 See Evans and Honkapohja [11] for a definition and examples. The concept introduced here extends the
concept of RPE to incorporate multiple misspecified models.
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We have the following result:

Proposition 1. For ¢ >0 sufficiently small, Condition A is satisfied and hence for all n
there exists a unique RPE.

All proofs are contained in the Appendix. In the next section we demonstrate that Con-
dition 4 holds for all ¢ >0 in the case of a bivariate process.

2.4. Misspecification equilibrium

We now embed the RPE into an equilibrium concept in which 7 is endogenously deter-
mined by the mean profits of each predictor. We will call this a Misspecification Equilibrium.
Note that the profits of each predictor depend on the parameters ¢ which in turn depend
onn.

In order to discuss the mapping for predictor proportions we need the profits for predictor
J, which are given by

. 1 2
= p: (¢Dp§,, - Dvr) - §¢D (pi,,)
o 1 o 2
= [é(n)/Zt—l +7'e + Ut] [(ZSDb]/M]Zt—l - th] - EQSD (b]/u]z,_1> )
where, again, we have expressed profits in deviation from mean form. Taking unconditional
expectations of profits yields
. o 1 . .
En! = ¢Db'/'u’Q (é(n) — Eu”b’) — DEv2.
Evaluating expected profits in an RPE (i.e. plugging in (9)) leads to
En) = ¢pDEM)Y Qu!' (u/ Qu/)y'ul Q <5(n) — Euf’(ufgul’)—lufQé(n)>
—~DEv}. (11

Note that E7t/ is well-defined and finite for all n, provided Condition 4 holds so that &(n)
is well-defined. It will be convenient to denote the function given by (11) as

Fin):S—R forj=1,....K

and to define F(n) : S — RX by F(n) = (F1(n), ..., Fx(n))'. Note that F;(n) and F (n)
are continuous on § provided Condition 4 holds.

We now follow Brock and Hommes [7] in assuming that the predictor proportions follow
a multinomial logit (MNL) law of motion. Brock and Hommes consider the cobweb model
without noise where agents choose between rational and naive expectations. Agents adapt
their choices based on the most recent relative predictor success.® This clearly would not
be appropriate in the stochastic framework employed here, and we instead assume that

9 Branch [1] shows that many of the qualitative properties in the model without noise carry over to a model with
small demand disturbances.
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agents base their decision on unconditional expected relative payoffs (however, see below
for further discussion).
The MNL approach leads to the following mapping, for each predictor i,

exp{ocEn[}
Zle exploEn/})’

12)

n; =

where o > 0. Note that n; > 0 for o and the E7n/ finite and that Zj n; = 1. Again, it will
be convenient to denote the map defined by (12) as

HEr',...,Enf): R > §

and clearly H, is continuous. The parameter o is called the ‘intensity of choice,” and pa-
rameterizes one dimension of agents’ bounded rationality. As « — 400 we obtain the
‘neoclassical’ case of full optimization. We will be interested in the conditions in which
heterogeneity can arise in the neoclassical case.

We remark that our choice of payoff function Ex/ will allow us to consider the fixed
point of a map rather than the solution to a difference equation as in Brock and Hommes
[7,8]. Another possible measure of predictor fitness is given by 7] = o Y1 — 5)’%;_ .
Since this measure depends on ¢ it implies that the predictor proportions given by the MNL
map also depend on ¢. In this setting n; ; and £; would follow a stochastic process and the
Misspecification Equilibrium concept would be defined in terms of a Markov process for
(ny, ;) with an invariant distribution. Investigating this framework analytically is beyond
the scope of the current paper, '© but we do consider this numerically in Section 4. We now
show that using the payoff functions En/ we can develop an equilibrium concept, in which
predictor choices are consistent with the expected profits they determine, and in which each
predictor parameter vector is optimal, given the predictor proportions.

Define the mapping

f’x:S—> S, Whereflzl:lxol*:.
Under Condition 4 this map is well-defined and continuous. 7, maps a vector of predictor
choices, n, through the belief parameter mapping ¢ into a vector of expected profits and

then to a new predictor choice n. We are now in a position to present our central equilibrium
concept:

Definition. A Misspecification Equilibrium (ME) is a fixed point, n*, of Ta.
Applying the Brouwer Fixed Point Theorem we immediately have:

Theorem 2. Assume Condition A. There exists a ME.

10 The usual method for proving existence of such an equilibrium is illustrated by Branch and McGough [3],
employing the theorems of Stokey and Lucas [22]. Such a result appears unavailable in the current setting because
these theorems rely on monotone Markov processes.
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In general we cannot rule out multiple equilibria. Let
Ny = (n*|Ty(n*) = n*).

For o finite and En/ finite, it is apparent that all components are positive for every fixed
point n*. Thus, heterogeneity for finite o is simply a by-product of the MNL assumption,
which ensures that all predictors are used even if they differ in terms of their performance.
However, it is of interest to know if heterogeneity continues to arise if agents are highly
sensitive to relative performance, so that they only use predictors that are not dominated in
performance. This leads to the following concept:

Definition. A model is said to exhibit Intrinsic Heterogeneity if (i) an ME exists for all
o« > 0 and (ii) there exists 7 < 1 such that n’/‘ <n,j=1,...,K, for all « and all ME
n* e N,. '

It can be shown that a model with intrinsic heterogeneity arises whenever the following
additional condition is satisfied. '!

Condition P. Lete; denote the K x 1 coordinate vector with 1 in position i and O elsewhere.
C~0nditi0n~P is said to be satisfied if for eachi = 1, ..., K there exists j 7 i such that
Fj(e;) — Fi(e;) > 0.

Theorem 3. Assume Condition A and also Condition P. Then the model exhibits intrinsic
heterogeneity.

Below we develop the details and intuition behind this result for the special case of a
bivariate VAR process. A brief discussion, though, is warranted at this point. Condition
P implies that there is no predictor that dominates when all agents are massed onto that
predictor. Thus, under Condition P there is always an incentive for agents to deviate from
homogeneity. Essentially, Condition P arises as a joint condition on the self-referential
property of the model (1), parameterized by ¢, and the asymptotic moments of the stochastic
process z;. If each component of z matters in a particular way (see below) and the negative
feedback of the cobweb model is sufficiently strong, then agents will always seek to deviate
from a consensus selection. When Condition P is satisfied agents must be distributed, in an
equilibrium, across all forecasting models.

This result is related to Brock and Hommes [7]. In Brock and Hommes [7], in a steady-
state with costless predictors, agents will be equally divided between predictors. This arises,
in their deterministic setting, because each predictor returns an identical forecast in a steady-
state. Our fixed point delivers an equilibrium stochastic process that is the analogue of the
steady-state in their model. In our model agents will not (usually) be distributed uniformly
across predictors, in equilibrium, because even in equilibrium the predictors make different
forecasts. As will be made more concrete below, it is the interaction between the direct

1T We call this “Condition P” because it gives the key condition on the profit functions that generates intrinsic
heterogeneity. In the bivariate case, below, Condition PO (resp. P1) will be used for the condition that yields an
equilibrium with no (resp. all) agents incorporating z1.
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effect of the z; process and its indirect effect acting through the self-referential feature of
the cobweb model that can produce an equilibrium with agents using all predictors. The
proportion assigned to a given predictor depends on the particular parameterization of the
model.

The next section will present a simple example to illustrate our concepts. In particular, we
present cases in which Condition P holds and the model exhibits Intrinsic Heterogeneity.

3. Example: bivariate case

To illustrate the properties of a ME we will simplify the model by considering a special
case in which detailed results can be obtained. In this section we assume that z; is a two-
dimensional stationary VAR(1) z; = Az;—1 + &, where A is 2 x 2, with eigenvalues inside
the unit circle, and E¢,e; = X, is positive definite. Each misspecified model will omit one
explanatory variable and thus K = 2 and k; = 1 for j = 1, 2. This is the simplest possible
illustration of our framework, and we will see that it can generate cases with Intrinsic
Heterogeneity.

With bivariate demand shocks the predictors are now

e 1.1 1
Pia=buzi1=0bzi,1,
e 2.2 2
Pa =b"u"z;—1 =b"20;-1.

RPE (7) thus takes the form

pr=¢&1z1,-1+ &z -1 + 1y, (13)

n, = 7'&; + v;. € and b can be calculated from (10) and (9). In particular, using u/ Qu/’ =
Ezﬁ, ulQ = (EZ%, Ez1z0) and u’Q = (Ez120, Ez%), we obtain

2 PP non
(1) in-1,.jo — 1 1P
ijl nju(u! Qul)y™ u! Q = |:n2f) 1 ],
where

_ Ezizy 5= Ezy:20
- 2 - 2
Ezy, Ezy,

Finally, in accordance with (10) we obtain

1 _[t+m¢ ¢nip 17",
[52]_[ $n2p 1+n2¢} A7 (%

and from (9) b is given by b’ = (& + p&,, p&; + &). We remark that Ez,z} is entirely
governed by A and 2.

From the general results of Proposition 1 and Theorem 2 we know that a ME exists
for ¢ >0 sufficiently small. For the bivariate case existence can be shown for all ¢>0.
Furthermore, we will show that this equilibrium is unique.
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3.1. Misspecification equilibrium

If condition A is satisfied then this guarantees a unique & = (&, &) for each n’ =
(n1,n3), and a unique RPE. Since n, = 1 — ny, in this section we define the key functions
in terms of n; rather than n. Thus, in particular, if Condition 4 holds then (14) defines a
continuous map & = &(ny).

Proposition 4. In the bivariate model, Condition A is satisfied for all ¢ >0. Hence there
exists a unique RPE for every ny € [0, 1].

From Theorem 2 it follows that there exists a ME. By developing the details we can
obtain additional results. By evaluating (11) in the bivariate case, it is straightforward to
verify that the profit functions are given by

Er' = %qu (Ge - Gue?) £

+¢D (¢, (n) + &y (n1)p) E(n1)Eziyzar — D,
En’ = %«bD (B0 - Ganp) £33

+¢D (&) + & (n1)P) & (m1) Eziiza: — Doy,

where 5? (n1) denotes (¢ (n1))? and we define
F(ny) = En' — En’.

The function F(n) gives the difference in expected profits, between forecasting models 1
and 2, for a given distribution of agents. In order to prove existence of a unique ME, we
need to show that the profit difference function F(n1) is monotonic.

Lemma 5. In the bivariate model, the function F(ny) is monotonically decreasing for all
$=>0.

We remark that it is possible to instead have a positive slope for the profit difference
function F(n1) when ¢ < 0. In this case it will be possible to have multiple equilibria.
Examples with ¢ < 0 are the focus of future research.

The predictor proportion mapping (12) can be written

1 ( 1
ny = Etanh [g (En1 - Enz)] to= Hy(En' — En?),

where H, : R — [0, 1] is a strictly increasing function. Note that we use F and H, in
place of F and H,, to emphasize that in contrast to the previous section the domain of F and
the range of H, is now [0, 1] instead of the unit simplex S. This will simplify some of the
arguments below.

Because Condition 4 is satisfied for all ¢» >0, there exists a well defined mapping 7, =
H,o F, T, : [0,1] — [0, 1], which is continuous. From Lemma 5, and since H, is a
strictly increasing function, it follows that 7, is a continuous, decreasing function for each
o. It immediately follows that there is a unique fixed point, i.e., we have:



W.A. Branch, G.W. Evans / Journal of Economic Theory 127 (2006) 264—295 277
Proposition 6. Suppose z; is a bivariate VAR(1). If ¢ >0 the model has a unique ME.

Proposition 6 demonstrates that there is a unique equilibrium in the belief parameters
b and the proportion of agents using the two misspecified models. It does not tell us how
agents are distributed between the predictors. We now show that it is possible for there to
be intrinsic heterogeneity. Unlike Brock and Hommes [7] who obtain heterogeneity across
forecast rules as an automatic implication of assuming that « is finite, we want to show that
there exists cases of heterogeneity even in the limit as « — oco. !? Because our framework
is stochastic, the forecasts as well as the forecast rules will be heterogeneous. We now take
up this issue.

3.2. Intrinsic Heterogeneity

The previous section established uniqueness of the ME. We now discuss more specific
properties of this equilibrium. We will see that there are three possible cases depending on
¢, 7, A and 2. In the bivariate case we are considering, Condition P of Section 2.4 holds
when F(0) > 0 and F(1) < 0. Since, by Lemma 5, F is monotonically decreasing, there
are two other cases: F(0) < 0, which we will refer to as Condition PO, and F(1) > 0,
which we will refer to as Condition P1. We show below that each of the three possible cases
can arise for appropriate values of ¢, y, A and 2.

Under Condition PO, F (1) < 0 implies that predictor 2 has higher mean profits for all
0<n1 < 1. Under Condition P1, predictor 1 always has higher mean profits. In these cases
we anticipate homogeneous expectations as the ‘intensity of choice’ & — oco. However, if
Condition P obtains there is an incentive to deviate from the consensus selection. We have
the following result.

Proposition 7. Consider again the model with z; a bivariate VAR(1) and ¢ > 0. The unique
Misspecification Equilibrium nY has one of the following properties:

1. Condition P implies that as o — oo, nf — i1 € (0, 1) where F (i) = 0. That is, the
model has Intrinsic Heterogeneity.

2. Condition PO implies that as o. — oo, n] — 0.

3. Condition P1 implies that as o. — 00, n’l‘ — 1.

Proposition 7 establishes the possibility of Intrinsic Heterogeneity. We discuss the intu-
ition further below. This result is novel because, for high o, rationality of agents is bounded
only through their model parameterizations. Agents fully optimize given their (misspeci-
fied) model of the economy. In Brock and Hommes’ ARED heterogeneity arises because of
calculation costs and, most importantly, because with finite « a proportion of agents do not
optimize in the sense that they do not fully respond to profit differences.

It is important to stress both the close connection to Brock and Hommes [7] steady-
state ARED and the way in which our results differ. Their model focuses on the case

12 1n Brock and Hommes [7], when & = 400 heterogeneity only arises in a steady state with zero costs for
rational expectations, and the rational and naive predictors return the same forecasts.
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of a choice between a fully rational and a naive predictor. For « — 00, heterogeneity
across predictors arises in their model only within a (nonstochastic) steady-state and with a
costless rational predictor. Although agents use different forecast rules, both predictors make
identical forecasts in a steady state, and thus there is no heterogeneity in the forecasts made
across agents. In our model, agents optimize given their misspecification, all predictors
are equally “sophisticated” and costless, and Intrinsic Heterogeneity can arise as part of a
stochastic equilibrium. The nature of the equilibrium forces each predictor to return the same
mean profit as & — 00, but at each instant in time there are heterogeneous forecasts. As we
stress below, the self-referential feature of the model, combined with underparameterization,
is essential for generating this heterogeneity.

Heterogeneous forecast rules also can arise in the Brock and Hommes [8] asset pricing
model. In that paper they focus on various examples with multiple costless predictors,
including a “fundamentals” predictor and other biased or trend-setter forecast rules. They
provide nonstochastic examples, for all « > 0 and also & = 400, of steady states in
which the population is evenly divided between all predictors. In these examples there are
heterogeneous forecasts across predictors. However, as they emphasize, the steady state is
dynamically unstable when « is sufficiently large and hence there is no “long-run” intrinsic
heterogeneity. This raises the question of whether our results on Intrinsic Heterogeneity are
robust to extending the model to incorporate econometric learning and dynamic predictor
selection. We discuss this issue at length in Section 4 below.

3.3. Connection to the Rational Expectations Equilibrium

Our equilibrium differs from the RPE in Evans and Honkapohja [11]. There agents
also underparameterize, but a single perceived law of motion is imposed and all agents are
homogeneous in their misspecification. These expectations differ from rational expectations
by ignoring relevant information. Since all agents ignore the same information in their
perceived law of motion it is clear that in equilibrium the parameters of the model will differ
from a Rational Expectations Equilibrium (REE). In a ME with Intrinsic Heterogeneity, each
agent uses an underparameterized model, but aggregate expectations are conditioned on all
available information. In principle, it is conceivable that a ME could reproduce the REE.
In this subsection we use the bivariate example to show that this is not the case: the price
process in a ME will differ from the process in an REE.

Recall that

pr =—¢p; +7' Az + 1y, (15)

where yis (2 x 1), A is (2 x 2) with elements g;; for j = 1,2, and 7, = "¢, + v;. Under
rational expectations

Pre =E;1p:- (16)

An REE is a stochastic process p; that satisfies (15) and (16). The cobweb model has a
unique REE given by

pr = &1z1—1 + &z -1 + 1y,
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where

&=+ Gran +na),
&=+ ¢ (ran + pa2).

The parameters in a ME are given by

L4nld gnlp Hfl}_ ,
[¢U—ﬂw1+0—ﬂw g =4 a7

where n] € N,. We saw that a non-trivial solution to (17) exists for all ¢ >0 and is given
by

[51 } _ 1 [(1 + (1 =n)@)(y1an + 7a21) — dnip(ya12 + 72022)i|

& oA A +nfd) (a2 + pa2) — ¢ —nP)p(yran + yraz1)

where 4 = (1 +ni¢) (1 + (1 — nh)$) — $*npp.
Clearly the REE parameters (%], %2)/ differ from the ME parameters (&, &,)’. For ex-
ample, consider the case when the random variables z; ;, z2 ; are uncorrelated. Then

&1 = (1 + ”Td))_l (“/1011 + Vgazl) )
G=(1+1—nDd)"" (a +1an).

3.4. Further discussion

The intuition behind Condition P and the existence of Intrinsic Heterogeneity is subtle.
In a cobweb model the exogenous shocks z have both a direct and an indirect effect on
price. The direct effect is simply the 'z, term in (1). The indirect effect depends on the
way in which agents incorporate z into their expectations py. It is the interplay between the
direct and indirect effects that makes intrinsic heterogeneity possible. In this subsection we
express Conditions P, PO and P1 parametrically and illustrate them with a simple example.

From the equations for expected profit, it can be shown that '3

F(1) =0 iff &1)=&(1)0, and
FO) 20 iff 02800,

2
where Q = 5—25 > 0 and, as before, (f? (n) = (¢; (n))?, j = 1, 2. Furthermore, from (14)
we have ]

gwo _ (1+ ) (111 + 1021)°

S0)  (ran+71an — dp(iai + pazn))?
() _ Grau + na1 — ¢p(ian + pan)* _ B
a1y (L4 $)2(yra12 + ya22)? o

= By,

13 The Appendix contains additional details of these derivations.
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These expressions assume that the denominators of the expressions are nonzero. Recall that
0, p, and p are determined by A and X. The above results and Lemma 5 imply:

Lemma 8. There are three possible cases depending on ¢, 7y, A and X,.

1. Condition P: F(0) > 0 and F(1) < 0. Condition P is satisfied when By < Q < By,
2. Condition PO: F(0) < 0 and F(1) < 0. Condition PO is satisfied when Q > By.
3. Condition P1: F(0) > 0 and F (1) > 0. Condition P1 is satisfied when Q < Bj.

A special case provides insight into the conditions in which each case arises. Suppose
that the components 71 ;, z2 ; are uncorrelated. Then the RPE is given by

&1 (I+nm¢$)~' 0 v1a11 + Pa21
& 0 I+ A —n)P)~ " || viaiz+pman |
Recall that

pr =&z + &1 + 1,

Now set ¢ = 0. This is the case where there is no feedback from expectations to price.
In this special case

& = (nan +na).

& = (y1a12 + pa2) .
The parameters &, &, are completely determined by the direct effect ' A. For ¢ > 0, the
RPE parameters are

S=U+m@) " (a1 +maz).

GH=0+ A=)~ (nan +pax)
and now depend both on the direct effect 7’ A and the indirect effect of expectations through
n1 and ¢. Note in particular that as n; — 1 we have |, (n;)| | and |&;(n1)| 1. For a given
¢ the indirect effect depends on n;. As agents mass onto a particular predictor it diminishes
the effect of that variable. This is because of the self-referential feature of the cobweb model
that leads to an indirect effect on prices opposite to the direct effect of that variable. This
makes z; ; a less useful predictor than before, and thus the z, ; component becomes more
profitable. The opposite happens as n; — 0 and consequently there is a unique 7| in which
both predictors fare equally well in terms of mean profits. This proportion is the limit point
of Intrinsic Heterogeneity.

Condition P places conditions on the indirect and direct effects and on the relative im-

portance of the two exogenous variables. In our simple example of uncorrelated shocks
Condition P is equivalent to

2 2
(v1a11 + ya21) <0< (L4 ¢)* (y1a11 + 7ra21)
(1 + $)? (yra12 + ’/26122)2 (@12 + 72a22)?

where Q = ‘;Zz When there is no feedback (¢ = 0) there does not exist a matrix A and 2,

which satisfies Condmon P. Intrinsic Heterogeneity does not exist in this instance. Because



W.A. Branch, G.W. Evans / Journal of Economic Theory 127 (2006) 264—295 281

T T T T T T
0.8F <«— Large o _
0.6} Small o |

] 0.4fF
0.2+ E

0 Il Il L L il L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 1. T-map for various values of o and ¢ = 2.

there is no indirect effect from expectations, and expectations have no bearing on price,
agents will choose the predictor that forecasts price best. This is also true if the feedback is
small: for (almost) all A, Q and X, condition P cannot hold for ¢p > 0 sufficiently small.
However, as ¢ increases, the range of admissible Q increases. Given A, y and Q, condition
P will hold for ¢ > 0 sufficiently large. A numerical example of this point is provided
below.

3.5. Numerical examples

We illustrate our results numerically. Fig. 1 gives the T-maps for various values of o.
The upper part of the figure shows the T-maps corresponding to (starting from n; = 0 and
moving clockwise) o = 2, 20, 50, 100, 200, 2000. We set

3 .10
A= [.10 7 ]
Y =1.7,.5],
72
2e = [.2 .6}

and ¢ = 2. The bottom portion of the figure is the profit difference function F(ny).



282 W.A. Branch, G.W. Evans / Journal of Economic Theory 127 (2006) 264—295

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ny

Fig. 2. T-map for various values of o and ¢ = 2 for the case of no Intrinsic Heterogeneity and predictor 1
homogeneity.

The matrix A and parameter ¢ have been chosen so that Condition P holds, i.e. F(1) < 0.
The proof of Proposition 7 shows that as « — oo

1 ifx >0,
Hy,(x) > 10 ifx <0,
1/2 ifx =0
and clearly this will govern the behavior of 7, = H, o F. Fig. 1 illustrates how as o

increases the inverse S-shape becomes more pronounced. Fixed points of the T-map are
given by intersections with the 45° line and all fixed points of the T-map will intersect this
line. As o increases the fixed point declines from above .5 to about .22, which is the point
at which F'(n1) = 0. The ME continues to exhibit heterogeneity even as oo — c0.

Fig. 2 illustrates how heterogeneity may disappear as o — 0o. We now set

.93 .10
A= |: .10 .2 } ’
so that Condition P does not hold and instead condition P1 is satisfied. For low values of «
some agents continue to use zp even though it returns a lower expected payoff. However,
as o — oo all agents behave optimally and the proportion using z, goes to zero.

Fig. 3 shows the role ¢ plays in the degree of Intrinsic Heterogeneity. This graph depicts
the T-map for various increasing values of ¢. Notice that as ¢ increases the fixed point of
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Fig. 3. T-map for o« = 2000 and ¢ = .05, 1, 20 for the case of Intrinsic Heterogeneity. Note that as ¢ increases
the fixed point of the T-map increases.

the T-map moves further to the right. In this example, z, has a stronger influence on the
price than z;. When z; has a stronger effect, the fixed point will move to the left. Fig. 3 also
illustrates that for sufficiently small ¢» Condition P may not hold as the thick line running
along the horizontal axis is for very small ¢ and the fixed point is at zero.

Note that in a ME, in a model with Intrinsic Heterogeneity, all predictors have the same
average return as the intensity of choice o becomes large. When o is finite there can be
differences in the relative performance of predictors, but as o« — oo the mean returns across
predictor must converge given our assumption of costless (or equally costly) predictors.
Heterogeneity arises in the costless case of Brock and Hommes [7] only in the steady-
state in which different predictors make identical forecasts. Our results arise in a stochastic
equilibrium in which different predictors produce different forecasts, but achieve identical
mean performance, as o — 00.

4. Long-run Intrinsic Heterogeneity: least-squares learning and dynamic predictor
selection

A ME is a fixed point defining a stochastic process in which each predictor has optimally
chosen coefficients and in which the proportions of agents using each predictor depend on
their mean profits. Intrinsic Heterogeneity arises in the model when, in the neoclassical limit,
each predictor returns the same mean profits in the ME. As discussed in the Introduction,
the attainability of the equilibrium under real-time learning is also of considerable interest.
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The literature on least-squares learning emphasizes stability under econometric learning as
an important criterion for whether REE are reasonable, and in the current framework there
is the additional issue of dynamic predictor selection.

Stability under learning also facilitates consideration of two related issues of interest. The
Friedman [15] hypothesis, outlined in the introduction, can only be analyzed in a dynamic
process that takes into account real-time learning. If this adaptive process converges to a ME
then this supports Friedman’s hypothesis that market forces are stabilizing. Secondly, by
explicitly modeling the dynamics we can sharpen the comparison with Brock and Hommes
[7] and Brock and Hommes [8], who emphasize the global dynamics of predictor selection.
Since their emphasis is on the possibility of complex dynamics around the steady state, we
want to study the conditions in which this might emerge in our framework.

4.1. Stability under real-time learning and dynamic predictor selection

In this section we address whether the equilibrium is attainable under real-time learning
of the type emphasized in Evans and Honkapohja [11]. In a ME agents misspecify, but their
forecasts are the optimal linear projections given their underparameterization. Furthermore,
agents choose which component of the exogenous process to omit based on unconditional
mean profits. We now substitute optimal linear projections with real-time estimates formed
via recursive least squares (RLS).'* We also assume that agents choose their forecast
model each period based on a real-time estimate of mean profits. Hence, there is dual
learning as agents recursively update the parameters of their forecasting model and evolve
their predictor choice according to a dynamic predictor selection mechanism.

Prices now depend on time-varying parameters bt]_1 and time-varying predictor propor-
tonsn; 1,

pe=E1b) n1 -0z + EBR n— )22t 1
in which btl_l, bl2 | are updated by RLS

b,1 =b,l_1 + t_lR[]Zszl (Pz - b,l_lz1,zf1) )

2 2 —1p—1 2
b[ Zb[_l +1 Rz’ 22,1—1 (Pt - b[_lzz,[—l) s

where
Ri;,=R 12, —-R
=Ry +1 (27,4 Li—1),
1,2
Roi=Rp;—1+1 (Zz,,_l —Ros1).

The R;;, j = 1, 2 are recursive estimates of the variances of the explanatory variables z;.
Predictor proportions are updated according to the discrete choice probabilities. Mean
profits of the two predictors j = 1, 2 are estimated by

Eﬂ:th = Enj’t_] + 5; (77:]"[ - ETC]'J_]> s

14 For an overview of stability under RLS in dynamic macroeconomics see Evans and Honkapohja [11].
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where 0 < 0, < 1 and we focus on two cases that are standard in the literature: (i) 6, = 1,
which delivers a recursive algorithm for computing the average, with equal weights, of past
realized profits, and (ii) 5; = J, which weights recent profits more heavily, with the weights
declining geometrically at rate 1 — §.

The mean profits map into predictor proportions according to the law of motion

exp [ocEAnj,t]
Z?:l exp [rxl:?nk,,]

The dynamic version of the model exhibits real-time learning in the sense that agents adap-
tively update previous estimates of their belief parameters and the mean profits of each
predictor. Agents now choose their model in each time period based on these recursive
estimates. We are interested in whether the sequence of estimates b/, bt2 and predictor pro-
portions 11, converge to the ME. !> Our aim is to use numerical illustrations to show
that the equilibrium can be stable under real-time learning and to investigate whether dy-
namic instability can also arise. It is beyond the scope of this paper to establish analytical
convergence results.

We continue with the particular parameterization that generated Intrinsic Heterogeneity
in the previous section. We set

3.1 T2
A= [.1 .7]’ 2o = [.2 .6]’
v =1[.7,.5], and ¢ = 2, and simulate the model for 50,000 time periods. We set the initial
value of the VAR equal to a realization of its white noise shock, i.e., zg = &o. The initial
value for n1 ¢ is .82, a value that was chosen to lie away from the end points and the ME.
Initial estimated mean profits are equal to the realized profits under the initial conditions.
The initial belief parameters were set to b(l) =1, bg = 2. The initial estimated variances
R1 0, Ry, are the identity matrices. Except where otherwise specified we choose o = 100.

njr =

4.2. Sample average estimator for mean profits
When §, = t~! we have
. . = .
ETEjJ =E7Ij’171+l‘ (ﬂjy,—Eﬂfj’lf]),

which is equivalent to computing sample averages, for each predictor, fort = 1,2,3,....
This case leads to dynamic stability of the ME. 6

Fig. 4 illustrates the results of a representative simulation for o = 100. The top panel plots
the simulated proportion n1 ; against time. The middle and bottom panels plot the simulated

15 Since we conduct the analysis numerically, we are being deliberately vague in what sense these sequences
converge.

16 1 their “Final Remarks” Brock and Hommes [7] mention the case of equal weighting, and conjecture con-
vergence to rational expectations. In our framework full rationality is excluded by construction and we find
convergence to the ME.
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Fig. 4. Real time learning simulations with J; = L

belief parameters b/, b,z. In each plot the solid horizontal line represents the respective
variables’ values in the ME with Intrinsic Heterogeneity. As can be seen, there appears to
be convergence to the ME. (The paths of law of motion parameters ¢; ;, not shown, also
indicate convergence). Initially there is considerable volatility in the proportion of agents
who choose predictor 1. This volatility gradually dampens until the proportion approaches

its equilibrium value. The dampening is much quicker in the belief parameters b, which
approach their equilibrium values in a short period of time. Similar convergence results
are obtained for other parameter settings, though speed of convergence is affected by o.
For larger values of « it takes longer for the predictor proportions to settle down near the
equilibrium values. However, the system appears to be stable for all o > 0.

The intuition behind the stability is as follows. In our parameterization there is a unique
ME with Intrinsic Heterogeneity. Heterogeneity arises because Condition P guarantees that
under, say, 71 homogeneity agents will have an incentive to mass on z3, and vice-versa. For
large o agents mass on the predictor that returns the highest mean profit. In our simulations
the proportions of agents are initially well away from the ME. This implies that one predictor
has a higher profit than the other. In the next period agents mass onto that predictor. Because
Condition P holds, in the next period agents tend to mass onto the other predictor. As the
rapid switching occurs agents update parameter estimates, which converge quickly, and
accumulate data on relative mean forecast performance. As they learn about mean relative
forecast performance, the volatility in predictor selection dampens and there is convergence
towards the Misspecification Equilibrium. The system can therefore be said to generate
“long-run intrinsic heterogeneity” in the sense that the heterogeneity of forecasts at each
moment in time emerges as the long-run outcome of a dynamic process of adjustment.
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In light of Brock and Hommes [7] our results may seem surprising. However, in Brock and
Hommes [7] the model is deterministic, the predictor choice is between a costly stabilizing
predictor and a costless destabilizing predictor, and predictor fitness is the most recent
period’s realized profits. The stability results in our model are the result of agents looking at
the mean relative performance of the predictors using sample averages. Measuring fitness
or expected profits using only the most recent period’s profits is not appropriate in our
stochastic framework. However, this is a special case of geometrically declining weighting,
to which we now turn.

4.3. Geometric estimator for mean profits

We now consider the case 0 < §; = 0< 1, i.e.
Enj,=Enj, 1+ (n,-,, - Enj,l,]) .

Given initial values for Enj,o, fort = 1,2,3,.... this weights 7;;; by 6(1 — 8)t, for
i =0,...,t — 1 and Enj’o by (1 — 8)". For 6 — O this estimator of mean profits (or
“fitness” measure) carries the limiting interpretation of a sample average in which all past
profits are weighted equally. The 6 = 1 case, in which only the most recent period’s profits
matter, was emphasized in Brock and Hommes [7,8]. Brock and Hommes [7] do, however,
set out a more general fitness measure and explicitly mention the geometric case.

Figs. 5 and 6 plot two real-time learning trajectories, with o = 100, for polar cases é =
.0001 and .25. We maintain the same model parameter values, and the forecast parameter

estimates b; continue to be estimated by RLS. !” In Fig. 5 the dynamics settle down very
close to the ME. In contrast, in Fig. 6, the proportions oscillate frequently and erratically,
in many periods taking values near ni; = Q orny; = 1.

The intuition for these results is as follows. For a sufficiently small weight on recent
observations, the geometric average approximates the sample average used in the previous
subsection. As the weight on recent observations increases, agents will “overreact” to the
latest data and switch predictor functions. This will tend to cause price to move in the
opposite direction making the other predictor return a higher profit in that period. After
several periods this will be sufficient to induce agents to mass on the other predictor, with
the exact timing depending on the realized sequence of random shocks. '8

Other simulations (not shown) reveal the following qualitative features. As § is increased
from very small levels, the paths of ny; and ¢ jt remain centered around ME values, but

17 RLS could also be replaced by “constant gain” versions, which use 4 € (0, 1) in place of ¢ ~1_These have been
advocated in models in which agents are concerned about possible regime change, e.g. Sargent [20]. See Evans
and Ramey [14] for a setup in which unknown regime changes are present and agents aim to optimally chose 4.
Because in our setup there is a unique ME and no structural change, we use the RLS algorithm here. We note,
though, that for 2 — 0 the results will be qualitatively very close. In a companion paper we pursue constant gains
in a setting where there are multiple Misspecification Equilibria.

18 What would happen if the exogenous noise were removed? If the innovation variances X and 0% are replaced
by 12 and m% for 0 < t < 1 this would simply shrink the variation of p; around the steady state, approaching
the steady state path asymptotically as © — 0. Within our framework one cannot easily look at the nonstochastic
case T = 0 since in that case = 0 and the least-squares projections are undefined.
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Table 1
Summary of numerical results

o =100 o =20
nt = 2763 nt = 3852
0 ﬁl Ony lpnl ﬁl On, Wr”
0.0001 2895 .0001 0 4005 .0003 0
0.001 2664 .0005 0 3853 .0007 0
0.01 2905 .0462 1103 3954 .0082 0
0.05 3367 1274 4407 .3997 .0338 0113
0.10 .3660 .1623 .5903 4087 .0575 .0538
0.25 4109 .1983 7411 4340 .0965 1829

Note: n’f denotes the ME values. 711 and oy, give the sample mean and standard deviation for the simulation.
W ny &ives the proportion of values for ny that were either above .95 or below .05 in the simulation. Each simulation
was of length 60,000 with the first 10,000 data points discarded.

increase in volatility, as measured, for example, by their variances. As ¢ is increased further,
the time-series variance in n; increases until eventually a high proportion of the time is
spent with n1; near its boundary values.

These results are illustrated in Table 1, computed from simulations of length 50,000
periods. The table also shows how the qualitative features depend on the value of o: for
larger values of o« we require smaller values of ¢ to keep the sample paths close to ME
values.

We do not have a strong prior view as to the appropriate value of ¢, and the results of
Table 1 document the range of possibilities. In stochastic economies it seems clear that
predictor performance should be assessed using an average of past profits, and the results
of this section show how the degree of smoothing controls key qualitative features of cross-
sectional and time-series heterogeneity.

4.4. Discussion

In this section we have numerically investigated dynamics incorporating real-time learn-
ing and dynamic predictor selection, focusing on the case in which the misspecification
equilibrium exhibits Intrinsic Heterogeneity. For the sample average estimate of mean
profits (9, = t~1), our numerical simulations show long-run intrinsic heterogeneity, i.e.
convergence over time to a ME with intrinsic heterogeneity. Similar results are obtained
using geometric estimators of mean profits with sufficiently small values of o: predictor
proportions now remain stochastic over time, but the sample paths are close to ME values.
However, as ¢ increases, the variability of sample paths for n1; increases and eventually
exhibits sample paths with frequent rapid switches and in which most of the time is spent
near boundary values of n1; = 0 or 1. These latter results are clearly analogous to those of
Brock and Hommes [7] for the case of large o and a positive cost to the rational expectations
predictor, but arise in the current case in a stochastic model with two equally costly and
equally sophisticated predictors.
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One way to interpret the results of this section is that because of the negative feedback
in the cobweb model from expectations to prices, when the conditions for intrinsic het-
erogeneity are met, heterogeneous expectations must arise in some form, even for large
intensities of choice «. How heterogeneity arises is controlled by the sensitivity o, of the
mean profit or “fitness”” measure En j,« to the most recent period’s profits. When 6, = t~Lor
takes a small constant value, heterogeneity takes the form of constant or near-constant pos-
itive proportions of agents using each of the forecast rules. This generates a cross-sectional
dispersion of price forecasts at each point in time. When ¢ is sufficiently large, agents tend
to mass onto a particular predictor that appears currently to yield higher profits, and the
heterogeneity instead takes the form of frequent switching between estimators over time.

These results also suggest that the validity of the Friedman Hypothesis depends on the
nature in which agents discount the past. Whether market forces are stabilizing and guide
the economy to our ME depends on the sensitivity of firms to recent predictor profits versus
more permanent expected profit measures of predictor success.

5. Conclusion

This paper demonstrates how to obtain heterogeneous expectations as an equilibrium
outcome in a model with optimizing agents. Our setup is the standard cobweb model in
which rational expectations was originally developed. We obtain our results with a discrete
choice model for predictors, when agents are constrained to choose from a set of misspecified
models. As in Brock and Hommes [7] the proportion of agents using the different predictors
depends on their relative performance according to an intensity of choice parameter, but
we focus on the case in which predictor performance is measured by expected profits. We
extend this approach by considering predictors that are alternative econometric forecasting
models. As the intensity of choice increases agents will select only the most successful
predictors. In Brock and Hommes [7] heterogeneity of expectations is a reflection of finite
intensities of choice and disappears in the neoclassical limit. One of the main contributions
of our paper is to show that heterogeneity can remain for high intensities of choice as a
result of the availability of multiple misspecified models.

Because of limits to cognition, knowledge of the economy, and degrees of freedom,
we assume that agents must underparameterize by neglecting a variable or lag from their
forecasting model. The importance of misspecification is widely recognized in applied
econometrics and one that we believe should be reflected in realistic models of bounded
rationality. Although we constrain agents to choose from a list of misspecified models, at
the same time we require that the parameters of each chosen model are formed optimally
in the sense that forecast errors are orthogonal to the explanatory variables of that model.

Our major theoretical contribution is to obtain existence results for a ME within this
framework and to obtain a suitable condition under which heterogeneous expectations per-
sist for high intensities of choice. When this condition is satisfied we say the model exhibits
Intrinsic Heterogeneity.

Our central finding that misspecification can lead to heterogeneous expectations is not
at all obvious. If the intensity of choice is large, a key requirement for this possibility is
that the model be self-referential, i.e., that there be feedback from expectations to actual
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outcomes. Heterogeneous expectations are not a necessary outcome when the intensity of
choice is large, but do arise under a suitable joint condition on the model and the exogenous
driving processes. We illustrate the results in a simple bivariate model. In particular, we show
that, ceteris paribus, Intrinsic Heterogeneity arises when the parameter governing the self-
referential extent of the model is sufficiently large. This surprising feature of self-referential
models has not been noted in previous work.

Finally, we have shown numerically that a ME with intrinsic heterogeneity can emerge
from a dynamic process of least-squares parameter learning and evolving predictor choices,
provided agent’s predictor choices are based on mean profits as estimated by sample aver-
ages. If instead agents place a high weight on more recent profits, as in Brock and Hommes
[7,8], then the system can generate complicated dynamics around the ME.

In this paper we have focused on the cobweb model. In future work, we will examine
the framework in a Lucas-type monetary model. The Lucas-type model shares a similar
reduced-form as the cobweb model, but expectations have a positive feedback on price.
Since the self-referential feature of these models is central, a model with positive feedback
can be expected to yield distinct results.

Acknowledgments

We are greatly indebted to Garey Ramey for early discussions. We thank Jim Bullard, Cars
Hommes, Didier Sornette, and participants at the 2002 CeNDEF Workshop on Economic
Dynamics for helpful comments. We are particularly grateful to an Associate Editor and
anonymous referee for detailed suggestions. This material is based upon work supported
by the National Science Foundation under Grant No. 0136848.

Appendix

Proof of Proposition 1. Consider the matrix
Ko N
(A= 1+¢> ni2u (ufguf ) w
—

The absolute value of the indicated sum has a maximum value when considered as a function
of n € S. Hence there exists ¢ > 0 such that, for all 0< ¢ < &, [4] is strictly diagonally
dominant (see Horn and Johnson [18, p. 302] for all n € S. Strictly diagonally dominant
matrices have nonzero determinants and hence are invertible. [

Proof of Theorem 3. Suppose to the contrary that the model does not exhibit intrinsic
heterogeneity. From Theorem 2 we know that a ME exists for every o. Since the model does
not have intrinsic heterogeneity, then for all n < 1 there are infinitely many « such that
nz > n for some component k = 1, ..., K where n* € N,. Hence there exists a sequence
indexed by § such that «(5) — oo with fixed points n*($) satisfying n} @ (§) — 1.Itfollows
that for some i € {1, ..., K} there exists a subsequence indexed by s such that a(s) — oo
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and nj(s) — 1. The expected profit functions F i (n) are continuous and hence for this
sequence

En*(s) — Eni(s) — Fi(e;) — Fi(er)

forallk = 1, ..., K, where ¢; is the unit coordinate vector with component z~ equal to one.
However, condition P implies that there exists j # i such that F;(e;) — Fi(e;) > 0. It
follows from (12) that

1

ni(s) = 1+ 37 expla(s)(Enk(s) — Eni (s)}

Thus nf(s) — (0 as s — 00. This contradicts n;" (s) — 1 and hence the model must exhibit
intrinsic heterogeneity. [

Proof of Proposition 4. We show, for every ¢ >0, that

AG) = L+ m@) (L + §) = dny) — ¢2pp (w1 —nd) > 0
for all 0 <n < 1. Equivalently

Any) = ¢* (pp— Dnf + ¢> (1 — pp)ni + (1 + ¢) > 0

for all 0<ny < 1. Since |pp| <1 by the Schwarz inequality, 4(n1) is a concave quadratic
function of ny. Clearly 4(0) > 0 and 4(1) > 0. Since A(ny) is concave and is positive at
the end points of the domain 0<<n1 < 1, it follows that A(n1) > 0 for all 0<<n| < 1. Hence
Condition 4 is satisfied. [J

Proof of Lemma 5. We can rewrite (14) as
S(npé=A'y,

where & = (£, &) and S(ny) is the indicated 2 x 2 matrix. Differentiating we obtain
dS)E+ Sd&) =0and

¢ _ 48
d}’ll - dm '

It is easily seen that

ds 1

1 O _p ]

dny p—1
Somewhat abusing notation, it is now convenient to rewrite F'(n1) as F((n1)). To establish
the result we compute d F/dn) = (dF/d&)' (d&/dny). It can be verified that

dF\' Ca0a(10
<d§>_¢D(l r)Ez@(O_Q),

where Q = Ez%/Ez%.
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Thus
dF/dn; = —$*D(1 — r?)Ez3E K (n1)&, where

k=0 0)s (5 4)

Here r> = pp with 0<r? < 1. Computation of K yields

1+¢§1—n1<1—r2>) Jz@(1+¢)
— | +o+¢*A—rDni(1—ny) 14+¢+¢> (1= (1-ny)
Kn) = JOr(14) 0+ ¢ri+d(-rn)

1+ ¢+ (1—rDni(1—n1)  1+¢+¢* (1—rDni(1-n1)
K (ny) is symmetric with K11(ny) > 0 and
ol —r?)
2 2 =
L+¢+¢~(1—rs)n (1 —ny)

Thus K (n1) is positive definite and &' K (n1)& >0 for all &. The result follows since d F /dn;
<OforallO<n<1. O

det(K (ny)) = 0.

Proof of Proposition 7. Take part (1), which states that Condition P implies Intrinsic Het-
erogeneity. We will establish that (i) for each o, In7(x) € Ny uniquely, (i) 3 {a(s)} s.1.
a(s) — 00 = nj(a(s)) — A where 1] € Noo = {n € [0, 1] : for o — oo ny = Ty(ny)}
and (iii) F(n;) = 0.

Claim (i) that there exists a unique fixed point nj(a) for each o comes directly from
Theorem 6.

Claim (ii) is that there is a sequence o(s) indexed by s defined so that as a(s) — oo
the corresponding sequence of fixed points from claim (i) nj(x(s)) — 7. That there
exists a sequence a(s) — oo and a similarly corresponding sequence n7 («) follows from
claim (i) and since « € Ry there are infinitely many such sequences. Theorem 6 used
Brouwer’s theorem and Lemma 5 to establish that there exists a unique fixed point for each
o. Hence there exists a limit to the sequence of fixed points indexed by s and define it to be
ni(a(s)) — n1. By construction, 1] € Ny.

Claim (iii) is that F'(77;) = 0. Assume 7] € N, Condition P, and F(711) # 0. It follows
that F (1) > O or F(n1) < 0. Recall, ny (o) = H,(F(n1)). By definition, as &« — oo

1 if x > 0,
Hy,(x)— 10 ifx <0,
1/2 ifx=0.

So we have nj(x) — n; € {0, 1}. But, assuming Condition P implies F(1) < 0 and
F(0) > 0. Hence, 711 is not an ME which contradicts our initial assumption. It must be the
case that, with Condition P, F(n;) = 0.

Note now that Lemma 5 establishes 7] is the unique point where F (1) = 0. Thus, we
conclude that Condition P implies n}j(x) — 71 where F(71) = 0.

A similar argument establishes parts (2) and (3) of the proposition. Note that Condition
P1 implies F(1) > 0 and F(0) > 0 and Condition PO has F(1) < 0 and F(0) < 0. The
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monotonicity of F means that Vny, o F(n1(o)) # 0and the result follows immediately from
above. [l

Further details for Section 3.4: Using the expressions for Enj and E 7, obtained in Section
3.1, compute F(1) and F(0) by setting n; = 1, 0, respectively. Using p = Ezltzzt/Ez%t
and p = EzltZzt/Ezgt we get

F(1
Eiz) =—¢D{(EM)p — EWDp)p + (1/2)(E1)
1z
—p*E1)0 — (1/2(E3(1) — p*E (1))}
F (O
Eiz) = ¢D{PIE0)p — E(0)p] + (1/D[(E(0)
2t

—&0p) 07 = (&) — &0)pH]).

Thus, for example,
F(1) <0 if [5%(1) - 5%(1)] (sz — 1) - 0.
Using 0p* = r? < 1 it follows that

F(1) <0 if [ 2(1) — 55(1)] <0. O
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