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Abstract

This paper extends the adaptively rational equilibrium dynamics of Brock and Hommes [Brock, W.A.,
Hommes, C.H., 1997. A rational route to randomness. Econometrica 65, 1059-1160] by introducing
a generalized version of the replicator dynamic. The replicator equilibrium dynamics (RED) couples
the price dynamics of a Cobweb model with predictor selection governed by an evolutionary replicator
dynamic. We show that the RED supports the conclusion of Sethi and Franke [Sethi, R., Franke, R., 1995.
Behavioural heterogeneity under evolutionary pressure: macroeconomic implications of costly optimisa-
tion. The Economic Journal, 105, 583-600] that costly rational beliefs persist, though unlike them, these
results obtain in the deterministic case. Numerical evidence shows that complex dynamics exist, as in
Brock and Hommes, even though no weight is placed on strictly dominated predictors in an RED steady-
state.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The continuing dominance of the rational expectations hypothesis in dynamic macro-economic
models over other, primarily adaptive approaches to expectation formation can be attributed to
analytic tractability and the appeal of optimally formed beliefs. Rational expectations are optimal
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in the sense that, in equilibrium, they produce non-systematic forecast errors. A recent literature
examines instances when it might not be optimal, from a utility maximization standpoint, for
agents to form expectations rationally. Models of rationally heterogeneous expectations address
this issue by modeling expectation formation as a conscious choice between costly competing
belief-formation alternatives. In these models agents may have systematic forecast errors but the
cost to improving upon them is prohibitive.

Evans and Ramey (1992, 1998) examine the issue of costly expectation formation through
a process of ‘expectation calculation’. In these papers, agents have an algorithm that can be
iterated subject to a cost per iteration. They find that under certain conditions, the outcome of
agents’ choices may converge to the rational expectations equilibrium. Brock and Hommes (1997)
and Sethi and Franke (1995) extend the ‘expectation calculation’ model so that agents choose
between various costly predictor functions. Agents weigh the potential relative benefits and costs
of predictor use in order to make their belief-formation decision. Brock and Hommes (1997)
define the adaptively rational equilibrium dynamics (ARED) as an equilibrium for a system in
which predictor choice follows a multinomial logit. Brock and Hommes (1997, 1998) and Brock
et al. (2005) show that if agents react strongly enough to changes in relative net benefits, then the
dynamics may become complicated. Sethi and Franke, on the other hand, find that when predictor
selection evolves according to a replicator dynamic, as used extensively in evolutionary game
theory, the asymptotic distribution of predictor types is invariant and places positive weight on the
rational predictor.! Further, the Sethi—Franke model addresses one possible criticism of Brock and
Hommes (1997): the ARED selection model yields a positive proportion of agents using the strictly
dominated rational expectations predictor even in a steady-state.” In Sethi and Franke (1995)
strictly dominated predictors vanish asymptotically. A drawback to the Sethi—Franke approach,
though, is that they require exogenous disturbances in order for rational expectations to be chosen
asymptotically.

These pioneering papers leave two important questions unresolved. In the deterministic case,
Sethi—Franke find that the proportion of agents using a costly sophisticated predictor vanishes,
though they may coexist with simpler less-accurate forecast methods in a stochastic environment.
On the other hand, Araujo and Sandroni (1999) and Sandroni (2000) find that in models with
perfect capital markets ‘boundedly rational’ agents will vanish. Finally, Brock and Hommes
obtain coexistence in steady-state, though the selection mechanism underlying their predictor
dynamics is based on a random utility model, and, thus implicitly stochastic. The first question is
whether coexistence can obtain in a purely deterministic environment.

The second question concerns the effects of heterogeneity on the dynamics of the model.>
Brock and Hommes found that for certain values of the ‘intensity of choice’ parameter, cycles
of high order and chaos can emerge. It is natural then to wonder whether this type of behavior
is specific to their model of predictor proportion dynamics, or whether it obtains more generally.
This leads to the second question: can a replicator similar to the one studied by Sethi and Franke
result in complex dynamics similar to those found by Brock and Hommes?

We address these questions by incorporating into a Cobweb model a replicator dynamic based
on Sethi—Franke and studying the resulting replicator equilibrium dynamics (RED). In our model,
price depends on heterogeneous expectations, which are assumed to be formed as an economic

! Droste et al. (2002) examine a Cournot duopoly model where decisions follow a replicator dynamic.

2 In a special case of their model where agents react fully to profit differences there is no heterogeneity and no rational
agents.

3 In a different context Calvet et al. (2004) consider the implications of heterogeneity on state dynamics.



+ Model

W.A. Branch, B. McGough / J. of Economic Behavior & Org. xxx (2006) xxx—xxx 3

choice between costly predictor function alternatives. These choices are, in turn, made by adapting
to the past costs and benefits of the various predictors and result in predictor proportions that
follow a law of motion closely resembling the replicator dynamic in evolutionary game theory.
We compare the dynamics in the RED to the ARED where the law of motion for predictor selection
follows a multinomial logit as in Brock and Hommes (1997).

Analysis of the RED first requires specification of an appropriate replicator dynamic. The
usual replicator, developed by Weibull (1995) and others, does not extend to the Cobweb model
with dynamic predictor selection because the fitness measure is realized profits and these are not
bounded above zero. Sethi and Franke consider a Boolean decision, and the method they use
does not directly generalize to a setting that includes more than two options. In order to study the
vanishing of strictly dominated predictors in a general setting, we alter their replicator dynamics
in a natural way to incorporate models with any finite number of predictors.* We then show that
in the RED strictly dominated predictors vanish, so in a steady-state, a zero proportion of agents
will use the costly rational expectations predictor. This is in contrast to the steady-state of Brock
and Hommes in which a positive proportion of agents will use the rational predictor even though
it costs more to do so.

To obtain specific analytic results, we focus on the two predictor case by assuming that agents
choose between rational and naive expectations. We demonstrate that the instability result of Brock
and Hommes, which states that the steady-state will be unstable if it is unstable when agents mass
on the cheapest predictor, holds in the RED as well. Further, we corroborate the Sethi and Franke
finding that sophisticated predictors do not vanish asymptotically. Importantly, this result obtains
even when there is no noise in the model. This leads us to conclude that stochastic models are
not necessary for costly sophisticated predictors to coexist with simpler, cheaper predictors. This
result is particularly significant since it holds even in models that asymptotically place zero weight
on strictly dominated predictors.

We also find support for the complicated dynamics exhibited by the model in Brock and
Hommes (1997). Brock and Hommes show that as the ‘intensity of choice’ between predictors
increases (but remains finite), the equilibrium trajectories become aperiodic and converge to
a strange attractor. We argue through numerical simulations that the RED also may generate
periodic and aperiodic trajectories depending upon the sensitivity of agents’ predictor choices. The
existence of complex dynamics in the RED is not obvious. Because strictly dominated predictors
vanish under the RED one might expect that the model will be stable. The complex dynamics
under this alternative law of motion instead highlights the importance of the interaction between
the stability properties of the steady-state and evolution of predictor proportions. The steady-state
of the Cobweb model tends to repel all trajectories under naive expectations and attract them under
rational expectations. When dynamic predictor proportions are coupled with the Cobweb model
via either ARED or RED, complicated interactions between the steady-state’s dual role as an
attractor and a repellor create complex dynamics. These results suggest that models with steady-
states that have this attractor—repellor property may generate complicated dynamics regardless of
the predictor selection map.

This paper proceeds as follows. Section 2 presents the Cobweb model with rationally hetero-
geneous expectations. Section 3 presents analytic results on the stability of the system; careful

4 Brock et al. define a model with a large type limit as one where there may be an infinite number of predictors. These
models are an attempt to provide an analytic approach to the Santa Fe Institute’s Agent-based Modeling approach, which
is primarily computational.
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contrasts are drawn with the ARED of Brock and Hommes (1997). Section 4 presents a detailed
numerical argument in favor of complex dynamics. Finally, Section 5 concludes.

2. Model and replicator

This section introduces the Cobweb model with rationally heterogeneous expectations. The
Cobweb model is used frequently in the literature on learning because of its simple structure and
its wide array of dynamic properties. The model assumes a production lag that forces supply
decisions to be made one period in advance. Because of this lag, supply is determined by firms’
expectations of next period’s price. Depending on the relative slope values of supply and demand
and the exact nature of the expectation formation device, the steady-state may be unstable. Carlson
(1968) and Branch (2002) showed that if adaptive expectations place a large enough weight on past
prices, the steady-state will be locally stable. However, under naive expectations (i.e. the belief
that last period’s price will prevail this period), the steady-state may be unstable. Our analysis
focuses on when the destabilizing predictor also carries the lowest cost.

2.1. The Cobweb model with rational heterogeneity

Our construction of the Cobweb model follows Brock and Hommes (1997). Facing a production
lag, firms make supply decisions based on expectations of future prices:

S(piy1) = argrQnaXp‘f+1 0 —c(Q) = ()Pl (1

In this model we will not a priori impose homogeneous expectations. Instead, we assume there
exists a large number of firms who choose from a set of predictor functions

H(p") = (H\(p"), ..., Hk(p")

to form their expectation p{ _ using the information set p'=Ps, pi—1, - - .» Pi—L,). Assume that
H;: R — R maps past prices into a forecast of future price so that

Hj(pa"'vp):Hk(p,...,p)

for all j and k. Demand is given by the function D(p,1). We maintain generality in this section, as
in Brock and Hommes (1997), in order to compare our results to theirs. This restriction on the set
of predictors is identical to theirs. Below we focus on the special case of perfect foresight versus
naive expectations. Brock and Hommes (1997) note that the perfect foresight predictor does not
satisfy the assumption above that predictors map past and current prices into a future expectation.
Following Brock and Hommes, we relax this assumption in the particular case of rational versus
naive expectations. The two predictor example below, though, is still a special case of the general
model here.’
Define gj, as the proportion of agents that use H; in time 7. Market equilibrium is given by

K
D(pi+1) =Y _qjiS(H;(p"). )
j=1

5 For further discussion of this issue, see Brock and Hommes (1997).
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For appropriately defined D(-), S(-) (see Brock and Hommes, 1997), there exists a solution to
Eq. (2), which we write as

K
pirt =D | > quSH;(p) | - (3)
j=1

This equation of motion describes the price dynamics.
2.2. The replicator dynamic

To close the model we must specify the evolution of the proportions g;,. We consider a law
of motion inspired by Sethi and Franke (1995), who assume that g; is increasing in its excess
mean payoff, but we extend the replicator to a setting that includes more than two predictors. To
construct this extension, we deviate slightly from their method by imposing that g; decreases in
its deficit mean payoff. The reason for this deviation will be made clear in the sequel.

2.2.1. Adaptively rational equilibrium dynamics
For future comparisons it will be instructive to review first the predictor dynamic of Brock and
Hommes (1997). They assume that g;, follows the law of motion

_ explBUL)
Zf:l eXP{,BUk,t}7

where Uj; is any fitness measure for predictor j. The form of Eq. (4) is a multinomial logit (MNL)
and is used frequently in the discrete choice literature. It has the nice feature that predictor choice is
directed towards those predictors that return higher payoffs. Its main drawback is that it is derived
from a random-utility model under very specific assumptions about the underlying stochastic
process. Brock and Hommes (1997) refer to § as the ‘intensity of choice’ parameter. For larger
values of B agents will react more strongly to changes in relative net benefits.

We follow Brock and Hommes (1997) in assuming U;, =, where 7, is period t’s realized
net profits for predictor j, and is calculated as

i = peSH;(p'™ 1) — e(S(H;(p'™ ) — C;;. )

This equation of motion describes the dynamics of net profits, and throughout the paper payoffs
are calculated accordingly.® The variable C 'j is the cost of using predictor j. In Brock and Hommes
(1997) and Branch (2002), C; plays a large role in the stability conditions. If C; =0 for all j, then in
a steady-state the agents are evenly distributed across all predictors and the steady-state is locally
stable. Notice that in a steady-state 7; — 77y = C, — C;. If B and C; are finite, then in a steady-state
all predictors receive positive weight. This is a feature particular to the selection method employed
by Brock and Hommes and is the result of the random utility model underlying the multinomial
logit law of motion (4). This feature is a drawback to the MNL approach because in a steady-state
with a finite ‘intensity of choice’, some agents will pay a higher price for a predictor that returns
the same forecast as a less costly alternative. We are now ready to define the first equilibrium
concept.

qj.t 4

© Brock and Hommes (1997) initially allow Uj, to be a weighted average of all past profits. Branch and Evans (2006)
consider a stochastic framework where agents choose predictors based on unconditional mean profits.
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Definition. Adaptively rational equilibrium dynamics (ARED) is a process (p;,q;) that satisfies
Egs. (3)-(5).

2.2.2. Replicator equilibrium dynamics

Sethi and Franke consider an evolutionary approach. Using a predictor proportion law of motion
that closely resembles the replicator dynamic in evolutionary game theory, they examine the case
of rational and adaptive expectations in a model of strategic complementarity. In the deterministic
version of the model rational agents are driven from the market asymptotically. A goal of this
paper is to see if this result extends to the Cobweb model. We are also interested in whether the
replicator dynamic can overcome the aforementioned persistence of strictly dominated predictors
that occur in the ARED.

In order to find a replicator that applies to selection between more than two choices, we must
guarantee that the new proportions are in the unit interval and sum to one. A straightforward
generalization of Sethi and Franke appears impossible.

Instead we propose an alternative approach that is inspired by Sethi and Franke. Our approach
imposes that any increase in a predictor proportion is offset by an analogous decrease in other
proportions. We require the following definition:

Definition. A vector of predictor proportions, g:=[q1, - - -, gk.+]» is an element of the K — 1-
simplex ASK=1 C RX  thatis, g;, € [0,1]and > ,qi, = 1.

Recall that 7;; denotes the profit received by agents using predictor j in time ¢, given the
predictor proportions g;—1. At this point it is useful to summarize the timing of the Cobweb model
with rationally heterogeneous expectations. Agents make supply decisions at t — 1 based on their
forecast of price at time ¢. After the realization of price at time 7, agents then calculate realized
profits m;;, which depend on the proportions ¢;—;. Finally, agents update their predictor choice
by weighing the realized profits at time ¢ against the average profit across predictors, and the
associated price forecasts then determine supply.

For a given vector of proportions, g;, define mean utility at time 7+ 1 to be the average profit,
that is

_ 1
Tr+1 = X g TTji+1-
J

Next, define the following sets:
K={1.....K}, G@)={ieK|miy1 =71},  Bl)={ieKlm1 <)

Notice G is the complement of B in K. As the timing protocol described above emphasizes,
the appropriate ex post metric on a predictor j from time 7 is 7j41.

To see the necessity of our approach we first explain why the conventional replicator dynamic,
exemplified by Weibull (1995), does not apply in our setting. Section 4.1 of Weibull derives a
discrete-time version of the replicator dynamic of the form

O+ T 41

qdit+1 = — = Yiz
o+ Ty

where « represents the ‘background birthrate’. Under this dynamic the predictor proportions from
our model satisfy > ,;gi+1 = 1. But a vector of proportions must satisfy two conditions: the sum
of its elements must be one, and each individual element must lie in the unit interval. In the usual
setting the fitness measure attached to the replicator dynamics is non-negative. In the Cobweb
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model with rationally heterogeneous expectations, however, profits can take negative values. This
implies that under Weibull’s replicator dynamic the time path for g1 could lie outside the unit
simplex. Instead, we seek a generalization of the Sethi—Franke dynamic that guarantees that the
proportions will sum to one and each proportion will lie in the unit interval.

We proceed as follows. Given ¢;, a reasonable dynamic should decrease ¢; s+ if i € E(qt). To
this end, let

r:(—o00,0) — (—1,59),

with § <0, be so that ¥’ > 0. The function r governs the rate at which predictor proportions evolve.
Forie B(q,) we set

Gijrr1 = (1 + (w1 — Tr1))gi1- 6)

Since x <0 implies r(x) <0 it follows that i € E(q,) = ¢i+1 < qi1, with equality only when
qi:=0. Also, because we have decreased a non-negative number by a percentage, we are guar-
anteed that the new proportion is non-negative. The benefit to this approach is that if we instead
raised those gj, associated to positive net profits, we could not guarantee the new proportions
would be less than one.

Given ¢y, if i € G(q,) then we want the value of g; 4+ to increase. To ensure the proportions
maintain their desired properties, we must impose that this increase comes from the decreased
gj+1- Thus for each je E(q[), we distribute the amount by which g 41 decreased to the g; 11
for ie G(q,), and we weight the amount given to a particular g; .1 by the deviation from the
mean of the corresponding net profit; this is natural as through this mechanism, better performing
predictors receive more weight. Specifically, for i € G(g,), let

/G + T4t — Trgt
¢+ Z Tjt+1 — Tyl

€6

wi(gr) =

where |G(q,)| denotes the cardinality of the set G(q,). The terms containing ¢ are present in
the weighting scheme to deal with the possibility that B(gy) is empty and 7; ;41 = 741 for all
i. Choosing ¢ small limits the increase in the proportion of those agents using a predictor that
exactly yields the average.” Notice w;(g;) € (0, 1] and > wi(g:) =1.Forie G(q,) we may now
set

Gi,i+1 = qip — Wi(qr) Z r(Tj 1 — Ti+1)q 1 (7
Jj€Bgr)

where the negative sign comes from the fact that j € B(g,) implies r( jt+1 — 7r41) < 0. Notice
that if B(qt) is empty then m; ;41 = 741 for all i and we necessarily have that g; ;41 = qi,t.s We
have the following lemma.

7 This replicator dynamic has a jump discontinuity in the following sense: if 7 j < 7 then g; decreases, butif 7; = 7
(and there is some i so that 7r; # 7) then g; increases. This jump can be made arbitrarily small by choosing §=0 and ¢
small.

8 This property no longer holds if 7 is defined as the weighted average of profits across firms. For example, suppose
Wil =7m VYieHC K, T >7, g5, =0 Vje k/H. Then B(q,) is empty.



+ Model

8 W.A. Branch, B. McGough / J. of Economic Behavior & Org. xxx (2006) xxx—xxx

Lemma 1. Suppose q; is a vector of proportions and q;+1 is determined by recursions Egs. (6)
and (7). Then q:4+1 is a vector of proportions.

All proofs are contained in the Appendix available on the JEBO website. This Lemma shows
that, when initialized with a vector of proportions, the replicator dynamic, which is summarized
by the equations below, produces a vector of proportions.

Gio — wilg) Y 1w —T)ge ifieGig)
qir+1 = je B ®)
(14 r(i 41 — T 1))iz ifi € B(g;)

The model is now closed and we can thus define our equilibrium concept.
Definition. The replicator equilibrium dynamics is the system defined by Eqgs. (3), (5) and (8).

We note that in the case of two predictors the usual replicator dynamic and our generalization
here are qualitatively equivalent. When there are only two predictors, the proportion lost from the
one in B is automatically adjusted to the other predictor according to its weight (which is one in
this case). Thus, the replicator dynamic developed in this paper is a natural generalization of the
usual dynamic in a two predictor model.

Our goal is the analysis of this dynamic system, particularly in comparison to the dynamics of
the systems defined by Brock and Hommes (1997) and Sethi and Franke (1995).

3. Analytic results

This section collects analytic results on the dynamic system. The next section will present
detailed numerical analysis of the non-linear dynamics. In this section, we will first present the
results for the RED when K >2 and compare these with the results for the ARED. We will then
turn to the special case K=2, which will be the focus of the remainder of the paper.

3.1. Vanishing of dominated predictors

A significant difference between the RED and the ARED of Brock and Hommes is that replica-
tor dynamics yields the intuitively appealing property that the proportion of agents using strictly
dominated predictors is always decreasing, and if the rate function is so that § <0, this proportion
vanishes.

Proposition 2. Let (p;,q;) be an equilibrium path of the RED. If along this path, for all j’ #j and
forallt, Wi, <my;, then qj;:<qjre1. If 6 <0 then gj; — 0.

The intuition for this result is as follows. A strictly dominated predictor will always yield a
negative net payoff, and thus the proportion of agents using this predictor will be continually
diminished.'? The vanishing of dominated predictors contrasts with Brock and Hommes (1997),
for example, in a steady-state. In a steady-state all predictors return the same forecast. Under the
RED those predictors with positive costs will lose agents, so in a steady-state, the proportion of

9 The requirement that § <0 is sufficient but not necessary; one could also place restrictions on the rate at which r(x) — 0
as x — 0 from below.
10 Notice that this result does not depend on the cobweb model itself.
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agents using those predictors must be zero. In the ARED, though, for finite 8 a positive proportion
will always pay a cost to choose a predictor that is strictly dominated.

The difference between the RED and ARED is non-trivial. In Brock and Hommes (1997)
instability and complicated non-linear dynamics arise for large but finite 8. For such values of g
the steady-state will consist of all predictors. A similar instability finding in the RED is not at all
obvious because in the RED strictly dominated predictors vanish. In the remaining sections we
will show that instability exists in the RED.

3.2. Special case: rational versus naive expectations

To more closely examine the model’s dynamics we follow Brock and Hommes (1997) in
restricting ourselves to a simple example of the general model. We assume linear supply and
demand. The supply equation is derived from profit maximization given a quadratic cost function.
We also assume the predictor set is restricted to rational versus naive expectations.!! Rational
expectations in this set-up are equivalent to perfect foresight. Naive expectations are simply last
period’s realized price.

The model is now given by the equations

D(pr1) = A—Bpir1, S = qibprs + (1 — q)bp,

where A, b, Be Ry, and ¢ is the proportion of rational agents in ¢z. Without loss of generality
we set A=0. Since agents are divided between the two predictors, 1 — g; is the proportion of
naive agents. We focus on the ‘unstable’ Cobweb case of b/B > 1. To emphasize this we note the
following:

Remark 3. When the slopes of supply and demand satisfy b/B > 1, the ‘steady-state’ is unstable
under naive expectations.

Setting supply equal to demand and solving leads to the equilibrium law of motion,

—(1 —g1)bp:
o+l B+ qib ©)

As in the general model, predictor choice at time ¢ + 1 depends on profits at #+ 1 and hence price
at 7+ 1. In this stylized example the profits associated with the predictors follow the processes

(1/2)(1 — q)*b* p? b 5 ((—2—gq)b—B)
2 - Ca 7TNJ+1 = 717; - 5 . 45 £
(B + gq:b) 2 B+ g:b

TR 41 = (10)

where Eq. (9) has been used to eliminate dependence on p;1. These profits are computed as
the actual realized profits at time 7+ 1 given expectations and predictor proportions in time 7.!2
Because agents adapt their predictor choice for pf_, in time + 1, this is the relevant metric for
assessing forecast accuracy, and thus for determining g1 .

1" As shown in Branch (2002) the addition of other stabilizing predictors alters the regions of instability but leaves the
central conclusions unchanged.

12 Given quadratic costs, these formulas are found by plugging (9) directly into the profit function (5) advanced one
period.
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The numerical analysis section requires a functional form for the rate function. We choose

2
r(x) = () tan~ ! (ax) (1)
b4
where « > 0. However, the proposition below does not depend on this functional form. '3
The predictor proportions follow

1 —A+r@Nm1 — T )M —q) TR 01 > TN 41
qr+1 = § 4t if?TR,H—l = TN, t+1 - (12)
A+ (@R 41 — Tr1(g1))q: R 1 < N1

These laws of motion follow directly from Eq. (8). To see this, note thatif wg ;41 > /41, then
TN +1 < 741 so that the weight wg(g,) associated to the rational agents is equal to one (see Eq.
(8)). Moreover, mg ;41 > ;41 if and only if wg 11 > 7y +1. Thus the rational predictor rises
precisely by the amount the naive predictor falls:

(A =gir1) = A +r(@ne1 — T DN — go).

When 7g ;41 < 7141 it follows that

qr+1 = (L +r(TR 141 — Ti41))s-

Finally, when 7 g ;41 = 7s41, it must also be that 7wy ;41 = 7;41. In this case, Eq. (8) would
set g41 = ¢, (because B is empty); this is imposed directly into Eq. (12).

Notice that for larger values of «, agents respond more quickly to changes in realized profits.
The parameter « is the replicator dynamic analog to the ‘intensity of choice’ parameter 8 in the
ARED. However, in the RED, « directly controls the speed of adaption. This carries a subtly
different interpretation from the ‘intensity of choice’ in the ARED, which is inversely related to
the variance of the noise term in the random utility model. The two-equation system (9) and (12)
is the RED.

Note again that the timing of the model is crucial. In each time period ¢, the equilibrium price
is determined by expectations formed in time # — 1. Agents’ expectation formation is, essentially,
the choice of whether to pay the cost for rational expectations or use the naive predictor at
no cost. Once the new price is observed in time ¢, agents see realizations of profits and again
calculate their expectations of p;1. Thus, both predictor proportions and equilibrium price follow
a system of first order difference equations. We again stress that even though the perfect foresight
predictor does not satisfy the restriction placed on the set of forecasting models given in the
general model, the timing here and above is identical. See Brock and Hommes (1997) for further
details.

3.2.1. Persistence of rational agents

One of the primary results in Sethi and Franke (1995) is that a stochastic model may
lead agents to select rational expectations with positive probability even though in a non-
stochastic setting rational expectations are strictly dominated by naive expectations. This result
follows because the addition of (small) noise makes it possible (probabilistically speaking)

13" Also, the numerical results presented in Section 4 appear robust for at least some specifications of the rate function.
In particular, we obtained similar results for the rate function r(x) =e** — 1.
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that the system will be moved into a region where the benefits to rational expectations out-
weighs its costs. Sethi and Franke establish this important result by showing the existence of a
unique invariant measure whose support is a subset of the unit interval. The following propo-
sition demonstrates that an analogous result holds in the non-stochastic version of the Cobweb
model.

Proposition 4. Assume py # 0 and b/B> 1.

1. There exists " € (0,1) so that q;<q" implies there exists t>s with q;>q".
2. There exists g € (0, 1) so that q; > § implies there exists t>s with ¢; < §.

This proposition tells us that under RED, provided b/B > 1, coexistence of rational and naive
predictors obtains. Importantly, this result holds even though, unlike Sethi—Franke, there is no
noise in the model. Moreover, the model is such that in a steady-state, rational expectations are
strictly dominated and will vanish asymptotically.

Intuitively, it is precisely the instability of the fixed point under naive expectations that yields
the result. The persistent Cobweb oscillations generate orbits that have time varying predictor
proportions. The model moves away from the steady-state when there is a large proportion of
naive agents. Once the price trajectory is sufficiently far from the steady-state, rational expectations
will dominate naive expectations and the dynamics move back towards the steady-state. However,
like the 8 < +o00 case of Brock and Hommes (1997), the switch to rational expectations by agents
is not complete, so eventually the dynamics will again be repelled from a neighborhood of the
steady-state.

This proposition emphasizes the robustness of the Sethi—Franke result. Their model relied on
strategic complementarities and current expectations of future variables; we find similar results in
a model dependent on production lags and past expectations of current variables. Further, we find
that the introduction of exogenous noise is not necessary to guarantee that the rational predictor
will continue to be selected by some agents.

3.2.2. Local stability analysis
The main instability result of Brock and Hommes may be stated as follows:

Theorem 5 (Brock and Hommes, 1997). Assume that C; > Cy > --- > Cg. Moreover, assume
the steady-state p* = (p", ..., p") is unstable under homogeneous beliefs Hy. If the intensity of
choice B is sufficiently large then the steady-state p* (under the ARED) is locally unstable.

An analogous result holds for the replicator dynamic, though some care must be taken in its
derivation. We proceed with this exercise now.

Assume throughout this section that C > 0. Recall the dynamic system as given by Egs. (9) and
(12) with the profit terms given by Eq. (10). Since both B and b are assumed to be positive, the
only possible fixed point to Eq. (9) is p* =0. In this case, 7z = —C <7y =0, so that the evolution
of g; is governed by

qr = +r(R;: — T))qr-1, (13)

which, given the properties of the rate function, has a unique fixed point given by ¢ =0.
Let0=(p,q)’, and write the dynamics of 0 as 8; = F(0,_1). The previous paragraph demonstrates

that F has a unique fixed point at " = 0. Notice that because of the economics behind the derivation

of the dynamic system given by F, we think of F' as a map from R x [0, 1] to itself. Thought
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of this way, the fixed point is on the boundary of the relevant space, making stability analysis a
priori difficult. However, there is nothing in the mathematical definition of F that requires this
restriction. So now think of F as a map acting on the plane, and notice that R x [0, 1] is simply
an invariant space under F.

The profit functions are continuous at the origin, so there is an open set containing 6" so that
the dynamics implied by F are given by Eqgs. (9) and (13). This implies that F is differentiable at
6" and the usual stability analysis may be performed. The derivative of F evaluated at 8" is easily
computed to be

DF = . (14)
0 I+r (—C)

Noting that 1 +r € (0,1), it follows that the fixed point is stable if and only if /B < 1, which
yields the following proposition analogous to Brock and Hommes:

Proposition 6. Assume C>0, and that the fixed point p* = 0 is unstable under naive expectations.
Then the unique steady-state (p*,q*) =(0,0) (under RED) is unstable.

As is evident from Eq. (14), the ratio b/B acts as a bifurcation parameter. It is worth noting
that unlike Brock and Hommes (1997), o does not impact the local stability properties. It does,
however, determine how strongly the stable eigenvalue contracts. Thus, in the numerical section
below we investigate «’s impact on the system’s dynamics.

The differentiability of the dynamic system F implies the potential for bifurcation analysis. In
particular, as b/B increases past 1, the steady-state under RED is destabilized, and the relevant
eigenvalue of the derivative of F' (see Eq. (14)) crosses — 1, which indicates the possibility of a flip
bifurcation. This situation may be analyzed by performing the standard center manifold reduction
(see Kuznetsov, 1995) and analyzing the restricted dynamics. Proceeding with this computation,
we find the second and third order terms of the restricted system are zero, so that the usual results
characterizing the bifurcation fail to hold. Because of this, we turn to numerical analysis to provide
evidence of complicated dynamics.

4. Numerical analysis of global dynamics

In this section we turn to numerical analysis to characterize the non-linear dynamics of the
RED model. Our aim in this section is to demonstrate that the complicated dynamics found in
Brock and Hommes (1997) also occur in the RED. Using standard (though technical) methods
in the literature on non-linear dynamics, Brock and Hommes were able to show analytically the
presence of stable cycles of arbitrarily high order and demonstrate the existence of chaotic attrac-
tors. There are many texts available discussing these techniques: see for example, Guckenheimer
and Holmes (1983) and Palis and Takens (1993); also, Brock and Hommes (1997) includes
a review of the relevant results. As indicated in the previous section, the standard methods
of analysis fail for our model, so we use numerical techniques that demonstrate unequivo-
cally the presence of stable cycling behavior and further that strongly suggest the presence of
complex dynamics and chaotic attractors. The relevant numerical analysis is reviewed in Brock
and Hommes (1998), and it is to these methods that we appeal when making the arguments
below.
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We will provide two types of numerical results to demonstrate the existence of complex behav-
ior and to suggest the presence of chaos. First we compute bifurcation diagrams by varying the
parameter « and plotting the associated orbits of g. We show there are regions of the parameter
space for which stable cycles exist, and as the parameter « is increased, the order of these cycles
repeatedly increases. Second, we plot bifurcation diagrams by varying b/B for fixed o and plot-
ting the associated orbits of p. Notice that unlike Brock and Hommes (1997) we treat b/B as a
bifurcation parameter in addition to «. This is because b/B induces the primary bifurcation. Given
b/B> 1, a affects the dynamic behavior qualitatively by changing the magnitude of contractions
along the stable manifold. We will also see regions for which the associated orbit of g appears
to be a dense subset of a subinterval of [0,1], providing evidence for, though not proving, the
existence of aperiodic orbits.

We then analyze the orbits of the vector (p,q) in phase space. We find values of « for which
stable periodic orbits obtain. As « is increased the period doubling phenomenon appears, which
was already seen in the bifurcation diagram. As « is further increased in order to correspond
to observed dense orbits, the presence of what appear to be strange attractors is detected. We
conclude, from these numerical results, that our model exhibits complex behavior similar to that
exhibited by the model of Brock and Hommes.

4.1. Bifurcation diagrams

We begin with the consideration of the bifurcation plots. In their analysis, Brock and Hommes
obtained a primary bifurcation that was a flip or period doubling bifurcation. This indicates that
for values of the ‘intensity of choice’ parameter below a critical value, the steady-state is stable.
As the ‘intensity of choice’ crosses the critical value, the steady-state becomes unstable, and a
stable two-cycle emerges. This process repeats ad infinitum. Because the stability properties of the
steady-state do not depend on «, we do not see a primary period-doubling bifurcation as « varies.
Instead we pick a value of b/B for which the steady-state has already bifurcated (see below). As
is evident from the bifurcation diagrams, cycling and/or complex dynamics obtain for all values
of a considered: see Figs. 1 and 2.

Figs. 1 and 2 illustrate bifurcations of the predictor proportion ¢ as « is varied for slope values
b/B=1.1 and b/B =2. These parameter values both fall in the range of chaotic dynamics analyzed
in Brock and Hommes (1997). The bifurcation diagrams were created by running a simulation of
1000 periods (following a transient period of length 10,000) for various values of « in a 1000 point
grid of the interval (0,10). Throughout, initial conditions are drawn uniformly from the interval
[0,1] x [0,1]. Reading from left to right it is clear that the periodicity or aperiodicity of the orbits
depends critically on the parameter «.

We see from these figures that cycling phenomena arise for various values of «. In many regions
that correspond to cycling, as the parameter « is increased, the period length increases and results
in a cascade to cycles of high order.

For many regions of the parameter space, particularly those regions with high values of «, the
associated orbits of g appear to form dense subsets in their containing subintervals. Of course,
one can never guarantee numerically that the orbits are in fact dense, as they may correspond to
cycles of large length. However even if the orbits are not dense the associated dynamics of g are
quite complicated. This will be further demonstrated in the subsection below.

Fig. 3 demonstrates the primary bifurcation as the ratio b/B crosses one. The bifurcation
diagram plots values of p; against b/B, where « is set to be 1. The ratio b/B was not treated as
a bifurcation parameter in Brock and Hommes (1997) since the ‘intensity of choice’ parameter
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Fig. 1. Bifurcation diagram for ¢; when b/B=1.1.

o

Fig. 2. Bifurcation diagram for g, when b/B=2.
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Fig. 3. Bifurcation diagram for various values of b/B.

acted as the critical bifurcation parameter. In the RED « has no bearing on the instability of the
steady-state, so we require, as Fig. 3 demonstrates, that b/B first bifurcate the system.'*

Each bifurcation can be examined more closely in time-series plots. Figs. 4—7 show typical
trajectories when the relative slopes are b/B=2. Each figure corresponds to a different value of
o and each makes the normalization C = 1. Each plot shows various orbits from the bifurcation
diagram in Fig. 2. In Fig. 4 («=1.9), price follows a regular oscillatory path around the unstable
steady-state. Fig. 4 shows the arrival of a stable period 18 orbit. Figs. 57 illustrate the dynamic
effects of increasing the adaption parameter «. Fig. 5 illustrates that for a larger value of o (1.935)
a stable period 36 orbit arises. Eventually, as « increases further, the periodic behavior disappears
and the chaotic, aperiodic behavior seen in Figs. 6 («=2.3) and 7 («=9) prevail. These more
complicated dynamic paths correspond to the regions in the bifurcation diagram that suggest the
existence of dense orbits.

4.2. Attractors

In this subsection we take a closer look at the stability properties of the model. We show
evidence of attractors that are stable cycles. We then find that by altering the value of «, these
attracting cycles bifurcate into cycles of twice the order. This process continues, and eventually,
as « continues to increase, these attractors become increasingly complex and appear to evolve
into chaotic attractors.

Figs. 8-11 illustrate the bifurcations, periodic attractors, and evidence for the existence of
strange attractors. In each figure we set b/B=2, C=1, and ran simulations of 50,000 periods.

14 Note that as b/B crosses 1, while the steady-state becomes unstable and the system clearly bifurcates, the subsequent
behavior of p, and thus the nature of the bifurcation, is difficult to describe. This is consistent with our findings that the
primary bifurcation defied the standard center manifold reduction technique.
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Fig. 4. Trajectory for (p;,q;) when b/B=2 and o =1.9.

The figures contain plots in (p,q)-space of trajectories of length 40,000, after an initial 10,000
transient period. Fig. 8 corresponds to an « value of 1.9 and clearly shows the existence of a period
18 attractor. When « is increased slightly to o =1.935 (Fig. 9) a new attractor arises which has
double the period of @ =1.9. As « is increased further to, say, @ =1.94 (Fig. 10) the increasing
length of the cycles leads to an attractor that appears chaotic. It is this cascading of bifurcations

0 50 100 150
time
0.6
q 0.4

0.2

0 50 100 150
time

Fig. 5. Trajectory for (p;,q;) when b/B=2 and o =1.935.
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Fig. 6. Trajectory for (p;,q;) when b/B=2 and a =2.3.
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that suggests chaos. As « is further increased to o =2.3 the phase plot in Fig. 11 now suggests a

strange attractor.

That the steady-state acts as a repellor under naive expectations and an attractor under rational
expectations is the source for the complicated dynamics seen in Brock and Hommes’ ARED
and of the RED here. It has been emphasized by many in the chaotic dynamics literature (e.g.
Guckenheimer and Holmes) that stability properties that depend on the ‘regime’ are an important

0 50 100 150
time

0.8-
0.61
0.4

0.2

0 50 100 150
time

Fig. 7. Trajectory for (p;,q;) when b/B=2 and «=9.
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Fig. 9. Phase plot when b/B=2 and o =1.935.



+ Model

0.8

0.7

0.6

0.5

qt 04

0.3

0.2

0.1

0.9

0.8

0.7

0.6

qQy

0.5

04

0.3

0.2

0.1

W.A. Branch, B. McGough / J. of Economic Behavior & Org. xxx (2006) xxx—xxx

e ~

\’

Fig. 10. Phase plot when b/B=2 and o =1.94.

Fig. 11. Phase plot when b/B=2 and o =2.30.
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source of chaotic behavior in multidimensional non-linear systems. This point has been made
clearly in the applications of the ARED in other settings by Brock and Hommes (1998), Brock
et al. (2005) and Droste et al. (2002), and we see its importance here in the case of a replicator
dynamic. !

5. Conclusion

This paper introduces the replicator dynamic into a Cobweb model with rationally heteroge-
neous expectations. We define the coupled non-linear system, which consists of the equilibrium
law of motion for price and the replicator dynamic that governs predictor proportions, as the
replicator equilibrium dynamics (RED). The replicator dynamic used here is inspired by Sethi
and Franke; however, we generalize their replicator to govern a vector of predictor proportions of
arbitrary finite length. We compare the resulting dynamics with the ARED of Brock and Hommes
and the model of strategic complementarity of Sethi and Franke.

We find support for both the main results of Brock and Hommes (1997) and Sethi and Franke
(1995). Our analytic results show that it is possible to generalize the Sethi—Franke replicator
dynamic to a model with an arbitrarily large finite number of predictors. We show that under the
replicator dynamic, unlike in Brock and Hommes (1997), strictly dominated predictors vanish
asymptotically. However, the instability result of Brock and Hommes obtains in case of naive
versus rational predictors: the steady-state of a Cobweb model under RED is unstable if it is
unstable when all agents use the naive predictor. Further, this instability result follows from
a surprising deterministic analog to the main result of Sethi and Franke: costly, sophisticated
predictors do not necessarily vanish asymptotically.

This latter result is interesting and surprising. In Sethi and Franke’s model, agents’ decisions
strategically complement each other. Thus, the stochastic nature of their model implies that with
positive probability some agents will be rational. This in turn implies that other agents will also
want to be rational since agents’ actions are complementary. In the RED, there is a negative
feedback from expectations, and agents have an incentive to deviate from consensus actions.!©
We find that the instability of the steady-state under naive expectations and the oscillatory nature
of the dynamics of the model add the necessary volatility for a positive proportion of agents to
select rational expectations. We are also able to demonstrate numerically that the complicated
dynamics of Brock and Hommes (1997) arise in the RED. This too is interesting as it indicates
that chaos is not a feature particular to the set up of Brock and Hommes, but may in fact be generic
behavior.

The results of this paper suggest that complicated dynamics in models with dynamic predictor
selection such as Brock and Hommes are an important source of volatility. We show that these
endogenous dynamics may generate the necessary volatility exogenously imposed by Sethi and
Franke (1995) to insure the survival of rational agents. The results also imply that the exact
evolutionary nature of the dynamics is not important for generating complex dynamics. It is
the dual repellor/attractor property of expectations around a steady-state that yield the complex
dynamics.

15 The CeNDEF has many researchers devoted to studying non-linear systems with dynamic predictor selection. Many
of the most promising applications are in asset pricing models.

16 This point is made in Branch and Evans (2006) who construct a stochastic version of the cobweb model where agents
may choose between underparameterized models.
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