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Abstract

This paper introduces dynamic predictor selection into a New Keynesian
model with heterogeneous expectations and examines its implications for mon-
etary policy. We extend Branch and McGough (2009) by incorporating endoge-
nous time-varying predictor proportions along the lines of Brock and Hommes
(1997). We find that periodic orbits and complex dynamics may arise even if
the model under rational expectations has a unique stationary solution. The
qualitative nature of the non-linear dynamics turns on the interaction between
hawkishness of the government’s policy and the extrapolative behavior of non-
rational agents.

JEL Classifications: E52; E32; D83; D84
Key Words: Heterogeneous expectations, complex dynamics, determinacy,

monetary policy.

1 Introduction

Among the standard assumptions of the New Keynesian model is the macroeconomic
benchmark of (homogeneous) rational expectations (RE). Recent empirical analysis,
however, casts some doubt on this assumption’s validity. Using survey data, Branch
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(2004, 2007), Carroll (2003), and Mankiw, Reis, and Wolfers (2003) provide evidence
that economic forecasters (both consumers and professional economists) have het-
erogeneous expectations; and, importantly, the distribution of heterogeneity evolves
over time in response to economic volatility. Branch (2004), in particular, provides
evidence that survey respondents in the Michigan survey of consumers are distributed
across rational and adaptive expectations and these proportions evolve over time as a
reaction to past mean square forecast errors: for instance, in periods of high economic
volatility such as the 1970’s a higher proportion of agents used rational expectations
than during periods of relatively low volatility.

In light of the empirical evidence, Branch and McGough (2009), relaxing the
assumption of rational expectations, incorporate heterogeneous boundedly rational
agents into the micro-foundations of a New Keynesian model. The primary con-
tribution of Branch and McGough (2009) is an aggregation result based on linear
approximations to agents’ optimal decision rules which, themselves, depend on het-
erogeneous expectations operators. Specifically, under fairly general assumptions on
how agents form expectations, it was shown that aggregate outcomes satisfy IS and
AS equations which have the same functional form as those in the standard model
except that the homogeneous expectations operator is replaced with a convex com-
bination of heterogeneous expectations operators. This extension of the basic model
has important implications for the dynamics of the economy. As a concrete example,
Branch and McGough (2009) assume agents are (exogenously) split between rational
and adaptive expectations and monetary policy follows a Taylor-type rule. In this
special case, the dynamic properties of the heterogeneous expectations model depend
crucially on the distribution of agents across forecasting models and, in particular,
its dynamic properties differ from those implied by the standard RE model.

In Branch and McGough (2009), we took the distribution of heterogeneous expec-
tations as fixed and exogenous. The empirical evidence cited above and the results
from our previous paper, suggest that this assumption is overly restrictive. In this
paper, we follow Brock and Hommes (1997) and assume that the degree of hetero-
geneity is allowed to vary over time in response to past forecast errors (net of a fixed
cost) thereby coupling predictor choice with the dynamics of inflation and output.
As in Brock and Hommes (1997), our predictor choice stems from a discrete choice
framework that has a venerable history in economics, e.g. Manski and McFadden
(1981).

The primary interest of this paper is to study the dynamics of a monetary economy
with heterogeneous expectations and dynamic predictor selection. We assume agents
choose between using a rational predictor (for a cost) and using an adaptive fore-
casting model. We find that for sufficiently low costs to using the rational predictor,
the model’s steady state is stable. For higher costs, however, the steady state may
destabilize and the dynamic system may bifurcate. Whether this bifurcation leads to
bounded complex dynamics depends on the coefficients in the monetary policy rule
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and the degree to which the adaptive agents extrapolate from past data. We find
two different cases under which bounded complex dynamics may obtain, depending
on the stance of monetary policy: first, if policy is passive, in the sense of adjusting
nominal interest rates less than one for one with inflation, or, second, if monetary
policy is active and the adaptive agents extrapolate from past data.

The intuition behind the onset of complicated dynamics in the heterogeneous New
Keynesian model may be obtained as follows. Suppose that agents have a choice of
using a rational predictor or an adaptive predictor, and that they seek to minimize
their mean square forecast error net of a cost, C, to using the rational predictor. Sup-
pose also that monetary policy follows a Taylor-type rule that adheres to the ‘Taylor
principle’ by adjusting nominal interest rates more than one for one when inflation
deviates from a target. This is the standard advice for setting monetary policy in
New Keynesian models. As will be evident below, the heterogeneous expectations
model with dynamic predictor selection can be represented as a dynamical system of
the form

xt = M(nt−1)xt−1,

where x is a vector consisting of aggregate output and inflation, and n is the fraction
of rational agents. For n appropriately large, but less than one, the eigenvalues of
M lie inside the unit circle. Now consider what happens to an economy that begins
with a fraction of rational agents close to one. Since the eigenvalues of M will have
modulus less than one, the economy will contract toward the steady state and the
relative advantage of rational over adaptive expectations will diminish. As a result,
a growing proportion of agents will not want to pay the fixed cost to being rational.
The proportion of rational agents n will decrease until an eigenvalue of M again has
modulus greater than one, causing the economy to repel from the steady state. This
attracting/repelling feature of dynamic predictor selection is what makes bounded
complex dynamics exist even in the case that monetary policy adheres to the Taylor
principle.1

The potential for complex dynamics have important implications for monetary
policy. A wide and established literature appears to agree on one essential ingredient
of sound monetary policy: policy should be set to act aggressively against inflation
(e.g. Taylor (1999), Clarida, Gali and Gertler (2000), Bernanke and Woodford (1997),
Svensson and Woodford (2003), and Woodford (2003)). A basis for this finding is that
adherence to an active monetary policy rule (a variant on the ‘Taylor principle’) re-
sults in a determinate model and thus a unique rational expectations equilibrium.2

However, in case of heterogeneous expectations, we find that even an active rule may

1This intuition for switching between stable and unstable dynamics was first discovered in a
cobweb model by Brock and Hommes (1997).

2A determinate model is sometimes called “stable” because, due to its unique equilibrium, the
economy is not subject to excessive volatility that can arise when agents’ beliefs are driven by
self-fulfilling prophecies (e.g. sunspots).
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result in complex behavior and thus possibly excess volatility. In fact, not only does
the interaction between monetary policy and expectations formation in part dictate
the ensuing dynamic behavior, we even find that these complicated dynamics may
arise when monetary policy is set to guarantee determinacy under rational expecta-
tions. To most convincingly illustrate this point, we specify a policy rule that yields
determinacy under RE, and we assume that there is a fixed cost to deviating from
rational expectations – precisely the setting assumed for, and implied by, standard
monetary policy advice: even in this case the economy may exhibit bounded com-
plex dynamics. Our results suggest that, in the presence of heterogeneous agents,
determinacy under RE may not be a robust criterion for policy advice. The complex
dynamics produced by our model are not outcomes limited to unusual calibrations or
a priori poor policy choices: complex behavior appears to be an almost ubiquitous
feature of a time-varying heterogeneous expectations New Keynesian model.

That determinacy of a steady state may not be sufficient to guard against in-
stability has been demonstrated elsewhere. Benhabib, Schmitt-Grohe, and Uribe
(2001) show that a determinate steady state may be surrounded by bounded complex
dynamics when nominal interest rates have a zero lower bound, even under the as-
sumption of rationality. Benhabib and Eusepi (2004) conclude that a New Keynesian
model extended to include capital may possess chaotic dynamics. Bullard and Mitra
(2002) show that determinacy is neither necessary or sufficient for a rational expecta-
tions equilibrium to be stable under adaptive learning. Gali, Lopez-Salido, and Valles
(2004) derive a model with a proportion of rule of thumb consumers and demonstrate
that the determinacy properties of the model are sensitive to the presence of these
agents. Levin and Williams (2003) stress the importance of policy being robust across
potential model specifications. DeGrauwe (2008) studies how heterogeneity and mon-
etary policy can interact to lead to endogenous dynamics. Finally, Anufriev, et al.
(2009) demonstrate that in a stylized macro model with heterogeneous expectations
multiple steady states may arise even when the Taylor principle holds.

This paper is organized as follows. Section 2 presents an overview of the New
Keynesian model with heterogeneous expectations and introduces dynamic predictor
selection into the model. Section 3 presents the analysis and results while Section 4
concludes.

2 A New Keynesian Model with Heterogeneous

Expectations

In Branch and McGough (2009), we derive a New Keynesian model with heteroge-
neous expectations where aggregate output and inflation are governed by the following
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equations

yt = Êtyt+1 − σ−1(it − Êtπt+1) (1)

πt = βÊtπt+1 + λyt. (2)

Here yt is aggregate output gap, πt is the inflation rate, and Êt is a heterogeneous
expectations operator defined as a convex combination of boundedly rational (and
possibly rational) forecasting models. Below we make explicit assumptions on Ê.
Note that under rational expectations, i.e. Ê = E, the unique steady state for the
economy is y = π = 0.

The form of (1)-(2) is a New Keynesian model in which conditional expectations
have been replaced by a heterogeneous expectations operator Êt. Branch and Mc-
Gough (2009) derive these reduced-form equations from linear approximations to the
optimal decision rules in a Yeoman-farmer economy extended to include two types
of agents, differing in their forecasting mechanism. The first equation (1) represents
the demand side of the economy. Under homogeneous expectations, it is derived as
a log-linear approximation to the representative agent’s Euler equation. With het-
erogeneous agents, the IS equation (1) is found by aggregating the Euler equations
across heterogeneous agents. The parameter σ−1 is the usual real interest elasticity
of output.

The second equation (2) is the aggregate supply relation. Similar to the repre-
sentative agent model, it is found by averaging the pricing decisions of firms in the
economy. In this formulation, λ is the usual measure of output elasticity of inflation.
The functional forms of these IS-AS relations are the same as those in the standard
New Keynesian model. The key distinction is that because of the heterogeneity in
beliefs, the equilibrium processes for aggregate output and inflation depend on the
distribution of agents’ expectations. In Branch and McGough (2009), we provide the
axiomatic foundations that facilitate aggregating heterogeneous expectations into the
tractable reduced form (1)-(2). This paper takes as given that these are the equa-
tions governing the economy and studies the dynamic implications of heterogeneous
expectations. We remark, however, that the form of heterogeneity assumed in this
paper is consistent with the theoretical foundations in Branch and McGough (2009).

We assume that monetary policy is specified by the following instrument rule:

it = αyÊtyt+1 + απÊtπt+1. (3)

The form of (3) is what Evans and Honkapohja (2005), Evans and McGough (2005a,b),
and Preston (2005b) call an ‘expectations-based’ rule. It is a simple implementable
rule that takes advantage of a policymakers’ observations of private sector expecta-
tions, and follows Bernanke (2004) in advocating for a policy that reacts aggressively
to private-sector expectations. Implementation of such a rule is straightforward, even
in an economy with heterogeneous agents, so long as the average forecast is observed
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by policymakers. In practice, this is a reasonable assumption as there are many mar-
ket and survey based measures of the average, or consensus, inflation and output
forecasts. None of the qualitative results in this paper, however, are sensitive to the
form of the nominal interest rate targeting rule. To verify robustness we also consid-
ered a policy rule in which the government sets the instrument against the optimal
forecasts of inflation and output, rather than the average of the agents’ forecasts.3

All qualitative results are robust to the alternate form of the instrument rule.

Policy rules with forms similar to (3) are often described as Taylor-type instrument
rules. These rules are said to satisfy the Taylor principle if the response of nominal
interest rates to the inflation metric is greater than one, i.e. απ > 1. This ensures that
when the central bank adjusts the nominal interest rate it is also adjusting the real
interest rate in the same direction. Below we will find that the qualitative features of
the model’s dynamics hinge on whether the policy rule satisfies the Taylor principle.

2.1 Expectations and predictor dynamics

To close the model we must specify the operator Êt. For simplicity, we assume there
are precisely two types of predictors available to agents: the type 1 predictor, which
is called “rational,” and the type 2 predictor, which is called “adaptive.” Agents
using type 1 predictors are assumed to be very good forecasters, which we capture by
providing them perfect foresight when forming one-step-ahead forecasts (and this is
why we call them “rational”): if x = y or π then E1

t xt+1 = xt+1.
4 Agents using type

2 predictors are accessing a less sophisticated technology, and are assumed to look
backwards when forming forecasts (which is why we call them adaptive): if x = y or
π then E2

t xt+1 = θ2xxt−1; this formulation is derived from a linear forecast rule of the
form xt = θxxt−1. Finally, we may set

Êtxt+1 = nxtxt+1 + (1− nxt)θ
2
xxt−1, (4)

where nxt is the fraction of agents using rational predictors at time t. More details
about the construction of the expectations operator Êt may be found in Branch and
McGough (2009).

The form of heterogeneous expectations in (4) imposes that agents are heteroge-
neous in their forecasting of a particular aggregate outcome, rather than heteroge-
neous in their forecasts related to consumption (i.e. the IS equation) versus pricing

3Here, by “optimal forecasts,” we mean forecasts that minimize mean square error. Because
we are in a non-stochastic environment (and we are not considering the possibility of associated
stochastic sunspot equilibria) optimal forecasts in our model correspond to agents having one-step
ahead perfect foresight. These issues are more carefully addressed in Section 2.1 below.

4This is the version of rationality studied by Brock and Hommes (1997); we employ it here to
approximate the notion that rational agents will minimize mean square forecast errors.
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behavior (i.e. the AS equation). This assumption is consistent with the learning liter-
ature which models boundedly rational agents as econometric forecasters attempting
to forecast aggregate output and inflation. That agents might want a different fore-
casting model for inflation and output is in line with the findings of Branch and
Evans (2006a) who compute simple recursive forecasting models that are consistent
with survey data on inflation and output expectations. However, the assumption
is still somewhat ad hoc and we checked that our qualitative results were robust to
imposing the heterogeneity in forecasting methods across IS-AS relations.

We call agents using type 1 predictors rational because they minimize their mean
square forecast error. On the other hand, our agents make time t decisions based only
on forecasts of time t+1 aggregate data, and in particular are not ex-ante concerned
with meeting transversality conditions. In the sequel, we focus on equilibrium dynam-
ics that remain uniformly bounded to remain consistent with agents’ transversality
conditions ex-post.5 In this way we are modeling our type 1 agents in a manner similar
to Euler equation learning – a common approach in the learning literature, partic-
ularly in the context of New Keynesian monetary models: See Honkapohja, Mitra,
and Evans (2003) for further discussion. The Euler equation approach dictates that
households’ decisions satisfy their ex ante first-order optimality conditions and only
satisfy the transversality conditions ex post. In a sense, then, our perfect foresight
agents are really good myopic forecasters. An interesting alternative that explicitly
accounts for infinite horizon planning is developed by Preston (2005a), and it would
be quite natural to reconsider the questions addressed here using a model consistent
with his method.

Agents with type 2 predictors use a fairly standard form of adaptive expectations.
Such expectations can be thought of as arising from a simple linear perceived law of
motion of the form xt = θxxt−1. In many models, real-time estimates of θx converge
to their REE minimal state variable (MSV) values. Here we take θ as fixed, though
an extension with real-time learning and dynamic predictor selection is a topic of
current research.6

When θ < 1 adaptive agents dampen past data in forming expectations; when
θ > 1 agents have extrapolative expectations. Adaptive expectations of this form
were assumed in Branch and McGough (2009) as well as in Brock and Hommes (1997,
1998), Branch (2002), Branch and McGough (2005), and Pesaran (1987). When
θ = 1 the adaptive predictor is usually called ‘naive’ expectations, and was the case
emphasized by Brock and Hommes (1997). The θ > 1 case was given particular
emphasis by Brock and Hommes (1998). It is straightforward to extend the adaptive
predictor to incorporate more lags. We anticipate that such an extension would
not alter the qualitative results of this paper but would alter the quantitative details.

5As we remark below, for some parametric specifications, the equilibrium dynamics do not remain
uniformly bounded.

6Branch and Evans (2006a) and Guse (2008) have made some progress on this issue.
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Despite this simple form of adaptive expectations there is evidence in survey data that
agents are distributed across rational expectations and a simple univariate forecasting
model (see Branch (2004)). The contribution of this paper is to demonstrate in a
simple monetary model that time-varying, endogenously determined distributions of
heterogeneous expectations may significantly alter the equilibrium implications for a
given monetary policy.

Having specified the predictors available to agents, it remains to determine the
proportion of agents using a particular predictor. There is growing empirical evidence
that the distribution of agents’ heterogeneity is time-varying. For example, Mankiw,
Reis, and Wolfers (2003) study various surveys of inflation expectations and show
a wide, time-varying dispersion in beliefs. Branch (2004, 2007) documents time-
varying distributions of agents across discrete predictors. In each case, the nature of
the variation in the distributions appears structural: in Branch (2004, 2007) volatility
causes more agents to adopt rational expectations, and in Mankiw, Reis, and Wolfers
(2003) volatility causes dispersion to shrink. Given that the results from Branch
and McGough (2009) suggest that the dynamic properties of the economy are highly
sensitive to the fraction of rational agents, and given that there is empirical evidence of
time-varying fractions, we turn to an endogenous dynamic predictor selection version
of the heterogeneous expectations model.7

With dynamic predictor selection nxt, x = y, π are assumed to follow

nxt =
exp

[

ωUx
jt

]

exp
[

ωUx
jt

]

+ exp
[

ωUx
j′t

] j′ 6= j. (5)

Here Ux
jt is a predictor fitness measure to be specified below. This is a multinomial

logit law of motion and was employed by Brock and Hommes (1997), and then ex-
tended to a stochastic setting by Branch and Evans (2006a). The parameter ω is
called the ‘intensity of choice’; it governs how strongly agents react to past forecast
errors. Brock and de Fountnouvelle (2000) and Brazier, Harrison, King, and Yates
(2008) adopt a discrete choice setting in monetary models. Brazier, et al., assume
that ω < ∞ proxies for measurement error in calculating forecast errors. In this
setting, ω is inversely related to the variance of those errors.8

Brock and Hommes (1997), who develop their notion of predictor selection in the
context of a univariate linear cobweb model, show that for large, but finite, values

7The importance of endogenous predictor selection and macroeconomic dynamics were also shown
by Marcet and Nicolini (2003), Tuinstra and Wagener (2007).

8In our simulations below, we initialize the model in an REE. In the ‘neoclassical’ limit, i.e.
ω → ∞, the model will remain in an REE. Thus, this approach yields heterogeneity for ω < ∞, so
the existence of adaptive agents is a natural consequence of these measurement errors or random
utility terms. In a sense, heterogeneity arises because of some uncertainty about the best forecasting
model. In Branch and Evans (2006a), heterogeneity arises, in a stochastic univariate model, even
as ω → ∞, and we would expect similar results if we extended that framework to a New Keynesian
model.
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of ω there may exist complex dynamics. The intuition for their finding is that the
dynamic predictor selection coupled with the equilibrium price dynamics creates a
tension between repelling and attracting dynamics. As we will explore in detail
below, our analysis of the heterogeneous New Keynesian model with fixed predictor
proportions indicates that the steady state may be dynamically unstable for low values
of n and dynamically stable for large values of n; this creates precisely the sort of
repelling/attracting forces that makes bounded, complex dynamics possible.

Since we are modeling the predictor selection as independent of the optimization
problem, we assume that predictor success is measured in terms of mean-square error:

MSEx
jt = MSEx

jt−1 + µ
(

(xt − Êj
t−1xt)

2 −MSEx
jt−1

)

.

The predictor fitness metric is assumed to be

Ux
jt = −MSEx

jt − Cj. (6)

Below, in our numerical simulations we will assume that µ = 1, so that agents react to
last period’s squared error only.9 We make this assumption to minimize the number
of bifurcation parameters.10 Notice that we also assume a constant in the statistical
metric function Ujt. This constant can be interpreted as the cost of using a particular
predictor, or as Branch (2004) emphasizes, as a predisposition effect. Regardless of
the interpretation we are not going to a priori impose a hierarchy on the Cj, and
instead will treat them as bifurcation parameters. For simplicity, we set the cost of
adaptive expectations equal to zero, so that C will always represent the relative cost
of rationality. Because both adaptive and perfect foresight return the same forecast
in a steady state, the value of ωC pins down the steady-state value of n, and thereby
determines the local stability properties of the model.

We also assume C, ω are identical across forecasting variable. This may seem
inconsistent with the assumption that θy, θπ may differ. The approach here is flexible
enough that we could expand the parameter space and consider the effects of altering
the variable-specific C, ω as bifurcation parameters. We leave such an examination to
future research. We do not impose that predictor proportions are identical, and the
dynamics of predictor selection will be different for each nx along a real-time path.

The predictor fitness metric may seem somewhat ad-hoc given the micro founda-
tions of the model. We justify the form of (6) by appealing to the learning literature
which models expectation formation as a distinct statistical problem. Thus, agents
choose a forecasting model based on past success and then use that model to solve for

9The weight µ could be treated as a bifurcation parameter: see, for example, Brock, Dindo, and
Hommes (2006).

10Branch and Evans (2006a) show that, in a cobweb model, similar results obtain provided µ is
somewhat close to one. A larger value of µ can be justified if agents are concerned about structural
change or uncertain about the right predictor to adopt.
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their optimal plan in the anticipated utility sense. This is not difficult to justify since
we constructed the agents’ problem so that they are forecasting aggregate variables
over which they exert no control.

2.2 The dynamic system

With dynamic predictor selection, the economy’s law of motion becomes,

yt = nyt−1yt+1 + (1− nyt−1)θ
2
yyt−1 − σ−1

(

it −
(

nπt−1πt+1 + (1− nπt−1)θ
2
ππt−1

))

πt = λyt + β
(

nπt−1πt+1 + (1− nπt−1)θ
2
ππt−1

)

(7)

it = αy

(

nyt−1yt+1 + (1− nyt−1)θ
2
yyt−1

)

+ απ

(

nπt−1πt+1 + (1− nπt−1)θ
2
ππt−1

)

.

The laws of motion for nyt, nπt are specified below.

The timing assumptions require special discussion. We follow the adaptive learn-
ing literature in assuming that current values of the endogenous state variables are not
directly observable. This is usually assumed to avoid a simultaneity in least-squares
parameter estimates and the endogenous variables. In this setting, the assumption
preserves logical consistency for adaptive agents. Rational agents (who have one-step-
ahead perfect foresight) know current values of all variables, but the adaptive agents
do not. Under this natural assumption, predictor selection takes place at time t− 1.
The approach taken here assumes that agents have a menu of predictor choices, they
look at their most recent past forecasting performance as of the end of the period
t− 1, and choose the predictor with which they forecast one-step-ahead xt, πt. These
choices then aggregate into nt−1 upon which the current state variables depend.

As noted in the previous section, fully rational agents would be aware of the future
evolution of predictor proportions. Obtaining this information and incorporating it
into decision-making is a complicated problem and motivates the literature’s assump-
tion that agents treat the forecasting, or predictor selection, issue as a statistical
problem distinct from their optimization. In the current setting, given nt−1, agents
behave to satisfy their current Euler equation and current optimal pricing equation,
and ignore the time-varying nature of the predictor proportions11. A similar assump-
tion motivates the Euler-equation approach of Evans, Honkapohja and Mitra (2003),
Bullard and Mitra (2002), and to which Preston (2005a) is an alternative. We stay
consistent with the Euler-equation approach with the difference here being that the
time evolution of beliefs is via a pair of fixed predictors while in the adaptive learn-

11Importantly, by behaving in a manner that satisfies the Euler equation, but not the ex ante

transversality condition, the perfect foresight agents’ beliefs do not make choices so that the economy
is necessarily on the stable saddle path associated to the model with fixed predictor proportions.
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ing models the expectation operators are time varying. These assumptions justify
working with the conditionally linear IS and AS equations (1)-(2).

To study the model’s dynamics, impose the policy rule into the IS relation in (7)
and simplify to get

Hxt = F (nt−1)xt+1 +G(nt−1)xt−1, (8)

where x = (y, π)′, n = (ny, nπ)
′, and

F (nt) =

(

nyt(1− σ−1αy) σ−1(1− απ)nπt

0 βnπt

)

G(nt) =

(

(1− nyt)(1− σ−1αy)θ
2
y σ−1(nπt − 1)(απ − 1)θ2π

0 β(1− nπt)θ
2
π

)

(9)

H =

(

1 0
−λ 1

)

.

Now let z = (x′, x′

−1)
′. Since F is generically invertible, we may write

M(nt, ξ) =

(

F (nt)
−1H −F (nt)

−1G(nt)
I2 02

)

,

where ξ is the vector of model parameters. Finally, set

f(zt, nt, ξ) =





exp(−ωC)
{

exp(−ωC) + exp
[

−ω
((

e′1M(nt, ξ)− θ2ye
′

3

)

zt
)2
]}

−1

exp(−ωC)
{

exp(−ωC) + exp
[

−ω ((e′2M(nt, ξ)− θ2πe
′

4) zt)
2
]}

−1





where ei is the ith coordinate vector. Then the full dynamic system is

zt = M(nt−1, ξ)zt−1 (10)

nt = f(zt−1, nt−1, ξ). (11)

Given initial conditions z−1 and n−1, the system (10), (11) determines the evolution
of our economy.

3 Results

We now present results for the dynamical system (10)-(11). Because the state vector
has six dimensions, analytic results are largely intractable.12 In what follows, we
provide a thorough numerical analysis.

12The state vector consists of the (4× 1) vector z and the (2× 1) vector n.
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3.1 Local stability analysis

The system (10), (11) always has a steady state given by

z = 0 and n̄y = n̄π =
exp(−ωC)

exp(−ωC) + 1
. (12)

We call this the “zero steady state,” and note that the values of inflation and output
correspond to the unique rational expectations equilibrium in case all agents are
rational and the associated RE-model is determinate.

There also may exist steady states in which inflation and output are non-zero.
When there exists a non-zero steady state, ȳ, π̄, then the steady-state values for
ny, nπ are

ny =
exp(−ωC)

exp(−ωC) + exp(−ω(1 + θy)2ȳ2)

nπ =
exp(−ωC)

exp(−ωC) + exp(−ω(1 + θπ)2π̄2)
.

Notice that in a non-zero steady state, adaptive agents make persistent forecasting
errors, but because of the cost C to perfect foresight, they may still prefer the adaptive
predictor.

The Jacobian of the dynamic system evaluated at the zero steady state is given
by

J =

(

M(n̄, ξ) 0
fz(0, n̄, ξ) 0

)

,

where n̄ is given by (12). Thus the zero steady state’s stability properties are de-
termined by the properties of M(n̄, ξ). Furthermore, the time t dynamics of zt are
governed by the eigenvalues of M(nt−1, ξ); so to gain intuition about both local sta-
bility and other dynamic properties of the model, we turn to the numerical analysis
of the matrix M(n).

The properties of M(n̄), and hence the stability of the dynamical system, depend
in a critical way on the steady-state fraction of perfect foresight agents. The tension
between the forward-looking expectations of rational agents and the backward-looking
adaptive agents is at the crux of the results to be presented below, and M(n̄) captures
the mix of this tension. We can anticipate the results below by first assuming θy =
θπ = 1 and restricting attention to the two boundary cases:

1. The purely rational steady state, corresponding to C → −∞ and n̄ = 1, with
equilibrium dynamics given by xt = F (1)−1Hxt−1;
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2. The purely adaptive steady state,13 corresponding to C → ∞ and n̄ = 0, with
equilibrium dynamics given by xt = H−1G(0)xt−1.

Noting that G(0) = F (1), we have the following result:

Proposition 1 Assume θy = θπ = 1. If the purely adaptive steady state is locally
stable then the purely rational steady state is unstable. Conversely, if the purely
rational steady state is stable, then the purely adaptive steady state is unstable.

The key insight provided by this result is the evidenced tension between the for-
ward and backward looking dynamics inherent to the heterogeneous expectations
model: in the special case of naive expectations, i.e. θ = 1, if the rational dynamics
are attracting then the adaptive dynamics are repelling, and vice-versa. To gain fur-
ther intuition about both local stability and other dynamic properties of the model,
we turn to the numerical analysis of the matrix M(n).

To conduct our numerical analysis, the model must be calibrated. Table 1 de-
tails the parameter constellations for the IS and AS relations: see Woodford (1999),
Clarida, Gali and Gertler (2000), Evans and McGough (2005a) and McCallum and
Nelson (1999). As in Branch and McGough (2009), all broad qualitative results are
robust to the calibration employed.

Table 1: Calibrations

Author(s) σ−1 λ
W 1/.157 .024

CGG 4 .075
MN .164 .3
EM 1/.157 .3

Completing our numerical specification requires choosing values for θy and θπ
and our work in Branch and McGough (2009) indicates that the size of these values
relative to one impacts the dependence of the model’s dynamic properties on predictor
proportions. To account for the possible impact the magnitude of θx might have on
the dynamics of our model, we consider both θx > 1 and θx < 1. For simplicity, we
assume θπ = θy.

To understand the local stability properties of the model, we first turn to an ex-
amination of the stable manifold, for given steady-state values of n̄.14 Denote by

13As noted above, F (n) is invertible for n ∈ (0, 1]. As n → 0, det(F ) → 0 so that M becomes
undefined. The equilibrium dynamics, in this case, are obtained via (8).

14Recall that at the zero steady state, n̄ is determined by the parameters ω and C.
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Ws(n) the stable manifold of M(n), for predictor proportions given by n; thus, Ws(n)
is the direct sum of the eigenspaces of the linear operator M(n) whose corresponding
eigenvalues have modulus less than one. Figure 1 plots the dimension of the stable
manifold for various values of the policy parameters αy, απ and the predictor pro-
portion n. Figure 1 sets θ = 1.1 and adopts the Woodford calibration. Each panel
provides the dimension of Ws(n), for given n, across a subset of the policy space
(απ, αy). Because the dimension of Ws(n) gives the number of eigenvalues of M(n)
with modulus less than one, the zero steady state is stable if and only dimWs(n) = 4.
The NW panel sets n = 1, and therefore corresponds to the model under rational
expectations – this provides an interesting connection between the rational model’s
determinacy properties and the heterogeneous model’s stability properties, and we
will explore this connection in Subsection 3.3 below. Notice also that for n = 1, pol-
icy rules satisfying the Taylor principle generate instability.15 Now consider the effect
on the dimension of Ws(n) as n decreases from unity: the sloped line anchored at
the point (απ, αy) = (1, 0) rotates clockwise thereby increasing the region of stability;
however, as n gets increasingly small, the region of stability entirely disappears.

FIGURE 1 HERE

The rotation behavior evident in Figure 1 suggests that the cost parameter C is
a natural bifurcation parameter. From (12), we see that ∂n̄/∂C < 0 and as C varies
between −∞ and ∞, n̄ varies between one and zero: in a steady state, rational and
adaptive predictors return the same forecast; thus we would expect the steady-state
fraction of rational to decrease in C. Given a policy rule that satisfies the Taylor
principle, provided there is enough weight in policy rule on the output gap, we can
choose C so that the zero steady state is stable. For example, in the NE panel, there
is a wedge of the upper left quadrant with απ > 1 and dimWs(n) = 4. By further
increasing C, we lower the zero steady-state value n̄, causing the anchored line to
rotate clockwise so that the zero steady state destabilizes. When this happens a
bifurcation occurs.

The bottom two panels of Figure 1 indicate a change in the eigenvalue structure
of M that is not captured by the rotational behavior of the sloped line anchored
at the point (απ, αy) = (1, 0). Consider the policy rule determined by απ = 1.1,
αy = .35, as indicated by the circles in the bottom two panels. As n decreases, the
dimension of the stable manifold changes from four to zero so that the associated
steady state destabilizes. Close examination reveals that the bifurcation marking the
destabilization of the steady state is characterized by the simultaneous passage of all
four (complex) eigenvalues of M across the unit circle. The nature of this bifurcation
can also be seen from Figure 4, which is drawn using the policy rule απ = 1.1,
αy = .35. As noted above, increasing C corresponds to decreasing n. Now follow

15This instability under rationality is expected: see Subsection 3.3.
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a horizontal line anchored at θ = 1.1: as C increases past ≈ −.19, the eigenvalues
simultaneously cross the unit circle (see also footnote 17).

FIGURE 2 HERE

Figure 2 plots the dimWs(n) under the same conditions except that θ = .9. Here
we find that the sloped line anchored at (απ, αy) = (1, 0) rotates counterclockwise
thereby decreasing the stability region. In this case, rules satisfying the Taylor prin-
ciple will not yield stability, as there is not a part of the policy space where απ > 1
and dimWs(n) = 4. However, certain passive rules, i.e. απ < 1, lead to local sta-
bility of the zero steady state for large n, as is evident in the top two panels. As
C increases and n̄ falls, the region of stability will disappear, so that, again, C is a
natural bifurcation parameter.

Figures 1 and 2 suggest that heterogeneity can increase the region of the parameter
space that is stable when θ > 1 or decrease the region for θ < 1. That θ > 1 can
be stabilizing is intuitive. For moderately-sized values of n̄, θ > 1 works to offset
the unstable forward dynamics from the rational agents. However, for n̄ sufficiently
small, e.g. n = 0.5, the extrapolative behavior of agents is explosive.

3.2 Simulations and bifurcations

The panels in Figures 1 and 2 suggest that, for appropriate policy parameters, small
values of C will imply that the zero steady state is locally stable, while increases in
C will lead to bifurcation. It may be possible to characterize the primary bifurcation
by applying the center manifold reduction technique, though the daunting nature of
this task compels us to proceed numerically.16 For a given calibration, value of θ,
and setting ω = 1, we choose C so that the zero steady state is stable; then, we
consider larger values of C and for each new value of C the model is simulated by
choosing initial conditions at random near the zero steady state. The first 10,000
periods of transient dynamics are discarded, so that the remaining data will be near
the invariant attractor. We then plot these simulations in a bifurcation diagram and
in phase space.

3.2.1 Satisfying the Taylor principle

Figure 3 provides a bifurcation diagram for the Woodford calibration, θ = 1.1, and
we set απ = 1.1 and αy = .35, so that the Taylor principle is satisfied. As expected,
low costs imply that the zero steady state is stable, but when C is approximately

16For more information on bifurcation theory, see Kuznetsov (1998), Guckenheimer and Holmes
(1983), and Palis and Takens (1993).
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C = −.19. a bifurcation occurs. For larger costs, the model may exhibit compli-
cated behavior, as the bifurcation diagram seems to exhibit periodic and aperiodic
dynamics.

FIGURE 3 HERE

Because we have not conducted the center manifold analysis, a precise statement
of the primary bifurcation can not be assessed. However, we can learn quite a bit
about the primary bifurcation by looking at the eigenvalues of the Jacobian evaluated
at the steady state. Figure 4 plots the moduli of the eigenvalues in (C, θ) space. Each
line in the plot represents a boundary where the eigenvalues switch from being real or
complex and/or contracting or expanding. One can interpret the primary bifurcation
witnessed in Figure 3 by moving horizontally from left to right when θ = 1.1. For
sufficiently small values of C, i.e. n̄ is high but bounded away from one, the steady
state is locally stable. For larger values of C the contracting eigenvalues are all
complex. However, when C ≈ −.19 both pairs of complex eigenvalues simultaneously
crosse the unit circle.17

FIGURE 4 HERE

Figure 4 plots values for θ > 1, as there is no stable steady state when the Taylor
principle is satisfied and θ < 1. Notice also in Figure 4 that when C = 0, so that
n̄ = 0.5 the steady-state is always locally unstable.18

The primary bifurcation for the calibrated model occurs for values of C ≈ −.19.19

Complicated dynamics do not depend on negative values of C. The main role played
by C is controlling the steady-state value n̄, and thus determining the stability prop-
erties of the model as seen in Figure 1. Figure 5 demonstrates that positive costs also
can lead to periodic and (possibly) aperiodic complex dynamics. Figure 5 provides
a series of attractor plots for the same calibration as Figure 3. In Figure 5, C = .45
and C = .4625 yield a 14-cycle. For larger values of C > 0, more complex behavior
arises.

FIGURE 5 HERE
17That all four eigenvalues cross the unit circle at the same time suggests a double Neimark-Sacker

bifurcation; however, the codimension of a generic double Neimark-Sacker bifurcation is two, and
the codimension of our bifurcation is one.

18In alternative calibrations, it is possible that the steady state corresponding to C = 0 will be
locally stable.

19The figure also indicates that as C decreases past ≈ −2.5 the steady state destabilizes. In this
case one of the real eigenvalues passes through +1. Numerical simulations suggest that the dynamics
become explosive after the bifurcation. This suggests that a subcritical pitchfork bifurcation occurs,
with 3 steady states (one stable and two unstable) before and 1 (unstable) steady state after the
subcritical pitchfork bifurcation.
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The intuition for the existence of complicated dynamics for larger values of C
is easily expressed by re-examining Figure 1. If the steady state is unstable and
the model is initialized near it, then the time-paths of output and inflation begin
to diverge. This divergence reduces the performance of the adaptive predictor so
that agents switch to the rational predictor, thus increasing the value of nt. As nt

increases, the sloped line anchored at (1, 0) rotates counter-clockwise so that the
eigenvalues of M(nt) reduce in size until they are all smaller than one in modulus,
that is, dimWs(nt) = 4. This contracts the economy’s time-path of output and
inflation sending the system back toward the steady state. As the system nears
the steady state, the adaptive predictor’s performance improves and agents begin
switching to it, thus reducing n, causing clockwise rotation of the anchored line, and
a corresponding increase in the size of the eigenvalues of M(nt) until dimWs(nt) < 4,
at which point the economy begins to diverge from the zero steady state, and the
process repeats indefinitely. Similarly complex behavior arises for different costs, ω
values, calibrations, and for the alternative policy rules and different values of θ;
however, θ > 1 is required for a policy rule which follows the Taylor principle to
generate complex dynamics.

This intuition also correctly predicts the existence of explosive dynamics for some
parameter values and initial conditions. Consider the lower left region of the SW panel
in Figure 1 corresponding to a passive Taylor rule with low weight placed on output
variation. Assume that C and w are chosen so that n̄ = .7. Because dimWs(n̄) = 3,
the economy begins to diverge from the zero steady state. This divergence makes the
rational predictor more attractive, and nt rises. In this case, however, the rise in nt

only lowers the dimension of Ws(nt), so that the divergence of the economy continues.

3.2.2 Ignoring the Taylor principle

We now turn to the case where the Taylor principle is not satisfied so that απ < 1.
When monetary policy is passive, the dynamics can be quite different than under an
aggressive response to inflation. In this section, we find that there may be multiple
stable attractors. These attractors may take the form of multiple stable steady states,
or, a unique steady state from which the ensuing bifurcations may produce multiple
stable attractors.

Consider setting θ = .9, απ = .75 and αy = .5, and again adopt the Woodford
calibration. Numerical analysis indicates that for C sufficiently small there is a unique
stable steady state at zero. However, as C increases past ≈ −4.5, the zero steady
state destabilizes as one of the real eigenvalues crosses +1. A bifurcation diagram (not
shown) indicates the emergence of two new steady states which correspond to non-
zero values of output and inflation, thus suggesting a pitchfork bifurcation.20 As costs

20At these non-zero steady states, the z̄ is an eigenvector of M(n̄) corresponding to a unit eigen-
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further increase, each of these steady states destabilize through a bifurcation process
leading to multiple stable attractors. Figure 6, which is constructed analogously to
Figure 4, indicates the behavior of the relevant eigenvalues. For small (negative)
values of C, and θ < 1, the steady-state is locally stable with 4 contracting real
eigenvalues. However, at C ≈ −4.5 one real eigenvalue equals +1, indicating a
change in the structural stability. Notice, as well from Figure 6 that if θ > 1, and
the Taylor principle is ignored, then there is bifurcation analogous to the one found
in the previous subsection. Hence, failure to abide by the Taylor principle, may lead
to complex dynamics across the range of adaptive coefficients θ.

FIGURE 6 HERE

Qualitatively different behavior may arise under alternative calibrations, as is
nicely illustrated in the bifurcation diagram under the Evans-McGough calibration,
which corresponds to a model with strong elasticities in the IS and AS relations.
Figure 7 sets θ = .5, απ = .3 and αy = .5. For small values of C the zero steady
state is stable, as expected. However, Figure 7 illustrates that as C increases the zero
steady state destabilizes and a stable two cycle emerges. Interestingly, for C near
−.05 the system again bifurcates, but this time two distinct stable 2-cycles emerge,
suggesting a pitchfork bifurcation of the dynamic map’s second iterate. Here the “+”
and “◦” indicate dynamics resulting from different initial conditions.

FIGURE 7 HERE

Figure 8 gives a more complete picture of the bifurcations under the alternative
calibration and απ < 1. Figure 8 plots the bifurcation diagram for the upper stable
attractor, which was de-marked by “◦” in Figure 7. A similar picture (not shown)
emerges for the lower attractor. Figure 8 illustrates that as costs rise further a period
doubling cascade emerges and results in complex dynamics.

FIGURE 8 HERE

3.2.3 Discussion of Results

The results in the above subsections indicate that complex dynamics can arise under
various settings for monetary policy and whether adaptive agents are extrapolative
or dampening. It is useful to briefly review these results.

If adaptive agents are extrapolative, i.e. θ > 1, then Figure 1 demonstrates that
increasing the steady-state fraction of adaptive agents can enhance the stability of the

value.
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steady state. With dynamic predictor selection, the economy switches between stable
and unstable dynamics, and this can occur regardless of whether policy satisfies the
Taylor Principle. With θ > 1, altering the cost of the rational predictor can bifurcate
the stable steady state and lead to stable attractors with some exhibiting complex
dynamics.

On the other hand, if adaptive are dampening, i.e. θ < 1, then Figure 2 shows that
increasing the steady-state fraction of adaptive agents can lead to instability of the
steady state. It follows that the nature of the dynamics depends on the monetary pol-
icy coefficients. If θ < 1 and monetary policy satisfies the Taylor Principle, then there
does not exist a stable steady state with heterogeneous expectations. The dampening
of adaptive expectations in this case is not sufficient to offset the (unstable) forward
dynamics arising from the perfect foresight agents. However, if monetary policy does
not satisfy the Taylor Principle, then depending on the cost to the rational predic-
tor, then can exist multiple steady states and multiple stable attractors. The results
from this paper suggest that the interaction between the forward-looking behavior of
rational agents and the backward-looking behavior of adaptive agents can destabilize
the economy, even when monetary policy is set to satisfy the Taylor principle.

3.3 Determinacy, stability, and monetary policy

Consider again the model
Hxt = Fxt+1 +Gxt−1, (13)

where x = (y, π)′ and F,G, and H are given by (9) and depend on n. Recall also that

M(n, ξ) =

(

F−1H −F−1G
I2 02

)

.

If n is taken to be fixed and set n = 1, then (13) corresponds to the usual New
Keynesian model under rational expectations (in this case, G = 0). This model
is said to be determinate if there is a unique non-explosive perfect foresight path
and indeterminate otherwise (because G = 0 the RE-model can not be explosive).
Whether the model is determinate can be assessed using the usual Blanchard-Kahn
technique; and, in this case, determinacy depends on the eigenvalues of M : when
n = 1, M necessarily has two zero eigenvalues; if the remaining two are outside the
unit circle then the model is determinate.

To make the link between determinacy, stability and monetary policy, consider
again the Woodford calibration and θ = 1.1. Consider the NW panel of Figure 1 cor-
responding to n = 1; here, determinacy corresponds to dim(Ws) = 2, indeterminacy
to dim(Ws) > 2, and explosiveness to dim(Ws) < 2. We see that when the Taylor
principle is satisfied and when there is low weight placed on the output coefficient
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in the policy rule, the associated RE model is determinate: there is a unique non-
explosive perfect foresight solution. We also see from Figure 1 that for low values
of C and thus high vaules of n̄, the zero steady state of our model is unstable when
the Taylor Principle is satisfied.21 Indeed, this dynamic instability exactly reflects
the determinacy of the RE model: they are both due to the large eigenvalues of
M(1). In a model with fully rational agents and n fixed at one, the agents must make
their initial choices so that the economy lies on Ws, the stable manifold of M(1):
otherwise their ex-ante (and ex-post) transversality condition would be violated. In
case dim(Ws) = 2 there is precisely one way for agents to make their choices and
the equilibrium path is unique.22 In our model, n is not fixed, and as n evolves so
do the eigenvalues, and thus the stable manifold, of M(n). As we have seen, as n
evolves, dim(Ws) may move between two and four, alternately repelling and attract-
ing inflation and output. This evolution may cause the time path to remain bounded
and converge to an invariant set, regardless of how the initial conditions are locally
chosen.

The determinacy region reflects the standard policy advice imparted by the NK
model: by choosing policy within this region, the model is guaranteed to have a
unique equilibrium. This uniqueness is thought to be of benefit because it precludes
the existence of non-fundamental “sunspot” equilibria, many of which exhibit wel-
fare reducing volatility. Furthermore, as shown by Bullard and Mitra (2002), policy
choices within this region yield equilibria that are stable under learning, so that
policy makers can be confident that agents can learn to coordinate on the unique
equilibrium.

Of interest to us is whether policy chosen in this advised region may also, in
the presence of heterogeneity in expectations, yield complex, and possibly welfare
reducing dynamics. In particular, we consider the following experiment: we choose a
policy in the determinacy region, that is, a policy that would be recommended under
the assumption of full rationality. We then investigate whether there exist values
of C for which the corresponding equilibrium time paths exhibit complex dynamics.
Consider again the Woodford calibration, with θ = 1.1, απ = 1.1 and αy = .32. This
policy specification yields determinacy when all agents are rational, and also yields
stability under learning. We find that, in our model, complex dynamics emerge. An
example attractor is given in Figure 9.

FIGURE 9 HERE

In the determinate RE-model there is a unique bounded path, which will arise if
rational agents’ initial beliefs place the economy on the stable manifold. However, as

21The eigenvalues of M(n) are continuous in n which, itself, is decreasing in C.
22In case n = 1, M has two zero eigenvalues – the associated RE model is purely forward looking

– and so dim(Ws) ≥ 2.
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indicated by Figure 9, the determinacy of the rational model does not prevent complex
bounded behavior if, in fact, time-varying heterogeneous expectations prevail. Thus,
a key finding of this research is that with a natural evolution of n, a model that is
determinate under rational expectations may yield complex dynamics.

3.4 Further discussion of policy implications

The monetary policy literature, though wide and diverse, typically settles on the
same recommendation: set policy so that the REE is determinate. At the end of
the day, this is the main message communicated to policy makers. At the heart
of this recommendation is the property that a determinate steady state reduces the
volatility of inflation and output. Our results indicate that a determinate REE may
lead to inefficient outcomes if there exists heterogeneous expectations: these inefficient
outcomes may either take the form of multiple equilibria – as found by Branch and
McGough (2009) – or bounded complex dynamics.23

To illustrate this point in the starkest terms, we parameterized the model so that
it is determinate under rational expectations, and we granted agents the choice of
whether to be rational or adaptive. This is exactly the scenario discussed extensively
in the monetary policy literature and forms much of the basis for policy advice in
“ideal” conditions. Our results indicate that choosing a policy rule in this fashion
may result in bounded, possibly chaotic equilibria with inefficiently high inflation
and output volatility. Most strikingly, our arguments do not require coordination
of expectations on sunspot equilibria. We instead allow for an empirically realistic
degree of expectational heterogeneity. The dynamically evolving heterogeneity has
been documented in survey data by Mankiw, Reis, and Wolfers (2003) and Carroll
(2003). We illustrate that if policy attempts to achieve a determinate REE in a
New Keynesian model and these heterogeneous expectations dynamics are present,
the policy maker may unwittingly destabilize the economy. This suggests that policy
should be designed to account for potentially destabilizing heterogeneity in a way
that simple linear interest rate rules can not accomplish.

One may wonder how sensitive our results are to our specification of adaptive
expectations, the predictor choice dynamic, and the model parameterization. We
adopted an adaptive predictor with the same form as the MSV REE because it is the
least ad hoc specification of adaptive expectations. We could instead specify adaptive
beliefs in the Cagan sense as a geometric average of past observations. We believe that
our qualitative results are robust to this specification because the key for generating
our findings is that adaptive and rational predictors return distinct forecasts out of

23It has also been emphasized that policy rules should be chosen so that the associated unique
equilibrium is stable under learning: see for example, Bullard and Mitra (2002), Honkapohja and
Mitra (2005) and Evans and McGough (2005a). We note that the rule used to generate the plot in
Figure 9 does produce an equilibrium that is stable under learning.
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steady state; this property alters the stability properties of the steady state.

Similarly, the results are not sensitive to the predictor choice mechanism. In
Branch and McGough (2005), we illustrated that a replicator dynamic will yield
similar dynamic behavior, in a cobweb model, as the MNL of Brock and Hommes
(1997). Finally, we have endeavored to verify the existence of complicated dynamics
across a broad spectrum of calibrations. The key is that for some for some n̄ we
have dim(Ws(n̄)) = 4. Branch and McGough (2009) document an extensive region of
the parameter space with this property. An open empirical question is whether the
values of ω and C are of reasonable magnitudes. Since ω parameterizes the MSE,
and C is measured in MSE units, there is no natural interpretation of these values in
terms of utility or consumption units. An interesting extension would be to embed
the predictor choice into the agent’s recursive optimization problem.

4 Conclusion

This paper examines the impact of endogenous expectations heterogeneity on a model’s
dynamic properties. Our central finding is that an otherwise linear model may exhibit
bounded complex dynamics if agents are allowed to select between competing costly
predictors (e.g. rational versus adaptive). These dynamics arise through the dual
attracting and repelling nature of the steady-state values of output and inflation –
the nature of which depends on the proportions of rational and adaptive agents. If
the steady state is attracting for higher proportions of rational agents and repelling
for lower proportions, then the natural tension between predictor cost and forecast
accuracy mirrors the implied tension of attracting and repelling dynamics. When the
economy is far from the steady state, the accuracy benefits of the rational predictor
outweighs its costs, and the proportion of rational agents rises, causing the steady
state to become attracting and thereby drawing the economy toward it. As the econ-
omy approaches the steady state, the relative effectiveness of the rational predictor
falls, so that agents begin switching to the cheaper adaptive predictor. This switching
causes the steady state to repel the economy and the process repeats itself.

The complex dynamics produced by our model are not outcomes limited to un-
usual calibrations or a priori poor policy choices: complex behavior appears to be an
almost ubiquitous feature of a time-varying heterogeneous expectations New Keyne-
sian model. Even policy designed to induce determinacy and stability under learning
when levied against a rational version of the model may be insufficient to guard against
the mentioned bad outcomes. We find that specifications of policy rules satisfying
the Taylor principle, and which yield determinacy under rationality, may result in
bounded complex dynamics, and this possibility obtains even if all agents are initially
rational.
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Figure 1: Stability of M(n), for various fixed values of n, θ = 1.1, and alternative
settings for the monetary policy parameters (απ, αy) under the Woodford calibration.
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Figure 2: Stability of M(n), for various fixed values of n, θ = .9, and alternative
settings for the monetary policy parameters (απ, αy) under the Woodford calibration.
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Figure 3: Bifurcation diagram: satisfying the Taylor Principle. Woodford calibration,
θ = 1.1, απ = 1.1, αy = .35. For C ≈ −0.19 a bifurcation occurs.
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Figure 4: Local stability of the steady state: satisfying the Taylor Principle. Given
(C, θ), figure calculates eigenvalues of the Jacobian in the Woodford calibration, απ =
1.1, αy = .35.
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Figure 5: Attractors illustrating periodic and complex dynamics: satisfying the Taylor
Principle. Each figure was generated by simulating the model following a 10,000
length transient period. Woodford calibration, θ = 1.1, απ = 1.1, αy = .35.
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Figure 6: Local stability of the steady state: ignoring the Taylor Principle. Given
(C, θ), figure calculates eigenvalues of the Jacobian in the Woodford calibration, απ =
.75, αy = 0.5.

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

                            C

θ

Local stability of steady state: ignore Taylor Principle

stable real unstable
complex

unstable real

Pitchfork

stable
mixed

unstable
 mixed

Hopf

stable
 complex

6



Figure 7: Stable 2-cycle bifurcates into two co-existing stable 2-cycles: ignoring the
Taylor Principle. For −.2 < C < −.005 there is a unique stable two-cycle, which for
C > −.005 bifurcates into two co-existing two cycles. Evans-McGough calibration,
θ = .5, απ = .3, αy = .5.
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Figure 8: Bifurcation diagram for upper stable attractor: ignoring the Taylor Prin-
ciple. Along the upper stable attractor, a cascade of period-doubling bifurcations.
Evans-McGough calibration, θ = .5, απ = .3, αy = .5.
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Figure 9: Stable attractor: determinate under rationality. Woodford calibration,
θ = 1.1, απ = 1.1, αy = 0.32.
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