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Abstract

Incorporating adaptive learning into macroeconomics requires assumptions
about how agents incorporate their forecasts into their decision-making. We
develop a theory of bounded rationality that we call finite-horizon learning.
This approach generalizes the two existing benchmarks in the literature: Euler-
equation learning, which assumes that consumption decisions are made to sat-
isfy the one-step-ahead perceived Euler equation; and infinite-horizon learning,
in which consumption today is determined optimally from an infinite-horizon
optimization problem with given beliefs. In our approach, agents hold a finite
forecasting/planning horizon. We find for the Ramsey model that the unique
rational expectations equilibrium is E-stable at all horizons. However, transi-
tional dynamics can differ significantly depending upon the horizon.

1 Introduction

The rational expectations (RE) hypothesis of the 1970’s places individual optimiza-
tion and expectation formation at the forefront of macroeconomic research. Although
RE is the natural benchmark for expectation formation, it is at the same time a very



strong assumption, subject both to theoretical criticisms1 and to plausible modifica-
tions that allow for a broader notion of bounded rationality.2

Today, dynamic stochastic general equilibrium (DSGE) models are the mainstay
of macroeconomic modeling. To the extent that DSGE models embracing RE are
unable to account adequately for the co-movements and time-series properties ob-
served in the macroeconomic data, alternative mechanisms for expectation formation
provide a plausible avenue for reconciliation; and, in the 30 years since the birth of
the literature, adaptive learning has become rationality’s benchmark replacement.3

While this literature originally focused on the conditions under which an equilibrium
would be stable when rational expectations are replaced with an adaptive learning
rule, increasingly there has been an emphasis on transitional or persistent learning
dynamics that have the potential for generating new phenomena.

In the early literature, adaptive learning was applied either to ad-hoc models
or to models with repeated, finite horizons such as the Muth model (Bray (1982),
Bray and Savin (1986)) and the overlapping generations model of money (Woodford
(1990)). However, micro-founded infinite horizon DSGE models provide a distinct
challenge. The first attempts at modeling adaptive learning in infinite horizon DSGE
models employed what we call “reduced-form learning,” in which RE are replaced in
the equilibrium conditions with a boundedly rational expectations operator and the
stability of the equilibrium is then studied (see, e.g., Evans and Honkapohja (2001)
and Bullard and Mitra (2002)).

While this was a natural first step in the study of equilibrium stability in a DSGE
model, the ad-hoc nature of reduced-form learning is disconnected from the underlying
micro-foundations of modern macroeconomic models. To address this concern, and to
better understand the link between agents’ choices and their forecasts in the context
of an infinite horizon model, Honkapohja, Mitra, and Evans (2002) and Evans and
Honkapohja (2006) provide a model of bounded rationality, which they called “Euler-
equation learning,” in which individual agents are assumed to make forecasts both
of the relevant prices and of their own behavior, and then make decisions based on
these forecasts to satisfy their perceived Euler equation. The Euler equation itself
is taken as a behavioral primitive, capturing individual decision making. Evans and
Honkapohja (2006) show, in a New Keynesian model, that Euler-equation learning is
equivalent to reduced form learning.

The literature has proposed other learning mechanisms as alternatives to Euler-
equation learning. Infinite-horizon learning, developed in Marcet and Sargent (1989),

1See, for example, Guesnerie (2005).
2See Sargent (1993) for a survey of possible approaches.
3For a recent discussion see Evans and Honkapohja (2010)
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and emphasized by Preston (2005), posits that agents make decisions to meet their
Euler equations at all forward iterates and, where appropriate, also imposes their
expected lifetime budget constraint.4 Shadow price learning, developed in Evans and
McGough (2010), assumes that agents make choices conditional on the perceived
value of additional future state variables. These alternative learning mechanisms are
discussed in more detail in Section 3.2.

Euler-equation learning identifies agents as 2-period planners: they make decisions
today based on their forecasts of tomorrow. Under rationality, this type of behavior
is optimal: forecasts of tomorrow contain all the information needed to make the
best possible decision today. If agents are boundedly rational, however, it is less
clear that a 2-period planning horizon is optimal, or even adequate: perhaps a longer
planning horizon is appropriate. The infinite-horizon approach takes this position to
the extreme by positing an infinite planning horizon. By incorporating the lifetime
budget constraint into the choice process, the agent is making decisions to satisfy
his (perceived) Euler equation at all iterations and his transversality condition; in
fact, infinite-horizon learning can be interpreted as assuming that private agents each
period fully solve their dynamic programming problem, given their beliefs. While
this has appeal in that it is consistent with the micro-foundations of the associated
model, it has a number of drawbacks:

1. agents are required to make forecasts at all horizons, even though most fore-
casters in fact have a finite horizon;

2. agents are assumed to have sufficient sophistication to solve their infinite-horizon
dynamic programming problem;

3. agents’ behavior is predicated upon the assumption that their beliefs are correct.

This last point, in particular, is a strong assumption.5 In an adaptive learning
model, agents’ beliefs are updated by an estimation procedure – for example, recursive
least squares – and therefore in any given period they will not correctly capture the
joint distribution of the model’s endogenous variables. If an agent knows his beliefs
are wrong and likely to change in the future, that is, if an agent recognizes that his
parameter estimates will evolve over time, it is no longer obvious that the agent’s
optimal decision is determined by the fully optimal solution to his dynamic program-
ming problem given his current beliefs. While this point holds both for short-horizon

4See also Sargent (1993), pp. 122 - 125.
5The approach is typically justified by appealing to an anticipated utility framework. See Kreps

(1998) and Cogley and Sargent (2008).
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and long-horizon learning, it is most telling in the case of infinite-horizon learning,
in which considerable weight is placed on distant forecasts, using a forecasting model
that may become greatly revised. This reasoning suggests that agents may do best
with finite-horizon models that look further ahead than one period, but do not at-
tempt to forecast beyond some suitable finite horizon.

This paper generalizes the existing approaches to decision making to environ-
ments in which agents form expectations adaptively. We bridge the gap between
Euler-equation learning and infinite-horizon learning, by developing a theory of finite-
horizon learning. We ground our analysis in a simple dynamic general equilibrium
model, the Ramsey model, and our approach is to allow agents to make decisions
based on a planning horizon of a given finite length N . Euler equation learning is
particularly easy to generalize: we iterate the Euler equation forward N periods and
assume agents make consumption decisions today based on forecasts of consumption
N periods in the future, and on forecasts of the evolution of interest rates during
those N periods. We call this implementation of learning “N-step Euler equation
learning.”

For reasons discussed below, N-step Euler equation learning does not reduce to
infinite-horizon learning in the limit as the horizon approaches infinity. In fact, a
distinct learning mechanism is required to provide a finite horizon analog to infinite
horizon learning. We accomplish this by incorporating the Euler equation, iterated
forward n periods for 1 < n ≤ N , into the budget constraint, which itself is discounted
and summed N times. Through this construction, decisions are conditional on savings
yesterday, the future evolution of interest rates and wages, and on expected future
savings. We call the resulting learning mechanism “N-step optimal learning” because
it leads to decisions which would be optimal given an N period problem conditional
on expected future savings.

We show that for both learning mechanisms and all horizon lengths, the Ramsey
model’s unique rational expectations equilibrium is stable under learning. There are,
however, important differences along a transition path. By examining the expected
paths of agents’ beliefs, we find that both learning mechanisms impart oscillatory
dynamics. However, for longer planning horizons, these oscillations become negligible.

2 The Ramsey model and reduced form learning

The Ramsey model provides a simple, tractable laboratory for our exploration of
finite horizon learning (FHL). In this section, we review the model and analyze the
stability of its unique rational expectations equilibrium under reduced-form learning.
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2.1 The Ramsey model

We consider a standard version of the Ramsey model. There are many identical
households with CRRA preferences who supply their unit endowment of labor in-
elastically and face a consumption/savings decision. The representative household’s
problem is given by

max
{ct,kt}t≥0

E
∑

t≥0

βtu(ct)

s.t. st = wt + (1 + rt)st−1 − ct + πt

where st−1 is the savings (in the form of capital) held by the household at the begin-
ning of time t, ct is the time t consumption level, rt is the real return on savings, wt

is the real wage, and πt is profit from the household’s portfolio of firm shares. Here
s−1 is given, and st ≥ 0 and 0 ≤ ct ≤ wt + (1 + rt)st−1 are additional constraints.

The associated Euler equation is given by

u′(ct) = βEt(1 + rt+1)u
′(ct+1),

which we may linearize as
ct = Etct+1 + aEtrt+1 (1)

where a = −rβ/σ, and σ is the relative risk aversion. Also, all variables are now
written in proportional deviation from steady state form.

There are many identical firms, each having access to a Cobb-Douglas production
function F = kαn1−α in capital and labor.6 Firms rent capital and hire labor in com-
petitive factor markets, sell in a competitive goods market, and face no adjustment
costs. This simple modeling of firm behavior, together with the assumptions on the
production function, implies that factor prices are equal to the associated marginal
products and firms’ profits are zero. Incorporating these implications into the flow
budget constraint and using market clearing to identify st with kt+1 provides the
capital accumulation equation. Imposing equilibrium interest rates into the house-
hold’s Euler equation results in the following reduced form system of expectational
difference equations:

kt+1 = δ1ct + δ2kt (2)

ct = Etct+1 + bkt+1. (3)

6Typically there would be a stochastic productivity component in the production function. With-
out a loss of genrality, the analysis in this paper assumes a non-stochastic economy.
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The coefficients are δ1 = −c/k, δ2 = (1 + Fk − δ) and b = akFkk/r, where variables
without time subscripts are steady-state levels and all derivatives are evaluated at the
steady state. Notice that because capital is predetermined there is no expectations
operator in front of kt+1. The system (2), (3) is generically determinate (under the
usual assumptions on utility and technology), and the unique REE may be written
ct = Âkt and kt = (δ1Â+ δ2)kt−1.

2.2 Reduced form learning

In order to form rational expectations, agents in the economy must know the actual
distributions of all variables, which depend in part on their own behavior and beliefs.
Instead of adopting this framework, Evans and Honkapohja (2001) assume that agents
behave as econometricians: given a forecasting model whose specification is consistent
with the equilibrium of interest, agents form conditional expectations and update
their perceived coefficients as new data become available. Specifically, throughout
the remainder of the paper, we attribute to agents a perceived law of motion for
consumption:

ct = H + Akt. (4)

Since only the Euler equation depends explicitly on expectations, it seems reasonable
to assume that agents know the coefficients for the capital accumulation equation (2)
and the manner in which real interest rates are related to the capital stock. We could
have agents estimate these coefficients, but since there is no feedback involved in this
estimation, stability results would not be affected.

In the present case of reduced-form learning we will not be precise about the
“actions” taken given the forecasts and whether these are consistent with economic
equilibrium. Therein lies the fundamental difference between RF-learning and agent-
based learning mechanisms.

We take as given the reduced form equation

ct = E∗
t ct+1 + bE∗

t kt+1, (5)

which has been modified to incorporate bounded rationality: E∗
t is taken to be a

boundedly rational expectations operator based on the agents’ forecast model. Con-
ditional on the perceived law of motion (4), expectations are

E∗
t ct+1 = H + AE∗

t kt+1.

It remains to identify agents’ forecasts of the future capital stock, and we do so by
assuming agents know the coefficients in the capital accumulation equation (2), δi, so
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that
E∗

t kt+1 = δ1ct + δ2kt.

Plugging in expectations to the reduced-form equation (5) leads to the following
actual law of motion (ALM) for consumption:

ct =
H

1 − (A + b)δ1
+

(A+ b)δ2
1 − (A+ b)δ1

kt. (6)

Much like when employing the method of undetermined coefficients, there is a
mapping from the perceived coefficients in (4) to the actual coefficients in (6) that are
implied by the PLM. Notice, in particular, that the PLM for consumption consists of
a constant and a coefficient on the current capital stock. In the actual law of motion,
which depend on these beliefs, actual consumption depends on a constant and the
current capital stock. Referring to the mapping from the perceived law of motion to
the actual law of motion as the “T-map”, it is immediate that the ALM identifies the
T-map as

A →
(A+ b)δ2

1 − (A+ b)δ1

H →
H

1 − (A+ b)δ1
.

Notice that the unique REE (0, Â) is a fixed point to the T-map. The T-map plays
a prominent role in expectational stability analysis as we see next.

Expectational stability analysis asks whether reasonable learning rules based on
perceived laws of motion like (4) will converge to a rational expectations equilibrium.
It turns out that a straightforward and intuitive condition governs whether an equi-
librium is E-stable. Let Θ = (H,A)′ summarize the household’s beliefs. Since the
REE is a fixed point of the T-map it is also a resting point of the following ordinary
differential equation

Θ̇ = T (Θ) − Θ. (7)

The right hand side of the ode is the difference between the actual coefficients and
the perceived coefficients. According to the ode, a reasonable learning rule should
adjust perceived coefficients toward actual coefficients, with the resting point being
an REE. The E-stability Principle states that if an REE corresponds to a Lyapunov
stable rest point of the E-stability differential equation then it is locally stable under
least squares learning. An REE will be E-stable when the T-map contracts to the
unique REE. Thus stability under learning may be assessed by analyzing the stability
properties of (7). Below, we compute the T-map for each learning environment and
assess the E-stability properties.

7



While the reduced form learning mechanism is simple and appealing, it is vague
on the interaction between forecasts and the implied agent behavior. The argument
for this mechanism is that agents form forecasts and then “act accordingly,” and that
the implications of their actions are well-captured by the reduced form equation (5).
This may be greeted with some suspicion because, while (5) is developed from the
agent’s Euler equation, it already has equilibrium prices imposed. More sophisticated
DSGE models, such as RBC or New Keynesian models, have reduced form equations
that are considerably more complicated, thus making interpretation of reduced form
learning that much more difficult.

3 Euler equation learning and alternatives

To place learning in DSGE models on a more firm footing, Evans and Honkapohja
(2006) introduce Euler equation learning. Evans and Honkapohja take the Euler
equation (1) as the behavioral primitive, and take care to distinguish between indi-
vidual quantities and aggregate variables. As it will serve as a platform to launch our
investigations of finite horizon learning, we review Euler equation learning in detail;
then we provide some discussion of other learning mechanisms.

3.1 Euler equation learning

Under Euler equation learning, the Euler equation is taken as the primitive equation
capturing agent behavior. Intuitively, agents make consumption decisions today to
equate marginal loss with expected marginal benefit. For each agent i, there is an
Euler equation:

cit = Ei
tc

i
t+1 + aEi

trt+1, (8)

where Ei is agent i’s (possibly) boundedly rational expectations operator. We em-
phasize the behavioral assumption identifying Euler equation learning as follows:

Euler equation learning behavioral assumption. The Euler equation learning
assumption identifying consumption behavior in terms of future forecasts is given by
(8).

Agent i forms forecasts of rt+1 and cit+1, and then uses these forecasts to determine
demand for the current period’s consumption goods. Since

rt = (Fkkk/r) kt ≡ Bkt,

that is, since there is no feedback in the determination of the dependence of r on k, we
assume agents know rt = Bkt, and thus forecast future interest rates by forecasting
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future aggregate capital. To forecast future consumption, we assume that agents
adopt a perceived law of motion which conditions on current interest rates and current
wealth. For simplicity, and to promote comparison to real time learning, we exploit
the homogeneity of the model and assume agents recognize that past wealth has been
equal to aggregate capital, and that they forecast future wealth accordingly. Together,
these assumptions provide the following forecasting model:

cit = H i + Aikt.

As for reduced form learning, we assume that agents know the values of δi. Therefore,

Ei
trt+1 = Bδ1ct +Bδ2kt

Ei
tc

i
t+1 = H i + Ai(δ1ct + δ2kt).

Given these forecasts, we may use (8) to identify agent i’s consumption decision:

cit = H i + (Ai + aB)δ1ct + (Ai + aB)δ2kt.

Imposing homogeneity, so that ci = c, H i = H , and Ai = A, allows us to compute
the equilibrium dynamics given beliefs:

ct =
H

1 − (A+ aB)δ1
+

(A+ aB)δ2
1 − (A+ aB)δ1

kt.

These dynamics comprise the ALM for the economy and thus identify the Euler
equation learning model’s T-map:

A →
(A+ b)δ2

1 − (A+ aB)δ1
(9)

H →
H

1 − (A+ aB)δ1
, (10)

which may then be used to analyze stability under learning. Since aB = b, we note
that Euler equation learning provides the same T-map as reduced form learning. In
this way, Evans and Honkapohja are able to justify and provide a foundation for
reduced-form learning.

3.2 Other implementations of learning

The coupling of agent level decision making and boundedly rational forecasting has
been considered by a variety of other authors, and in this section we discuss two al-
ternate implementations of learning in infinite horizon models: shadow price learning
and infinite horizon learning.
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The infinite horizon learning mechanism was first developed by Marcet and Sar-
gent (1989) and has received renewed attention in Preston (2005) and Eusepi and
Preston (2010). Under infinite horizon learning, agents make decisions so as to meet
their Euler equations at all forward iterates and their expected lifetime budget con-
straint. Notably, this requires that agents account, a-priori, for their transversality
condition; in this way, agents are making optimal decisions given their beliefs, which
are captured by their forecasting model. Preston has found that under some circum-
stances the stability conditions implied by infinite horizon learning are different (and
more restrictive) than the conditions implied by Euler equation learning. A nice com-
parison of Euler equation learning and infinite horizon learning is provided by Evans,
Honkapohja, and Mitra (2009). In the next section, we establish infinite horizon
learning as a limiting case of one of our finite horizon learning implementations.

Evans and McGough (2010) take a different approach to coupling decision theory
and learning agents: they model agents as 2-period planners who choose controls
today based on their perceived value of the state tomorrow. Evans and McGough
call this simple behavioral procedure “shadow price learning,” and establish a general
result showing that under shadow price learning, agents will eventually learn to make
optimal decisions. They further show that, under certain circumstances, shadow price
learning reduces to Euler equation learning.

4 Stability under finite horizon learning

By modeling the representative household as an Euler equation learner, we impose
that decisions be made based on one-period-ahead forecasts. This assumption is in
sharp contrast to the benchmark behavior of the rational agent and to the imposed
behavior in infinite horizon learning: each is to required form forecasts at all horizons.
Existing models involve only the two extreme cases – one-period horizon and infinite
horizon – which are at odds with the casual observation that most forecasters have a
finite forecasting horizon. This section presents our generalization of adaptive learning
to environments with finite planning/forecasting horizons.

We construct two finite-horizon learning mechanisms: “N-step Euler equation
learning”, which generalizes Euler equation learning to an N-period planning horizon;
and, “N-step optimal learning” where agents solve an N-period optimization problem
with boundedly rational forecasts. We note that N-step optimal learning has infinite
horizon learning as a limiting case.
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4.1 N-step Euler equation learning

We modify Euler equation learning to allow for more far-sighted individuals by iter-
ating (8) forward N periods:

cit = Ei
tc

i
t+N + aEi

t

N
∑

s=1

rt+s. (11)

We interpret this equation as capturing individuals who are concerned about long
run consumption levels and short run price fluctuations, and we call this learning
mechanism “N-step Euler equation learning”.

N-step Euler equation learning behavioral assumption. The N-step Euler
equation learning assumption identifying consumption behavior in terms of future
forecasts is given by (11).

To forecast, for example, kt+n+1, agent i must forecast ct+n – an issue we did
not encounter when investigating Euler equation learning. One option would be to
provide agent i with a forecasting model for aggregate consumption. For simplicity
and comparability, we make the alternative assumption that agent i thinks he is
“average” and so his best forecast of ct+n is cit+n.

It remains to specify how agents form forecasts of cit+n. As above we provide agent
i with a forecasting model that is linear in aggregate capital: cit = H i + Aikt. These
assumptions yield the following forecasts:

Ei
tc

i
t+n = H i + AiEi

tkt+n

Ei
tkt+n = δ1E

i
tc

i
t+n−1 + δ2E

i
tkt+n−1 = H iSn(Ai) + (δ1A

i + δ2)
n−1(δ1ct + δ2kt)

Ei
trt+n = BEi

tkt+n,

where

Sn(Ai) = δ1

n−2
∑

m=0

(δ1A
i + δ2)

m.

These forecasts may be combined with the behavioral equation (11) to determine
agent i’s consumption decision: for appropriate functions Ĉj we have

cit = Ĉ0(A
i)H i + Ĉ1(A

i)ct + Ĉ2(A
i)kt. (12)

Equation (12) determines the behavior of agent i given our implementation of N-
step learning. Note that agent i’s behavior depends on his beliefs and on aggregate
realizations.
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Imposing homogeneity provides the equilibrium dynamics dictated by (12). Let
ψ(A) = δ1A+ δ2, and set

γ1(A,N) = 1 + Aδ1

(

1 − ψ(A)N−1

1 − ψ(A)

)

+
aBδ1

1 − ψ(A)

(

N − 1 − ψ(A)

(

1 − ψ(A)N−1

1 − ψ(A)

))

γ2(A,N) = Aψ(A)N−1 + aB

(

1 − ψ(A)N

1 − ψ(A)

)

.

Then the T-map is given by

A →
δ2γ2(A,N)

1 − δ1γ2(A,N)
(13)

H →
γ1(A,N)H

1 − δ1γ2(A,N)
. (14)

This map may be used to assess stability under N-step Euler equation learning.

4.2 N-step optimal learning

Under N-step Euler equation learning, savings behavior is passive in that it is deter-
mined by the budget constraint after the consumption decision is made; and because
of this assumption, individual wealth enters into the agent’s decision only if it influ-
ences the agent’s forecasts of either future consumption or future interest rates. An
alternative formulation of agent behavior, which we call “N-step optimal learning”,
takes wealth – both current and expected future values – as central by incorporating
the budget constraint into consumption decisions.

To develop N-step optimal learning, set

Rn
t =

n
∏

k=1

(1 + rt+k)
−1,

with Rt
0 = 1. Iterate agent i’s flow budget constraint forward N -periods to get

N
∑

n=0

Rt
nc

i
t+n =

N
∑

n=0

Rt
nwt+n + (1 + rt)s

i
t−1 −Rt

Ns
i
t+N . (15)

Log-linearize (15) and assume agent i makes decisions so that it binds in expectation.
Thus agent i’s behavior must satisfy

cit + c
N
∑

n=1

βnEi
tc

i
t+n = ζ1s

i
t−1 + ζ2(N)Ei

ts
i
t+N +

N
∑

n=0

ζ2(N, n)Ei
trt+n + w

N
∑

n=0

βnEi
twt+n,
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for appropriate functions ζi.

We now use agent i’s Euler equation iterated forward appropriately to eliminate
explicit dependence of consumption today on expected future consumption; this yields
the following behavioral equation:7

cit = φ1(N)si
t−1 + φ2(N)Ei

ts
i
t+N +

N
∑

n=1

φ3(N, n)Ei
trt+n + φ4(N)

N
∑

n=1

βnEi
twt+n. (16)

Here

β(N, n) =
βn

1 − β

(

1 − βN−n+1
)

φ1(N) =
sβ−1

cβ(N, 0)

φ2(N) = −
βNs

cβ(N, 0)

φ3(N) =
1

cβ(N, 0)

((

crβ

(

1 −
1

σ

)

− wrβ

)

β(N, n) + rsβN+1

)

φ4(N) =
w

cβ(N, 0)
.

N-step optimal learning behavioral assumption. The N-step optimal learning
assumption identifying consumption behavior in terms of future forecasts and current
savings is given by (16).

To close the model, we must specify how these forecasts are formed. To remain
consistent with, and comparable to N-step Euler equation learning, we assume agent
i forecasts his future savings as being equal to aggregate capital holdings: Ei

ts
i
t+N =

Ei
tkt+N+1; modeled this way, only a PLM for aggregate consumption is required. As

above, assume agent i forecasts kt+n using the known aggregate capital accumulation
equation. This requires forecasts of aggregate consumption ct+n. Because agent i
is no longer forecasting individual consumption, we provide him with a forecasting
model for aggregate consumption: ct = H i + Aikt. Finally, we assume agents know
wt = αkt.

Imposing homogeneity provides the equilibrium dynamics, which yields the fol-

7Because the production function has constant returns to scale, the explicit dependence of con-
sumption on current real wage and real interest rates washes out.
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lowing T-map:

A → R(A,N)

(

φ1(N) + δ2θN (A)ψ(A)N−1 + δ2

N−1
∑

n=1

η(N, n)ψ(A)n−1

)

(17)

H → R(A,N)

(

δ1φ2(N) + θN (A)SN(A) +
N−1
∑

n=1

η(N, n)Sn(A)

)

(18)

where

η(N, n) = Bφ3(N, n) + αφ4(N)βn

θn(A) = φ2(n)ψ(A) + η(N,N)

R(A,N) =

(

1 − δ1θN (A)ψ(A)N−1 − δ1

N−1
∑

n=1

η(N, n)ψ(A)n−1

)−1

.

This map may be used to assess stability under N-step optimal learning.

4.3 Discussion

Two observations concerning N-step Euler equation learning are immediate. First, N-
step Euler equation learning is a generalization of Euler equation learning mechanism,
as developed by Evans and Honkapohja: indeed, by setting the horizon N = 1, the
behavioral assumption (11) reduces to (8) and the T-maps (13) and (14) reduce
to (9) and (10), respectively. On the other hand, it is not possible to provide an
interpretation of N-step Euler equation learning at an infinite horizon. To see this,
note that at the rational expectations equilibrium, captured by Â, the time path
for capital is given by kt+1 = ψ(Â)kt, and must converge to the steady state; thus,
|ψ(Â)| < 1. Since a > 0, B > 0 and δ1 < 0, it follows that γ1(Â, N) → −∞ as the
planner horizon gets large. This does not overturn stability; however it does prevent
identifying an “infinite horizon” version of Euler equation learning, and suggests that
the planning horizon may strongly influence the path taken by beliefs – and hence
the economy – along a path that converges to the rational expectations equilibrium
obtains.

N-step optimal learning is like N-step Euler equation learning in that the behav-
ioral primitive governing N-step optimal learning asserts that agents make decisions
today based on forecasts of future prices, and on their own future behavior – con-
sumption in case of Euler equation learning and savings in case of optimal learning;
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however, unlike N-step Euler equation learning, N-step optimal learning conditions
also on current savings. Second, as suggested by the nomenclature, under N-step
optimal learning, the agent is behaving optimally conditional on current wealth and
conditional on expected future wealth, that is, she is behaving as if she is solving an
N-period problem with terminal wealth taken as given. Finally, it can be shown that
provided beliefs imply |ψ(A)| < 1, the T-map given by (17), (18) above converges
to the T-map obtained under infinite horizon learning: in this way, N-step optimal
learning may be viewed as the finite horizon version of infinite horizon learning.

4.4 Stability under finite horizon learning.

To conduct stability analysis of the Ramsey model’s unique REE under finite hori-
zon learning, we appeal to Evans and Honkapohja’s E-stablity principle, and thus
examine the Lyapunov stability of the systems of differential equations of the form
(7), corresponding either to equations (17) and (18) or to equations (13) and (14).
While there is nothing difficult in principle about this type of stability analysis –
simply compute DT − I and see if the real parts of the eigenvalues are negative –
the dependence of DT on the planning horizon and on the model’s deep parameters
is quite complicated, and prevents analytic results. Instead, we rely on numerical
analysis, and we obtain the following result:

Result. For all parameter constellations examined, for all planning horizons N, and
for both learning mechanisms, the unique REE is E-stable.

Our numerical result indicates that planning horizon and learning mechanism are
irrelevant asymptotically, but they are not pairwise equivalent. While this will be
explored in more detail in the next section, we can get a taste for the potential
differences here by plotting the derivatives of the T-maps evaluated at the REE.
Note that both T-map systems decouple so that the derivatives with respect to A
and H may be evaluated separately. For the numerical analysis presented here and
throughout the paper we use the standard calibration

α = 1/3, β = .99, δ = .025, σ = 1.

Figure 1 plots DTA and DTH for both N-step Euler equation learning and N-step op-
timal learning, for N ∈ {2, . . . , 100}. The solid curves indicate the values of DTA and
the dashed curves indicate values of DTH . E-stability requires that these eigenvalues
have real parts less than one. Notice that while stability obtains for all values of N ,
the magnitude of the derivatives vary across both horizon length and implementation
type. While the connection is not completely understood nor particularly precise,
there are formal results and numerical evidence to suggest that, small values of DT

15



Figure 1: T-map derivatives for N-step Euler and optimal learning: DTA is solid and
DTH is dashed.
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imply faster convergence. In this way, Figure 1 suggests that, Euler equation learning
is faster than optimal learning, and longer horizons provide more rapid convergence
to the REE.

5 Transition dynamics of finite horizon learning

The behavioral assumption of N-step Euler equation learning implies strong negative
feedback for large N: this is evidenced by the failure of N-step Euler equation learning
to exist in the limit (as N → ∞) and by the exploding behavior of DTH in Figure 1.
Intuitively, an agent forecasting above average aggregate consumption for the next N
periods (corresponding to the belief H > 0) will subsequently forecast low aggregate
capital stocks and high real interest rates for these periods as well; high real interest
rate forecasts raise the relative price of consumption today and the agent responds
by lowering cit. A long planning horizon exacerbates this effect.

The same thought experiment leads to a different intuition for N-step optimal
learning. By incorporating the budget constraint into the optimal decision, our use of
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log utility washes the income/substitution effect of expected interest rate movements:
this may be seen in the expression for φ3(N). Interest rates still affect consumption
through a wealth effect. Thus an expected decrease in future capital stock, leading to
an increase in expected interest rates, reduces the present value of future wage earn-
ings, and thus puts downward pressure on consumption. This effect is compounded
by the decrease in expected future wage resulting from the expected decrease in future
capital stock. However, both of these effects are mitigated by the expectation that
future savings falls: a reduction in expected future savings leads to an increase in
consumption today; while this may seem counter-intuitive, remember that the N-step
optimal learner is, in effect, solving an N-period planning problem, taking expected
future savings as given; a reduction in expected future savings relaxes the agent’s
constraint and so allows for increased consumption today.

While both learning implementations imply negative feedback for large N , the
magnitude of the implied feedback is smaller for N-step optimal learning. Also, given
a particular learning implementation – either N-step optimal learning or N-step Euler
equation learning – the feedback varies dramatically across planning horizon. These
observations suggest that the transition dynamics – the time path of beliefs as con-
vergence to the REE obtains – should vary across both planning horizon and learning
implementation. To investigate these possibilities we analyze the different learning
algorithms’ “mean dynamics”.

5.1 Mean dynamics

Let Θ = (H,A)′ capture a representative agent’s beliefs. The mean dynamics are
given by

Θ̇ = S−1M(Θ)(T (Θ) − Θ)

Ṡ = M(Θ) − S,

where S is the sample second moment matrix of the regressors (1, kt) andM is the cor-
responding population second moment matrix assuming fixed beliefs Θ. Intuitively,
the mean dynamics provide an approximation to the expected time-path of beliefs
given that agents are using recursive least squares to estimate their forecasting model:
for more details, see Evans and Honkapohja (2001).8

8Because our model is non-stochastic, the matrix M , which captures the asymptotic second
moment of the regressors under fixed beliefs in the recursive least squares updating algorithm, must
be modified. We follow the ridge regression literature and perturb M(Θ) by adding εI. For the
graphs in this paper, ε = .05. The qualitative features of the analysis are not affected by small
changes in ε.
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Figure 2: Time-path for beliefs under Euler equation learning: A is solid curve and
H is dashed curve.
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Figure 2 plots the time-path for beliefs implied by the mean dynamics under N-
step Euler equation learning, and given the initial condition A = .357, H = .99.9 The
time-paths for A are solid curves and those for H are dashed. The REE value for A is
approximately .6. We note that the beliefs on capital, A, oscillates as it approaches its
REE value; also, while convergence is indicated for all planning horizons, convergence
is much faster for larger N .

In Figure 3, we plot the time-path for beliefs implied by the mean dynamics
under N-step optimal learning, and for the same initial conditions. As with N-step
Euler equation learning, a longer planning horizon results in faster convergence. Also,
the oscillatory nature of the time-paths under N-step optimal equation learning are
quite similar to N-step Euler equation learning; however, under N-step Euler equa-
tion learning, these oscillations largely disappear, whereas they remain for optimal
learners.

9The matrix S must also be given an initial condition. In a stochastic model, the natural initial
condition for this matrix is the regressor’s covariance; however, since our model is non-stochastic,
our initial condition is necessarily ad-hoc. While the time-paths do depend quantitatively on the
initial condition chosen, we found that the qualitative results to be quite robust.
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Figure 3: Time-path for beliefs under optimal equation learning: A is solid curve and
H is dashed curve.
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5.2 Phase plots

The possibility of intriguing oscillatory dynamics is not evident from the T-maps or
from the E-stability differential system; and, in fact, the oscillations are caused not by
the T-maps themselves, but rather by the interaction of the beliefs with the covariance
matrix S. To expose this dichotomy more effectively, consider Figure 4 where we
plot, in phase space, the time-path of beliefs under Euler equation learning: see solid
curves in the various panels. However, we plot this time-path against the vector field
capturing the E-stability differential equation (7). The vector field indicates that the
REE is a sink; however, the mean dynamics impart a path for beliefs that, at times,
moves away from the REE values, against the direction dictated by the E-stability
vector field. The figure indicates the potential importance of using mean dynamics
rather than the E-stability differential system to study transition paths.
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Figure 4: Time-path for beliefs in phase space under Euler equation learning: vector
field given by E-stability differential equation.
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5.3 Discussion

The mean dynamics capture the expected transition to the model’s rational expec-
tations equilibrium, and the evidence presented in Figures 2 – 4 above indicates
that the transition depends on both planning horizon and learning mechanism: short
horizon learning models indicate slower convergence and the potential for oscillations
in beliefs; these oscillations persist under optimal learning as the planning horizon
increases, but under Euler equation learning, the strength of the feedback at long
planning horizon dominates and washes out the oscillations.

The distinctive transitional behavior indicated by planning horizon and learning
mechanism suggests empirical implications. Coupling finite horizon learning with
constant-gain recursive updating, and then embedding these mechanisms in more re-
alistic DSGE models – for example, real business cycle models or New-Keynesian
models – may improve fit, better capture internal propagation, and allow for reduced
reliance on exogenous shocks with unrealistic, or at least unmodeled, time-series prop-
erties.
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6 Conclusion

To the extent that DSGE and finance models that embrace the rational expecta-
tions hypothesis are unable to account for co-movements in the data, alternative
expectation formation mechanisms are clearly a natural focus; and, in the 30 years
since birth of the literature, adaptive learning has become rationality’s benchmark
replacement. Originally, adaptive learning and the corresponding stability analysis
was applied either to ad-hoc models or models with repeated, finite horizons; how-
ever, micro-founded infinite horizon DSGE models provided a distinct challenge. On
the one hand, Euler-equation learning has been offered as a simple behavioral rule
providing a boundedly rational justification for examining adaptive learning within
one-step ahead reduced-form systems. On the other hand, the principal alternative
proposal has been to assume that agents solve their infinite-horizon dynamic opti-
mization problem each period, using current estimates of the forecasting model to
form expectations infinitely far into the future. In contrast, introspection and com-
mon sense suggests that boundedly rational decision-making is usually based on a
finite horizon, the length of which depends on many factors.

This paper has explored a generalization of Euler-equation learning that extends
the planning horizon to any finite number of periods. We have also formulated a new
type of mechanism – optimal learning – designed explicitly to provide a finite-planning
horizon analogue to infinite-horizon learning. The asymptotic stability implications
of finite-horizon learning within the Ramsey model are simple to summarize: all roads
lead to rationality. This is good news to those researchers hoping to justify the rational
expectations hypothesis and to those researchers who have relied on Euler-equation
learning, or reduced-form learning, to conduct their stability analysis.

Equally important to the stability analysis, though, are the results on transitional
dynamics – results which, under constant-gain learning, would carry over to persistent
learning dynamics. Our results indicate that agents’ choices are strongly affected by
planning horizon. If these results hold in more realistic models then researchers
interested in embedding learning agents into fitted DSGE models should consider the
planning horizon as a key parameter that needs to be estimated.
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