Measuring the Effects of Federal Reserve Forward Guidance and Asset Purchases on Financial Markets

Eric T. Swanson
University of California, Irvine

NBER Summer Institute
Cambridge, MA
July 14, 2016
In December 2008, U.S. Federal Reserve/FOMC lowered federal funds rate essentially to 0

U.S. economy was still in a severe recession
In December 2008, U.S. Federal Reserve/FOMC lowered federal funds rate essentially to 0

U.S. economy was still in a severe recession

FOMC began to pursue “unconventional monetary policy” to try to lower longer-term interest rates and stimulate the economy:

- **Forward guidance**: information about the future path of the federal funds rate
- **Large-scale asset purchases (LSAPs)**: purchases of hundreds of billions of $ of longer-term Treasury and mortgage-backed securities
Background
The Committee will maintain the target range for the federal funds rate at 0 to 1/4 percent and anticipates that economic conditions are likely to warrant exceptionally low levels of the federal funds rate for an extended period. To provide greater support to mortgage lending and housing markets, the Committee decided today to increase the size of the Federal Reserve’s balance sheet further by purchasing up to an additional $750 billion of agency mortgage-backed securities, bringing its total purchases of these securities to up to $1.25 trillion this year, and to increase its purchases of agency debt this year by up to $100 billion to a total of up to $200 billion. Moreover, to help improve conditions in private credit markets, the Committee decided to purchase up to $300 billion of longer-term Treasury securities over the next six months.
<table>
<thead>
<tr>
<th>Date</th>
<th>Announcement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar. 18, 2009</td>
<td>FOMC announces it expects to keep the federal funds rate between 0 and 25 basis points (bp) for “an extended period”, and that it will purchase $750B of mortgage-backed securities, $300B of longer-term Treasuries, and $100B of agency debt (a.k.a. “QE1”)</td>
</tr>
<tr>
<td>Nov. 3, 2010</td>
<td>FOMC announces it will purchase an additional $600B of longer-term Treasuries (a.k.a. “QE2”)</td>
</tr>
<tr>
<td>Aug. 9, 2011</td>
<td>FOMC announces it expects to keep the federal funds rate between 0 and 25 bp “at least through mid-2013”</td>
</tr>
<tr>
<td>Sep. 21, 2011</td>
<td>FOMC announces it will sell $400B of short-term Treasuries and use the proceeds to buy $400B of long-term Treasuries (a.k.a. “Operation Twist”)</td>
</tr>
<tr>
<td>Jan. 25, 2012</td>
<td>FOMC announces it expects to keep the federal funds rate between 0 and 25 bp “at least through late 2014”</td>
</tr>
</tbody>
</table>
Unconventional Monetary Policy Announcements

Sep. 13, 2012 FOMC announces it expects to keep the federal funds rate between 0 and 25 bp “at least through mid-2015”, and that it will purchase $40B of mortgage-backed securities per month for the indefinite future.

Dec. 12, 2012 FOMC announces it will purchase $45B of longer-term Treasuries per month for the indefinite future, and that it expects to keep the federal funds rate between 0 and 25 bp for at least as long as unemployment remains above 6.5 percent and inflation expectations remain subdued.

Dec. 18, 2013 FOMC announces it will start to taper its purchases of longer-term Treasuries and mortgage-backed securities to paces of $40B and $35B per month, respectively.

Dec. 17, 2014 FOMC announces that “it can be patient in beginning to normalize the stance of monetary policy.”
Motivation

Important Questions:

1. Is unconventional monetary policy effective?
Motivation

Important Questions:

1. Is unconventional monetary policy effective?
2. Which type—forward guidance or LSAPs—is more effective?
Motivation

Important Questions:

1. Is unconventional monetary policy effective?
2. Which type—forward guidance or LSAPs—is more effective?
3. Are the effects persistent?
Motivation

Important Questions:

1. Is unconventional monetary policy effective?
2. Which type—forward guidance or LSAPs—is more effective?
3. Are the effects persistent?
4. Should central banks increase their inflation target to avoid hitting the zero lower bound in the first place?
Motivation

Important Questions:

1. Is unconventional monetary policy effective?
2. Which type—forward guidance or LSAPs—is more effective?
3. Are the effects persistent?
4. Should central banks increase their inflation target to avoid hitting the zero lower bound in the first place?

Problem: It’s difficult to distinguish FG from LSAPs in the data:

- Many FOMC announcements contain elements of both forward guidance and LSAPs
Motivation

Important Questions:
1. Is unconventional monetary policy effective?
2. Which type—forward guidance or LSAPs—is more effective?
3. Are the effects persistent?
4. Should central banks increase their inflation target to avoid hitting the zero lower bound in the first place?

Problem: It’s difficult to distinguish FG from LSAPs in the data:
- Many FOMC announcements contain elements of both forward guidance and LSAPs
- One way LSAPs can affect the economy is by signaling FOMC commitment to a future path for the federal funds rate
Motivation

Important Questions:

1. Is unconventional monetary policy effective?
2. Which type—forward guidance or LSAPs—is more effective?
3. Are the effects persistent?
4. Should central banks increase their inflation target to avoid hitting the zero lower bound in the first place?

Problem: It’s difficult to distinguish FG from LSAPs in the data:

- Many FOMC announcements contain elements of both forward guidance and LSAPs
- One way LSAPs can affect the economy is by signaling FOMC commitment to a future path for the federal funds rate
- Only surprise component of announcement should affect asset prices, but we don’t have good data on what markets expected
<table>
<thead>
<tr>
<th>Methods</th>
<th>Results</th>
<th>Persistence</th>
<th>Uncertainty</th>
<th>Conclusions</th>
</tr>
</thead>
</table>

Summary of This Paper

1. Adapt and extend the methods of Gürkaynak, Sack, and Swanson (2005) to **separately identify** the forward guidance and **LSAP** components of every FOMC announcement from January 2009 to October 2015.

Use high-frequency regressions around those FOMC announcements to estimate effects of each type of unconventional monetary policy on asset prices. Also look at the persistence of these effects, the effects of these policies on uncertainty, etc.
Summary of This Paper

1. Adapt and extend the methods of Gürkaynak, Sack, and Swanson (2005) to **separately identify** the forward guidance and LSAP components of every FOMC announcement from January 2009 to October 2015.

2. Use high-frequency regressions around those FOMC announcements to estimate effects of **each type** of unconventional monetary policy on asset prices.
Adapt and extend the methods of Gürkaynak, Sack, and Swanson (2005) to separately identify the forward guidance and LSAP components of every FOMC announcement from January 2009 to October 2015.

Use high-frequency regressions around those FOMC announcements to estimate effects of each type of unconventional monetary policy on asset prices.

Also look at the persistence of these effects, the effects of these policies on uncertainty, etc.
Idea: FOMC announcements (before the zero lower bound) contain at least two dimensions:
Gürkaynak, Sack, and Swanson (2005)

Idea: FOMC announcements (before the zero lower bound) contain at least two dimensions:

1. Change in the current federal funds rate target
Gürkaynak, Sack, and Swanson (2005)

Idea: FOMC announcements (before the zero lower bound) contain at least two dimensions:

1. Change in the current federal funds rate target
2. Forward guidance from FOMC statements
Gürkaynak, Sack, and Swanson (2005)

Idea: FOMC announcements (before the zero lower bound) contain at least two dimensions:

1. Change in the current federal funds rate target
2. Forward guidance from FOMC statements

Consider FOMC announcements from July 1991 to December 2004 (there are $T = 120$ of them, or $T = 158$ from July 1991 to Dec. 2008)
Gürkaynak, Sack, and Swanson (2005)

Idea: FOMC announcements (before the zero lower bound) contain at least two dimensions:

1. Change in the current federal funds rate target
2. Forward guidance from FOMC statements

Consider FOMC announcements from July 1991 to December 2004 (there are $T = 120$ of them, or $T = 158$ from July 1991 to Dec. 2008)

Look at 30-minute response of N different assets to those announcements
Gürkaynak, Sack, and Swanson (2005)

Idea: FOMC announcements (before the zero lower bound) contain at least **two** dimensions:

1. Change in the current federal funds rate target
2. Forward guidance from FOMC statements

Consider FOMC announcements from July 1991 to December 2004 (there are $T = 120$ of them, or $T = 158$ from July 1991 to Dec. 2008)

Look at 30-minute response of N different assets to those announcements

Collect 30-minute asset price responses into a $T \times N$ matrix of asset price responses X
GSS (2005): Testing the Rank of the Matrix X

GSS tested the rank of X over 1990–2004 period using matrix rank test of Cragg and Donald (1997):

$$\begin{align*}
X_{T \times N} &= F_{T \times n} \Lambda_{n \times N} + \epsilon_{T \times N} \\
\text{Clearly rejected } H_0 \text{ of } n = 0 \text{ (white noise responses)} \\
\text{Clearly rejected } H_0 \text{ of } n = 1 \text{ (one-dimensional responses)} \\
\text{Did not reject } H_0 \text{ of } n = 2 \text{ factors} \\
\text{Results consistent with idea that there were two dimensions of monetary policy during this period: changes in the current federal funds rate target and changes in forward guidance.}
\end{align*}$$
GSS (2005): Testing the Rank of the Matrix X

GSS tested the rank of X over 1990–2004 period using matrix rank test of Cragg and Donald (1997):

How well can data X be fit by a matrix of rank n plus white noise?

$$X_{T \times N} = F_{T \times n} \Lambda_{n \times N} + \varepsilon_{T \times N}$$

Clearly rejected H_0 of $n = 0$ (white noise responses)

Clearly rejected H_0 of $n = 1$ (one-dimensional responses)

Did not reject H_0 of $n = 2$ factors

Results consistent with idea that there were two dimensions of monetary policy during this period: changes in the current federal funds rate target and changes in forward guidance.
GSS (2005): Testing the Rank of the Matrix X

GSS tested the rank of X over 1990–2004 period using matrix rank test of Cragg and Donald (1997):

How well can data X be fit by a matrix of rank n plus white noise?

$$\underbrace{X}_{T \times N} = \underbrace{F}_{T \times n} \left(\underbrace{\Lambda}_{n \times N} \right) + \underbrace{\varepsilon}_{T \times N}$$

- Clearly rejected H_0 of $n = 0$ (white noise responses)
GSS (2005): Testing the Rank of the Matrix X

GSS tested the rank of X over 1990–2004 period using matrix rank test of Cragg and Donald (1997):

How well can data X be fit by a matrix of rank n plus white noise?

$$
\begin{align*}
\begin{bmatrix} X \end{bmatrix}_{T \times N} &= \begin{bmatrix} F \end{bmatrix}_{T \times n} \begin{bmatrix} \Lambda \end{bmatrix}_{n \times N} + \begin{bmatrix} \varepsilon \end{bmatrix}_{T \times N}
\end{align*}
$$

- Clearly rejected H_0 of $n = 0$ (white noise responses)
- Clearly rejected H_0 of $n = 1$ (one-dimensional responses)
GSS (2005): Testing the Rank of the Matrix X

GSS tested the rank of X over 1990–2004 period using matrix rank test of Cragg and Donald (1997):

How well can data X be fit by a matrix of rank n plus white noise?

$$X_{T \times N} = F_{T \times n} \Lambda_{n \times N} + \varepsilon_{T \times N}$$

- Clearly rejected H_0 of $n = 0$ (white noise responses)
- Clearly rejected H_0 of $n = 1$ (one-dimensional responses)
- Did not reject H_0 of $n = 2$ factors

Results consistent with idea that there were two dimensions of monetary policy during this period: changes in the current federal funds rate target and changes in forward guidance.
GSS (2005): Testing the Rank of the Matrix X

GSS tested the rank of X over 1990–2004 period using matrix rank test of Cragg and Donald (1997):

How well can data X be fit by a matrix of rank n plus white noise?

$$
\underbrace{X}_{T \times N} = \underbrace{F}_{T \times n} \underbrace{\Lambda}_{n \times N} + \underbrace{\varepsilon}_{T \times N}
$$

- Clearly rejected H_0 of $n = 0$ (white noise responses)
- Clearly rejected H_0 of $n = 1$ (one-dimensional responses)
- Did not reject H_0 of $n = 2$ factors

Results consistent with idea that there were two dimensions of monetary policy during this period: changes in the current federal funds rate target and changes in forward guidance.
GSS (2005): Two-Factor Model

\[X_{T \times N} = F_{T \times 2} \Lambda_{2 \times N} + \varepsilon_{T \times N} \]
GSS (2005): Two-Factor Model

\[X_{T \times N} = F_{T \times 2} \Lambda_{2 \times N} + \varepsilon_{T \times N} \]

Estimate factors F by principal components

This chooses the 2 columns of F so as to explain the greatest share of variation in X
GSS (2005): Two-Factor Model

\[X_{T \times N} = F_{T \times 2} \Lambda_{2 \times N} + \varepsilon_{T \times N} \]

Estimate factors \(F \) by principal components

This chooses the 2 columns of \(F \) so as to explain the greatest share of variation in \(X \)

Problem: \(F \) is only a statistical decomposition (no structural interpretation)
GSS (2005): Two-Factor Model

\[X_{T \times N} = F_{T \times 2} \Lambda_{2 \times N} + \varepsilon_{T \times N} \]

Estimate factors \(F \) by principal components

This chooses the 2 columns of \(F \) so as to explain the greatest share of variation in \(X \)

Problem: \(F \) is only a statistical decomposition (no structural interpretation)

For example:

- Let \(U \) be any \(2 \times 2 \) orthogonal matrix \((U'U = I)\)
- Let \(\tilde{F} \equiv FU' \), \(\tilde{\Lambda} \equiv U\Lambda \)
- Then \(F\Lambda = \tilde{F}\tilde{\Lambda} \), so

\[X = \tilde{F}\tilde{\Lambda} + \varepsilon \]
GSS (2005): Rotation and Identification

Idea: Choose a rotation matrix U to give the rotated factors \tilde{F} a structural interpretation.
GSS (2005): Rotation and Identification

Idea: Choose a rotation matrix U to give the rotated factors \tilde{F} a structural interpretation

In particular, set the second column of \tilde{F} to have no effect on the current federal funds rate. Then:
GSS (2005): Rotation and Identification

Idea: Choose a rotation matrix U to give the rotated factors \tilde{F} a structural interpretation

In particular, set the second column of \tilde{F} to have no effect on the current federal funds rate. Then:

- First column of \tilde{F} corresponds to surprise change in federal funds rate
GSS (2005): Rotation and Identification

Idea: Choose a rotation matrix U to give the rotated factors \tilde{F} a structural interpretation

In particular, set the second column of \tilde{F} to have no effect on the current federal funds rate. Then:

- First column of \tilde{F} corresponds to surprise change in federal funds rate
- Second column of \tilde{F} is all other news in the announcement that moves asset prices X but does not affect the current federal funds rate
GSS (2005): Rotation and Identification

Idea: Choose a rotation matrix U to give the rotated factors \tilde{F} a structural interpretation

In particular, set the second column of \tilde{F} to have no effect on the current federal funds rate. Then:

- First column of \tilde{F} corresponds to surprise change in federal funds rate
- Second column of \tilde{F} is all other news in the announcement that moves asset prices X but does not affect the current federal funds rate
- So the second column (factor) is essentially forward guidance
GSS (2005): Rotation and Identification

Idea: Choose a rotation matrix U to give the rotated factors \tilde{F} a structural interpretation

In particular, set the second column of \tilde{F} to have no effect on the current federal funds rate. Then:

- First column of \tilde{F} corresponds to surprise change in federal funds rate
- Second column of \tilde{F} is all other news in the announcement that moves asset prices X but does not affect the current federal funds rate
- So the second column (factor) is essentially forward guidance

This identifies factors \tilde{F} and loadings $\tilde{\Lambda}$ that have the structural interpretation we want
GSS: Effects of Funds Rate and Forward Guidance

Check the results of this identification to see if they make sense:
GSS: Effects of Funds Rate and Forward Guidance

Check the results of this identification to see if they make sense:

<table>
<thead>
<tr>
<th></th>
<th>FFR</th>
<th>ED2</th>
<th>ED3</th>
<th>ED4</th>
<th>2y Tr.</th>
<th>5y Tr.</th>
<th>10y Tr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in Fed Funds Rate</td>
<td>8.55</td>
<td>5.88</td>
<td>5.59</td>
<td>4.81</td>
<td>3.79</td>
<td>1.91</td>
<td>0.68</td>
</tr>
<tr>
<td>Change in Fwd Guidance</td>
<td>0.00</td>
<td>4.23</td>
<td>5.42</td>
<td>6.12</td>
<td>5.08</td>
<td>5.20</td>
<td>4.02</td>
</tr>
</tbody>
</table>

July 1991–Dec. 2008:
GSS: Effects of Funds Rate and Forward Guidance

Check the results of this identification to see if they make sense:

<table>
<thead>
<tr>
<th></th>
<th>FFR</th>
<th>ED2</th>
<th>ED3</th>
<th>ED4</th>
<th>2y Tr.</th>
<th>5y Tr.</th>
<th>10y Tr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1991–Dec. 2008: change in fed funds rate</td>
<td>8.55</td>
<td>5.88</td>
<td>5.59</td>
<td>4.81</td>
<td>3.79</td>
<td>1.91</td>
<td>0.68</td>
</tr>
<tr>
<td>change in fwd guidance</td>
<td>0.00</td>
<td>4.23</td>
<td>5.42</td>
<td>6.12</td>
<td>5.08</td>
<td>5.20</td>
<td>4.02</td>
</tr>
</tbody>
</table>
GSS: Effects of Funds Rate and Forward Guidance

Check the results of this identification to see if they make sense:

<table>
<thead>
<tr>
<th></th>
<th>FFR</th>
<th>ED2</th>
<th>ED3</th>
<th>ED4</th>
<th>2y Tr.</th>
<th>5y Tr.</th>
<th>10y Tr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1991–Dec. 2008:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>change in fed funds rate</td>
<td>8.55</td>
<td>5.88</td>
<td>5.59</td>
<td>4.81</td>
<td>3.79</td>
<td>1.91</td>
<td>0.68</td>
</tr>
<tr>
<td>change in fwd guidance</td>
<td>0.00</td>
<td>4.23</td>
<td>5.42</td>
<td>6.12</td>
<td>5.08</td>
<td>5.20</td>
<td>4.02</td>
</tr>
</tbody>
</table>
GSS: Effects of Funds Rate and Forward Guidance

Check the results of this identification to see if they make sense:

<table>
<thead>
<tr>
<th></th>
<th>FFR</th>
<th>ED2</th>
<th>ED3</th>
<th>ED4</th>
<th>2y Tr.</th>
<th>5y Tr.</th>
<th>10y Tr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1991–Dec. 2008:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>change in fed funds rate</td>
<td>8.55</td>
<td>5.88</td>
<td>5.59</td>
<td>4.81</td>
<td>3.79</td>
<td>1.91</td>
<td>0.68</td>
</tr>
<tr>
<td>change in fwd guidance</td>
<td>0.00</td>
<td>4.23</td>
<td>5.42</td>
<td>6.12</td>
<td>5.08</td>
<td>5.20</td>
<td>4.02</td>
</tr>
</tbody>
</table>

- Effect of fed funds rate changes die out monotonically
GSS: Effects of Funds Rate and Forward Guidance

Check the results of this identification to see if they make sense:

<table>
<thead>
<tr>
<th></th>
<th>FFR</th>
<th>ED2</th>
<th>ED3</th>
<th>ED4</th>
<th>2y Tr.</th>
<th>5y Tr.</th>
<th>10y Tr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1991–Dec. 2008:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>change in fed funds rate</td>
<td>8.55</td>
<td>5.88</td>
<td>5.59</td>
<td>4.81</td>
<td>3.79</td>
<td>1.91</td>
<td>0.68</td>
</tr>
<tr>
<td>change in fwd guidance</td>
<td>0.00</td>
<td>4.23</td>
<td>5.42</td>
<td>6.12</td>
<td>5.08</td>
<td>5.20</td>
<td>4.02</td>
</tr>
</tbody>
</table>

- Effect of fed funds rate changes die out monotonically
- Effect of forward guidance is hump-shaped
GSS: Effects of Funds Rate and Forward Guidance

Check the results of this identification to see if they make sense:

<table>
<thead>
<tr>
<th></th>
<th>FFR</th>
<th>ED2</th>
<th>ED3</th>
<th>ED4</th>
<th>2y Tr.</th>
<th>5y Tr.</th>
<th>10y Tr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1991–Dec. 2008:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>change in fed funds rate</td>
<td>8.55</td>
<td>5.88</td>
<td>5.59</td>
<td>4.81</td>
<td>3.79</td>
<td>1.91</td>
<td>0.68</td>
</tr>
<tr>
<td>change in fwd guidance</td>
<td>0.00</td>
<td>4.23</td>
<td>5.42</td>
<td>6.12</td>
<td>5.08</td>
<td>5.20</td>
<td>4.02</td>
</tr>
</tbody>
</table>

- Effect of fed funds rate changes die out monotonically
- Effect of forward guidance is hump-shaped
- Forward guidance is much more important for longer-term yields
GSS: Effects of Funds Rate and Forward Guidance

Check the results of this identification to see if they make sense:

<table>
<thead>
<tr>
<th></th>
<th>FFR</th>
<th>ED2</th>
<th>ED3</th>
<th>ED4</th>
<th>2y Tr.</th>
<th>5y Tr.</th>
<th>10y Tr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1991–Dec. 2008:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>change in fed funds rate</td>
<td>8.55</td>
<td>5.88</td>
<td>5.59</td>
<td>4.81</td>
<td>3.79</td>
<td>1.91</td>
<td>0.68</td>
</tr>
<tr>
<td>change in fwd guidance</td>
<td>0.00</td>
<td>4.23</td>
<td>5.42</td>
<td>6.12</td>
<td>5.08</td>
<td>5.20</td>
<td>4.02</td>
</tr>
</tbody>
</table>

- Effect of fed funds rate changes die out monotonically
- Effect of forward guidance is hump-shaped
- Forward guidance is much more important for longer-term yields

GSS also show changes in forward guidance factor correspond to notable, market-moving FOMC statements
This Paper

Extend the GSS idea to the U.S. zero lower bound period, Jan. 2009 to Oct. 2015:
This Paper

Extend the GSS idea to the U.S. zero lower bound period, Jan. 2009 to Oct. 2015:

- 2 main dimensions of monetary policy during the ZLB period
This Paper

Extend the GSS idea to the U.S. zero lower bound period, Jan. 2009 to Oct. 2015:

- 2 main dimensions of monetary policy during the ZLB period
- but 2 dimensions are different: forward guidance and LSAPs
This Paper

Extend the GSS idea to the U.S. zero lower bound period, Jan. 2009 to Oct. 2015:

- 2 main dimensions of monetary policy during the ZLB period
- but 2 dimensions are different: *forward guidance* and *LSAPs*

As in GSS,

- Let T index FOMC announcements from Jan. 2009 to Oct. 2015 (There are $T = 55$ of them)
- Let N index different assets
- Collect 30-minute asset price responses in $T \times N$ matrix X
Test for the number of factors in X over Jan. 2009–Oct. 2015 sample:
This Paper

Test for the number of factors in X over Jan. 2009–Oct. 2015 sample:

p-value for H_0 of:

<table>
<thead>
<tr>
<th>included assets</th>
<th>rank 0</th>
<th>rank 1</th>
<th>rank 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED: 3Q, 4Q; Tr.: 2Y, 5Y, 10Y</td>
<td>.0001</td>
<td>.0178</td>
<td>.0440</td>
</tr>
<tr>
<td>ED: 3Q, 4Q; Tr.: 6M, 2Y, 5Y, 10Y</td>
<td>.0002</td>
<td>.0136</td>
<td>.1721</td>
</tr>
<tr>
<td>ED: 3Q, 4Q; Tr.: 6M, 2Y, 5Y, 10Y, 30Y</td>
<td>.0000</td>
<td>.0026</td>
<td>.0427</td>
</tr>
</tbody>
</table>

Clear evidence of at least 2 factors; Possible evidence of a third factor, but 3rd principal component explains only 2.5–6% of variation in X.

As in GSS, estimate factors F using principal components $X \subset T \times N = F \subset T \times 2 \Lambda \subset 2 \times N + \epsilon \subset T \times N$.
This Paper

Test for the number of factors in X over Jan. 2009–Oct. 2015 sample:

p-value for H_0 of:

<table>
<thead>
<tr>
<th>included assets</th>
<th>rank 0</th>
<th>rank 1</th>
<th>rank 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED: 3Q, 4Q; Tr.: 2Y, 5Y, 10Y</td>
<td>.0001</td>
<td>.0178</td>
<td>.0440</td>
</tr>
<tr>
<td>ED: 3Q, 4Q; Tr.: 6M, 2Y, 5Y, 10Y</td>
<td>.0002</td>
<td>.0136</td>
<td>.1721</td>
</tr>
<tr>
<td>ED: 3Q, 4Q; Tr.: 6M, 2Y, 5Y, 10Y, 30Y</td>
<td>.0000</td>
<td>.0026</td>
<td>.0427</td>
</tr>
</tbody>
</table>

Clear evidence of at least 2 factors;
Possible evidence of a third factor, but 3rd principal component explains only 2.5–6% of variation in X
This Paper

Test for the number of factors in X over Jan. 2009–Oct. 2015 sample:

p-value for H_0 of:

<table>
<thead>
<tr>
<th>included assets</th>
<th>rank 0</th>
<th>rank 1</th>
<th>rank 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED: 3Q, 4Q; Tr.: 2Y, 5Y, 10Y</td>
<td>.0001</td>
<td>.0178</td>
<td>.0440</td>
</tr>
<tr>
<td>ED: 3Q, 4Q; Tr.: 6M, 2Y, 5Y, 10Y</td>
<td>.0002</td>
<td>.0136</td>
<td>.1721</td>
</tr>
<tr>
<td>ED: 3Q, 4Q; Tr.: 6M, 2Y, 5Y, 10Y, 30Y</td>
<td>.0000</td>
<td>.0026</td>
<td>.0427</td>
</tr>
</tbody>
</table>

Clear evidence of at least 2 factors;

Possible evidence of a third factor, but 3rd principal component explains only 2.5–6% of variation in X

As in GSS, estimate factors F using principal components

$$
X_{T \times N} = F_{T \times 2} \Lambda_{2 \times N} + \varepsilon_{T \times N}
$$
This Paper: Rotation and Identification

\(F \) is only a statistical decomposition (no structural interpretation)
This Paper: Rotation and Identification

F is only a statistical decomposition (no structural interpretation)

Search for a rotation matrix U that makes first column of $\tilde{F} \equiv FU'$ look like forward guidance
This Paper: Rotation and Identification

\(F \) is only a statistical decomposition (no structural interpretation)

Search for a rotation matrix \(U \) that makes first column of \(\tilde{F} \equiv FU' \) look like forward guidance

Identifying assumption: effects of forward guidance on asset prices **after** Dec. 2008 look like the effects of forward guidance on asset prices **before** Dec. 2008
This Paper: Rotation and Identification

F is only a statistical decomposition (no structural interpretation)

Search for a rotation matrix U that makes first column of $\tilde{F} \equiv FU'$ look like forward guidance

Identifying assumption: effects of forward guidance on asset prices **after** Dec. 2008 look like the effects of forward guidance on asset prices **before** Dec. 2008

Choose rotation matrix U so that effects of first column of \tilde{F} post-2008 look like estimated effects of forward guidance factor pre-2008 (estimated previously)
This Paper: Rotation and Identification

\(F \) is only a statistical decomposition (no structural interpretation)

Search for a rotation matrix \(U \) that makes first column of \(\tilde{F} \equiv FU' \) look like **forward guidance**

Identifying assumption: effects of forward guidance on asset prices **after** Dec. 2008 look like the effects of forward guidance on asset prices **before** Dec. 2008

- Choose rotation matrix \(U \) so that effects of first column of \(\tilde{F} \) post-2008 look like estimated effects of forward guidance factor pre-2008 (estimated previously)

- Interpret first column of \(\tilde{F} \) as **forward guidance**
This Paper: Rotation and Identification

F is only a statistical decomposition (no structural interpretation)

Search for a rotation matrix U that makes first column of $\tilde{F} \equiv FU'$ look like forward guidance

Identifying assumption: effects of forward guidance on asset prices after Dec. 2008 look like the effects of forward guidance on asset prices before Dec. 2008

- Choose rotation matrix U so that effects of first column of \tilde{F} post-2008 look like estimated effects of forward guidance factor pre-2008 (estimated previously)
- Interpret first column of \tilde{F} as forward guidance
- Second column of \tilde{F} is all other aspects of FOMC statements that systematically moved asset prices during the ZLB period
- Interpret second column of \tilde{F} as LSAPs
Estimated Effects of Forward Guidance and LSAPs

<table>
<thead>
<tr>
<th></th>
<th>FFR</th>
<th>ED2</th>
<th>ED3</th>
<th>ED4</th>
<th>2y Tr.</th>
<th>5y Tr.</th>
<th>10y Tr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1991–Dec. 2008:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>change in fed funds rate</td>
<td>8.58</td>
<td>5.90</td>
<td>5.61</td>
<td>4.82</td>
<td>3.81</td>
<td>1.93</td>
<td>0.68</td>
</tr>
<tr>
<td>change in fwd guidance</td>
<td>0.00</td>
<td>4.20</td>
<td>5.39</td>
<td>6.09</td>
<td>5.10</td>
<td>5.21</td>
<td>4.03</td>
</tr>
</tbody>
</table>
Estimated Effects of Forward Guidance and LSAPs

<table>
<thead>
<tr>
<th></th>
<th>FFR</th>
<th>ED2</th>
<th>ED3</th>
<th>ED4</th>
<th>2y Tr.</th>
<th>5y Tr.</th>
<th>10y Tr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1991–Dec. 2008:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>change in fed funds rate</td>
<td>8.58</td>
<td>5.90</td>
<td>5.61</td>
<td>4.82</td>
<td>3.81</td>
<td>1.93</td>
<td>0.68</td>
</tr>
<tr>
<td>change in fwd guidance</td>
<td>0.00</td>
<td>4.20</td>
<td>5.39</td>
<td>6.09</td>
<td>5.10</td>
<td>5.21</td>
<td>4.03</td>
</tr>
<tr>
<td>Jan. 2009–Oct. 2015:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>change in fwd guidance</td>
<td>—</td>
<td>—</td>
<td>3.53</td>
<td>4.46</td>
<td>3.78</td>
<td>4.59</td>
<td>2.62</td>
</tr>
<tr>
<td>change in LSAPs</td>
<td>—</td>
<td>—</td>
<td>−0.76</td>
<td>−1.02</td>
<td>−1.29</td>
<td>−4.79</td>
<td>−7.32</td>
</tr>
</tbody>
</table>

Effect of forward guidance is hump-shaped

Effect of LSAPs increases with maturity

LSAPs are much more important for the longest-maturity yields
Estimated Effects of Forward Guidance and LSAPs

<table>
<thead>
<tr>
<th></th>
<th>FFR</th>
<th>ED2</th>
<th>ED3</th>
<th>ED4</th>
<th>2y Tr.</th>
<th>5y Tr.</th>
<th>10y Tr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1991–Dec. 2008:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>change in fed funds rate</td>
<td>8.58</td>
<td>5.90</td>
<td>5.61</td>
<td>4.82</td>
<td>3.81</td>
<td>1.93</td>
<td>0.68</td>
</tr>
<tr>
<td>change in fwd guidance</td>
<td>0.00</td>
<td>4.20</td>
<td>5.39</td>
<td>6.09</td>
<td>5.10</td>
<td>5.21</td>
<td>4.03</td>
</tr>
<tr>
<td>Jan. 2009–Oct. 2015:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>change in fwd guidance</td>
<td>—</td>
<td>—</td>
<td>3.53</td>
<td>4.46</td>
<td>3.78</td>
<td>4.59</td>
<td>2.62</td>
</tr>
<tr>
<td>change in LSAPs</td>
<td>—</td>
<td>—</td>
<td>−0.76</td>
<td>−1.02</td>
<td>−1.29</td>
<td>−4.79</td>
<td>−7.32</td>
</tr>
</tbody>
</table>
Estimated Effects of Forward Guidance and LSAPs

<table>
<thead>
<tr>
<th></th>
<th>FFR</th>
<th>ED2</th>
<th>ED3</th>
<th>ED4</th>
<th>2y Tr.</th>
<th>5y Tr.</th>
<th>10y Tr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1991–Dec. 2008:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>change in fed funds rate</td>
<td>8.58</td>
<td>5.90</td>
<td>5.61</td>
<td>4.82</td>
<td>3.81</td>
<td>1.93</td>
<td>0.68</td>
</tr>
<tr>
<td>change in fwd guidance</td>
<td>0.00</td>
<td>4.20</td>
<td>5.39</td>
<td>6.09</td>
<td>5.10</td>
<td>5.21</td>
<td>4.03</td>
</tr>
<tr>
<td>Jan. 2009–Oct. 2015:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>change in fwd guidance</td>
<td>—</td>
<td>—</td>
<td>3.53</td>
<td>4.46</td>
<td>3.78</td>
<td>4.59</td>
<td>2.62</td>
</tr>
<tr>
<td>change in LSAPs</td>
<td>—</td>
<td>—</td>
<td>−0.76</td>
<td>−1.02</td>
<td>−1.29</td>
<td>−4.79</td>
<td>−7.32</td>
</tr>
<tr>
<td>memo:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>row 3, rescaled</td>
<td>—</td>
<td>—</td>
<td>4.74</td>
<td>5.98</td>
<td>5.07</td>
<td>6.14</td>
<td>3.51</td>
</tr>
</tbody>
</table>
Estimated Effects of Forward Guidance and LSAPs

<table>
<thead>
<tr>
<th></th>
<th>FFR</th>
<th>ED2</th>
<th>ED3</th>
<th>ED4</th>
<th>2y Tr.</th>
<th>5y Tr.</th>
<th>10y Tr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1991–Dec. 2008:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>change in fed funds rate</td>
<td>8.58</td>
<td>5.90</td>
<td>5.61</td>
<td>4.82</td>
<td>3.81</td>
<td>1.93</td>
<td>0.68</td>
</tr>
<tr>
<td>change in fwd guidance</td>
<td>0.00</td>
<td>4.20</td>
<td>5.39</td>
<td>6.09</td>
<td>5.10</td>
<td>5.21</td>
<td>4.03</td>
</tr>
<tr>
<td>Jan. 2009–Oct. 2015:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>change in fwd guidance</td>
<td>—</td>
<td>—</td>
<td>3.53</td>
<td>4.46</td>
<td>3.78</td>
<td>4.59</td>
<td>2.62</td>
</tr>
<tr>
<td>change in LSAPs</td>
<td>—</td>
<td>—</td>
<td>−0.76</td>
<td>−1.02</td>
<td>−1.29</td>
<td>−4.79</td>
<td>−7.32</td>
</tr>
<tr>
<td>memo:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>row 3, rescaled</td>
<td>—</td>
<td>—</td>
<td>4.74</td>
<td>5.98</td>
<td>5.07</td>
<td>6.14</td>
<td>3.51</td>
</tr>
</tbody>
</table>
Estimated Effects of Forward Guidance and LSAPs

<table>
<thead>
<tr>
<th></th>
<th>FFR</th>
<th>ED2</th>
<th>ED3</th>
<th>ED4</th>
<th>2y Tr.</th>
<th>5y Tr.</th>
<th>10y Tr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1991–Dec. 2008:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>change in fed funds rate</td>
<td>8.58</td>
<td>5.90</td>
<td>5.61</td>
<td>4.82</td>
<td>3.81</td>
<td>1.93</td>
<td>0.68</td>
</tr>
<tr>
<td>change in fwd guidance</td>
<td>0.00</td>
<td>4.20</td>
<td>5.39</td>
<td>6.09</td>
<td>5.10</td>
<td>5.21</td>
<td>4.03</td>
</tr>
<tr>
<td>Jan. 2009–Oct. 2015:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>change in fwd guidance</td>
<td>—</td>
<td>—</td>
<td>3.53</td>
<td>4.46</td>
<td>3.78</td>
<td>4.59</td>
<td>2.62</td>
</tr>
<tr>
<td>change in LSAPs</td>
<td>—</td>
<td>—</td>
<td>−0.76</td>
<td>−1.02</td>
<td>−1.29</td>
<td>−4.79</td>
<td>−7.32</td>
</tr>
<tr>
<td>memo:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>row 3, rescaled</td>
<td>—</td>
<td>—</td>
<td>4.74</td>
<td>5.98</td>
<td>5.07</td>
<td>6.14</td>
<td>3.51</td>
</tr>
</tbody>
</table>
Estimated Effects of Forward Guidance and LSAPs

<table>
<thead>
<tr>
<th></th>
<th>FFR</th>
<th>ED2</th>
<th>ED3</th>
<th>ED4</th>
<th>2y Tr.</th>
<th>5y Tr.</th>
<th>10y Tr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 1991–Dec. 2008:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>change in fed funds rate</td>
<td>8.58</td>
<td>5.90</td>
<td>5.61</td>
<td>4.82</td>
<td>3.81</td>
<td>1.93</td>
<td>0.68</td>
</tr>
<tr>
<td>change in fwd guidance</td>
<td>0.00</td>
<td>4.20</td>
<td>5.39</td>
<td>6.09</td>
<td>5.10</td>
<td>5.21</td>
<td>4.03</td>
</tr>
<tr>
<td>Jan. 2009–Oct. 2015:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>change in fwd guidance</td>
<td>—</td>
<td>—</td>
<td>3.53</td>
<td>4.46</td>
<td>3.78</td>
<td>4.59</td>
<td>2.62</td>
</tr>
<tr>
<td>change in LSAPs</td>
<td>—</td>
<td>—</td>
<td>−0.76</td>
<td>−1.02</td>
<td>−1.29</td>
<td>−4.79</td>
<td>−7.32</td>
</tr>
<tr>
<td>memo:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>row 3, rescaled</td>
<td>—</td>
<td>—</td>
<td>4.74</td>
<td>5.98</td>
<td>5.07</td>
<td>6.14</td>
<td>3.51</td>
</tr>
</tbody>
</table>

- Effect of **forward guidance** is hump-shaped
- Effect of **LSAPs** increases with maturity
- LSAPs are much more important for the longest-maturity yields
Forward Guidance and LSAP Factors, 2009–2015

Estimated forward guidance factor
Estimated LSAP factor
Forward Guidance and LSAP Factors, 2009–2015

- Estimated forward guidance factor
- Estimated LSAP factor

"QE1"
Forward Guidance and LSAP Factors, 2009–2015

- "Operation Twist"
- "taper tantrum"
- FOMC decides not to taper
- "QE1"
- Estimated forward guidance factor
- Estimated LSAP factor
Forward Guidance and LSAP Factors, 2009–2015

- "Operation Twist"
- "taper tantrum"
- "mid-2013"

- FOMC decides not to taper
- FOMC extends LSAP end date from 2009Q4 to 2010Q1
- FOMC signals caution in raising rates

- Estimated forward guidance factor
- Estimated LSAP factor
Effects of Fwd Guidance, LSAPs on Treasury Yields

Run high-frequency regressions on FOMC announcement days:

\[\Delta y_t = \alpha + \beta \tilde{F}_t + \epsilon_t \]

from Jan. 2009–Oct. 2015
Effects of Fwd Guidance, LSAPs on Treasury Yields

Run high-frequency regressions on FOMC announcement days:

$$\Delta y_t = \alpha + \beta \tilde{F}_t + \varepsilon_t$$

from Jan. 2009–Oct. 2015

<table>
<thead>
<tr>
<th></th>
<th>6-month</th>
<th>2-year</th>
<th>5-year</th>
<th>10-year</th>
<th>30-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>change in fwd guidance</td>
<td>0.96***</td>
<td>3.78***</td>
<td>4.59***</td>
<td>2.62***</td>
<td>0.55</td>
</tr>
<tr>
<td>[t-stat.]</td>
<td>[3.46]</td>
<td>[18.66]</td>
<td>[20.47]</td>
<td>[12.80]</td>
<td>[0.90]</td>
</tr>
<tr>
<td>change in LSAPs</td>
<td>−0.11</td>
<td>−1.29***</td>
<td>−4.79***</td>
<td>−7.32***</td>
<td>−5.68***</td>
</tr>
<tr>
<td>[t-stat.]</td>
<td>[−1.37]</td>
<td>[−16.83]</td>
<td>[−8.92]</td>
<td>[−18.06]</td>
<td>[−12.00]</td>
</tr>
<tr>
<td>Regression R^2</td>
<td>.49</td>
<td>.94</td>
<td>.95</td>
<td>.97</td>
<td>.78</td>
</tr>
<tr>
<td># Observations</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
</tbody>
</table>
Effects of Fwd Guidance, LSAPs on Treasury Yields

Run high-frequency regressions on FOMC announcement days:

\[
\Delta y_t = \alpha + \beta \tilde{F}_t + \varepsilon_t
\]

from Jan. 2009–Oct. 2015

<table>
<thead>
<tr>
<th>change in fwd guidance</th>
<th>6-month</th>
<th>2-year</th>
<th>5-year</th>
<th>10-year</th>
<th>30-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>[t-stat.]</td>
<td>[3.46]</td>
<td>[18.66]</td>
<td>[20.47]</td>
<td>[12.80]</td>
<td>[0.90]</td>
</tr>
<tr>
<td>change in LSAPs</td>
<td>−[1.11]</td>
<td>−[1.29]</td>
<td>−[4.79]</td>
<td>−[7.32]</td>
<td>−[5.68]</td>
</tr>
<tr>
<td>[t-stat.]</td>
<td>[−1.37]</td>
<td>[−16.83]</td>
<td>[−8.92]</td>
<td>[−18.06]</td>
<td>[−12.00]</td>
</tr>
</tbody>
</table>

Regression \(R^2 \)
- 0.49
- 0.94
- 0.95
- 0.97
- 0.78

Observations
- 55
- 55
- 55
- 55
- 55
Results from regressions

\[\Delta \log x_t = \alpha + \beta \tilde{F}_t + \varepsilon_t \]
Effects on Stocks and Exchange Rates

Results from regressions

\[
\Delta \log x_t = \alpha + \beta \widetilde{F}_t + \varepsilon_t
\]

<table>
<thead>
<tr>
<th></th>
<th>S&P 500</th>
<th>$/euro</th>
<th>$/yen</th>
</tr>
</thead>
<tbody>
<tr>
<td>change in forward guidance</td>
<td>-0.19^{***}</td>
<td>-0.28^{***}</td>
<td>-0.19^{***}</td>
</tr>
<tr>
<td>[t-stat.]</td>
<td>$[-2.82]$</td>
<td>$[-6.96]$</td>
<td>$[-5.43]$</td>
</tr>
<tr>
<td>change in LSAPs</td>
<td>0.19^{***}</td>
<td>0.32^{***}</td>
<td>0.36^{***}</td>
</tr>
<tr>
<td>[t-stat.]</td>
<td>$[3.55]$</td>
<td>$[6.60]$</td>
<td>$[7.59]$</td>
</tr>
<tr>
<td>Regression R^2</td>
<td>.27</td>
<td>.68</td>
<td>.79</td>
</tr>
<tr>
<td># Observations</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
</tbody>
</table>
Effects on Corporate Bond Yields and Spreads

Results from regressions

\[\Delta y_t = \alpha + \beta \tilde{F}_t + \varepsilon_t \]
Effects on Corporate Bond Yields and Spreads

Results from regressions

\[\Delta y_t = \alpha + \beta \tilde{F}_t + \epsilon_t \]

<table>
<thead>
<tr>
<th>Change in forward guidance</th>
<th>Corporate Yields</th>
<th>Spreads</th>
</tr>
</thead>
<tbody>
<tr>
<td>change in forward guidance</td>
<td>0.71</td>
<td>–0.06</td>
</tr>
<tr>
<td>change in LSAPs</td>
<td>–4.57***</td>
<td>–5.05***</td>
</tr>
<tr>
<td>[t-stat.]</td>
<td>[–12.55]</td>
<td>[–8.45]</td>
</tr>
</tbody>
</table>

Regression \(R^2 \)

<table>
<thead>
<tr>
<th>Regression (R^2)</th>
<th>.44</th>
<th>.49</th>
<th>.54</th>
<th>.55</th>
</tr>
</thead>
<tbody>
<tr>
<td># Observations</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
</tbody>
</table>
Are the Effects of Fwd Guidance, LSAPs Persistent?

Interesting question whether one-day effects of forward guidance and LSAPs are persistent.

"Slow-moving capital" view (Duffie 2010; Fleckenstein, Longstaff, Lustig 2014):
many examples in finance of pricing anomalies that fade over time (from minutes to months)
takes time for potential arbitrageurs to reallocate capital

Wright (2012) estimates effects of unconventional monetary policy have half-life of 2–3 months

Run daily regressions forecasting h-day change in yields:

$$y_t + h = \alpha_h + \beta_h y_t + \gamma_h \tilde{F}_t + \epsilon_t(h)$$

$$y_t + h - y_t = \gamma_h \tilde{F}_t + \epsilon_t(h)$$
Are the Effects of Fwd Guidance, LSAPs Persistent?

Interesting question whether one-day effects of forward guidance and LSAPs are persistent
Are the Effects of Fwd Guidance, LSAPs Persistent?

Interesting question whether one-day effects of forward guidance and LSAPs are persistent

“Slow-moving capital” view (Duffie 2010; Fleckenstein, Longstaff, Lustig 2014):

- many examples in finance of pricing anomalies that fade over time (from minutes to months)
- takes time for potential arbitrageurs to reallocate capital

\[y_t + h = \alpha h + \beta h y_t + \gamma h \tilde{F}_t + \epsilon_t(h) \]
\[y_t + h - y_t = \gamma h \tilde{F}_t + \epsilon_t(h) \]
Are the Effects of Fwd Guidance, LSAPs Persistent?

Interesting question whether one-day effects of forward guidance and LSAPs are persistent

“Slow-moving capital” view (Duffie 2010; Fleckenstein, Longstaff, Lustig 2014):
- many examples in finance of pricing anomalies that fade over time (from minutes to months)
- takes time for potential arbitrageurs to reallocate capital

Wright (2012) estimates effects of unconventional monetary policy have half-life of 2–3 months
Are the Effects of Fwd Guidance, LSAPs Persistent?

Interesting question whether one-day effects of forward guidance and LSAPs are persistent

“Slow-moving capital” view (Duffie 2010; Fleckenstein, Longstaff, Lustig 2014):

- many examples in finance of pricing anomalies that fade over time (from minutes to months)
- takes time for potential arbitrageurs to reallocate capital

Wright (2012) estimates effects of unconventional monetary policy have half-life of 2–3 months

Run daily regressions forecasting h-day change in yields:

$$y_{t+h} = \alpha_h + \beta_h y_t + \gamma_h \tilde{F}_t + \varepsilon_t^{(h)}$$
Are the Effects of Fwd Guidance, LSAPs Persistent?

Interesting question whether one-day effects of forward guidance and LSAPs are persistent

“Slow-moving capital” view (Duffie 2010; Fleckenstein, Longstaff, Lustig 2014):

- many examples in finance of pricing anomalies that fade over time (from minutes to months)
- takes time for potential arbitrageurs to reallocate capital

Wright (2012) estimates effects of unconventional monetary policy have half-life of 2–3 months

Run daily regressions forecasting h-day change in yields:

$$y_{t+h} = \alpha_h + \beta_h y_t + \gamma_h \tilde{F}_t + \varepsilon_t^{(h)}$$

$$y_{t+h} - y_t = \gamma_h \tilde{F}_t + \varepsilon_t^{(h)}$$
Persistence of Forward Guidance Effects (on 10y Tr.)

Effect of Forward Guidance on 10-Year Treasury Yield

horizon h (days)

coefficient γ_h (bp/sd)

0 20 40 60 80 100 120

-20 -15 -10 -5 0 5 10 15
Persistence of LSAP Effects (on 10y Treasury)

Effect of LSAPs on 10-Year Treasury Yield

horizon h (days)

coefficient γ_h (bp/sd)
Is the Attenuation Significant?

Impose functional form
\[\gamma_h = a + b e^{c h} \]
and reestimate regressions for the different horizons \[h \] using NLS.
Is the Attenuation Significant?

Impose functional form

\[\gamma_h = a + be^{ch} \]

and reestimate regressions for the different horizons \(h \) using NLS
Is the Attenuation Significant?

Impose functional form

\[\gamma_h = a + be^{ch} \]

and reestimate regressions for the different horizons \(h \) using NLS
Is the Attenuation Significant?

Impose functional form

$$\gamma_h = a + be^{ch}$$

and reestimate regressions for the different horizons h using NLS.

Effect of LSAPs on 10-Year Treasury Yield
Is the Attenuation Significant?

Impose functional form

\[\gamma_h = a + be^{ch} \]

and reestimate regressions for the different horizons \(h \) using NLS

<table>
<thead>
<tr>
<th></th>
<th>Forward Guidance</th>
<th></th>
<th>LSAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
<tr>
<td>2-year Treasury yield</td>
<td>(-18.7)</td>
<td>(21.7)</td>
<td>(-0.0004)</td>
</tr>
<tr>
<td>(t\text{-stat.})</td>
<td>(-0.01)</td>
<td>(0.11)</td>
<td>(-0.10)</td>
</tr>
<tr>
<td>10-year Treasury yield</td>
<td>(-21.4)</td>
<td>(28.2)</td>
<td>(-0.0048)</td>
</tr>
<tr>
<td>(t\text{-stat.})</td>
<td>(-0.47)</td>
<td>(0.64)</td>
<td>(-0.47)</td>
</tr>
</tbody>
</table>
Is the Attenuation Significant?

Impose functional form

\[\gamma_h = a + be^{ch} \]

and reestimate regressions for the different horizons \(h \) using NLS

<table>
<thead>
<tr>
<th></th>
<th>Forward Guidance</th>
<th>LSAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a)</td>
<td>(c)</td>
</tr>
<tr>
<td>2-year Treasury yield</td>
<td>-18.7</td>
<td>21.7</td>
</tr>
<tr>
<td>[t-stat.]</td>
<td>[-0.01]</td>
<td>[0.011]</td>
</tr>
<tr>
<td>10-year Treasury yield</td>
<td>-21.4</td>
<td>28.2</td>
</tr>
<tr>
<td>[t-stat.]</td>
<td>[-0.47]</td>
<td>[0.64]</td>
</tr>
</tbody>
</table>

There is evidence that the effects are not very persistent, particularly for the effect of LSAPs on longer-term bonds.
Is the Attenuation Significant?

Impose functional form

\[\gamma_h = a + be^{ch} \]

and reestimate regressions for the different horizons \(h \) using NLS

<table>
<thead>
<tr>
<th>Forward Guidance</th>
<th>LSAPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>2-year Treasury yield</td>
<td>−18.7</td>
</tr>
<tr>
<td>[(t)-stat.]</td>
<td>[−0.01]</td>
</tr>
<tr>
<td>10-year Treasury yield</td>
<td>−21.4</td>
</tr>
<tr>
<td>[(t)-stat.]</td>
<td>[−0.47]</td>
</tr>
</tbody>
</table>

There is evidence that the effects are not very persistent, particularly for the effect of LSAPs on longer-term bonds.
But Significance is Entirely Due to One Obs.: 3/18/09
Persistence of LSAP Effects on 10Y Tr., incl. 3/18/09
Persistence of LSAP Effects on 10Y Tr., excl. 3/18/09

Effect of LSAPs on 10-Year Treasury Yield (excl. 3/18/09)
How Does Unconvent. Mon. Pol. Affect Uncertainty?

Many have argued FOMC’s forward guidance reduced uncertainty about future path of monetary policy (e.g., Bernanke 2013)
How Does Unconvent. Mon. Pol. Affect Uncertainty?

Many have argued FOMC’s forward guidance reduced uncertainty about future path of monetary policy (e.g., Bernanke 2013)

LSAPs could also reinforce FOMC’s commitment to a low interest rate path
How Does Unconvent. Mon. Pol. Affect Uncertainty?

Many have argued FOMC’s forward guidance reduced uncertainty about future path of monetary policy (e.g., Bernanke 2013)

LSAPs could also reinforce FOMC’s commitment to a low interest rate path

Forward guidance and LSAPs could increase or decrease uncertainty about long-term bond yields
How Does Unconvent. Mon. Pol. Affect Uncertainty?

Many have argued FOMC’s forward guidance reduced uncertainty about future path of monetary policy (e.g., Bernanke 2013)

LSAPs could also reinforce FOMC’s commitment to a low interest rate path

Forward guidance and LSAPs could increase or decrease uncertainty about long-term bond yields

- Are these policies adding or removing variance from long-term bond yields?
Measuring Monetary Policy Uncertainty

We can measure monetary policy uncertainty using options data:
We can measure monetary policy uncertainty using options data:
We can measure monetary policy uncertainty using options data:
Effect of Forward Guidance on Monetary Policy Uncertainty

Effect of Forward Guidance on Monetary Policy Uncertainty
Effect of LSAPs on Monetary Policy Uncertainty

Horizon h (days)

Coefficient γ_h (bp/sd)
Effect of Forward Guidance on MOVE Index

Effect of Fwd Guidance on Long-Term Bond Yield Uncertainty

- coefficient γ_h (index pts./sd)
- horizon h (days)
- 0 20 40 60 80 100 120
- -15 -10 -5 0 5 10 15
Effect of LSAPs on MOVE Index

Effect of LSAPs on Long-Term Bond Yield Uncertainty

horizon \(h \) (days)

\[
\begin{array}{c|c|c|c|c|c|c|c}
\hline
h & 0 & 20 & 40 & 60 & 80 & 100 & 120 \\
\hline
\text{coefficient} \gamma_h & 0 & -5 & 0 & 5 & 10 & 15 & \\
\end{array}
\]
Effect of Forward Guidance on VIX
Effect of LSAPs on VIX
Conclusions

1. Unconventional monetary policy was effective (on financial markets)
 - suggests Fed does not need to raise its inflation target

2. Both forward guidance and LSAPs were effective:
 - FG and LSAPs about equally effective for medium-term Treasury yields, stocks, and exchange rates
 - Forward guidance had larger effects on short-term Treasury yields
 - LSAPs had larger effects on long-term Treasury yields, corporate bond yields, and interest rate uncertainty

3. There is some evidence these effects were not persistent, particularly for LSAPs, but that evidence depends entirely on the very influential 3/18/2009 QE1 announcement