A Macroeconomic Model of Equities and Real, Nominal, and Defaultable Debt

Eric T. Swanson
University of California, Irvine

Impulse and Propagation Mechanisms Workshop
NBER Summer Institute
July 11, 2016
Motivation

Goal: Show that a simple macroeconomic model (with Epstein-Zin preferences) is consistent with a wide variety of asset pricing facts

- equity premium puzzle
- long-term bond premium puzzle (nominal and real)
- credit spread puzzle
Motivation

Goal: Show that a simple macroeconomic model (with Epstein-Zin preferences) is consistent with a wide variety of asset pricing facts

- equity premium puzzle
- long-term bond premium puzzle (nominal and real)
- credit spread puzzle

Reduces separate puzzles in finance to a single, unifying puzzle: Why does risk aversion in the model need to be so high?
Motivation

Goal: Show that a simple macroeconomic model (with Epstein-Zin preferences) is consistent with a wide variety of asset pricing facts

- equity premium puzzle
- long-term bond premium puzzle (nominal and real)
- credit spread puzzle

Reduces separate puzzles in finance to a single, unifying puzzle: Why does risk aversion in the model need to be so high?

Motivation

Goal: Show that a simple macroeconomic model (with Epstein-Zin preferences) is consistent with a wide variety of asset pricing facts

- equity premium puzzle
- long-term bond premium puzzle (nominal and real)
- credit spread puzzle

Reduces separate puzzles in finance to a single, unifying puzzle: Why does risk aversion in the model need to be so high?

- financial intermediaries: Adrian-Etula-Muir (2013)
Motivation

Implications for Finance:

- unifying explanation for asset pricing puzzles
- structural model of asset prices (provides intuition, robustness to breaks and policy interventions)
Motivation

Implications for Finance:
- unifying explanation for asset pricing puzzles
- structural model of asset prices (provides intuition, robustness to breaks and policy interventions)

Implications for Macro:
- show how to match risk premia in DSGE framework
- start to endogenize asset price–macroeconomy feedback
Motivation

Implications for Finance:
- unifying explanation for asset pricing puzzles
- structural model of asset prices (provides intuition, robustness to breaks and policy interventions)

Implications for Macro:
- show how to match risk premia in DSGE framework
- start to endogenize asset price–macroeconomy feedback

Secondary theme: Keep the model as simple as possible
Motivation

Implications for Finance:
- unifying explanation for asset pricing puzzles
- structural model of asset prices (provides intuition, robustness to breaks and policy interventions)

Implications for Macro:
- show how to match risk premia in DSGE framework
- start to endogenize asset price–macroeconomy feedback

Secondary theme: Keep the model as simple as possible

Two key ingredients:
- Epstein-Zin preferences
- nominal rigidities
Households

Period utility function:

\[u(c_t, l_t) \equiv \log c_t - \eta \frac{l_t^{1+\chi}}{1 + \chi} \]

- additive separability between \(c \) and \(l \)
- SDF comparable to finance literature
- log preferences for balanced growth, simplicity

Flow budget constraint:

\[a_{t+1} = e^i_t a_t + w_t l_t + d_t - c_t \]

Calibration: (IES = 1), \(\chi = 3 \), \(l = 1 \) (\(\eta = .54 \))
Generalized Recursive Preferences

Household chooses state-contingent \{ (c_t, l_t) \} to maximize

\[
V(a_t; \theta_t) = \max_{(c_t, l_t)} u(c_t, l_t) - \beta \alpha^{-1} \log [E_t \exp(-\alpha V(a_{t+1}; \theta_{t+1}))]
\]

Calibration: \(\beta = .992, \ RRA (R^c) = 60 \) \((\alpha = 59.15) \)
Firms are very standard:

- continuum of monopolistic firms (gross markup λ)
- Calvo price setting (probability $1 - \xi$)
- Cobb-Douglas production functions, $y_t(f) = A_t k^{1-\theta} l_t(f)^\theta$
- fixed firm-specific capital stocks k

Random walk technology: \[\log A_t = \log A_{t-1} + \varepsilon_t \]

- simplicity
- comparability to finance literature
- helps match equity premium

Calibration: $\lambda = 1.1$, $\xi = 0.8$, $\theta = 0.6$, $\sigma_A = 0.007$, $(\rho_A = 1)$, $\frac{k}{4Y} = 2.5$
No government purchases or investment:

\[Y_t = C_t \]

Taylor-type monetary policy rule:

\[i_t = r + \pi_t + \phi_\pi (\pi_t - \bar{\pi}) + \phi_y (y_t - \bar{y}_t) \]

“Output gap” \((y_t - \bar{y}_t)\) defined relative to moving average:

\[\bar{y}_t \equiv \rho_y \bar{y}_{t-1} + (1 - \rho_y) y_t \]

Rule has no inertia:

- simplicity

Calibration: \(\phi_\pi = 0.5, \phi_y = 0.75, \bar{\pi} = 0.008, \rho_y = 0.9\)
Solution Method

Write equations of the model in recursive form

Divide nonstationary variables \((Y_t, C_t, w_t, \text{etc.})\) by \(A_t\)

Solve using perturbation methods around nonstoch. steady state
Solution Method

Write equations of the model in recursive form

Divide nonstationary variables \((Y_t, C_t, w_t, \text{etc.})\) by \(A_t\)

Solve using perturbation methods around nonstoch. steady state

- first-order: no risk premia
- second-order: risk premia are constant
- third-order: time-varying risk premia
- higher-order: more accurate over larger region

Model has 2 state variables \((\bar{y}_t, \Delta_t)\), one shock \((\varepsilon_t)\)
Impulse Responses

Technology A_t
Impulse Responses

Consumption C_t
Impulse Responses

Inflation π_t
Impulse Responses

Short-term nominal interest rate i_t

ann. pct.
Impulse Responses

Short–term real interest rate r_t
Nonlinear vs. Linear Impulse Response Responses

Price Dispersion Δ_t

1st-order solution
5th-order solution

Consumption C_t
Nonlinear vs. Linear Impulse Response Responses

Price Dispersion Δ_t

- 1st-order solution
- 5th-order solution

Graph showing the price dispersion Δ_t over time with two lines representing 1st-order and 5th-order solutions.
Nonlinear vs. Linear Impulse Response Responses

Consumption C_t

1st-order solution
5th-order solution

Consumption C_t
Nonlinear vs. Linear Impulse Response

Labor L_t

- **Percent**
- **Consumption C_t**

- **1st-order solution**
- **5th-order solution**

- **1st-order solution**
- **5th-order solution**
Equity: Levered Consumption Claim

Equity price

\[p_t^e = E_t m_{t+1}(C_{t+1}^\nu + p_{t+1}^e) \]

where \(\nu \) is degree of leverage
Equity: Levered Consumption Claim

Equity price

\[p_t^e = E_t m_{t+1}(C_{t+1}^\nu + p_{t+1}^e) \]

where \(\nu \) is degree of leverage

Realized gross return:

\[R_{t+1}^e \equiv \frac{C_{t+1}^\nu + p_{t+1}^e}{p_t^e} \]
Equity: Levered Consumption Claim

Equity price

\[p_t^e = E_t m_{t+1} (C_{t+1}^\nu + p_{t+1}^e) \]

where \(\nu \) is degree of leverage

Realized gross return:

\[R_{t+1}^e \equiv \frac{C_{t+1}^\nu + p_{t+1}^e}{p_t^e} \]

Equity premium

\[\psi_t^e \equiv E_t R_{t+1}^e - e^{r_t} \]
Equity: Levered Consumption Claim

Equity price

\[p_t^e = E_t m_{t+1}(C_{t+1}^\nu + p_{t+1}^e) \]

where \(\nu \) is degree of leverage

Realized gross return:

\[R_{t+1}^e \equiv \frac{C_{t+1}^\nu + p_{t+1}^e}{p_t^e} \]

Equity premium

\[\psi_t^e \equiv E_t R_{t+1}^e - e^{r_t} \]

Calibration: \(\nu = 3 \)
<table>
<thead>
<tr>
<th>Risk aversion</th>
<th>Shock persistence</th>
<th>Equity premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.62</td>
<td>3.00</td>
</tr>
<tr>
<td>0.30</td>
<td>1.96</td>
<td>6.70</td>
</tr>
<tr>
<td>0.60</td>
<td>4.19</td>
<td>10.93</td>
</tr>
<tr>
<td>0.90</td>
<td>6.70</td>
<td>18.93</td>
</tr>
</tbody>
</table>

Table 2: Equity Premium

In the data: 3–6.5 percent per year (e.g., Campbell, 1999, Fama-French, 2002)
Table 2: Equity Premium

In the data: 3–6.5 percent per year (e.g., Campbell, 1999, Fama-French, 2002)

<table>
<thead>
<tr>
<th>Risk aversion R^c</th>
<th>Shock persistence ρ_A</th>
<th>Equity premium ψ^e</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>0.62</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>1.96</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td>4.19</td>
</tr>
<tr>
<td>90</td>
<td>1</td>
<td>6.70</td>
</tr>
</tbody>
</table>
Table 2: Equity Premium

In the data: 3–6.5 percent per year (e.g., Campbell, 1999, Fama-French, 2002)

<table>
<thead>
<tr>
<th>Risk aversion R^c</th>
<th>Shock persistence ρ_A</th>
<th>Equity premium ψ^e</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>0.62</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>1.96</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td>4.19</td>
</tr>
<tr>
<td>90</td>
<td>1</td>
<td>6.70</td>
</tr>
</tbody>
</table>
Table 2: Equity Premium

In the data: 3–6.5 percent per year (e.g., Campbell, 1999, Fama-French, 2002)

<table>
<thead>
<tr>
<th>Risk aversion R^c</th>
<th>Shock persistence ρ_A</th>
<th>Equity premium ψ^e</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1</td>
<td>0.62</td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>1.96</td>
</tr>
<tr>
<td>60</td>
<td>1</td>
<td>4.19</td>
</tr>
<tr>
<td>90</td>
<td>1</td>
<td>6.70</td>
</tr>
<tr>
<td>60</td>
<td>0.995</td>
<td>1.86</td>
</tr>
<tr>
<td>60</td>
<td>0.99</td>
<td>1.08</td>
</tr>
<tr>
<td>60</td>
<td>0.98</td>
<td>0.53</td>
</tr>
<tr>
<td>60</td>
<td>0.95</td>
<td>0.17</td>
</tr>
</tbody>
</table>
Equity Premium

Equity premium ψ_t^e
Real Government Debt

Real n-period zero-coupon bond price:

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)}.$$
Real Government Debt

Real n-period zero-coupon bond price:

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

$$p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t}$$
Real Government Debt

Real n-period zero-coupon bond price:

\[p_t^{(n)} = E_t \hat{m}_{t+1} p_{t+1}^{(n-1)}, \]

\[p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t} \]

Real yield:

\[r_t^{(n)} = -\frac{1}{n} \log p_t^{(n)} \]
Real n-period zero-coupon bond price:

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

$$p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t}$$

Real yield:

$$r_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$

Real term premium:

$$\psi_t^{(n)} = r_t^{(n)} - \hat{r}_t^{(n)}$$
Real Government Debt

Real n-period zero-coupon bond price:

$$p^{(n)}_t = E_t m_{t+1} p^{(n-1)}_{t+1},$$

$$p^{(0)}_t = 1, \quad p^{(1)}_t = e^{-r_t}$$

Real yield:

$$r^{(n)}_t = -\frac{1}{n} \log p^{(n)}_t$$

Real term premium:

$$\psi^{(n)}_t = r^{(n)}_t - \hat{r}^{(n)}_t$$

where

$$\hat{r}^{(n)}_t = -\frac{1}{n} \log \hat{p}^{(n)}_t$$

$$\hat{p}^{(n)}_t = e^{-r_t} E_t \hat{p}^{(n-1)}_{t+1}$$
Nominal Government Debt

Nominal n-period zero-coupon bond price:

$$p_t^{(n)} = E_t \ m_{t+1} e^{-\pi_{t+1}} p_{t+1}^{(n-1)},$$
Nominal Government Debt

Nominal n-period zero-coupon bond price:

$$ p_t^{(n)} = E_t m_{t+1} e^{-\pi_{t+1}} p_{t+1}^{(n-1)}, $$

$$ p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-i_t} $$

Nominal yield:

$$ i_t^{(n)} = -\frac{1}{n} \log p_t^{(n)} $$

Nominal term premium:

$$ \psi_t^{(n)} = i_t^{(n)} - \hat{i}_t^{(n)} $$

where

$$ \hat{i}_t^{(n)} = -\frac{1}{n} \log \hat{p}_t^{(n)} $$

$$ \hat{p}_t^{(n)} = e^{-i_t} E_t \hat{p}_{t+1}^{(n-1)} $$
Real Yield Curve

Table 3: Real Zero-Coupon Bond Yields

<table>
<thead>
<tr>
<th></th>
<th>2-yr.</th>
<th>3-yr.</th>
<th>5-yr.</th>
<th>7-yr.</th>
<th>10-yr.</th>
<th>(10y)−(3y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US TIPS, 1999–2015</td>
<td>1.29</td>
<td>1.55</td>
<td>1.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US TIPS, 2004–2015</td>
<td>0.14</td>
<td>0.28</td>
<td>0.60</td>
<td>0.89</td>
<td>1.22</td>
<td>0.94</td>
</tr>
<tr>
<td>US TIPS, 2004–2007</td>
<td>1.39</td>
<td>1.52</td>
<td>1.74</td>
<td>1.91</td>
<td>2.09</td>
<td>0.57</td>
</tr>
<tr>
<td>UK indexed gilts, 1985–2015</td>
<td>1.91</td>
<td>2.05</td>
<td>2.16</td>
<td>2.25</td>
<td></td>
<td>0.34</td>
</tr>
<tr>
<td>UK indexed gilts, 1990–2007</td>
<td>2.79</td>
<td>2.78</td>
<td>2.79</td>
<td>2.80</td>
<td></td>
<td>0.01</td>
</tr>
</tbody>
</table>

Footnotes:

- "Gürkaynak, Sack, and Wright (2010) online dataset"
- "Evans (1999)"
- "Bank of England web site"
Real Yield Curve

Table 3: Real Zero-Coupon Bond Yields

<table>
<thead>
<tr>
<th></th>
<th>2-yr.</th>
<th>3-yr.</th>
<th>5-yr.</th>
<th>7-yr.</th>
<th>10-yr.</th>
<th>(10y)–(3y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US TIPS, 1999–2015(^a)</td>
<td>0.14</td>
<td>0.28</td>
<td>0.60</td>
<td>0.89</td>
<td>1.22</td>
<td>0.94</td>
</tr>
<tr>
<td>US TIPS, 2004–2015(^a)</td>
<td>1.39</td>
<td>1.52</td>
<td>1.74</td>
<td>1.91</td>
<td>2.09</td>
<td>0.57</td>
</tr>
<tr>
<td>US TIPS, 2004–2007(^a)</td>
<td>1.39</td>
<td>1.52</td>
<td>1.74</td>
<td>1.91</td>
<td>2.09</td>
<td>0.57</td>
</tr>
<tr>
<td>UK indexed gilts, 1983–1995(^b)</td>
<td>6.12</td>
<td>5.29</td>
<td>4.34</td>
<td>4.12</td>
<td>–1.17</td>
<td></td>
</tr>
<tr>
<td>UK indexed gilts, 1985–2015(^c)</td>
<td>1.91</td>
<td>2.05</td>
<td>2.16</td>
<td>2.25</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>UK indexed gilts, 1990–2007(^c)</td>
<td>2.79</td>
<td>2.78</td>
<td>2.79</td>
<td>2.80</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>macroeconomic model</td>
<td>1.94</td>
<td>1.93</td>
<td>1.93</td>
<td>1.93</td>
<td>1.93</td>
<td>0.00</td>
</tr>
</tbody>
</table>

\(^a\)Gürkaynak, Sack, and Wright (2010) online dataset
\(^b\)Evans (1999)
\(^c\)Bank of England web site
Nominal Yield Curve

Table 4: Nominal Zero-Coupon Bond Yields

<table>
<thead>
<tr>
<th></th>
<th>1-yr.</th>
<th>2-yr.</th>
<th>3-yr.</th>
<th>5-yr.</th>
<th>7-yr.</th>
<th>10-yr.</th>
<th>(10y)–(1y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Treasuries, 1961–2015<sup>a</sup></td>
<td>5.27</td>
<td>5.50</td>
<td>5.68</td>
<td>5.97</td>
<td>6.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Treasuries, 1971–2015<sup>a</sup></td>
<td>5.42</td>
<td>5.66</td>
<td>5.86</td>
<td>6.18</td>
<td>6.43</td>
<td>6.71</td>
<td>1.29</td>
</tr>
<tr>
<td>US Treasuries, 1990–2007<sup>a</sup></td>
<td>4.56</td>
<td>4.84</td>
<td>5.06</td>
<td>5.41</td>
<td>5.68</td>
<td>5.98</td>
<td>1.42</td>
</tr>
<tr>
<td>UK gilts, 1970–2015<sup>b</sup></td>
<td>6.92</td>
<td>7.10</td>
<td>7.26</td>
<td>7.51</td>
<td>7.70</td>
<td>7.89</td>
<td>0.96</td>
</tr>
<tr>
<td>UK gilts, 1990–2007<sup>b</sup></td>
<td>6.20</td>
<td>6.29</td>
<td>6.38</td>
<td>6.47</td>
<td>6.50</td>
<td>6.48</td>
<td>0.28</td>
</tr>
</tbody>
</table>

^aGürkaynak, Sack, and Wright (2007) online dataset

^bBank of England web site

Supply shocks make nominal long-term bonds risky: inflation risk.
Nominal Yield Curve

Table 4: Nominal Zero-Coupon Bond Yields

<table>
<thead>
<tr>
<th></th>
<th>1-yr.</th>
<th>2-yr.</th>
<th>3-yr.</th>
<th>5-yr.</th>
<th>7-yr.</th>
<th>10-yr.</th>
<th>(10y) – (1y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Treasuries, 1961–2015<sup>a</sup></td>
<td>5.27</td>
<td>5.50</td>
<td>5.68</td>
<td>5.97</td>
<td>6.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Treasuries, 1971–2015<sup>a</sup></td>
<td>5.42</td>
<td>5.66</td>
<td>5.86</td>
<td>6.18</td>
<td>6.43</td>
<td>6.71</td>
<td>1.29</td>
</tr>
<tr>
<td>US Treasuries, 1990–2007<sup>a</sup></td>
<td>4.56</td>
<td>4.84</td>
<td>5.06</td>
<td>5.41</td>
<td>5.68</td>
<td>5.98</td>
<td>1.42</td>
</tr>
<tr>
<td>UK gilts, 1970–2015<sup>b</sup></td>
<td>6.92</td>
<td>7.10</td>
<td>7.26</td>
<td>7.51</td>
<td>7.70</td>
<td>7.89</td>
<td>0.96</td>
</tr>
<tr>
<td>UK gilts, 1990–2007<sup>b</sup></td>
<td>6.20</td>
<td>6.29</td>
<td>6.38</td>
<td>6.47</td>
<td>6.50</td>
<td>6.48</td>
<td>0.28</td>
</tr>
<tr>
<td>macroeconomic model</td>
<td>5.35</td>
<td>5.59</td>
<td>5.80</td>
<td>6.09</td>
<td>6.27</td>
<td>6.44</td>
<td>1.09</td>
</tr>
</tbody>
</table>

^aGürkaynak, Sack, and Wright (2007) online dataset
^bBank of England web site
Table 4: Nominal Zero-Coupon Bond Yields

<table>
<thead>
<tr>
<th></th>
<th>1-yr.</th>
<th>2-yr.</th>
<th>3-yr.</th>
<th>5-yr.</th>
<th>7-yr.</th>
<th>10-yr.</th>
<th>(10y)–(1y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Treasuries, 1961–2015<sup>a</sup></td>
<td>5.27</td>
<td>5.50</td>
<td>5.68</td>
<td>5.97</td>
<td>6.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Treasuries, 1971–2015<sup>a</sup></td>
<td>5.42</td>
<td>5.66</td>
<td>5.86</td>
<td>6.18</td>
<td>6.43</td>
<td>6.71</td>
<td>1.29</td>
</tr>
<tr>
<td>US Treasuries, 1990–2007<sup>a</sup></td>
<td>4.56</td>
<td>4.84</td>
<td>5.06</td>
<td>5.41</td>
<td>5.68</td>
<td>5.98</td>
<td>1.42</td>
</tr>
<tr>
<td>UK gilts, 1970–2015<sup>b</sup></td>
<td>6.92</td>
<td>7.10</td>
<td>7.26</td>
<td>7.51</td>
<td>7.70</td>
<td>7.89</td>
<td>0.96</td>
</tr>
<tr>
<td>UK gilts, 1990–2007<sup>b</sup></td>
<td>6.20</td>
<td>6.29</td>
<td>6.38</td>
<td>6.47</td>
<td>6.50</td>
<td>6.48</td>
<td>0.28</td>
</tr>
<tr>
<td>macroeconomic model</td>
<td>5.35</td>
<td>5.59</td>
<td>5.80</td>
<td>6.09</td>
<td>6.27</td>
<td>6.44</td>
<td>1.09</td>
</tr>
</tbody>
</table>

^aGürkaynak, Sack, and Wright (2007) online dataset

^bBank of England web site

Supply shocks make nominal long-term bonds risky: inflation risk
Nominal Term Premium

Nominal term premium $\psi_t^{(40)}$

ann. bp

0

10

20

30

40

50

0

-10

-8

-6

-4

-2

0

-10

-8

-6

-4

-2
Defaultable Debt

Default-free depreciating nominal consol:

\[p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c) \]
Defaultable Debt

Default-free depreciating nominal consol:

\[p^c_t = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p^c_{t+1}) \]

Yield to maturity:

\[i^c_t = \log \left(\frac{1}{p^c_t} + \delta \right) \]
Defaultable Debt

Default-free depreciating nominal consol:

\[p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c) \]

Yield to maturity:

\[i_t^c = \log \left(\frac{1}{p_t^c} + \delta \right) \]

Nominal consol with default:

\[p_t^d = E_t m_{t+1} e^{-\pi_{t+1}} \left[(1 - 1_{t+1}^d)(1 + \delta p_{t+1}^d) + 1_{t+1}^d \omega_{t+1} p_t^d \right] \]
Defaultable Debt

Default-free depreciating nominal consol:

\[p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c) \]

Yield to maturity:

\[i_t^c = \log \left(\frac{1}{p_t^c} + \delta \right) \]

Nominal consol with default:

\[p_t^d = E_t m_{t+1} e^{-\pi_{t+1}} \left[(1 - 1_{t+1}^d) (1 + \delta p_{t+1}^d) + 1_{t+1}^d \omega_{t+1} p_t^d \right] \]

Yield to maturity:

\[i_t^d = \log \left(\frac{1}{p_t^d} + \delta \right) \]
Defaultable Debt

Default-free depreciating nominal consol:

\[p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c) \]

Yield to maturity:

\[i_t^c = \log \left(\frac{1}{p_t^c} + \delta \right) \]

Nominal consol with default:

\[p_t^d = E_t m_{t+1} e^{-\pi_{t+1}} \left[(1 - 1_{t+1}^d)(1 + \delta p_{t+1}^d) + 1_{t+1}^d \omega_{t+1} p_t^d \right] \]

Yield to maturity:

\[i_t^d = \log \left(\frac{1}{p_t^d} + \delta \right) \]

The credit spread is \(i_t^d - i_t^c \)
<table>
<thead>
<tr>
<th>average ann. default prob.</th>
<th>cyclicality of default prob.</th>
<th>average recovery rate</th>
<th>cyclicality of recovery rate</th>
<th>credit spread (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.006</td>
<td>0</td>
<td>0.42</td>
<td>0</td>
<td>34.0</td>
</tr>
</tbody>
</table>

If default isn’t cyclical, then it’s not risky.
Table 5: Credit Spread

<table>
<thead>
<tr>
<th>average ann. default prob.</th>
<th>cyclicality of default prob.</th>
<th>average recovery rate</th>
<th>cyclicality of recovery rate</th>
<th>credit spread (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.006</td>
<td>0</td>
<td>.42</td>
<td>0</td>
<td>34.0</td>
</tr>
</tbody>
</table>

If default isn’t cyclical, then it’s not risky.
Default Rate is Countercyclical

A. Default rates and credit spreads

- Moody's Recovery Rates
- Altman Recovery Rates

Figure 1. Default rates, credit spreads, and recovery rates over the business cycle.

Panel A plots the Moody's annual corporate default rates during 1920 to 2008 and the monthly Baa-Aaa credit spreads during 1920/01 to 2009/02. Panel B plots the average recovery rates during 1982 to 2008. The "Long-Term Mean" recovery rate is 41.4%, based on Moody's data. Shaded areas are NBER-dated recessions.

For annual data, any calendar year with at least 5 months being in a recession as defined by NBER is treated as a recession year.

The default component of the average 10-year Baa-Treasury spread in this model rises from 57 to 105 bps, whereas the average optimal market leverage of a Baa-rated firm drops from 50% to 37%, both consistent with the U.S. data.

Figure 1 provides some empirical evidence on the business cycle movements in default rates, credit spreads, and recovery rates. The dashed line in Panel A plots the annual default rates over 1920 to 2008. There are several spikes in the default rates, each coinciding with an NBER recession. The solid line plots the monthly Baa-Aaa credit spreads from January 1920 to February 2009. The spreads shoot up in most recessions, most visibly during the Great Depression, the savings and loan crisis in the early 1980s, and the recent financial crisis in 2008. However, they do not always move in lock-step with default rates (the correlation at an annual frequency is 0.65), which suggests that other factors, such as recovery rates and risk premia, also affect the movements in spreads.

Next, business cycle variation in the recovery rates is evident in...
Recovery Rate is Procyclical

A. Default rates and credit spreads

B. Recovery rates

source: Chen (2010)
Table 5: Credit Spread

<table>
<thead>
<tr>
<th>average ann. default prob.</th>
<th>cyclicality of default prob.</th>
<th>average recovery rate</th>
<th>cyclicality of recovery rate</th>
<th>credit spread (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.006</td>
<td>0</td>
<td>.42</td>
<td>0</td>
<td>34.0</td>
</tr>
<tr>
<td>.006</td>
<td>−0.3</td>
<td>.42</td>
<td>0</td>
<td>130.9</td>
</tr>
</tbody>
</table>
Table 5: Credit Spread

<table>
<thead>
<tr>
<th>average ann. default prob.</th>
<th>cyclicality of default prob.</th>
<th>average recovery rate</th>
<th>cyclicality of recovery rate</th>
<th>credit spread (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.006</td>
<td>0</td>
<td>.42</td>
<td>0</td>
<td>34.0</td>
</tr>
<tr>
<td>.006</td>
<td>−0.3</td>
<td>.42</td>
<td>0</td>
<td>130.9</td>
</tr>
<tr>
<td>.006</td>
<td>−0.3</td>
<td>.42</td>
<td>2.5</td>
<td>143.1</td>
</tr>
</tbody>
</table>
Table 5: Credit Spread

<table>
<thead>
<tr>
<th>average ann. default prob.</th>
<th>cyclicality of default prob.</th>
<th>average recovery rate</th>
<th>cyclicality of recovery rate</th>
<th>credit spread (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.006</td>
<td>0</td>
<td>.42</td>
<td>0</td>
<td>34.0</td>
</tr>
<tr>
<td>.006</td>
<td>−0.3</td>
<td>.42</td>
<td>0</td>
<td>130.9</td>
</tr>
<tr>
<td>.006</td>
<td>−0.3</td>
<td>.42</td>
<td>2.5</td>
<td>143.1</td>
</tr>
<tr>
<td>.006</td>
<td>−0.15</td>
<td>.42</td>
<td>2.5</td>
<td>78.9</td>
</tr>
<tr>
<td>.006</td>
<td>−0.6</td>
<td>.42</td>
<td>2.5</td>
<td>367.4</td>
</tr>
<tr>
<td>.006</td>
<td>−0.3</td>
<td>.42</td>
<td>1.25</td>
<td>137.0</td>
</tr>
<tr>
<td>.006</td>
<td>−0.3</td>
<td>.42</td>
<td>5</td>
<td>155.2</td>
</tr>
</tbody>
</table>
Discussion

1. IES ≤ 1 vs. IES > 1
2. Volatility shocks
3. Endogenous conditional heteroskedasticity
4. Monetary and fiscal policy shocks
5. Financial accelerator
Intertemporal Elasticity of Substitution

Long-run risks literature typically assumes IES > 1, for two reasons:

- ensures equity prices rise (by more than consumption) in response to an increase in technology
- ensures equity prices fall in response to an increase in volatility
Intertemporal Elasticity of Substitution

Long-run risks literature typically assumes $\text{IES} > 1$, for two reasons:

- ensures equity prices rise (by more than consumption) in response to an increase in technology
- ensures equity prices fall in response to an increase in volatility

However, $\text{IES} > 1$ is not necessary for these criteria to be satisfied, particularly when equity is a levered consumption claim.
Intertemporal Elasticity of Substitution

Long-run risks literature typically assumes IES > 1, for two reasons:

- ensures equity prices rise (by more than consumption) in response to an increase in technology
- ensures equity prices fall in response to an increase in volatility

However, IES > 1 is not necessary for these criteria to be satisfied, particularly when equity is a levered consumption claim.

Model here satisfies both criteria with IES = 1 (or even < 1).
Intertemporal Elasticity of Substitution

Long-run risks literature typically assumes $\text{IES} > 1$, for two reasons:

- ensures equity prices rise (by more than consumption) in response to an increase in technology
- ensures equity prices fall in response to an increase in volatility

However, $\text{IES} > 1$ is not necessary for these criteria to be satisfied, particularly when equity is a levered consumption claim.

Model here satisfies both criteria with $\text{IES} = 1$ (or even < 1).
Impulse Responses to Technology Shock

Equity premium ψ_t^e
Impulse Responses to Technology Shock

Equity price p_t^e
Intertemporal Elasticity of Substitution

Long-run risks literature typically assumes IES > 1, for two reasons:

- ensures equity prices rise (by more than consumption) in response to an increase in technology
- ensures equity prices fall in response to an increase in volatility

However, IES > 1 is not necessary for these criteria to be satisfied, particularly when equity is a levered consumption claim.

Model here satisfies both criteria with IES = 1 (or even < 1).
Intertemporal Elasticity of Substitution

Long-run risks literature typically assumes IES > 1, for two reasons:

- ensures equity prices rise (by more than consumption) in response to an increase in technology
- ensures equity prices fall in response to an increase in volatility

However, IES > 1 is not necessary for these criteria to be satisfied, particularly when equity is a levered consumption claim.

Model here satisfies both criteria with IES = 1 (or even < 1).

Extend model above to include volatility shocks:

\[
\log \sigma_{A,t} = (1 - \rho_\sigma) \log \bar{\sigma}_A + \rho_\sigma \log \sigma_{A,t-1} + \varepsilon_t^\sigma
\]
Intertemporal Elasticity of Substitution

Long-run risks literature typically assumes $\text{IES} > 1$, for two reasons:

- Ensures equity prices rise (by more than consumption) in response to an increase in technology
- Ensures equity prices fall in response to an increase in volatility

However, $\text{IES} > 1$ is not necessary for these criteria to be satisfied, particularly when equity is a levered consumption claim.

Model here satisfies both criteria with $\text{IES} = 1$ (or even < 1).

Extend model above to include volatility shocks:

$$\log \sigma_{A,t} = (1 - \rho_\sigma) \log \bar{\sigma}_A + \rho_\sigma \log \sigma_{A,t-1} + \varepsilon_t^\sigma$$

Calibration: $\rho_\sigma = .98$, $\text{Var}(\varepsilon_t^\sigma) = (0.1)^2$
Impulse Responses to Volatility Shock

Volatility $\sigma_{A,t}$
Impulse Responses to Volatility Shock

![Graph showing the impulse response of consumption C_t to volatility shocks.

The x-axis represents time in weeks (10 to 50), and the y-axis represents the percentage change in consumption.

The graph shows a positive trend in consumption over time following a volatility shock.](image-url)
Impulse Responses to Volatility Shock

Inflation π_t

ann. pct.

-0.5
-0.4
-0.3
-0.2
-0.1
0.0

10 20 30 40 50
Impulse Responses to Volatility Shock

Equity premium ψ_t^e
Impulse Responses to Volatility Shock

Equity price p_t^e

percent

0 10 20 30 40 50

-5

-4

-3

-2

-1

0
Impulse Responses to Volatility Shock

Nominal term premium $\psi_t^{(40)}$

Time (ann. bp) vs. Nominal term premium $\psi_t^{(40)}$
Endogenous Conditional Heteroskedasticity

Note that:

\[\psi_t = E_t \left(\nu_{t+1} + \rho_{t+1} \right) \]

\[\rho_t = E_t \left(\nu_{t+1} + \rho_{t+1} \right) E_{t+1} m_{t+1} \]

\[E_t m_{t+1} \left(\nu_{t+1} + \rho_{t+1} \right) - E_{t+1} m_{t+1} \left(\nu_{t+1} + \rho_{t+1} \right) E_t \]

\[= - \text{Cov}_t \left(m_{t+1}, \text{Re}_{t+1} \right) \]

\[= - \text{Cov}_t \left(m_{t+1}, E_{t+1} \right) \text{Re}_{t+1} \]
Endogenous Conditional Heteroskedasticity

Note that

$$
\psi_t^e \equiv E_t R_{t+1}^e - e_{rt}^e
$$
Note that

\[\psi_t^e \equiv E_t R_{t+1}^e - e_{t}^r \]

\[= \frac{E_t (C_{t+1}^\nu + p_{t+1}^e)}{p_t^e} - e_{t}^r \]

\[= \frac{E_t (C_{t+1}^\nu + p_{t+1}^e)}{E_t m_{t+1} (C_{t+1}^\nu + p_{t+1}^e)} - \frac{1}{E_t m_{t+1}} \]

\[= \frac{E_t m_{t+1} E_t (C_{t+1}^\nu + p_{t+1}^e) - E_t m_{t+1} (C_{t+1}^\nu + p_{t+1}^e)}{E_t m_{t+1} p_t^e} \]

\[= -\text{Cov}_t (m_{t+1}, R_{t+1}^e) \]

\[= -\text{Cov}_t \left(\frac{m_{t+1}}{E_t m_{t+1}}, r_{t+1}^e \right) \]
Endogenous Conditional Heteroskedasticity

\[\psi_t^e = -\text{Cov}_t \left(\frac{m_{t+1}}{E_t m_{t+1}}, r_{t+1}^e \right) \]
Endogenous Conditional Heteroskedasticity

\[\psi_t^e = -\text{Cov}_t \left(\frac{m_{t+1}}{E_t m_{t+1}}, r_{t+1}^e \right) \]

Risk premium can only vary over time if SDF or asset return is conditionally heteroskedastic
Risk premium can only vary over time if SDF or asset return is conditionally heteroskedastic

Traditional finance approach: assume shocks are heteroskedastic
Endogenous Conditional Heteroskedasticity

\[\psi_t^e = -\text{Cov}_t \left(\frac{m_{t+1}}{E_tm_{t+1}}, r_{t+1}^e \right) \]

Risk premium can only vary over time if SDF or asset return is conditionally heteroskedastic.

Traditional finance approach: assume shocks are heteroskedastic.

Here, conditional heteroskedasticity is endogenous.
Endogenous Conditional Heteroskedasticity

$$\psi_t^e = -\text{Cov}_t\left(\frac{m_{t+1}}{E_t m_{t+1}}, r_{t+1}^e\right)$$

Risk premium can only vary over time if SDF or asset return is conditionally heteroskedastic.

Traditional finance approach: assume shocks are heteroskedastic.

Here, conditional heteroskedasticity is **endogenous**.

Nonlinear solution contains terms of form

$$x_{t+1} \in x_t$$

so covariance Cov_t depends on state x_t.
Impulse Responses for Conditional Variance

Conditional Variance $\text{Var}_t[(C_{t+1}/C_t)^{-1}]$
Impulse Responses for Conditional Variance

Conditional Variance $\text{Var}_t[\exp(-\alpha V_{t+1})/E_t\exp(-\alpha V_{t+1})]$
Impulse Responses to Pos. and Neg. Tech. Shocks

Price Dispersion Δ_t

Consumption C_t

- **Price Dispersion**: Two lines represent different conditions:
 - Blue dashed line: No previous shock in period 0.
 - Green line: Previous shock of 0.007 in period 0.

- **Consumption**: Two lines represent different conditions:
 - Blue dashed line: No previous shock in period 0.
 - Green line: Previous shock of 0.007 in period 0.
Rudebusch and Swanson (2012) consider similar model with
- technology shock
- government purchases shock
- monetary policy shock
Rudebusch and Swanson (2012) consider similar model with
- technology shock
- government purchases shock
- monetary policy shock

All three shocks help the model fit macroeconomic variables
Rudebusch and Swanson (2012) consider similar model with:
- technology shock
- government purchases shock
- monetary policy shock

All three shocks help the model fit macroeconomic variables.

But technology shock is most important (by far) for fitting asset prices:
- technology shock is more persistent
- technology shock makes nominal assets risky
No Financial Accelerator

With model-implied stochastic discount factor m_{t+1}, we can price any asset.

Economy affects $m_{t+1} \Rightarrow$ economy affects asset prices.

However, asset prices have no effect on economy.
No Financial Accelerator

With model-implied stochastic discount factor m_{t+1}, we can price any asset.

Economy affects $m_{t+1} \Rightarrow$ economy affects asset prices.

However, asset prices have no effect on economy.

Clearly at odds with financial crisis.

To generate feedback, want financial intermediaries whose net worth depends on assets.
No Financial Accelerator

With model-implied stochastic discount factor m_{t+1}, we can price any asset.

Economy affects $m_{t+1} \Rightarrow$ economy affects asset prices.

However, asset prices have no effect on economy.

Clearly at odds with financial crisis.

To generate feedback, want financial intermediaries whose net worth depends on assets.

...but not in this paper.
Conclusions

1. The standard textbook New Keynesian model (with Epstein-Zin preferences) is consistent with a wide variety of asset pricing facts/puzzles.

2. Unifies asset pricing puzzles into a single puzzle—Why does risk aversion in macro models need to be so high? (Literature provides good answers to this question).

3. Provides a structural framework for intuition about risk premia.

4. Suggests a way to model feedback from risk premia to macroeconomy.