The Bond Premium in a DSGE Model with Long-Run Real and Nominal Risks

Glenn D. Rudebusch Eric T. Swanson

Economic Research
Federal Reserve Bank of San Francisco

AEA Meetings, Atlanta
January 4, 2010
Rudebusch, Sack, Swanson (2006): term premium in standard NK DSGE models is far too small, stable relative to the data.
Rudebusch, Sack, Swanson (2006): term premium in standard NK DSGE models is far too small, stable relative to the data.

Rudebusch-Swanson (2008): term premium in NK DSGE model with Campbell-Cochrane habits is far too small, stable relative to the data.
Part of a Broader Project

- Rudebusch, Sack, Swanson (2006): term premium in standard NK DSGE models is far too small, stable relative to the data.

- Rudebusch-Swanson (2008): term premium in NK DSGE model with Campbell-Cochrane habits is far too small, stable relative to the data.

- this paper: Epstein-Zin preferences in a NK DSGE model
Why Study the Term Premium?
Why Study the Term Premium in a DSGE Model?

Relative to equity premium, the term premium:
- only requires modeling short-term interest rate, not dividends or leverage
- is used by central banks to measure expectations of monetary policy
- applies to a larger volume of securities
- provides an additional perspective on the model
- tests nominal rigidities

DSGE model: many empirical questions about risk premia require a structural DSGE model to provide reliable answers

DSGE models widely used in macroeconomics; total failure to explain risk premia may signal flaws in the model
Why Study the Term Premium in a DSGE Model?

Relative to equity premium, the term premium:

- only requires modeling short-term interest rate, not dividends or leverage
- is used by central banks to measure expectations of monetary policy, inflation
- applies to a larger volume of securities
- provides an additional perspective on the model
- tests nominal rigidities
Why Study the Term Premium in a DSGE Model?

Relative to equity premium, the term premium:
- only requires modeling short-term interest rate, not dividends or leverage
- is used by central banks to measure expectations of monetary policy, inflation
- applies to a larger volume of securities
- provides an additional perspective on the model
- tests nominal rigidities

DSGE model:
- many empirical questions about risk premia require a structural DSGE model to provide reliable answers
- DSGE models widely used in macroeconomics; total failure to explain risk premia may signal flaws in the model
Epstein-Zin Preferences

Standard preferences:

\[V_t \equiv u(c_t, l_t) + \beta E_t V_{t+1} \]
Epstein-Zin Preferences

Standard preferences:

\[V_t \equiv u(c_t, l_t) + \beta E_t V_{t+1} \]

Epstein-Zin preferences:

\[V_t \equiv u(c_t, l_t) + \beta (E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)} \]
Epstein-Zin Preferences

Standard preferences:

\[V_t \equiv u(c_t, l_t) + \beta E_t V_{t+1} \]

Epstein-Zin preferences:

\[V_t \equiv u(c_t, l_t) + \beta \left(E_t V_{t+1}^{1-\alpha} \right)^{1/(1-\alpha)} \]

We’ll use standard NK utility kernel:

\[u(c_t, l_t) \equiv \frac{c_t^{1-\gamma}}{1-\gamma} - \chi_0 \frac{l_t^{1+\chi}}{1+\chi} \]
Epstein-Zin Preferences

Household optimality conditions with EZ preferences:

\[\mu_t u_1 \big|_{(c_t, l_t)} = P_t \lambda_t \]

\[-\mu_t u_2 \big|_{(c_t, l_t)} = w_t \lambda_t \]

\[\lambda_t = \beta E_t \lambda_{t+1} (1 + r_{t+1}) \]

\[\mu_t = \mu_{t-1} \left(E_{t-1} V_{t-\alpha} \right)^{\alpha/(1-\alpha)} V_t^{-\alpha}, \quad \mu_0 = 1 \]
Epstein-Zin Preferences

Household optimality conditions with EZ preferences:

\[\mu_t u_1 \big|_{(c_t, l_t)} = P_t \lambda_t \]

\[-\mu_t u_2 \big|_{(c_t, l_t)} = w_t \lambda_t \]

\[\lambda_t = \beta E_t \lambda_{t+1} (1 + r_{t+1}) \]

\[\mu_t = \mu_{t-1} (E_{t-1} V_t^{1-\alpha})^{\alpha/(1-\alpha)} V_t^{-\alpha}, \quad \mu_0 = 1 \]

Recall: \[V_t = u(c_t, l_t) + \beta (E_t V_t^{1-\alpha})^{1/(1-\alpha)} \]
The DSGE Model

- Continuum of households with Epstein-Zin preferences
 - consume output, supply labor

- Continuum of Dixit-Stiglitz differentiated firms
 - set prices in Calvo contracts with avg. duration 4 quarters
 - identical Cobb-Douglas production functions
 - face aggregate technology: \(\log A_t = \rho_A \log A_{t-1} + \varepsilon^A_t \)

- Government
 - purchases \(G_t \), financed by lump-sum taxes
 - \(\log G_t = \rho_G \log G_{t-1} + (1 - \rho_g) \log \bar{G} + \varepsilon^G_t \)

- Monetary Authority
 - sets short-term nominal interest rate using a Taylor-type rule
 - monetary policy shock
The Term Premium in the Model

Asset pricing:

\[p_t = d_t + E_t[m_{t+1}p_{t+1}] \]
The Term Premium in the Model

Asset pricing:

\[p_t = d_t + E_t[m_{t+1}p_{t+1}] \]

Zero-coupon bond pricing:

\[p_t^{(n)} = E_t[m_{t+1}p_{t+1}^{(n-1)}] \]

\[i_t^{(n)} = -\frac{1}{n} \log p_t^{(n)} \]
The Term Premium in the Model

Asset pricing:

\[p_t = d_t + E_t[m_{t+1}p_{t+1}] \]

Zero-coupon bond pricing:

\[p_t^{(n)} = E_t[m_{t+1}p_{t+1}^{(n-1)}] \]

\[i_t^{(n)} = -\frac{1}{n} \log p_t^{(n)} \]

Risk-neutral bond price:

\[\hat{p}_t^{(n)} = e^{-i_t} E_t[\hat{p}_{t+1}^{(n-1)}] \]
The Term Premium in the Model

Asset pricing:

\[p_t = d_t + E_t[m_{t+1}p_{t+1}] \]

Zero-coupon bond pricing:

\[p^{(n)}_t = E_t[m_{t+1}p^{(n-1)}_{t+1}] \]

\[i^{(n)}_t = -\frac{1}{n} \log p^{(n)}_t \]

Risk-neutral bond price:

\[\hat{p}^{(n)}_t = e^{-i_t} E_t[\hat{p}^{(n-1)}_{t+1}] \]

Term premium:

\[\psi^{(n)}_t \equiv i^{(n)}_t - \hat{i}^{(n)}_t \]
Solving the Model

State variables of the model:

\[A_{t-1}, G_{t-1}, i_{t-1}, \bar{\pi}_{t-1}, \Delta_{t-1}, \varepsilon^A_t, \varepsilon^G_t, \varepsilon^i_t \]
Solving the Model

State variables of the model:

\[A_{t-1}, G_{t-1}, i_{t-1}, \bar{\pi}_{t-1}, \Delta_{t-1}, \varepsilon^A_t, \varepsilon^G_t, \varepsilon^i_t \]

We solve the model by perturbation methods.
Solving the Model

State variables of the model:

\[A_{t-1}, G_{t-1}, i_{t-1}, \bar{\pi}_{t-1}, \Delta_{t-1}, \varepsilon^A_t, \varepsilon^G_t, \varepsilon^i_t \]

We solve the model by perturbation methods

- We compute a *third*-order approximation of the solution around nonstochastic steady state
- Perturbation AIM algorithm in Swanson, Anderson, Levin (2006) quickly computes \(n \)th order approximations
Table 2: Empirical and Model-Based Unconditional Moments

<table>
<thead>
<tr>
<th>Variable</th>
<th>U.S. Data 1961–2007</th>
<th>EU Preferences</th>
<th>EZ Preferences</th>
<th>“best fit” EZ Preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd[C]</td>
<td>1.19</td>
<td>1.40</td>
<td>1.46</td>
<td>2.12</td>
</tr>
<tr>
<td>sd[L]</td>
<td>1.71</td>
<td>2.48</td>
<td>2.50</td>
<td>1.89</td>
</tr>
<tr>
<td>sd[w']</td>
<td>0.82</td>
<td>2.02</td>
<td>2.02</td>
<td>2.02</td>
</tr>
<tr>
<td>sd[π]</td>
<td>2.52</td>
<td>2.22</td>
<td>2.30</td>
<td>2.96</td>
</tr>
<tr>
<td>sd[i]</td>
<td>2.71</td>
<td>1.86</td>
<td>1.93</td>
<td>2.65</td>
</tr>
<tr>
<td>sd[i(40)]</td>
<td>2.41</td>
<td>0.52</td>
<td>0.57</td>
<td>1.17</td>
</tr>
<tr>
<td>mean[ψ(40)]</td>
<td>1.06</td>
<td>.010</td>
<td>.438</td>
<td>1.06</td>
</tr>
<tr>
<td>sd[ψ(40)]</td>
<td>0.54</td>
<td>.000</td>
<td>.053</td>
<td>.162</td>
</tr>
<tr>
<td>mean[i(40) − i]</td>
<td>1.43</td>
<td>−.038</td>
<td>.390</td>
<td>0.95</td>
</tr>
<tr>
<td>sd[i(40) − i]</td>
<td>1.33</td>
<td>1.41</td>
<td>1.43</td>
<td>1.59</td>
</tr>
<tr>
<td>mean[x(40)]</td>
<td>1.76</td>
<td>.010</td>
<td>.431</td>
<td>1.04</td>
</tr>
<tr>
<td>sd[x(40)]</td>
<td>23.43</td>
<td>6.52</td>
<td>6.87</td>
<td>10.77</td>
</tr>
</tbody>
</table>

memo: IES .5 .5 .5
quasi-CRRA 2 75 90
Table 2: Empirical and Model-Based Unconditional Moments

<table>
<thead>
<tr>
<th>Variable</th>
<th>U.S. Data 1961–2007</th>
<th>EU Preferences</th>
<th>EZ Preferences</th>
<th>“best fit” EZ Preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd[C]</td>
<td>1.19</td>
<td>1.40</td>
<td>1.46</td>
<td>2.12</td>
</tr>
<tr>
<td>sd[L]</td>
<td>1.71</td>
<td>2.48</td>
<td>2.50</td>
<td>1.89</td>
</tr>
<tr>
<td>sd[w']</td>
<td>0.82</td>
<td>2.02</td>
<td>2.02</td>
<td>2.02</td>
</tr>
<tr>
<td>sd[\pi]</td>
<td>2.52</td>
<td>2.22</td>
<td>2.30</td>
<td>2.96</td>
</tr>
<tr>
<td>sd[i]</td>
<td>2.71</td>
<td>1.86</td>
<td>1.93</td>
<td>2.65</td>
</tr>
<tr>
<td>sd[i^{(40)}]</td>
<td>2.41</td>
<td>0.52</td>
<td>0.57</td>
<td>1.17</td>
</tr>
<tr>
<td>mean[\psi^{(40)}]</td>
<td>1.06</td>
<td>0.010</td>
<td>0.438</td>
<td>1.06</td>
</tr>
<tr>
<td>sd[\psi^{(40)}]</td>
<td>0.54</td>
<td>0.000</td>
<td>0.053</td>
<td>0.162</td>
</tr>
<tr>
<td>mean[i^{(40)} – i]</td>
<td>1.43</td>
<td>–0.038</td>
<td>0.390</td>
<td>0.95</td>
</tr>
<tr>
<td>sd[i^{(40)} – i]</td>
<td>1.33</td>
<td>1.41</td>
<td>1.43</td>
<td>1.59</td>
</tr>
<tr>
<td>mean[x^{(40)}]</td>
<td>1.76</td>
<td>0.010</td>
<td>0.431</td>
<td>1.04</td>
</tr>
<tr>
<td>sd[x^{(40)}]</td>
<td>23.43</td>
<td>6.52</td>
<td>6.87</td>
<td>10.77</td>
</tr>
<tr>
<td>memo: IES</td>
<td>.5</td>
<td>.5</td>
<td>.5</td>
<td>.5</td>
</tr>
<tr>
<td>quasi-CRRA</td>
<td>2</td>
<td>75</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>
Coefficient of Relative Risk Aversion

- Epstein-Zin preferences:

\[
m_{t,t+1} \equiv \beta u_1 \bigg|_{(c_{t+1}, l_{t+1})} \left(\frac{V_{t+1}}{(E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}} \right)^{-\alpha} \frac{P_t}{P_{t+1}}
\]
Coefficient of Relative Risk Aversion

- Epstein-Zin preferences:

\[m_{t,t+1} \equiv \frac{\beta u_1(c_{t+1},l_{t+1})}{u_1(c_t,l_t)} \left(\frac{V_{t+1}}{(E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}} \right)^{-\alpha} \frac{P_t}{P_{t+1}} \]

- Barillas-Hansen-Sargent (2008):

\[m_{t,t+1} \equiv \frac{\beta u_1(c_{t+1},l_{t+1})}{u_1(c_t,l_t)} \frac{\phi_{t+1}}{\phi_t} \frac{P_t}{P_{t+1}} \]
Coefficient of Relative Risk Aversion

- Epstein-Zin preferences:

\[m_{t,t+1} \equiv \frac{\beta u_1 \mid_{(c_{t+1},l_{t+1})}}{u_1 \mid_{(c_t,l_t)}} \left(\frac{V_{t+1}}{(E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}} \right)^{-\alpha} \frac{P_t}{P_{t+1}} \]

- Barillas-Hansen-Sargent (2008):

\[m_{t,t+1} \equiv \frac{\beta u_1 \mid_{(c_{t+1},l_{t+1})}}{u_1 \mid_{(c_t,l_t)}} \frac{\phi_{t+1}}{\phi_t} \frac{P_t}{P_{t+1}} \]

Long-Run Inflation Risk

Long-run inflation risk makes long-term bonds more risky: the same idea as Bansal-Yaron (2004), but with nominal risk rather than real risk. Long-term inflation expectations are more observable than long-term consumption growth. Other evidence (Kozicki-Tinsley, 2003, Gürkaynak, Sack, Swanson, 2005) that long-term inflation expectations in the U.S. vary.
Long-run inflation risk makes long-term bonds more risky:
- same idea as Bansal-Yaron (2004), but with nominal risk rather than real risk
- long-term inflation expectations more observable than long-term consumption growth
- other evidence (Kozicki-Tinsley, 2003, Gürkaynak, Sack, Swanson, 2005) that long-term inflation expectations in the U.S. vary
Long-Run Inflation Risk

10-year zero-coupon Treasury yield

10-year inflation expectations from SPF, Blue Chip
Long-Run Inflation Risk and the Term Premium

Expected Utility Preferences, no long-run risk
Long-Run Inflation Risk and the Term Premium

Epstein-Zin Preferences, no long-run risk

Expected Utility Preferences, no long-run risk

mean term premium (basis points)

quasi-CRRA
Result: Nominal Yield Curve is Upward-Sloping

- if interest rates are low in recessions
- then bond prices rise in recessions
- \Rightarrow the term premium should be negative
- the yield curve slopes downward

Note: Backus et. al intuition still applies to real yield curve
Result: Nominal Yield Curve is Upward-Sloping

- if interest rates are low in recessions
- then bond prices rise in recessions
 \[\implies \text{the term premium should be negative} \]
- the yield curve slopes downward

This paper:
- technology/supply shocks imply inflation is high in recessions
- then nominal bond prices \textit{fall} in recessions
 \[\implies \text{the nominal yield curve slopes upward} \]
Result: Nominal Yield Curve is Upward-Sloping

- if interest rates are low in recessions
- then bond prices rise in recessions
 \[\implies \] the term premium should be negative
- the yield curve slopes downward

This paper:
- technology/supply shocks imply inflation is high in recessions
- then nominal bond prices *fall* in recessions
 \[\implies \] the nominal yield curve slopes upward

Note: Backus et. al intuition still applies to real yield curve
Result: Nominal Yield Curve is Upward-Sloping

Model-Implied Nominal Yield Curve (left axis)

Model-Implied Real Yield Curve (right axis)
Result: Nominal Yield Curve is Upward-Sloping

UK Nominal Yield Curve, 1994-2007 (left axis)

UK Real Yield Curve, 1994-2007 (right axis)
Result: Nominal Yield Curve is Upward-Sloping

US Nominal Yield Curve, 1994-2007 (left axis)

US Real Yield Curve, 2004-2007 (right axis)
Result: Model Term Premium is Countercyclical
Result: Model Generates Endogenous Heteroskedasticity

\[p_{t}^{(2)} - \hat{p}_{t}^{(2)} = E_{t} m_{t+1} p_{t+1}^{(1)} - E_{t} m_{t+1} E_{t} p_{t+1}^{(1)} = Cov_{t}(m_{t+1}, p_{t+1}^{(1)}) \]

time-varying term premium ⇐⇒ conditional heteroskedasticity
Result: Model Generates Endogenous Heteroskedasticity.

\[\hat{p}_t^{(2)} - \hat{p}_t^{(2)} = E_t m_{t+1} \hat{p}_{t+1}^{(1)} - E_t m_{t+1} E_t \hat{p}_{t+1}^{(1)} = \text{Cov}_t(m_{t+1}, \hat{p}_{t+1}^{(1)})\]

time-varying term premium \iff conditional heteroskedasticity

Second-order solution:

\[x_t = \mu_x + \sum \alpha_x d_{x_{t-1}} + \sum \alpha_\varepsilon \varepsilon_t + \sum \alpha_{xx} d_{x_{t-1}} d_{x_{t-1}} + \sum \alpha_{x\varepsilon} d_{x_{t-1}} \varepsilon_t + \sum \alpha_{\varepsilon\varepsilon} \varepsilon_t \varepsilon_t + \ldots\]
Result: Model Generates Endogenous Heterosked.

\[p_t^{(2)} - \hat{p}_t^{(2)} = E_t m_{t+1} p_{t+1}^{(1)} - E_t m_{t+1} E_t p_{t+1}^{(1)} = \text{Cov}_t(m_{t+1}, p_{t+1}^{(1)}) \]

time-varying term premium \iff conditional heteroskedasticity

Second-order solution:

\[x_t = \mu_x + \sum \alpha_x d_{x_{t-1}} + \sum \alpha_{\varepsilon \varepsilon} \varepsilon_t + \sum \alpha_{\varepsilon \varepsilon} d_{x_{t-1}} \varepsilon_t + \sum \alpha_{\varepsilon \varepsilon} \varepsilon_t \varepsilon_t + \ldots \]
Result: Model Generates Endogenous Heterosked.

\[p_t^{(2)} - \hat{p}_t^{(2)} = E_t m_{t+1} p_{t+1}^{(1)} - E_t m_{t+1} E_t p_{t+1}^{(1)} = \text{Cov}_t(m_{t+1}, p_{t+1}^{(1)}) \]

time-varying term premium \iff conditional heteroskedasticity

Second-order solution:

\[x_t = \mu_x + \sum \alpha_x dx_{t-1} + \sum \alpha_x \varepsilon_t + \sum \alpha_{xx} dx_{t-1} dx_{t-1} + \sum \alpha_{x\varepsilon} dx_{t-1} \varepsilon_t + \sum \alpha_{\varepsilon\varepsilon} \varepsilon_t \varepsilon_t + \ldots \]

<table>
<thead>
<tr>
<th>Model</th>
<th>term premium mean (bp)</th>
<th>term premium std dev (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline model</td>
<td>86.5</td>
<td>11.0</td>
</tr>
<tr>
<td>log-linear log-normal</td>
<td>86.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Conclusions

1. The term premium in standard NK DSGE models is very small, even more stable.
Conclusions

1. The term premium in standard NK DSGE models is very small, even more stable.

2. Habit-based preferences can solve bond premium puzzle in endowment economy, but fail in NK DSGE framework: although agents are risk-averse, they can offset that risk.
Conclusions

1. The term premium in standard NK DSGE models is very small, even more stable.

2. Habit-based preferences can solve bond premium puzzle in endowment economy, but fail in NK DSGE framework: although agents are risk-averse, they can offset that risk.

3. Epstein-Zin preferences can solve bond premium puzzle in endowment economy, are much more promising in NK DSGE framework: agents are risk-averse and cannot offset long-run real or nominal risks.

Long-run risks reduce the required quasi-CRRA, increase volatility of risk premia, help fit financial moments.
Conclusions

1. The term premium in standard NK DSGE models is very small, even more stable.

2. Habit-based preferences can solve bond premium puzzle in endowment economy, but fail in NK DSGE framework: although agents are risk-averse, they can offset that risk.

3. Epstein-Zin preferences can solve bond premium puzzle in endowment economy, are much more promising in NK DSGE framework: agents are risk-averse and cannot offset long-run real or nominal risks.

4. Long-run risks reduce the required quasi-CRRA, increase volatility of risk premia, help fit financial moments.