Implications of Labor Market Frictions for Risk Aversion and Risk Premia

Eric T. Swanson
University of California, Irvine

Macroeconomics Seminar
Bilkent University
December 14, 2018
Suppose a household has preferences:

\[E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, l_t), \]

\[u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1 - \gamma} - \eta l_t \]
Suppose a household has preferences:

$$E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, l_t),$$

$$u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1 - \gamma} - \eta l_t$$

What is the household’s coefficient of relative risk aversion?
Suppose a household has preferences:

\[E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, l_t), \]

\[u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta l_t \]

What is the household’s coefficient of relative risk aversion?

Answer: 0
Coefficient of Relative Risk Aversion

Suppose a household has preferences:

\[E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, l_t), \]

\[u(c_t, l_t) = \frac{c_t^{1-\gamma}}{1-\gamma} - \eta \frac{l_t^{1+\chi}}{1+\chi} \]

What is the household’s coefficient of relative risk aversion?

Answer: \(\frac{1}{\frac{1}{\gamma} + \frac{1}{\chi}} \)
Empirical Relevance of the Labor Margin

Imbens, Rubin, and Sacerdote (2001):
- Lottery winners reduce labor supply by $.11 per $1 of prize
Empirical Relevance of the Labor Margin

Imbens, Rubin, and Sacerdote (2001):
- Lottery winners reduce labor supply by $.11 per $1 of prize

Cesarini, Lindqvist, Notowidigdo, and Östling (2017):
- Swedish lottery winners reduce labor supply by SEK .11/SEK won
- Spouses also reduce labor supply (but by less)
- Labor response is primarily due to reduction in *hours*
Empirical Relevance of the Labor Margin

Imbens, Rubin, and Sacerdote (2001):
- Lottery winners reduce labor supply by $.11 per $1 of prize

Cesarini, Lindqvist, Notowidigdo, and Östling (2017):
- Swedish lottery winners reduce labor supply by SEK .11/SEK won
- Spouses also reduce labor supply (but by less)
- Labor response is primarily due to reduction in *hours*

Coile and Levine (2009):
- Older individuals are 7% less likely to retire in a given year after a 30% fall in stock market
Empirical Relevance of the Labor Margin

Imbens, Rubin, and Sacerdote (2001):
- Lottery winners reduce labor supply by $0.11 per $1 of prize

Cesarini, Lindqvist, Notowidigdo, and Östling (2017):
- Swedish lottery winners reduce labor supply by SEK 0.11/SEK won
- Spouses also reduce labor supply (but by less)
- Labor response is primarily due to reduction in hours

Coile and Levine (2009):
- Older individuals are 7% less likely to retire in a given year after a 30% fall in stock market

Coronado and Perozek (2003):
- Individuals who held more stocks in late 1990s retired 7 months earlier
Empirical Relevance of the Labor Margin

Imbens, Rubin, and Sacerdote (2001):
- Lottery winners reduce labor supply by $.11 per $1 of prize

Cesarini, Lindqvist, Notowidigdo, and Östling (2017):
- Swedish lottery winners reduce labor supply by SEK .11/SEK won
- Spouses also reduce labor supply (but by less)
- Labor response is primarily due to reduction in *hours*

Coile and Levine (2009):
- Older individuals are 7% less likely to retire in a given year after a 30% fall in stock market

Coronado and Perozek (2003):
- Individuals who held more stocks in late 1990s retired 7 months earlier

Large literature finds significantly negative wealth effect on labor supply (e.g., Pencavel 1986)
Frictional Labor Markets

No labor/perfectly rigid labor market:
- Arrow (1964), Pratt (1965)
Frictional Labor Markets

No labor/perfectly rigid labor market:
- Arrow (1964), Pratt (1965)

Perfectly flexible labor market:
- Swanson (2012, 2018)
Frictional Labor Markets

No labor/perfectly rigid labor market:
- Arrow (1964), Pratt (1965)

Perfectly flexible labor market:
- Swanson (2012, 2018)

Frictional labor market:
- this paper
A Household

Household preferences:

\[E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} \left[U(c_{\tau}) - V(l_{\tau} + u_{\tau}) \right], \]
A Household

Household preferences:

\[E_t \sum_{\tau=t}^{\infty} \beta^\tau - t [U(c_\tau) - V(l_\tau + u_\tau)], \]

Flow budget constraint:

\[a_{\tau+1} = (1 + r_\tau)a_\tau + w_\tau l_\tau + d_\tau - c_\tau, \]
A Household

Household preferences:

\[E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} \left[U(c_\tau) - V(l_\tau + u_\tau) \right], \]

Flow budget constraint:

\[a_{\tau+1} = (1 + r_\tau) a_\tau + w_\tau l_\tau + d_\tau - c_\tau, \]

No-Ponzi condition:

\[\lim_{T \to \infty} \prod_{\tau=t}^{T} (1 + r_{\tau+1})^{-1} a_{T+1} \geq 0, \]
A Household

Household preferences:

\[E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} [U(c_\tau) - V(l_\tau + u_\tau)], \]

Flow budget constraint:

\[a_{\tau+1} = (1 + r_\tau) a_\tau + w_\tau l_\tau + d_\tau - c_\tau, \]

No-Ponzi condition:

\[\lim_{T \to \infty} \prod_{\tau=t}^{T} (1 + r_{\tau+1})^{-1} a_{T+1} \geq 0, \]

\{w_\tau, r_\tau, d_\tau\} are exogenous processes, governed by \(\Theta_\tau \)
A Household

Household preferences:

\[E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} \left[U(c_\tau) - V(l_\tau + u_\tau) \right], \]

Flow budget constraint:

\[a_{\tau+1} = (1 + r_\tau) a_\tau + w_\tau l_\tau + d_\tau - c_\tau, \]

No-Ponzi condition:

\[\lim_{T \to \infty} \prod_{\tau=t}^{T} (1 + r_{\tau+1})^{-1} a_{\tau+1} \geq 0, \]

\{ w_\tau, r_\tau, d_\tau \} are exogenous processes, governed by \(\Theta_\tau \)

Labor market search:

\[l_{\tau+1} = (1 - s) l_\tau + f(\Theta_\tau) u_\tau \]
The Value Function

State variables of the household’s problem are \((a_t, l_t; \Theta_t)\).

Let:

\[c_t^* \equiv c^*(a_t, l_t; \Theta_t), \]
\[u_t^* \equiv u^*(a_t, l_t; \Theta_t). \]
The Value Function

State variables of the household’s problem are \((a_t, l_t; \Theta_t)\).

Let:

\[
c_t^* \equiv c^*(a_t, l_t; \Theta_t),
\]

\[
u_t^* \equiv u^*(a_t, l_t; \Theta_t).
\]

Value function, Bellman equation:

\[
\nabla(a_t, l_t; \Theta_t) = U(c_t^*) - V(l_t + u_t^*) + \beta E_t \nabla(a_{t+1}^*, l_{t+1}^*; \Theta_{t+1}),
\]

where:

\[
a_{t+1}^* \equiv (1 + r_t)a_t + w_t l_t + d_t - c_t^*,
\]

\[
l_{t+1}^* \equiv (1 - s)l_t + f(\Theta_t)u_t^*.
\]
Technical Conditions

Assumption 1. The function $U(c_t)$ is increasing, twice-differentiable, and strictly concave, and $V(l_t)$ is increasing, twice-differentiable, and strictly convex.

Assumption 2. A solution $V : X \rightarrow \mathbb{R}$ to the household’s generalized Bellman equation exists and is unique, continuous, and concave.

Assumption 3. For any $(a_t, l_t; \Theta_t) \in X$, the household’s optimal choice (c_t^*, u_t^*) exists, is unique, and lies in the interior of $\Gamma(a_t, l_t; \Theta_t)$.

Assumption 4. For any $(a_t, l_t; \Theta_t)$ in the interior of X, the second derivatives of V with respect to its first two arguments, $V_{11}(a_t, l_t; \Theta_t)$, $V_{12}(a_t, l_t; \Theta_t)$, and $V_{22}(a_t, l_t; \Theta_t)$, exist.
Assumptions about the Economic Environment

Assumption 5. *The household is infinitesimal.*

Assumption 6. *The household is representative.*

Assumption 7. *The model has a nonstochastic steady state, \(x_t = x_{t+k} \) for \(k = 1, 2, \ldots \), and \(x \in \{c, u, l, a, w, r, d, \Theta\} \).*
Assumptions about the Economic Environment

Assumption 5. *The household is infinitesimal.*

Assumption 6. *The household is representative.*

Assumption 7. *The model has a nonstochastic steady state, $x_t = x_{t+k}$ for $k = 1, 2, \ldots$, and $x \in \{c, u, l, a, w, r, d, \Theta\}$. *

Assumption 7’. *The model has a balanced growth path that can be renormalized to a nonstochastic steady state after a suitable change of variables.*
Arrow-Pratt in a Static One-Good Model (Review)

Compare:

\[E u(c + \sigma \varepsilon) \quad \text{vs.} \quad u(c - \mu) \]
Compare:

\[E u(c + \sigma \varepsilon) \quad \text{vs.} \quad u(c - \mu) \]

Compute:

\[u(c - \mu) \approx u(c) - \mu u'(c), \]
Arrow-Pratt in a Static One-Good Model (Review)

Compare:

\[E u(c + \sigma \varepsilon) \text{ vs. } u(c - \mu) \]

Compute:

\[u(c - \mu) \approx u(c) - \mu u'(c), \]

\[E u(c + \sigma \varepsilon) \approx u(c) + u'(c)\sigma E[\varepsilon] + \frac{1}{2} u''(c)\sigma^2 E[\varepsilon^2], \]
Arrow-Pratt in a Static One-Good Model (Review)

Compare:

\[E u(c + \sigma \varepsilon) \quad \text{vs.} \quad u(c - \mu) \]

Compute:

\[u(c - \mu) \approx u(c) - \mu u'(c), \]

\[E u(c + \sigma \varepsilon) \approx u(c) + \frac{1}{2} u''(c) \sigma^2. \]
Compare:

\[E u(c + \sigma \varepsilon) \quad \text{vs.} \quad u(c - \mu) \]

Compute:

\[u(c - \mu) \approx u(c) - \mu u'(c), \]
\[E u(c + \sigma \varepsilon) \approx u(c) + \frac{1}{2} u''(c) \sigma^2. \]

\[\mu = \frac{-u''(c)}{u'(c)} \frac{\sigma^2}{2}. \]
Compare:

\[E \ u(c + \sigma \varepsilon) \quad \text{vs.} \quad u(c - \mu) \]

Compute:

\[u(c - \mu) \approx u(c) - \mu u'(c), \]

\[E \ u(c + \sigma \varepsilon) \approx u(c) + \frac{1}{2} u''(c) \sigma^2. \]

\[\mu = \frac{-u''(c)}{u'(c)} \frac{\sigma^2}{2}. \]

Coefficient of absolute risk aversion is defined to be:

\[\lim_{\sigma \to 0} 2\mu(\sigma)/\sigma^2 = \frac{-u''(c)}{u'(c)}. \]
Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period t:

$$a_{t+1} = (1 + r_t) a_t + w_t l_t - c_t + \sigma \varepsilon_t + 1,$$

Note we cannot easily consider gambles over:

- a_t (state variable, already known at t)
- c_t (choice variable)

Note (\ast) is equivalent to gamble over asset returns:

$$a_{t+1} = (1 + r_t + \sigma \tilde{\varepsilon}_t + 1) a_t + w_t l_t - c_t,$$

or income:

$$a_{t+1} = (1 + r_t) a_t + w_t l_t + (d_t + \sigma \varepsilon_t + 1) - c_t,$$
Consider a one-shot gamble in period t:

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t + \sigma \varepsilon_{t+1},$$ \hspace{1cm} (*)
Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period t:

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t + \sigma \varepsilon_{t+1}, \quad (*)$$

Note we cannot easily consider gambles over:

- a_t (state variable, already known at t)
- c_t (choice variable)
Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period t:

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t + \sigma \varepsilon_{t+1}, \quad (*)$$

Note we cannot easily consider gambles over:

- a_t (state variable, already known at t)
- c_t (choice variable)

Note $(*)$ is equivalent to gamble over asset returns:

$$a_{t+1} = (1 + r_t + \sigma \tilde{\varepsilon}_{t+1})a_t + w_t l_t + d_t - c_t.$$

or income:

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + (d_t + \sigma \varepsilon_{t+1}) - c_t.$$
Consider a one-shot gamble in period t:

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t + \sigma \varepsilon_{t+1},$$

vs.

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t - \mu.$$
Arrow-Pratt in a Dynamic Model

Consider a one-shot gamble in period t:

$$a_{t+1} = (1 + r_t) a_t + w_t l_t + d_t - c_t + \sigma \varepsilon_{t+1},$$

vs.

$$a_{t+1} = (1 + r_t) a_t + w_t l_t + d_t - c_t - \mu.$$

Welfare loss from μ:

$$\nabla_1 (a_t, l_t; \Theta_t) \frac{\mu}{(1 + r_t)}$$
Consider a one-shot gamble in period t:

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t + \sigma \varepsilon_{t+1},$$

vs.

$$a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t - \mu.$$

Welfare loss from μ:

$$\beta E_t \mathbb{V}_1(a^*_{t+1}, l^*_{t+1}; \Theta_{t+1}) \mu.$$
Consider a one-shot gamble in period t:

$$a_{t+1} = (1 + r_t) a_t + w_t l_t + d_t - c_t + \sigma \varepsilon_{t+1},$$

vs.

$$a_{t+1} = (1 + r_t) a_t + w_t l_t + d_t - c_t - \mu.$$

Welfare loss from μ:

$$\beta E_t V_1(a_{t+1}^*, l_{t+1}^*; \Theta_{t+1}) \mu.$$

Loss from σ:

$$\beta E_t V_{11}(a_{t+1}^*, l_{t+1}^*; \Theta_{t+1}) \frac{\sigma^2}{2}.$$
Definition 1. *The household’s coefficient of absolute risk aversion at* \((a_t, l_t; \Theta_t)\) *is given by* \(R^a(a_t, l_t; \Theta_t) = \lim_{\sigma \to 0} 2\mu(\sigma)/\sigma^2.\)
Coefficient of Absolute Risk Aversion

Definition 1. The household’s coefficient of absolute risk aversion at \((a_t, l_t; \Theta_t)\) is given by \(R^a(a_t, l_t; \Theta_t) = \lim_{\sigma \to 0} \frac{2\mu(\sigma)}{\sigma^2}\).

Proposition 1. The household’s coefficient of absolute risk aversion at \((a_t, l_t; \Theta_t)\) is well-defined and satisfies

\[
R^a(a_t, l_t; \Theta_t) = \frac{-E_t \nabla_1(a^*_{t+1}, l^*_{t+1}; \Theta_{t+1})}{E_t \nabla_1(a^*_{t+1}, l^*_{t+1}; \Theta_{t+1})}.
\]
Coefficient of Absolute Risk Aversion

Definition 1. *The household’s coefficient of absolute risk aversion at* \((a_t, l_t; \Theta_t)\) *is given by* \(R^a(a_t, l_t; \Theta_t) = \lim_{\sigma \to 0} \frac{2\mu(\sigma)}{\sigma^2}\).*

Proposition 1. *The household’s coefficient of absolute risk aversion at* \((a_t, l_t; \Theta_t)\) *is well-defined and satisfies*

\[
R^a(a_t, l_t; \Theta_t) = \frac{-E_t \nabla_1(a^*_{t+1}, l^*_{t+1}; \Theta_{t+1})}{E_t \nabla_1(a^*_{t+1}, l^*_{t+1}; \Theta_{t+1})}.
\]

Coefficient of Absolute Risk Aversion

Definition 1. The household’s coefficient of absolute risk aversion at \((a_t, l_t; \Theta_t)\) is given by \(R^a(a_t, l_t; \Theta_t) = \lim_{\sigma \to 0} \frac{2\mu(\sigma)}{\sigma^2}\).

Proposition 1. The household’s coefficient of absolute risk aversion at \((a_t, l_t; \Theta_t)\) is well-defined and satisfies

\[
R^a(a_t, l_t; \Theta_t) = -\frac{E_t \nabla_{11}(a^*_{t+1}, l^*_{t+1}; \Theta_{t+1})}{E_t \nabla_1(a^*_{t+1}, l^*_{t+1}; \Theta_{t+1})}.
\]

Evaluated at the nonstochastic steady state, this simplifies to:

\[
R^a(a, l; \Theta) = \frac{-\nabla_{11}(a, l; \Theta)}{\nabla_1(a, l; \Theta)}
\]

Solve for V_1 and V_{11}

Household preferences:

$$E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} [U(c_{\tau}) - V(l_{\tau} + u_{\tau})]$$
Solve for V_1 and V_{11}

Household preferences:

$$E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} [U(c_{\tau}) - V(l_{\tau} + u_{\tau})]$$

Benveniste-Scheinkman:

$$\nabla_1(a_t, l_t; \Theta_t) = (1 + r_t) U'(c^*_t). \quad (*)$$
Solve for V_1 and V_{11}

Household preferences:

$$E_t \sum_{\tau=t}^{\infty} \beta^{\tau-t} [U(c_\tau) - V(l_\tau + u_\tau)]$$

Benveniste-Scheinkman:

$$\nabla_1(a_t, l_t; \Theta_t) = (1 + r_t) U'(c^*_t). \quad (\ast)$$

Differentiate (\ast) to get:

$$\nabla_{11}(a_t, l_t; \Theta_t) = (1 + r_t) U''(c^*_t) \frac{\partial c^*_t}{\partial a_t}.$$
Solve for $\frac{\partial c_t^*}{\partial a_t}$
Solve for $\frac{\partial c_t^*}{\partial a_t}$

Consumption Euler equation:

$$U'(c_t^*) = \beta E_t(1 + r_{t+1}) U'(c_{t+1}^*),$$
Solve for $\frac{\partial c^*_t}{\partial a_t}$

Consumption Euler equation:

$$U'(c^*_t) = \beta E_t (1 + r_{t+1}) U'(c^*_{t+1}),$$

implies, at steady state:

$$\frac{\partial c^*_t}{\partial a_t} = E_t \frac{\partial c^*_{t+1}}{\partial a_t} = E_t \frac{\partial c^*_{t+k}}{\partial a_t}, \quad k = 1, 2, \ldots$$
Solve for $\partial c_t^*/\partial a_t$

Consumption Euler equation:

$$U'(c_t^*) = \beta E_t(1 + r_{t+1}) U'(c_{t+1}^*),$$

implies, at steady state:

$$\frac{\partial c_t^*}{\partial a_t} = E_t \frac{\partial c_{t+1}^*}{\partial a_t} = E_t \frac{\partial c_{t+k}^*}{\partial a_t}, \quad k = 1, 2, \ldots$$

Household’s budget constraint, no-Ponzi condition imply:

$$\sum_{k=0}^{\infty} \frac{1}{(1 + r)^k} E_t \left[\frac{\partial c_{t+k}^*}{\partial a_t} - w \frac{\partial l_{t+k}^*}{\partial a_t} \right] = 1 + r.$$
Solve for $\frac{\partial l^*_{t+k}}{\partial a_t}$

Labor search (unemployment) Euler equation:

$$\frac{V'(l_t + u^*_t)}{f(\Theta_t)} = \beta E_t \left[w_{t+1} U'(c^*_{t+1}) - V'(l^*_{t+1} + u^*_{t+1}) \right. $$

$$\left. + (1 - s) \frac{V'(l^*_{t+1} + u^*_{t+1})}{f(\Theta_{t+1})} \right]$$
Solve for $\frac{\partial l_{t+k}^*}{\partial a_t}$

Labor search (unemployment) Euler equation:

$$
\frac{V'(l_t + u_t^*)}{f(\Theta_t)} = \beta E_t \left[w_{t+1} U'(c_{t+1}^*) - V'(l_{t+1}^* + u_{t+1}^*)
+ (1 - s) \frac{V'(l_{t+1}^* + u_{t+1}^*)}{f(\Theta_{t+1})} \right]
$$

and transition equation

$$
l_{t+1} = (1 - s)l_t + f(\Theta_t)u_t
$$
Solve for $\frac{\partial l_{t+k}^*}{\partial a_t}$

Labor search (unemployment) Euler equation:

$$
\frac{V'(l_t + u_t^*)}{f(\Theta_t)} = \beta E_t \left[w_{t+1} U'(c_{t+1}^*) - V'(l_{t+1}^* + u_{t+1}^*)
+ (1 - s) \frac{V'(l_{t+1}^* + u_{t+1}^*)}{f(\Theta_{t+1})} \right]
$$

and transition equation

$$
l_{t+1} = (1 - s)l_t + f(\Theta_t)u_t
$$

imply, at steady state:

$$
E_t \frac{\partial l_{t+k}^*}{\partial a_t} = -\frac{\gamma}{\chi} \frac{l + u}{c} \frac{f(\Theta)}{s + f(\Theta)} \left[1 - (1 - s - f(\Theta))^k \right] \frac{\partial c_t^*}{\partial a_t}.
$$

where $\gamma \equiv -cU''(c)/U'(c)$, $\chi \equiv (l + u)V''(l + u)/V'(l + u)$.
Solve for $\frac{\partial c^*_t}{\partial a_t}$

Household's budget constraint, no-Ponzi condition:

$$\sum_{k=0}^{\infty} \frac{1}{(1 + r)^k} E_t \left[\frac{\partial c^*_{t+k}}{\partial a_t} - w \frac{\partial l^*_{t+k}}{\partial a_t} \right] = 1 + r$$
Solve for $\frac{\partial c^*_t}{\partial a_t}$

Household’s budget constraint, no-Ponzi condition:

$$\sum_{k=0}^{\infty} \frac{1}{(1 + r)^k} E_t \left[\frac{\partial c^*_{t+k}}{\partial a_t} - w \frac{\partial l^*_{t+k}}{\partial a_t} \right] = 1 + r,$$

Consumption Euler equation:

$$\frac{\partial c^*_t}{\partial a_t} = E_t \frac{\partial c^*_{t+1}}{\partial a_t} = E_t \frac{\partial c^*_{t+k}}{\partial a_t}, \quad k = 1, 2, \ldots,$$
Solve for $\frac{\partial c^*_t}{\partial a_t}$

Household’s budget constraint, no-Ponzi condition:

$$\sum_{k=0}^{\infty} \frac{1}{(1 + r)^k} E_t \left[\frac{\partial c^*_{t+k}}{\partial a_t} - w \frac{\partial l^*_{t+k}}{\partial a_t} \right] = 1 + r ,$$

Consumption Euler equation:

$$\frac{\partial c^*_t}{\partial a_t} = E_t \frac{\partial c^*_{t+1}}{\partial a_t} = E_t \frac{\partial c^*_{t+k}}{\partial a_t} , \quad k = 1, 2, \ldots ,$$

Labor Euler equation:

$$E_t \frac{\partial l^*_{t+k}}{\partial a_t} = -\frac{\gamma}{\chi} \frac{l + u}{c} \frac{f(\Theta)}{s + f(\Theta)} \left[1 - (1 - s - f(\Theta))^k \right] \frac{\partial c^*_t}{\partial a_t} ,$$
Solve for $\partial c^*_t / \partial a_t$

Household’s budget constraint, no-Ponzi condition:

$$\sum_{k=0}^{\infty} \frac{1}{(1 + r)^k} E_t \left[\frac{\partial c^*_{t+k}}{\partial a_t} - w \frac{\partial l^*_{t+k}}{\partial a_t} \right] = 1 + r,$$

Consumption Euler equation:

$$\frac{\partial c^*_t}{\partial a_t} = E_t \frac{\partial c^*_{t+1}}{\partial a_t} = E_t \frac{\partial c^*_{t+k}}{\partial a_t}, \quad k = 1, 2, \ldots,$$

Labor Euler equation:

$$E_t \frac{\partial l^*_{t+k}}{\partial a_t} = -\frac{\gamma}{\chi} \frac{l + u}{c} \frac{f(\Theta)}{s + f(\Theta)} \left[1 - (1 - s - f(\Theta))^k \right] \frac{\partial c^*_t}{\partial a_t},$$

Solution is a “modified permanent income hypothesis”:

$$\frac{\partial c^*_t}{\partial a_t} = \frac{r}{1 + \frac{\gamma}{\chi} \frac{w(l+u)}{c} \frac{f(\Theta)}{r + s + f(\Theta)}}.$$
Solve for Coefficient of Absolute Risk Aversion

\[\nabla_1(a, l; \theta) = (1 + r) U'(c), \]
Solve for Coefficient of Absolute Risk Aversion

\[\nabla_1(a, l; \theta) = (1 + r) U'(c), \]
\[\nabla_{11}(a, l; \theta) = (1 + r) U''(c) \frac{\partial c^*_t}{\partial a_t}, \]
Solve for Coefficient of Absolute Risk Aversion

\[\nabla_1(a, l; \theta) = (1 + r) U'(c), \]

\[\nabla_{11}(a, l; \theta) = (1 + r) U''(c) \frac{\partial c^*_t}{\partial a_t}, \]

\[\frac{\partial c^*_t}{\partial a_t} = \frac{r}{1 + \gamma \frac{w(l+u)}{c} \frac{f(\Theta)}{r + s + f(\Theta)}}, \]
Solve for Coefficient of Absolute Risk Aversion

\[\nabla_1(a, l; \theta) = (1 + r) U'(c), \]
\[\nabla_{11}(a, l; \theta) = (1 + r) U''(c) \frac{\partial c^*_t}{\partial a_t}, \]
\[\frac{\partial c^*_t}{\partial a_t} = \frac{r}{1 + \frac{\gamma}{\chi} \frac{w(l+u)}{c} \frac{f(\Theta)}{r + s + f(\Theta)}}, \]

Proposition 2. Given Assumptions 1–7, the household’s coefficient of absolute risk aversion, \(R^a(a_t, l_t; \Theta_t) \), evaluated at steady state, satisfies

\[R^a(a, l; \Theta) = \frac{-U''(c)}{U'(c)} \frac{r}{1 + \frac{\gamma}{\chi} \frac{w(l+u)}{c} \frac{f(\Theta)}{r + s + f(\Theta)}}. \]
Relative Risk Aversion

Compare: \[a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t + \sigma A_t \epsilon_{t+1} \]

vs.

\[a_{t+1} = (1 + r_t)a_t + w_t l_t + d_t - c_t - \mu A_t. \]
Relative Risk Aversion

Compare: \[a_{t+1} = (1 + r_t) a_t + w_t l_t + d_t - c_t + \sigma A_t \varepsilon_{t+1} \]

vs.

\[a_{t+1} = (1 + r_t) a_t + w_t l_t + d_t - c_t - \mu A_t. \]

Definition 2. The households' coefficient of relative risk aversion, \(R^c(a_t, l_t; \Theta_t) = A_t R^a(a_t, l_t; \Theta_t) \), where \(A_t \) denotes the household's financial assets plus present discounted value of labor income.

At steady state, \(A = c/r \), and

\[
R^c(a; \Theta) = \frac{-U''(c)}{U'(c)} \cfrac{c}{1 + \frac{\gamma}{\chi} \cfrac{w(l+u)}{c} \cfrac{f(\Theta)}{r + s + f(\Theta)}}.
\]
Numerical Example

Household period utility function:

\[
\frac{c_t^{1-\gamma}}{1-\gamma} - \chi_0 \frac{(l_t + u_t)^{1+\chi}}{1+\chi}
\]
Numerical Example

Household period utility function:

\[
\frac{c_t^{1-\gamma}}{1-\gamma} - \chi_0 \frac{(l_t + u_t)^{1+\chi}}{1+\chi}
\]

Economy is a simple RBC model with labor market frictions:

- Competitive firms,
- Cobb-Douglas production functions, \(y_t = Z_t k_t^{1-\phi} l_t^\phi \)
- AR(1) technology, \(\log Z_{t+1} = \rho_z \log Z_t + \varepsilon_t \)
- Capital accumulation, \(k_{t+1} = (1 - \delta) k_t + y_t - c_t \)
- Labor market frictions, \(l_{t+1} = (1 - s) l_t + h_t \)
Numerical Example

Labor market search:

- Cobb-Douglas matching function, \(h_t = \mu u_t^{1-\eta} v_t^\eta \)
- Wage set by Nash bargaining with equal weights
Labor market search:
- Cobb-Douglas matching function, \(h_t = \mu u_t^{1-\eta} v_t^{\eta} \)
- Wage set by Nash bargaining with equal weights

Equity security:
- Equity is a consumption claim
- Equity premium is expected excess return,

\[
\psi_t \equiv \frac{E_t(C_{t+1} + p_{t+1})}{p_t} - (1 + r_t^f)
\]
Numerical Example

Labor market search:
- Cobb-Douglas matching function, \(h_t = \mu u_t^{1-\eta} v_t^\eta \)
- Wage set by Nash bargaining with equal weights

Equity security:
- Equity is a consumption claim
- Equity premium is expected excess return,

\[
\psi_t \equiv \frac{E_t(C_{t+1} + p_{t+1})}{p_t} - (1 + r_t^f)
\]

Baseline calibration:
- Production: \(\phi = 0.7, \delta = .0083, \rho_z = 0.99, \sigma_\varepsilon = .005 \)
- Matching: \(s = .02, \eta = 0.5, v/u = 0.6, f(\Theta) = 0.28 \)
- Preferences: \(\beta = .996, \gamma = 100, \chi = 100, l + u = 0.3 \)
Figure 1: Risk Aversion and Equity Premium vs. χ

- Fixed-labor measure of risk aversion (left axis)
- Relative risk aversion R^c (left axis)
- Equity premium (right axis)
Figure 2: Risk Aversion and Equity Premium vs. γ
Figure 3: Risk Aversion and Equity Premium vs. $f(\Theta)$
Proposition 3. Let $f_1, f_2 : \Omega_\Theta \to [0, 1]$. Given Assumptions 1–8 and fixed values for the parameters s, β, γ, and χ, let $(a_1, l_1; \Theta_1)$ and $(a_2, l_2; \Theta_2)$ denote corresponding steady-state values of $(a_t, l_t; \Theta_t)$. If $f_1(\Theta_1) < f_2(\Theta_2)$, then $R_c^1(a_1, l_1; \Theta_1) > R_c^2(a_2, l_2; \Theta_2)$.
Proposition 3. Let \(f_1, f_2 : \Omega_{\Theta} \to [0, 1] \). Given Assumptions 1–8 and fixed values for the parameters \(s, \beta, \gamma, \) and \(\chi \), let \((a_1, l_1; \Theta_1)\) and \((a_2, l_2; \Theta_2)\) denote corresponding steady-state values of \((a_t, l_t; \Theta_t)\). If \(f_1(\Theta_1) < f_2(\Theta_2) \), then \(R^c_1(a_1, l_1; \Theta_1) > R^c_2(a_2, l_2; \Theta_2) \).

Proof:

\[
R^c(a, l; \Theta) = \frac{-U''(c)}{U'(c)} c \left(1 + \frac{\gamma \omega l}{\chi c} \frac{s + f(\Theta)}{r + s + f(\Theta)} \right)
\]

is decreasing in \(f(\Theta) \).
Risk Aversion Is Higher in Recessions

Proposition 4. Given Assumptions 1–8 and fixed values for the parameters $s, \beta, \gamma, \text{ and } \chi$, $R^c(a, I; \Theta)$ is decreasing in I/u.
Proposition 4. Given Assumptions 1–8 and fixed values for the parameters s, β, γ, and χ, $R^c(a, l; \Theta)$ is decreasing in l/u.

Proof:

\[
R^c(a, l; \Theta) = \frac{-U''(c)}{U'(c)} \frac{c}{1 + \frac{\gamma}{\chi} \frac{w(l+u)}{c} \frac{f(\Theta)}{r+s+f(\Theta)}}.
\]

Using $sl = f(\Theta)u$,

\[
R^c(a, l; \Theta) = \frac{-U''(c)}{U'(c)} \frac{c}{1 + \frac{\gamma}{\chi} \frac{wl}{c} \frac{s(1+1/u)}{r+s(1+1/u)}}.
\]
Risk Aversion Higher for Less Employable Households

Two types of households:
- Measure 1 of type 1 households
- Measure 0 of type 2 households
- Type 1 households are more employable: $f_1(\Theta) > f_2(\Theta)$
Risk Aversion Higher for Less Employable Households

Two types of households:
- Measure 1 of type 1 households
- Measure 0 of type 2 households
- Type 1 households are more employable: $f_1(\Theta) > f_2(\Theta)$

Then Proposition 4 implies $R^c_2(a_2, l_2; \Theta) > R^c_1(a_1, l_1; \Theta)$.
<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>f(Θ)</th>
<th>Percentage of Households Owning Equities</th>
<th>Percentage of Households Owning Risky Financial Assets</th>
<th>Share of Household Portfolios in Currency and Deposits</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>.019</td>
<td>.282</td>
<td>48.9</td>
<td>49.2</td>
<td>12.4</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>.009</td>
<td>.056</td>
<td>31.5</td>
<td>32.4</td>
<td>26.0</td>
</tr>
<tr>
<td>Germany</td>
<td>.006</td>
<td>.035</td>
<td>18.9</td>
<td>25.1</td>
<td>33.9</td>
</tr>
<tr>
<td>France</td>
<td>.007</td>
<td>.033</td>
<td>–</td>
<td>–</td>
<td>29.1</td>
</tr>
<tr>
<td>Spain</td>
<td>.012</td>
<td>.020</td>
<td>–</td>
<td>–</td>
<td>38.1</td>
</tr>
<tr>
<td>Italy</td>
<td>.004</td>
<td>.013</td>
<td>18.9</td>
<td>22.1</td>
<td>27.9</td>
</tr>
</tbody>
</table>
Table 2: International Comparison

<table>
<thead>
<tr>
<th>Relative Risk Aversion R^c</th>
<th>$\gamma = 2$</th>
<th>$\gamma = 5$</th>
<th>$\gamma = 10$</th>
<th>$\gamma = 20$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>$f(\Theta)$</td>
<td>$\frac{s+f(\Theta)}{r+s+f(\Theta)}$</td>
<td>$\chi = 1.5$</td>
<td>$\chi = 0.5$</td>
</tr>
<tr>
<td>Theoretical labor market benchmarks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>perfect rigidity</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>near-perfect flexibility</td>
<td>1</td>
<td>1</td>
<td>.997</td>
<td>.86</td>
</tr>
</tbody>
</table>

International comparison, $r = .004$:

United States	.019	.282	.977	.87	.46	2.04	6.77
United Kingdom	.009	.056	.903	.91	.50	2.17	7.13
Germany	.006	.035	.854	.94	.52	2.26	7.38
France	.007	.033	.851	.94	.53	2.27	7.40
Spain	.012	.020	.821	.96	.54	2.34	7.57
Italy	.004	.013	.7081	1.03	.62	2.61	8.28
Table 3: Cyclical Variation in Risk Aversion

<table>
<thead>
<tr>
<th>Relative Risk Aversion R^c</th>
<th>$\gamma = 2$</th>
<th>$\gamma = 5$</th>
<th>$\gamma = 10$</th>
<th>$\gamma = 20$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi = 1.5$</td>
<td>$\chi = 0.5$</td>
<td>$\chi = 2.5$</td>
<td>$\chi = 10$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>s</th>
<th>$f(\Theta)$</th>
<th>r</th>
<th>$\frac{s+f(\Theta)}{r+s+f(\Theta)}$</th>
<th>$\chi = 1.5$</th>
<th>$\chi = 0.5$</th>
<th>$\chi = 2.5$</th>
<th>$\chi = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S., expansion</td>
<td>.017</td>
<td>.35</td>
<td>.003</td>
<td>.995</td>
<td>0.86</td>
<td>0.46</td>
<td>2.01</td>
<td>6.70</td>
</tr>
<tr>
<td>U.S., recession</td>
<td>.022</td>
<td>.20</td>
<td>.011</td>
<td>.953</td>
<td>0.88</td>
<td>0.47</td>
<td>2.08</td>
<td>6.88</td>
</tr>
<tr>
<td>rigid lab mkt, expan</td>
<td>.0036</td>
<td>.016</td>
<td>.003</td>
<td>.868</td>
<td>0.93</td>
<td>0.52</td>
<td>2.24</td>
<td>7.31</td>
</tr>
<tr>
<td>rigid lab mkt, recess</td>
<td>.0046</td>
<td>.009</td>
<td>.011</td>
<td>.557</td>
<td>1.15</td>
<td>0.76</td>
<td>3.10</td>
<td>9.45</td>
</tr>
</tbody>
</table>
Other International Evidence: Campbell (1999)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>0.9%</td>
<td>4.5%</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>2.6%</td>
<td>6.2%</td>
</tr>
<tr>
<td>Germany</td>
<td>2.5%</td>
<td>4.8%</td>
</tr>
<tr>
<td>France</td>
<td>2.1%</td>
<td>4.5%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2.8%</td>
<td>9.0%</td>
</tr>
<tr>
<td>Switzerland</td>
<td>2.2%</td>
<td>10.1%</td>
</tr>
<tr>
<td>Sweden</td>
<td>1.9%</td>
<td>6.4%</td>
</tr>
<tr>
<td>Italy</td>
<td>1.7%</td>
<td>−1.5%</td>
</tr>
</tbody>
</table>
Conclusions

General conclusions:
- A flexible labor margin affects risk aversion
- Risk premia are closely related to risk aversion

Implications of labor market frictions:
- Risk aversion is higher in more frictional labor markets
- Risk aversion is higher in recessions
- Risk aversion is higher for households that are less employable

Quantitative findings:
- Frictions can play a contributing role to higher risk aversion in Europe
- Risk aversion formulas in Swanson (2012) still a good approximation