The Bond Premium in a DSGE Model with Long-Run Real and Nominal Risks

Glenn D. Rudebusch Eric T. Swanson

Economic Research
Federal Reserve Bank of San Francisco

Banca D’Italia
April 16, 2010
1. Motivation and Background
2. Epstein-Zin Preferences in a Standard NK Model
3. Long-Run Risks
4. Model Implications
5. Conclusions
The equity premium puzzle: excess returns on stocks are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Mehra and Prescott, 1985).
The Bond Premium Puzzle

The **equity premium puzzle**: excess returns on stocks are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Mehra and Prescott, 1985).

The **bond premium puzzle**: excess returns on long-term bonds are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Backus, Gregory, and Zin, 1989).
The Bond Premium Puzzle

The **equity premium puzzle**: excess returns on stocks are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Mehra and Prescott, 1985).

The **bond premium puzzle**: excess returns on long-term bonds are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Backus, Gregory, and Zin, 1989).

Note:
- Since Backus, Gregory, and Zin (1989), DSGE models with nominal rigidities have advanced considerably
The **equity premium puzzle**: excess returns on stocks are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Mehra and Prescott, 1985).

The **bond premium puzzle**: excess returns on long-term bonds are much larger (and more variable) than can be explained by standard preferences in a DSGE model (Backus, Gregory, and Zin, 1989).

Note:
- Since Backus, Gregory, and Zin (1989), DSGE models with nominal rigidities have advanced considerably

The **UIP premium puzzle**: excess returns on high-interest-rate foreign currencies are much larger (and more variable) than can be explained by standard preferences in a DSGE model.
Motivation

Basic Model

Long-Run Risks

Model Implications

Conclusions

Kim-Wright Term Premium

Fig. 1 10-year Treasury bond yield and inflation expectations

Data are quarterly. The 10-year zero-coupon Treasury bond yield is the end-of-quarter yield from Gurkaynak, Sack, and Wright (2007). 10-year inflation expectations are from the Federal Reserve Board, which is from three sources: from 1991 onward, the data are inflation expectations from 5 to 10 years ahead from the Survey of Professional Forecasters; from 1981 to 1991, the data are inflation expectations from 5 to 10 years ahead from the Blue Chip Survey of forecasters; prior to 1981, this series was extended backward by Federal Reserve Board staff using multiple data sources and the FRB/US model.

Fig. 2 Affine, no-arbitrage model decomposition of 10-year bond yield

Data are quarterly, sampled at the end of each quarter. Source: Kim and Wright (2005).
Why Study the Term Premium?
Why Study the Term Premium in a DSGE Model?

- Relative to equity premium, the term premium:
 - applies to a larger volume of securities
 - is used by central banks to measure expectations of monetary policy
 - only requires modeling short-term interest rate, not dividends or leverage
 - provides an additional perspective on the model
 - tests nominal rigidities

- More generally:
 - many empirical questions about risk premia require a structural DSGE model to provide reliable answers
 - DSGE models widely used in macroeconomics; total failure to explain risk premia may signal flaws in the model
Why Study the Term Premium in a DSGE Model?

Relative to equity premium, the term premium:

- applies to a larger volume of securities
- is used by central banks to measure expectations of monetary policy, inflation
- only requires modeling short-term interest rate, not dividends or leverage
- provides an additional perspective on the model
- tests nominal rigidities
Relative to equity premium, the term premium:

- applies to a larger volume of securities
- is used by central banks to measure expectations of monetary policy, inflation
- only requires modeling short-term interest rate, not dividends or leverage
- provides an additional perspective on the model
- tests nominal rigidities

More generally:

- many empirical questions about risk premia require a structural DSGE model to provide reliable answers
- DSGE models widely used in macroeconomics; total failure to explain risk premia may signal flaws in the model
Some Recent Studies of the Bond Premium Puzzle

- Wachter (2005)
 - can resolve bond premium puzzle using Campbell-Cochrane preferences in endowment economy
Some Recent Studies of the Bond Premium Puzzle

- **Wachter (2005)**
 - can resolve bond premium puzzle using Campbell-Cochrane preferences in endowment economy

- **Rudebusch and Swanson (2008)**
 - the term premium is far too small in a standard New Keynesian model, even with Campbell-Cochrane habits
 - similar finding by Jermann (1998), Lettau and Uhlig (2000) for equity premium in an RBC model
Some Recent Studies of the Bond Premium Puzzle

- Wachter (2005)
 - can resolve bond premium puzzle using Campbell-Cochrane preferences in endowment economy

- Rudebusch and Swanson (2008)
 - the term premium is far too small in a standard New Keynesian model, even with Campbell-Cochrane habits
 - similar finding by Jermann (1998), Lettau and Uhlig (2000) for equity premium in an RBC model

- Piazzesi-Schneider (2006)
 - can resolve bond premium puzzle using Epstein-Zin preferences in endowment economy
Some Recent Studies of the Bond Premium Puzzle

- **Wachter (2005)**
 - can resolve bond premium puzzle using Campbell-Cochrane preferences in endowment economy

- **Rudebusch and Swanson (2008)**
 - the term premium is far too small in a standard New Keynesian model, even with Campbell-Cochrane habits
 - similar finding by Jermann (1998), Lettau and Uhlig (2000) for equity premium in an RBC model

- **Piazzesi-Schneider (2006)**
 - can resolve bond premium puzzle using Epstein-Zin preferences in endowment economy

We examine to what extent the Piazzesi-Schneider results generalize to the DSGE case
Related Strands of the Literature

The Bond Premium in a DSGE Model:

Epstein-Zin Preferences and the Bond Premium in an Endowment Economy:

Epstein-Zin Preferences in a DSGE Model:

Epstein-Zin Preferences and the Bond Premium in a DSGE Model:
Epstein-Zin Preferences in a Standard NK Model

- Epstein-Zin Preferences
- Standard New Keynesian Model
- Price Assets in the Model
- Solve the Model
- Results
Epstein-Zin Preferences

Standard preferences:

\[V_t \equiv u(c_t, l_t) + \beta E_t V_{t+1} \]
Epstein-Zin Preferences

Standard preferences:

\[V_t \equiv u(c_t, l_t) + \beta E_t V_{t+1} \]

Epstein-Zin preferences:

\[V_t \equiv u(c_t, l_t) + \beta (E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)} \]
Epstein-Zin Preferences

Standard preferences:

\[V_t \equiv u(c_t, l_t) + \beta E_t V_{t+1} \]

Epstein-Zin preferences:

\[V_t \equiv u(c_t, l_t) + \beta (E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)} \]

Note:

- need to impose \(u \geq 0 \)
Epstein-Zin Preferences

Standard preferences:

\[V_t \equiv u(c_t, l_t) + \beta E_t V_{t+1} \]

Epstein-Zin preferences:

\[V_t \equiv u(c_t, l_t) + \beta (E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)} \]

Note:

- need to impose \(u \geq 0 \)
- or \(u \leq 0 \) and \(V_t \equiv u(c_t, l_t) - \beta (E_t(-V_{t+1})^{1-\alpha})^{1/(1-\alpha)} \)
Epstein-Zin Preferences

Standard preferences:

$$V_t \equiv u(c_t, l_t) + \beta E_t V_{t+1}$$

Epstein-Zin preferences:

$$V_t \equiv u(c_t, l_t) + \beta (E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}$$

Note:

- need to impose $u \geq 0$
- or $u \leq 0$ and $V_t \equiv u(c_t, l_t) - \beta \left(E_t \left(-V_{t+1}^{1-\alpha} \right) \right)^{1/(1-\alpha)}$

We’ll use standard NK utility kernel:

$$u(c_t, l_t) \equiv \frac{c_t^{1-\gamma}}{1-\gamma} - \chi_0 \frac{l_t^{1+\gamma}}{1+\chi}$$
Epstein-Zin Preferences

Household optimality conditions with EZ preferences:

$$\mu_t U_1\big|_{(c_t, l_t)} = P_t \lambda_t$$

$$-\mu_t U_2\big|_{(c_t, l_t)} = W_t \lambda_t$$

$$\lambda_t = \beta E_t \lambda_{t+1}(1 + r_{t+1})$$

$$\mu_t = \mu_{t-1} (E_{t-1} V_t^{1-\alpha})^{\alpha/(1-\alpha)} V_t^{-\alpha}, \quad \mu_0 = 1$$
Epstein-Zin Preferences

Household optimality conditions with EZ preferences:

\[
\begin{align*}
\mu_t \left. u_1 \right|_{(c_t, l_t)} &= P_t \lambda_t \\
-\mu_t \left. u_2 \right|_{(c_t, l_t)} &= W_t \lambda_t \\
\lambda_t &= \beta E_t \lambda_{t+1} (1 + r_{t+1}) \\
\mu_t &= \mu_{t-1} \left(E_{t-1} V_t^{1-\alpha} \right)^{\alpha/(1-\alpha)} V_t^{-\alpha}, \quad \mu_0 = 1 \\
\end{align*}
\]

Recall: \[V_t = u(c_t, l_t) + \beta \left(E_t V_t^{1-\alpha} \right)^{1/(1-\alpha)} \]
Epstein-Zin Preferences

Household optimality conditions with EZ preferences:

\[
\mu_t \ u_1 \bigg|_{(c_t, l_t)} = P_t \lambda_t \\
\mu_t \ u_2 \bigg|_{(c_t, l_t)} = w_t \lambda_t \\
\lambda_t = \beta E_t \lambda_{t+1} (1 + r_{t+1}) \\
\mu_t = \mu_{t-1} (E_{t-1} V_{t}^{1-\alpha})^{\alpha/(1-\alpha)} V_{t}^{-\alpha}, \quad \mu_0 = 1
\]

Recall: \(V_t = u(c_t, l_t) + \beta (E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)} \)

Stochastic discount factor:

\[
m_{t,t+1} \equiv \frac{\beta u_1 \bigg|_{(c_{t+1}, l_{t+1})}}{u_1 \bigg|_{(c_t, l_t)}} \left(\frac{V_{t+1}}{(E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}} \right)^{-\alpha} \frac{P_t}{P_{t+1}}
\]
New Keynesian Model (Very Standard)

Continuum of differentiated firms:
- face Dixit-Stiglitz demand with elasticity $\frac{1+\theta}{\theta}$, markup θ
- set prices in Calvo contracts with avg. duration 4 quarters
- identical production functions $y_t = A_t\bar{k}^{1-\eta}l_t^\eta$
- have firm-specific capital stocks
- face aggregate technology $\log A_t = \rho_A \log A_{t-1} + \varepsilon_t^A$

Parameters $\theta = .2$, $\rho_A = .9$, $\sigma_A^2 = .01^2$

Perfectly competitive goods aggregation sector
New Keynesian Model (Very Standard)

Government:
- imposes lump-sum taxes G_t on households
- destroys the resources it collects

$$\log G_t = \rho_G \log G_{t-1} + (1 - \rho_g) \log \bar{G} + \varepsilon_t^G$$

Parameters $\bar{G} = .17 \bar{Y}$, $\rho_G = .9$, $\sigma^2_G = .004^2$
New Keynesian Model (Very Standard)

Government:
- imposes lump-sum taxes G_t on households
- destroys the resources it collects
- $\log G_t = \rho_G \log G_{t-1} + (1 - \rho_g) \log \bar{G} + \varepsilon_t^G$

Parameters $\bar{G} = .17 \bar{Y}$, $\rho_G = .9$, $\sigma^2_G = .004^2$

Monetary Authority:
- $i_t = \rho_i i_{t-1} + (1 - \rho_i) \left[\frac{1}{\beta} + \pi_t + g_y (y_t - \bar{y}) + g_\pi (\bar{\pi}_t - \pi^*) \right] + \varepsilon^i_t$

Parameters $\rho_i = .73$, $g_y = .53$, $g_\pi = .93$, $\pi^* = 0$, $\sigma^2_i = .004^2$
Asset Pricing

Asset pricing:

\[p_t = d_t + E_t[m_{t+1}p_{t+1}] \]
Asset Pricing

Asset pricing:

\[p_t = d_t + E_t[m_{t+1}p_{t+1}] \]

Zero-coupon bond pricing:

\[p_t^{(n)} = E_t[m_{t+1}p_{t+1}^{(n-1)}] \]

\[i_t^{(n)} = -\frac{1}{n} \log p_t^{(n)} \]

Notation: let \(i_t \equiv i_t^{(1)} \)
The Term Premium in the Standard NK Model

In DSGE framework, convenient to work with a default-free consol, a perpetuity that pays $1, δ^c, δ^2c, δ^3c, ... (nominal)

Price of the consol:

$\tilde{p}(n)_t = 1 + \delta^c E_t m_t + 1 \tilde{p}(n)_t + 1$

Risk-neutral consol price:

$\hat{p}(n)_t = 1 + \delta^c e^{-it} E_t \hat{p}(n)_t + 1$

Term premium:

$\psi(n)_t \equiv \log(\delta^c \tilde{p}(n)_t / \tilde{p}(n)_t) - 1 - \log(\delta^c \hat{p}(n)_t / \hat{p}(n)_t - 1)$
The Term Premium in the Standard NK Model

In DSGE framework, convenient to work with a default-free *consol,*
The Term Premium in the Standard NK Model

In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays $1, \(\delta_c, \delta_c^2, \delta_c^3, \ldots \) (nominal)
The Term Premium in the Standard NK Model

In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays $1, \delta_c, \delta_c^2, \delta_c^3, \ldots$ (nominal)

Price of the consol:

$$\tilde{p}_t^{(n)} = 1 + \delta_c E_t m_{t+1} \tilde{p}_{t+1}^{(n)}$$
The Term Premium in the Standard NK Model

In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays $1, δ_c, δ_c^2, δ_c^3, \ldots$ (nominal)

Price of the consol:

\[\tilde{p}_t^{(n)} = 1 + \delta_c E_t m_{t+1} \tilde{p}_{t+1}^{(n)} \]

Risk-neutral consol price:

\[\hat{p}_t^{(n)} = 1 + \delta_c e^{-i_t} E_t \hat{p}_{t+1}^{(n)} \]
The Term Premium in the Standard NK Model

In DSGE framework, convenient to work with a default-free *consol*, a perpetuity that pays $1, δ_c, δ_c^2, δ_c^3, \ldots$ (nominal)

Price of the consol:

\[
\tilde{p}_t^{(n)} = 1 + \delta_c E_t m_{t+1} \tilde{p}_{t+1}^{(n)}
\]

Risk-neutral consol price:

\[
\hat{p}_t^{(n)} = 1 + \delta_c e^{-i_t} E_t \hat{p}_{t+1}^{(n)}
\]

Term premium:

\[
\psi_t^{(n)} \equiv \log \left(\frac{\delta_c \tilde{p}_t^{(n)}}{\tilde{p}_t^{(n)} - 1} \right) - \log \left(\frac{\delta_c \hat{p}_t^{(n)}}{\hat{p}_t^{(n)} - 1} \right)
\]
Solving the Model

The standard NK model above has a relatively large number of state variables: \(A_{t-1}, G_{t-1}, i_{t-1}, \Delta_{t-1}, \bar{\pi}_{t-1}, \varepsilon^A_t, \varepsilon^G_t, \varepsilon^i_t \)
The standard NK model above has a relatively large number of state variables: $A_{t-1}, G_{t-1}, i_{t-1}, \Delta_{t-1}, \bar{\pi}_{t-1}, \varepsilon^A_t, \varepsilon^G_t, \varepsilon^i_t$

We solve the model by approximation around the nonstochastic steady state (perturbation methods)
Solving the Model

The standard NK model above has a relatively large number of state variables: $A_{t-1}, G_{t-1}, i_{t-1}, \Delta_{t-1}, \bar{\pi}_{t-1}, \varepsilon^A_t, \varepsilon^G_t, \varepsilon^i_t$

We solve the model by approximation around the nonstochastic steady state (perturbation methods)

- In a first-order approximation, term premium is zero
- In a second-order approximation, term premium is a constant (sum of variances)
- So we compute a third-order approximation of the solution around nonstochastic steady state
- Perturbation AIM algorithm in Swanson, Anderson, Levin (2006) quickly computes nth order approximations
Empirical and Model-Based Unconditional Moments

<table>
<thead>
<tr>
<th>Variable</th>
<th>U.S. Data</th>
<th>EU Preferences</th>
<th>EZ Preferences</th>
<th>“best fit” EZ Preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd[C]</td>
<td>1.19</td>
<td>1.40</td>
<td>1.46</td>
<td>2.12</td>
</tr>
<tr>
<td>sd[L]</td>
<td>1.71</td>
<td>2.48</td>
<td>2.50</td>
<td>1.89</td>
</tr>
<tr>
<td>sd[w_r]</td>
<td>0.82</td>
<td>2.02</td>
<td>2.02</td>
<td>2.02</td>
</tr>
<tr>
<td>sd[π]</td>
<td>2.52</td>
<td>2.22</td>
<td>2.30</td>
<td>2.96</td>
</tr>
<tr>
<td>sd[i]</td>
<td>2.71</td>
<td>1.86</td>
<td>1.93</td>
<td>2.65</td>
</tr>
<tr>
<td>sd[i(40)]</td>
<td>2.41</td>
<td>0.52</td>
<td>0.57</td>
<td>1.17</td>
</tr>
<tr>
<td>mean[ψ(40)]</td>
<td>1.06</td>
<td>.010</td>
<td>.438</td>
<td>1.06</td>
</tr>
<tr>
<td>sd[ψ(40)]</td>
<td>0.54</td>
<td>.000</td>
<td>.053</td>
<td>.162</td>
</tr>
<tr>
<td>mean[i(40) − i]</td>
<td>1.43</td>
<td>−.038</td>
<td>.390</td>
<td>0.95</td>
</tr>
<tr>
<td>sd[i(40) − i]</td>
<td>1.33</td>
<td>1.41</td>
<td>1.43</td>
<td>1.59</td>
</tr>
<tr>
<td>mean[x(40)]</td>
<td>1.76</td>
<td>.010</td>
<td>.431</td>
<td>1.04</td>
</tr>
<tr>
<td>sd[x(40)]</td>
<td>23.43</td>
<td>6.52</td>
<td>6.87</td>
<td>10.77</td>
</tr>
<tr>
<td>memo: IES</td>
<td>.5</td>
<td>.5</td>
<td>.5</td>
<td>.5</td>
</tr>
<tr>
<td>quasi-CRRA</td>
<td>2</td>
<td>75</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>
Empirical and Model-Based Unconditional Moments

<table>
<thead>
<tr>
<th>Variable</th>
<th>U.S. Data</th>
<th>EU Preferences</th>
<th>EZ Preferences</th>
<th>“best fit” EZ Preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>sd[C]</td>
<td>1.19</td>
<td>1.40</td>
<td>1.46</td>
<td>2.12</td>
</tr>
<tr>
<td>sd[L]</td>
<td>1.71</td>
<td>2.48</td>
<td>2.50</td>
<td>1.89</td>
</tr>
<tr>
<td>sd[w_r]</td>
<td>0.82</td>
<td>2.02</td>
<td>2.02</td>
<td>2.02</td>
</tr>
<tr>
<td>sd[π]</td>
<td>2.52</td>
<td>2.22</td>
<td>2.30</td>
<td>2.96</td>
</tr>
<tr>
<td>sd[i]</td>
<td>2.71</td>
<td>1.86</td>
<td>1.93</td>
<td>2.65</td>
</tr>
<tr>
<td>sd[i^{(40)}]</td>
<td>2.41</td>
<td>0.52</td>
<td>0.57</td>
<td>1.17</td>
</tr>
<tr>
<td>mean[ψ^{(40)}]</td>
<td>1.06</td>
<td>.010</td>
<td>.438</td>
<td>1.06</td>
</tr>
<tr>
<td>sd[ψ^{(40)}]</td>
<td>0.54</td>
<td>.000</td>
<td>.053</td>
<td>.162</td>
</tr>
<tr>
<td>mean[i^{(40)} − i]</td>
<td>1.43</td>
<td>−.038</td>
<td>.390</td>
<td>0.95</td>
</tr>
<tr>
<td>sd[i^{(40)} − i]</td>
<td>1.33</td>
<td>1.41</td>
<td>1.43</td>
<td>1.59</td>
</tr>
<tr>
<td>mean[x^{(40)}]</td>
<td>1.76</td>
<td>.010</td>
<td>.431</td>
<td>1.04</td>
</tr>
<tr>
<td>sd[x^{(40)}]</td>
<td>23.43</td>
<td>6.52</td>
<td>6.87</td>
<td>10.77</td>
</tr>
</tbody>
</table>

memo: IES .5 .5 .5
quasi-CRRA 2 75 90
Coefficient of Relative Risk Aversion

Arrow-Pratt:

\[-C \frac{u''(C)}{u'(C)}\]
Coefficient of Relative Risk Aversion

Arrow-Pratt:

\[
-C \frac{u''(C)}{u'(C)}
\]

Here:

\[
V_t = \frac{c_t^{1-\gamma}}{1-\gamma} - \chi_0 \frac{l_t^{1+\chi}}{1+\chi} + \beta (E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}
\]
Coefficient of Relative Risk Aversion

Arrow-Pratt:

\[
\frac{-C \ u''(C)}{u'(C)}
\]

Here:

\[
V_t = \frac{c_t^{1-\gamma}}{1-\gamma} - \chi_0 \frac{l_t^{1+\chi}}{1+\chi} + \beta (E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}
\]

\[
\text{CRRA} = \frac{-W \ V''(W)}{V'(W)} + \alpha \frac{W \ V'(W)}{V(W)}
\]
Coefficient of Relative Risk Aversion

Arrow-Pratt:

\[
-\frac{C u''(C)}{u'(C)}
\]

Here:

\[
V_t = \frac{c_t^{1-\gamma}}{1 - \gamma} - \chi_0 \frac{l_t^{1+\chi}}{1 + \chi} + \beta (E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}
\]

CRRA

\[
= -\frac{W V''(W)}{V'(W)} + \alpha \frac{W V'(W)}{V(W)}
\]

\[
= -\frac{u_{11} + \lambda u_{12}}{u_1} \frac{c}{1 + w \lambda} + \alpha \frac{c u_1}{u}
\]
Coefficient of Relative Risk Aversion

Arrow-Pratt:
\[
\frac{-C \ u''(C)}{u'(C)}
\]

Here:
\[
V_t = \frac{c_t^{1-\gamma}}{1 - \gamma} - \chi_0 \frac{l_t^{1+\chi}}{1 + \chi} + \beta (E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}
\]

CRRA
\[
= \frac{-W \ V''(W)}{V'(W)} + \alpha \frac{W \ V'(W)}{V(W)}
\]
\[
= \frac{-u_{11} + \lambda u_{12} c}{u_1} \frac{c}{1 + w\lambda} + \alpha \frac{c \ u_1}{u}
\]

see “Risk Aversion, the Labor Margin, and Asset Pricing in a DSGE Model”
Coefficient of Relative Risk Aversion

- Epstein-Zin preferences:

\[m_{t,t+1} \equiv \frac{\beta u_1|_{(c_{t+1},l_{t+1})}}{u_1|_{(c_t,l_t)}} \left(\frac{V_{t+1}}{(E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}} \right)^{-\alpha} \frac{P_t}{P_{t+1}} \]
Coefficient of Relative Risk Aversion

- Epstein-Zin preferences:

\[m_{t,t+1} = \frac{\beta u_1(c_{t+1}, l_{t+1})}{u_1(c_t, l_t)} \left(\frac{V_{t+1}}{(E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}} \right)^{-\alpha} \frac{P_t}{P_{t+1}} \]

- Barillas-Hansen-Sargent (2008):

\[m_{t,t+1} = \frac{\beta u_1(c_{t+1}, l_{t+1})}{u_1(c_t, l_t)} \frac{\psi_{t+1}}{\psi_t} \frac{P_t}{P_{t+1}} \]
Coefficient of Relative Risk Aversion

- Epstein-Zin preferences:

\[m_{t,t+1} \equiv \frac{\beta u_1|_{(c_{t+1},l_{t+1})}}{u_1|_{(c_t,l_t)}} \left(\frac{V_{t+1}}{(E_t V_{t+1}^{1-\alpha})^{1/(1-\alpha)}} \right)^{-\alpha} \frac{P_t}{P_{t+1}} \]

- Barillas-Hansen-Sargent (2008):

\[m_{t,t+1} \equiv \frac{\beta u_1|_{(c_{t+1},l_{t+1})}}{u_1|_{(c_t,l_t)}} \frac{\psi_{t+1}}{\psi_t} \frac{P_t}{P_{t+1}} \]

Risk Aversion and the Term Premium

Expected Utility Preferences, no long-run risk
Risk Aversion and the Term Premium

The diagram shows the relationship between risk aversion (quasi-CRRA) and the term premium (basis points) for two different preference models:

1. **Epstein-Zin Preferences, no long-run risk**
 - The blue line represents this scenario.

2. **Expected Utility Preferences, no long-run risk**
 - The red line represents this scenario.

The x-axis represents the quasi-CRRA values ranging from 0 to 100, while the y-axis represents the mean term premium in basis points ranging from -20 to 140.
Risk Aversion and the Term Premium

- Epstein-Zin Preferences, with long-run inflation risk
- Epstein-Zin Preferences, no long-run risk
- Expected Utility Preferences, no long-run risk
Long-Run Risks

- Long-Run Inflation Risk
- Long-Run Real Risk
<table>
<thead>
<tr>
<th>Motivation</th>
<th>Basic Model</th>
<th>Long-Run Risks</th>
<th>Model Implications</th>
<th>Conclusions</th>
</tr>
</thead>
</table>

Long-Run Inflation Risk

Long-run inflation risk makes long-term bonds more risky: same idea as Bansal-Yaron (2004), but with nominal risk rather than real risk. Long-term inflation expectations are more observable than long-term consumption growth.
Long-Run Inflation Risk

Long-run inflation risk makes long-term bonds more risky:

- same idea as Bansal-Yaron (2004), but with nominal risk rather than real risk
- long-term inflation expectations more observable than long-term consumption growth
Long-Run Inflation Risk

Long-run inflation risk makes long-term bonds more risky:

- same idea as Bansal-Yaron (2004), but with nominal risk rather than real risk
- long-term inflation expectations more observable than long-term consumption growth
Long-Run Inflation Risk

Long-run inflation risk makes long-term bonds more risky:

- same idea as Bansal-Yaron (2004), but with nominal risk rather than real risk
- long-term inflation expectations more observable than long-term consumption growth
- other evidence (Kozicki-Tinsley, 2003, Gürkaynak, Sack, Swanson, 2005) that long-term inflation expectations in the U.S. vary
Motivation

Basic Model

Long-Run Risks

Model Implications

Conclusions

Long-Run Inflation Risk

Suppose:

\[\pi_t^* = \rho \pi_{t-1}^* + \varepsilon_t^* \]
Long-Run Inflation Risk

Suppose:

\[\pi_t^* = \rho^* \pi_{t-1}^* + \varepsilon_t^* \]

Then:

- inflation is volatile, but not risky
- in fact, long-term bonds act like insurance: when \(\pi^* \uparrow \), then \(C \uparrow \) and \(p^{(40)} \downarrow \)
- result: term premium is *negative*
Consider instead:

\[\pi_t^* = \rho_{\pi}^* \pi_{t-1}^* + (1 - \rho_{\pi}^*) \theta_{\pi^*} (\bar{\pi} t - \pi_t^*) + \varepsilon_t^{\pi^*} \]
Consider instead:

\[\pi_t^* = \rho_{\pi^*} \pi_{t-1}^* + (1 - \rho_{\pi^*}) \theta_{\pi^*} (\bar{\pi}_t - \pi_t^*) + \varepsilon_t^* \]

- \(\theta_{\pi^*} \) describes pass-through from current \(\pi \) to long-term \(\pi^* \)
- Gürkaynak, Sack, and Swanson (2005) found evidence for \(\theta_{\pi^*} > 0 \) in U.S. bond response to macro data releases
- makes long-term bonds act less like insurance: when technology/supply shock, then \(\pi \uparrow, C \downarrow, \) and \(p^{(40)} \downarrow \)
- supply shocks become very costly
- The term premium is *positive*, closely associated with \(\theta_{\pi^*} \)
Model-Based Moments with Long-Run Inflation Risk

<table>
<thead>
<tr>
<th>Variable</th>
<th>U.S. Data</th>
<th>EU Preferences & LR π^* Risk</th>
<th>EZ Preferences & LR π^* Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>$sd[C]$</td>
<td>1.19</td>
<td>1.70</td>
<td>2.01</td>
</tr>
<tr>
<td>$sd[L]$</td>
<td>1.71</td>
<td>3.02</td>
<td>1.37</td>
</tr>
<tr>
<td>$sd[w']$</td>
<td>0.82</td>
<td>2.40</td>
<td>1.52</td>
</tr>
<tr>
<td>$sd[\pi]$</td>
<td>2.52</td>
<td>3.65</td>
<td>3.25</td>
</tr>
<tr>
<td>$sd[i]$</td>
<td>2.71</td>
<td>3.32</td>
<td>2.94</td>
</tr>
<tr>
<td>$sd[i^{(40)}]$</td>
<td>2.41</td>
<td>1.71</td>
<td>1.89</td>
</tr>
<tr>
<td>$mean[\psi^{(40)}]$</td>
<td>1.06</td>
<td>.003</td>
<td>1.05</td>
</tr>
<tr>
<td>$sd[\psi^{(40)}]$</td>
<td>0.54</td>
<td>.001</td>
<td>.51</td>
</tr>
<tr>
<td>$mean[i^{(40)} - i]$</td>
<td>1.43</td>
<td>-.10</td>
<td>.96</td>
</tr>
<tr>
<td>$sd[i^{(40)} - i]$</td>
<td>1.33</td>
<td>1.73</td>
<td>1.10</td>
</tr>
<tr>
<td>$mean[x^{(40)}]$</td>
<td>1.76</td>
<td>.003</td>
<td>1.04</td>
</tr>
<tr>
<td>$sd[x^{(40)}]$</td>
<td>23.43</td>
<td>13.07</td>
<td>11.64</td>
</tr>
</tbody>
</table>

memo: IES .5 1.1

quasi-CRRA 2 90
Motivation

Basic Model

Long-Run Risks

Model Implications

Conclusions

Long-Run Productivity Risk

Following Bansal and Yaron (2004), introduce long-run real risk to make the economy more risky:

Assume productivity follows:

\[\log A_t = \log A_t^* + \epsilon_t^A \]

\[\log A_t^* = \rho_{A^*} \log A_{t-1}^* + \epsilon_{t}^{A^*} \]

- makes the economy much riskier to agents
- increases volatility of stochastic discount factor
<table>
<thead>
<tr>
<th>Variable</th>
<th>U.S. Data</th>
<th>EZ Preferences & LR π^* Risk</th>
<th>EZ Preferences & LR A^* risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>$sd[C]$</td>
<td>1.19</td>
<td>2.01</td>
<td>2.37</td>
</tr>
<tr>
<td>$sd[L]$</td>
<td>1.71</td>
<td>1.37</td>
<td>2.13</td>
</tr>
<tr>
<td>$sd[w']$</td>
<td>0.82</td>
<td>1.52</td>
<td>1.81</td>
</tr>
<tr>
<td>$sd[\pi]$</td>
<td>2.52</td>
<td>3.25</td>
<td>2.95</td>
</tr>
<tr>
<td>$sd[i]$</td>
<td>2.71</td>
<td>2.94</td>
<td>2.86</td>
</tr>
<tr>
<td>$sd[i^{(40)}]$</td>
<td>2.41</td>
<td>1.89</td>
<td>1.66</td>
</tr>
<tr>
<td>$mean[\psi^{(40)}]$</td>
<td>1.06</td>
<td>1.05</td>
<td>0.98</td>
</tr>
<tr>
<td>$sd[\psi^{(40)}]$</td>
<td>0.54</td>
<td>0.51</td>
<td>0.28</td>
</tr>
<tr>
<td>$mean[i^{(40)} - i]$</td>
<td>1.43</td>
<td>0.96</td>
<td>0.89</td>
</tr>
<tr>
<td>$sd[i^{(40)} - i]$</td>
<td>1.33</td>
<td>1.10</td>
<td>1.36</td>
</tr>
<tr>
<td>$mean[x^{(40)}]$</td>
<td>1.76</td>
<td>1.04</td>
<td>0.96</td>
</tr>
<tr>
<td>$sd[x^{(40)}]$</td>
<td>23.43</td>
<td>11.64</td>
<td>12.20</td>
</tr>
</tbody>
</table>

memo: IES 1.1 .5
quasi-CRRA 90 90
Model Implications

- Nominal Yield Curve is Upward-Sloping
- Term Premium is Countercyclical
- Model Is Nonhomothetic, Heteroskedastic
Nominal Yield Curve is Upward-Sloping

- if interest rates are low in recessions
- then bond prices rise in recessions
- \Rightarrow the term premium should be negative
- the yield curve slopes downward
Nominal Yield Curve is Upward-Sloping

- if interest rates are low in recessions
- then bond prices rise in recessions
- \(\Rightarrow \) the term premium should be negative
- the yield curve slopes downward

This paper:
- technology shocks imply that inflation is high in recessions
- then nominal bond prices \textit{fall} in recessions
- \(\Rightarrow \) the nominal yield curve slopes upward
Nominal Yield Curve is Upward-Sloping

- if interest rates are low in recessions
- then bond prices rise in recessions
- \(\implies \) the term premium should be negative
- the yield curve slopes downward

This paper:
- technology shocks imply that inflation is high in recessions
- then nominal bond prices \(\textit{fall} \) in recessions
- \(\implies \) the nominal yield curve slopes upward

Note: Backus et. al intuition still applies to real yield curve
Nominal Yield Curve is Upward-Sloping

Model-Impplied Nominal Yield Curve (left axis)

Model-Impieved Real Yield Curve (right axis)

US Nominal Yield Curve, 1994-2007 (left axis)

US Real Yield Curve, 2004-2007 (right axis)
Model Term Premium is Countercyclical

Response to Technology Shock

Response to Government Spending Shock

Response to Monetary Policy Shock

Inflation

Long-Term Bond Price

Consumption
Model Is Nonhomothetic, Heteroskedastic

\[p_t^{(2)} - \hat{p}_t^{(2)} = E_t m_{t+1} p_{t+1}^{(1)} - E_t m_{t+1} E_t p_{t+1}^{(1)} = \text{Cov}_t(m_{t+1}, p_{t+1}^{(1)}) \]
Model Is Nonhomothetic, Heteroskedastic

\[p_t^{(2)} - \hat{p}_t^{(2)} = E_t m_{t+1} p_{t+1}^{(1)} - E_t m_{t+1} E_t p_{t+1}^{(1)} = Cov_t(m_{t+1}, p_{t+1}^{(1)}) \]

time-varying term premium ⇐⇒ conditional heteroskedasticity
Model Is Nonhomothetic, Heteroskedastic

\[p_t^{(2)} - \hat{p}_t^{(2)} = E_t m_{t+1} p_{t+1}^{(1)} - E_t m_{t+1} E_t p_{t+1}^{(1)} = \text{Cov}_t(m_{t+1}, p_{t+1}^{(1)}) \]

time-varying term premium ⇐⇒ conditional heteroskedasticity

Second-order solution:

\[x_t = \mu_x + \sum \alpha_x dx_{t-1} + \sum \alpha_\xi \varepsilon_t \]
\[+ \sum \alpha_{xx} dx_{t-1} dx_{t-1} + \sum \alpha_x \xi dx_{t-1} \varepsilon_t + \sum \alpha_\xi \xi \varepsilon_t \varepsilon_t + \ldots \]
Model Is Nonhomothetic, Heteroskedastic

\[p_t^{(2)} - \hat{p}_t^{(2)} = E_t m_{t+1} p_{t+1}^{(1)} - E_t m_{t+1} E_t p_{t+1}^{(1)} = \text{Cov}_t(m_{t+1}, p_{t+1}^{(1)}) \]

time-varying term premium \iff conditional heteroskedasticity

Second-order solution:

\[x_t = \mu_x + \sum \alpha_x dx_{t-1} + \sum \alpha_{\epsilon\epsilon} \epsilon_t \]
\[+ \sum \alpha_{xx} dx_{t-1} dx_{t-1} + \sum \alpha_{x\epsilon} dx_{t-1} \epsilon_t + \sum \alpha_{\epsilon\epsilon} \epsilon_t \epsilon_t + \ldots \]
Model Is Nonhomothetic, Heteroskedastic

$$p_t^{(2)} - \hat{p}_t^{(2)} = E_t m_{t+1} p_{t+1}^{(1)} - E_t m_{t+1} E_t p_{t+1}^{(1)} = Cov_t(m_{t+1}, p_{t+1}^{(1)})$$

time-varying term premium \iff conditional heteroskedasticity

Second-order solution:

$$x_t = \mu_x + \sum \alpha_x dx_{t-1} + \sum \alpha_{\varepsilon\varepsilon} \varepsilon_t$$

$$+ \sum \alpha_{xx} dx_{t-1} dx_{t-1} + \sum \alpha_{x\varepsilon} dx_{t-1} \varepsilon_t + \sum \alpha_{\varepsilon\varepsilon} \varepsilon_t \varepsilon_t + \ldots$$

<table>
<thead>
<tr>
<th>Model</th>
<th>term premium mean (bp)</th>
<th>term premium std dev (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline model</td>
<td>86.5</td>
<td>11.0</td>
</tr>
</tbody>
</table>
Model Is Nonhomothetic, Heteroskedastic

\[p_t^{(2)} - \hat{p}_t^{(2)} = E_t m_{t+1} p_{t+1}^{(1)} - E_t m_{t+1} E_t p_{t+1}^{(1)} = Cov_t(m_{t+1}, p_{t+1}^{(1)}) \]

time-varying term premium \iff conditional heteroskedasticity

Second-order solution:

\[x_t = \mu_x + \sum \alpha_x dx_{t-1} + \sum \alpha_\varepsilon \varepsilon_t
+ \sum \alpha_{xx} dx_{t-1} dx_{t-1} + \sum \alpha_{x\varepsilon} dx_{t-1} \varepsilon_t + \sum \alpha_{\varepsilon\varepsilon} \varepsilon_t \varepsilon_t + \ldots \]

<table>
<thead>
<tr>
<th>Model</th>
<th>term premium mean (bp)</th>
<th>term premium std dev (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline model</td>
<td>86.5</td>
<td>11.0</td>
</tr>
<tr>
<td>log-linear log-normal</td>
<td>86.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Conclusions

1. The term premium in standard NK DSGE models is very small, even more stable.
Conclusions

1. The term premium in standard NK DSGE models is very small, even more stable.

2. Habit-based preferences can solve bond premium puzzle in endowment economy, but fail in NK DSGE framework: although agents are risk-averse, they can offset that risk.
Conclusions

1. The term premium in standard NK DSGE models is very small, even more stable.

2. Habit-based preferences can solve bond premium puzzle in endowment economy, but fail in NK DSGE framework: although agents are risk-averse, they can offset that risk.

3. Epstein-Zin preferences can solve bond premium puzzle in endowment economy, are much more promising in NK DSGE framework: agents are risk-averse and cannot offset long-run real or nominal risks.
Conclusions

1. The term premium in standard NK DSGE models is very small, even more stable.

2. Habit-based preferences can solve bond premium puzzle in endowment economy, but fail in NK DSGE framework: although agents are risk-averse, they can offset that risk.

3. Epstein-Zin preferences can solve bond premium puzzle in endowment economy, are much more promising in NK DSGE framework: agents are risk-averse and cannot offset long-run real or nominal risks.

4. Long-run risks reduce the required quasi-CRRA, increase volatility of risk premia, help fit financial moments.