Discussion of Gürkaynak, Kıscıkoğlu and Wright
“Identifying the Effects of Partially-Measured News Surprises”

Eric Swanson
University of California, Irvine

Bank of Canada/FRB San Francisco/Simon Fraser Conference on Fixed Income and Macro-Finance

August 17, 2017
Motivation

Every month, the Employment Report contains information on:

- Nonfarm Payroll Employment
Motivation

Every month, the Employment Report contains information on:

- Nonfarm Payroll Employment
- Unemployment Rate
Motivation

Every month, the Employment Report contains information on:

- Nonfarm Payroll Employment
- Unemployment Rate
- Average Hourly Earnings

We only observe market expectations and surprises for a few of these components.
Every month, the Employment Report contains information on:

- Nonfarm Payroll Employment
- Unemployment Rate
- Average Hourly Earnings
- Average Weekly Hours
Motivation

Every month, the Employment Report contains information on:

- Nonfarm Payroll Employment
- Unemployment Rate
- Average Hourly Earnings
- Average Weekly Hours
- Labor Force Participation Rate
Every month, the Employment Report contains information on:

- Nonfarm Payroll Employment
- Unemployment Rate
- Average Hourly Earnings
- Average Weekly Hours
- Labor Force Participation Rate
- Revisions to previous months’ payroll numbers
Motivation

Every month, the Employment Report contains information on:

- Nonfarm Payroll Employment
- Unemployment Rate
- Average Hourly Earnings
- Average Weekly Hours
- Labor Force Participation Rate
- Revisions to previous months’ payroll numbers
- Broader measures of unemployment (U4, U5, U6)
Every month, the Employment Report contains information on:

- Nonfarm Payroll Employment
- Unemployment Rate
- Average Hourly Earnings
- Average Weekly Hours
- Labor Force Participation Rate
- Revisions to previous months’ payroll numbers
- Broader measures of unemployment (U4, U5, U6)
- and much more
Motivation

Every month, the Employment Report contains information on:

- Nonfarm Payroll Employment
- Unemployment Rate
- Average Hourly Earnings
- Average Weekly Hours
- Labor Force Participation Rate
- Revisions to previous months’ payroll numbers
- Broader measures of unemployment (U4, U5, U6)
- and much more

We only observe market expectations and surprises for a few of these components
Similarly, the GDP Report contains information on:

- GDP

Eric Swanson (UC Irvine) BoC/FRBSF/SFU Macro-Finance Conference Discussion of Gürkaynak et al. 3 / 13
Similarly, the GDP Report contains information on:

- GDP
- Consumption
Similarly, the GDP Report contains information on:

- GDP
- Consumption
- Business Fixed Investment, Residential Investment, etc.

Again, we only observe market expectations and surprises for a few of these components.
Similarly, the GDP Report contains information on:

- GDP
- Consumption
- Business Fixed Investment, Residential Investment, etc.
- Exports, Imports, etc.
Similarly, the GDP Report contains information on:

- GDP
- Consumption
- Business Fixed Investment, Residential Investment, etc.
- Exports, Imports, etc.
- Changes in Inventories
Similarly, the GDP Report contains information on:

- GDP
- Consumption
- Business Fixed Investment, Residential Investment, etc.
- Exports, Imports, etc.
- Changes in Inventories
- GDP Price Index, PCE Price Index
Similarly, the GDP Report contains information on:

- GDP
- Consumption
- Business Fixed Investment, Residential Investment, etc.
- Exports, Imports, etc.
- Changes in Inventories
- GDP Price Index, PCE Price Index
- GDI
Similarly, the GDP Report contains information on:

- GDP
- Consumption
- Business Fixed Investment, Residential Investment, etc.
- Exports, Imports, etc.
- Changes in Inventories
- GDP Price Index, PCE Price Index
- GDI
- and much more
Similarly, the GDP Report contains information on:

- GDP
- Consumption
- Business Fixed Investment, Residential Investment, etc.
- Exports, Imports, etc.
- Changes in Inventories
- GDP Price Index, PCE Price Index
- GDI
- and much more

Again, we only observe market expectations and surprises for a few of these components
Traditional high-frequency studies run:

\[y_t = \alpha s_t + \varepsilon_t \]

where

- \(s_t \) is the observed surprise in the announcement
- \(\varepsilon_t \) captures effects of all other components of the announcement
Traditional Approach

Traditional high-frequency studies run:

\[y_t = \alpha s_t + \varepsilon_t \]

where

- \(s_t \) is the observed surprise in the announcement
- \(\varepsilon_t \) captures effects of all other components of the announcement

Problems:

- \(R^2 \) can be low (40%)
Some authors have argued for a “measurement error” approach:

\[y_t = \alpha s_t^* + \varepsilon_t \]
\[s_t = s_t^* + \eta_t \]

where
- \(s_t^* \) is the true surprise
- \(s_t \) is the observed surprise
- \(\eta_t \) is measurement error
Some authors have argued for a “measurement error” approach:

\[y_t = \alpha s_t^* + \varepsilon_t \]
\[s_t = s_t^* + \eta_t \]

where

- \(s_t^* \) is the true surprise
- \(s_t \) is the observed surprise
- \(\eta_t \) is measurement error

Problems:

- this approach implies \(s_t \) is systematically biased (anti-attenuation bias)
Some authors have argued for a “measurement error” approach:

\[y_t = \alpha s_t^* + \varepsilon_t \]
\[s_t = s_t^* + \eta_t \]

where
- \(s_t^* \) is the true surprise
- \(s_t \) is the observed surprise
- \(\eta_t \) is measurement error

Problems:
- this approach implies \(s_t \) is systematically biased (anti-attenuation bias)
- but market survey data show no sign of bias
Burçin and coauthors argue instead that:

\[y_t = \beta s_t + \gamma f_t + \epsilon_t \]

where

- \(s_t \) is the observed surprise
- \(f_t \) is a latent factor capturing the additional, unobserved components of the release
Burçin and coauthors argue instead that:

\[y_t = \beta s_t + \gamma f_t + \varepsilon_t \]

where

- \(s_t \) is the observed surprise
- \(f_t \) is a latent factor capturing the additional, unobserved components of the release

Advantages:
- now \(s_t \) is rational, bias-free
Burçin and coauthors argue instead that:

\[y_t = \beta s_t + \gamma f_t + \epsilon_t \]

where

- \(s_t \) is the observed surprise
- \(f_t \) is a latent factor capturing the additional, unobserved components of the release

Advantages:

- now \(s_t \) is rational, bias-free
- \(R^2 \) substantially higher than traditional method (90%)
Burçin and coauthors argue instead that:

\[y_t = \beta s_t + \gamma f_t + \epsilon_t \]

where

- \(s_t \) is the observed surprise
- \(f_t \) is a latent factor capturing the additional, unobserved components of the release

Advantages:

- now \(s_t \) is rational, bias-free
- \(R^2 \) substantially higher than traditional method (90%)
- straightforward to estimate using Kalman filter for \(f_t \)
Spend more time comparing and contrasting your results to the measurement error approach.

Can you explicitly reject the measurement error approach?

Assuming your model is true, explain why coefficients in Table 2 are systematically larger than in Table 1.
Spend more time comparing and contrasting your results to the measurement error approach.

In particular:

- Can you explicitly reject the measurement error approach?
Comment #1

Spend more time comparing and contrasting your results to the measurement error approach.

In particular:

- Can you explicitly reject the measurement error approach?
- Assuming your model is true, explain why coefficients in Table 2 are systematically larger than in Table 1
The natural benchmark model should have one latent factor for each type of announcement, i.e.:

- Employment Report factor $f_{1,t}$
The natural benchmark model should have one latent factor for each type of announcement, i.e.:

- Employment Report factor $f_{1,t}$
- GDP Report factor $f_{2,t}$

Results in the paper suggest all of these factors are statistically significant and important.
The natural benchmark model should have one latent factor for each type of announcement, i.e.:

- Employment Report factor $f_{1,t}$
- GDP Report factor $f_{2,t}$
- CPI Report factor $f_{3,t}$

Results in the paper suggest all of these factors are statistically significant and important.
The natural benchmark model should have one latent factor for each type of announcement, i.e.:

- Employment Report factor $f_{1,t}$
- GDP Report factor $f_{2,t}$
- CPI Report factor $f_{3,t}$
- PPI Report factor $f_{4,t}$
Comment #2

The natural benchmark model should have one latent factor for each type of announcement, i.e.:

- Employment Report factor $f_{1,t}$
- GDP Report factor $f_{2,t}$
- CPI Report factor $f_{3,t}$
- PPI Report factor $f_{4,t}$
- etc.
The natural benchmark model should have one latent factor for each type of announcement, i.e.:

- Employment Report factor $f_{1,t}$
- GDP Report factor $f_{2,t}$
- CPI Report factor $f_{3,t}$
- PPI Report factor $f_{4,t}$
- etc.

Results in the paper suggest all of these factors are statistically significant and important.
The natural benchmark model should have one latent factor for each type of announcement, i.e.:

- Employment Report factor $f_{1,t}$
- GDP Report factor $f_{2,t}$
- CPI Report factor $f_{3,t}$
- PPI Report factor $f_{4,t}$
- etc.

Results in the paper suggest all of these factors are statistically significant and important.

Yet most of the paper focuses on a specification with “One Latent Factor to Rule Them All”, $f_{0,t}$.
The natural benchmark model should have one latent factor for each type of announcement, i.e.:

- Employment Report factor \(f_{1,t} \)
- GDP Report factor \(f_{2,t} \)
- CPI Report factor \(f_{3,t} \)
- PPI Report factor \(f_{4,t} \)
- etc.

Results in the paper suggest all of these factors are statistically significant and important.

Yet most of the paper focuses on a specification with “One Latent Factor to Rule Them All”, \(f_{0,t} \).

Why?
It’s important to include all of the observable surprises s_t for each announcement type, e.g.:

- Employment Report:
 - Nonfarm Payrolls
 - Unemployment Rate
 - Average Hourly Earnings
- CPI Report:
 - Headline CPI
 - Core CPI

The traditional approach often omits some of these if they are not statistically significant, but they could be important in the estimation of the latent factors f_i.
It’s important to include *all* of the observable surprises s_t for each announcement type, e.g.:

Employment Report:
- Nonfarm Payrolls
- Unemployment Rate
- Average Hourly Earnings
Comment #3

It's important to include all of the observable surprises s_t for each announcement type, e.g.:

Employment Report:
- Nonfarm Payrolls
- Unemployment Rate
- Average Hourly Earnings

CPI Report:
- Headline CPI
- Core CPI

The traditional approach often omits some of these if they are not statistically significant, but they could be important in the estimation of the latent factors f_i.
It’s important to include all of the observable surprises s_t for each announcement type, e.g.:

Employment Report:
- Nonfarm Payrolls
- Unemployment Rate
- Average Hourly Earnings

CPI Report:
- Headline CPI
- Core CPI

The traditional approach often omits some of these if they are not statistically significant, but they could be important in the estimation of the latent factors $f_{i,t}$.
Comment #4

Present more useful graphs and statistics for the latent factor(s) $f_{i,t}$.
Comment #4

Present more useful graphs and statistics for the latent factor(s) $f_{i,t}$.

Currently, the authors just report:

![Graph showing time series data with dates from 1985 to 2015 and a y-axis labeled Macro Factor ranging from -5 to 5.](image)
Instead, it would be useful to get some information about the behavior of $f_{i,t}$, such as:

- Is $f_{i,t}$ positively correlated with the observable s_t?
Instead, it would be useful to get some information about the behavior of $f_{i,t}$, such as:

- Is $f_{i,t}$ positively correlated with the observable s_t?
- What do the different latent factors $f_{i,t}$ look like?
Instead, it would be useful to get some information about the behavior of $f_{i,t}$, such as:

- Is $f_{i,t}$ positively correlated with the observable s_t?
- What do the different latent factors $f_{i,t}$ look like?
- Is there a way to plot them that conveys useful information?
The paper presents newspaper quotes to argue that large market responses as measured by $f_{i,t}$ were in fact driven by non-headline components of the release, e.g.:

<table>
<thead>
<tr>
<th>Date</th>
<th>Factor</th>
<th>Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 6, 2004</td>
<td>6.24</td>
<td>“…job growth in May and June was less than initially estimated… Combined with the weak job growth for July, the revisions mean that the economy had 270,000 fewer jobs last month than forecasters had thought.” (The New York Times, August 7, 2004.)</td>
</tr>
<tr>
<td>April 2, 2004</td>
<td>5.98</td>
<td>“…the Labor Department also revised its estimate of jobs created in January and February to a total of 205,000, almost double its previous estimate of 118,000. The revisions pushed average job growth in the first quarter to 171,000 a month, the most vigorous rate since the second quarter of 2000.” (The New York Times, April 3, 2004).</td>
</tr>
<tr>
<td>March 5, 2004</td>
<td>5.45</td>
<td>“Weekly wages… have risen less than 2 percent… The average length of unemployment increased to 20.3 weeks, its highest level since 1984.” (The New York Times, March 6, 2004).</td>
</tr>
<tr>
<td>July 29, 1994</td>
<td>4.94</td>
<td>“The most compelling figures in today’s report concerned inventories. But because analysts offered differing explanations for why they increased so much, it was still unclear what the inventory buildup meant for economic growth the rest of this year.” (The New York Times, July 30, 1994).</td>
</tr>
<tr>
<td>July 5, 1996</td>
<td>4.74</td>
<td>“For the first time in a few years, the Labor Department figures indicate that workers’ paychecks are rising faster than inflation.” (The New York Times, July 6, 1996).</td>
</tr>
</tbody>
</table>
The paper presents newspaper quotes to argue that large market responses as measured by $f_{i,t}$ were in fact driven by non-headline components of the release, e.g.:

<table>
<thead>
<tr>
<th>Date</th>
<th>Factor</th>
<th>Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 6, 2004</td>
<td>6.24</td>
<td>“…job growth in May and June was less than initially estimated… Combined with the weak job growth for July, the revisions mean that the economy had 270,000 fewer jobs last month than forecasters had thought.” (The New York Times, August 7, 2004.)</td>
</tr>
<tr>
<td>April 2, 2004</td>
<td>5.98</td>
<td>“…the Labor Department also revised its estimate of jobs created in January and February to a total of 205,000, almost double its previous estimate of 118,000. The revisions pushed average job growth in the first quarter to 171,000 a month, the most vigorous rate since the second quarter of 2000.” (The New York Times, April 3, 2004).</td>
</tr>
<tr>
<td>March 5, 2004</td>
<td>5.45</td>
<td>“Weekly wages… have risen less than 2 percent… The average length of unemployment increased to 20.3 weeks, its highest level since 1984.” (The New York Times, March 6, 2004).</td>
</tr>
<tr>
<td>July 29, 1994</td>
<td>4.94</td>
<td>“The most compelling figures in today’s report concerned inventories. But because analysts offered differing explanations for why they increased so much, it was still unclear what the inventory buildup meant for economic growth the rest of this year.” (The New York Times, July 30, 1994).</td>
</tr>
<tr>
<td>July 5, 1996</td>
<td>4.74</td>
<td>“For the first time in a few years, the Labor Department figures indicate that workers’ paychecks are rising faster than inflation.” (The New York Times, July 6, 1996).</td>
</tr>
</tbody>
</table>

But these quotes do not look unusual at all, despite the large estimates of $f_{i,t}$.
Summary of Comments

1. Basic idea of the paper is appealing, seems to work well
2. Try to refute the measurement error approach more conclusively
3. Include a full set of latent factors (one for each announcement), not One Latent Factor to Rule Them All
4. Include the full set of observable surprises for each announcement
5. Provide more information about the latent factor estimates
6. Newspaper quotations are not very convincing