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1 Introduction

“Let us go down, and there confound their language, that they may not un-
derstand one another’s speech” (Genesis 11:1). The state of language confusion
described in this passage may be understood as a state of maximal heterogene-
ity: every possible language is present in a population. It may also be viewed as
a state of homogeneity, however; presumably, each possible language is spoken
by a very small number of persons, inducing a uniform distribution over the set
of languages. Should we expect individuals to stay at such a symmetric state?
Or will they rather agree on one language, thereby breaking the symmetry of
initial confusion (Skyrms, 1996)?

These questions are basic for the origin of language. When individuals can-
not communicate to a sufficiently high degree, how can they decide on signaling
conventions? In the philosophical literature, such problems were formulated by
Quine (1936), although they have also been considered before Quine. Similar
questions have also sparkled interest in linguistics (Steels, 2001; Jäger and van
Rooij, 2007) and in biology (e.g. communication at the microbiological level to
animal signals).

One would be interested to know if coherent signaling evolves under sim-
plified conditions. Perhaps the most simple model one can think about was
introduced by David Lewis (see Lewis (1969)). By using some concepts from
game theory, Lewis introduced signaling games as a simplified setting to study
the emergence of language conventions.
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On a larger scale, it should of course be emphasized that the evolution of
language is an extremely complex issue where many more factors are involved
than are captured in a signaling game. We think that studying very simplified
models is nonetheless useful. Both experimental and theoretical approaches are
confronted with the complexity of the problem of language evolution (Számádo
and Szathmáry, 2006). This makes results from simple mathematical models
particularly important. Such simple models sharpen our intuitions as to what
might be important features to look for in more complex models. Models like
that of signaling games provide a general framework for studying the emergence
of communication; making signaling games more complex is a result of giving
them more structure. Properties of signaling games will thus reappear at a more
structured level. Moreover, simple mathematical models of signaling provide
insights into specific processes that play an important role in language evolution.
And, lastly, simple and tractable models allow us to identify key components of
particular processes.

In this paper we report several results on the dynamics of Lewis signal-
ing games. A dynamical view of signaling games is indispensable since we are
interested in the process of the emergence of communication. We spend a con-
siderable part of this paper on the evolutionary dynamics of signaling games
as given by the replicator equations and a perturbation thereof. These two
models should be viewed as a baseline case with which other studies should be
compared. Accordingly, we shall be especially interested in finding differences
between these two baseline cases and between them and more sophisticated
dynamical models. These include structurally stable games, finite population
models, and a number of models of learning in signaling games. We shall argue
that the differences between all these models are such that the baseline models
do not capture all possible dynamical behaviors. On the other hand, features
like persistent and non-decreasing stochastic perturbations of evolutionary or
learning dynamics appear to have qualitatively similar effects in a wide range
of models. The interplay of various evolutionary and learning models that we
describe in this paper may well prove useful in studying more complex models
of language evolution or other evolutionary problems.

2 Lewis signaling games

In his book Convention, David Lewis describes a situation for the emergence of
conventional signaling. One individual, the sender, has some private information
about the world and has at her disposal a set of signals. Another individual, the
receiver, observes the signal, but not the state, takes some action. Each state
has an appropriate action, and both parties are interested in the receiver taking
the appropriate action given the state. Because of the common interest, both
parties are interested in coordinating on a convention to associate each state
with a signal and each signal with the appropriate act. While there are many
ways to specify this game, we will consider the easy circumstance where there
are n states, n acts, and n signals.
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We may thus represent sender strategies and receiver strategies by n × n
matrices M having exactly one 1 in each row, the other entries being 0. If M
is a sender matrix, then mij = 1 means that the sender chooses signal j after
having observed state i; if M is a receiver matrix, it means that the receiver
chooses action j in response to signal i. Players may also choose what to do in
response to the state or signal at random. We can expand the set of admissible
matrices to those where for each entry 0 ≤ mij ≤ 1, and each row sums to 1.1

If a sender and receiver are matched to play the game the both gain a payoff
of 1 if the receiver chooses the right action given the state and gain 0 otherwise.
If each state is equally likely the sender (with strategy P ) and receiver (with
strategy Q) will expect to get the following payoff:

π(P,Q) =
1
n

∑
i,j

pijqji. (1)

The payoff function given above can of course be modified. The states need
not be weighed equally or the interests of the players may not coincide com-
pletely. Such modifications lead to interesting games, and we will discuss the
first one briefly below.

It is easy to show that one-to-one strategies are of particular importance. A
sender strategy P is one-to-one if no two states are mapped to the same signal,
i.e. if the matrix P is a permutation matrix. Similarly, a receiver strategy is
one-to-one if Q is a permutation matrix. A simple computation shows that if P
is a permutation matrix and if Q is the transpose of P (Q = PT or qij = pji),
then π(P,Q) = 1, which is the maximal payoff. Such strategy pairs (P,Q) were,
for obvious reasons, termed signaling systems by Lewis.

Signaling systems can be viewed as simple languages. They are characterized
by the property of yielding a maximum payoff to the players; i.e. no other
strategy combination earns a payoff of 1. They are also the only strict Nash
equilibria of signaling games. There is, however, a number of non-strict Nash
equilibria which are part of Nash equilibrium components. If n = 3, one such
Nash equilibrium component is given by

P =

 1 0 0
1 0 0
0 λ 1− λ

 , Q =

 µ 1− µ 0
0 0 1
0 0 1

 (2)

where 0 ≤ λ, µ ≤ 1 (Trapa and Nowak, 2000). At (P,Q), the players are always
able to coordinate state 3 and act 3, but if state 1 or 2 occur they do not always
achieve coordination. Here state 1 and 2 are “pooled” onto signal 1 and state
3 is communicated using two different signals (signals 2 and 3). As a result
these equilibria are called partial pooling equilibria. There are also total pooling
Nash equilibria. In these equilibria the sender sends the same signal regardless
of state and the receiver takes the same action regardless of signal.

1Representing randomization (or mixed strategies) in this way can either correspond to a
single player intentionally randomizing, or alternatively to a population of players that don’t
randomize but whose proportions are represented by the probabilities in the matrix.
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Partial pooling equilibria like (P,Q) turn out to be particularly important for
the emergence of communication in signaling games. Since signaling games have
an uncountable number of Nash equilibria, the equilibrium selection problem be-
comes particularly pressing. Equilibrium refinement concepts like evolutionarily
stable strategies and neutrally stable strategies exclude Nash equilibria which
are not stable from an evolutionary perspective (Maynard Smith, 1982). In
signaling games, signaling systems are the only evolutionarily stable strategies
(Wärneryd, 1991). But Nash equilibria such as (P,Q) are neutrally stable. This
means that natural selection will not move a population away from a signaling
system. (P,Q) is also stable relative to natural selection, but drift may cause a
population to move away from a neutrally stable state.

Analysis of signaling games in terms of other equilibrium concepts can also
be given (Blume, 1994), but we think that an analysis from an evolutionary
perspective is more revealing as to the problem of the emergence of communi-
cation. In this case, pinning down the evolutionarily and neutrally stable states
does not get us very far. We are still confronted with a large number of pos-
sible evolutionary outcomes, and we do not know whether evolution leads to a
state of communication. Moreover, concepts like that of an evolutionarily sta-
ble strategy appear to have no straightforward connection to models of learning
in games. For these reasons, we think without a detailed analysis of various
dynamic models our understanding of these games is incomplete at best and
misleading at worst.

3 Evolutionary dynamics of signaling games

The basic model of evolutionary game theory is given by the replicator dy-
namics (Taylor and Jonker, 1978; Schuster and Sigmund, 1983; Hofbauer and
Sigmund, 1998). We imagine a population of individuals partitioned into sev-
eral types. Each type corresponds to a strategy of the underlying game. For
signaling games, a type may be characterized by a sender part P and a receiver
part Q if we would like to study the evolution of communication within one
population. Another possibility consists in analyzing a two-population model,
with one sender population and one receiver population. A type in the sender
population will, in this case, correspond to a sender strategy P , and a type in
the receiver population to a receiver strategy Q.2

The replicator dynamics relates the growth rate of each type of individual to
its expected payoff with respect to the average payoff of the population: types
with above-average performance increase in relative frequency, while types with
below-average performance decrease. In a biological context, payoffs can be
interpreted as fitnesses. Thus, we sometimes speak of fitness instead of payoff,
or average fitness instead of average payoff.

If xi is the frequency of type i, x = (x1, . . . , xn) is the state of the population
(being a probability vector) and u(xi, x) and u(x, x) are the payoffs to type i and

2Here will restrict ourselves to pure strategies – those where every entry is either 0 or 1.
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the average payoff in the population at state x, respectively, then the replicator
dynamics is given by

ẋi = xi(u(xi, x)− u(x, x)). (3)

ẋi denotes the time-derivative of xi. Notice that equation (3) is one possibility to
formalize the dependency of a type’s growth rate to its performance relative to
the population average, there are others collectively known as payoff-monotone
dynamics. A system similar to (3) can be formulated for a two-population
model (see Hofbauer and Sigmund (1998), Sections 10 and 11; in the context of
signaling games, see Huttegger (2007b)).

If a population’s initial condition is given by x, then (3) defines a unique
orbit or solution curve φ(t) for t ∈ R with φ(0) = x. φ describes the evolution
of the population in the state space of relative frequencies.

If ẋi = 0 for all i, then x is called a rest point of (3). This means that
whenever x is the initial condition of a population, it will stay at x for all
future times. A rest point x is called Liapunov stable if for all neighborhoods
U of x there exists a neighborhood V of x such that φ(t) ∈ U, t ≥ 0 whenever
φ(0) ∈ V . A rest point x is called unstable if it is not stable. A rest point x is
asymptotically stable if it is Liapunov stable and if there exists a neighborhood
U of x such that φ(t) converges to x as t → ∞ whenever φ(0) ∈ U . The same
notions can be defined for a set of points S instead of a rest point x as well.
Moreover, we will say that almost all points converge to some set of points S
under (3) if the set of points that do not converge to S has Lebesgue measure
zero in the state space of relative frequencies.

3.1 Replicator dynamics

Skyrms (1996) simulated the replicator dynamics of a binary Lewis signaling
game, and Skyrms (2000) provides a mathematical analysis of a simplified bi-
nary Lewis signaling game, which does not include all 16 types (note that this
is already a quite formidable number for a mathematical treatment of the dy-
namics). In simulations, population frequencies always converged to one of the
two signaling systems. The same result was shown to hold analytically in the
Lewis mini-game.

These results suggested the optimistic conjecture that in every Lewis signal-
ing game almost all initial population states will converge to one of the signaling
games under the dynamics (3). Huttegger (2007a) and Pawlowitsch (2008) have
shown independently that this is in general not the case, Pawlowitsch by uti-
lizing connections between neutral stability and the replicator equations, and
Huttegger by using techniques from center-manifold theory (Carr, 1981). Let
us take a closer look at the dynamical properties of signaling games.

Lewis signaling games have interior Nash equilibria. These equilibria repre-
sent states where all possible strategies are present. Huttegger (2007a) proves
that these states are not stable for any signaling game. Indeed, interior equilib-
ria are linearly unstable for the replicator dynamics (3). This implies that the
set of points converging to an interior equilibrium has measure zero. Thus, for
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almost all initial populations, symmetry gets broken in the minimal sense that
not all signaling strategies will survive under evolutionary dynamics.

Signaling systems are strict Nash equilibria of Lewis signaling games; hence
they are the only asymptotically stable states for the replicator dynamics (both
for the two-population replicator dynamics and the one-population replicator
dynamics of the symmetrized signaling game). At a signaling system s, the
strategy pair corresponding to s has a relative frequency of 1. It follows that
signaling systems are asymptotically stable for all signaling games.

Asymptotic stability is a local concept: it does not give us global information
about the dynamical system. In particular, asymptotic stability does not imply
global convergence to one of the signaling systems (global in the almost-all-
sense). Indeed, for n ≥ 3 it turns out that some of the continua of Nash
equilibria that were described in Section 2 form sets that attract some nearby
points.

Consider the connected set of Nash equilibria N given by (2). If we look
at the dynamics (3) close to N we see that population frequencies sufficiently
close to N converge to some point in N . When we look at the boundary of the
set N , however, some of the Nash equilibria become dynamically unstable; i.e.
there exist population frequencies arbitrarily close to such a Nash equilibrium
that tend away from it.

This implies that the set N is not asymptotically stable. We cannot find a
neighborhood U of N such that any point in U converges to N as time goes to
∞. But each point x in the interior of N is Liapunov stable. Moreover—and
this is the elephant in the kitchen—the interior of N attracts an open set of
initial conditions. That is, the set of population frequencies converging to N
has non-zero measure.

Components of Nash equilibria such as N exist for all signaling games with
n ≥ 3. This was shown by Huttegger (2007a) and by Pawlowitsch (2008).
Pawlowitsch moreover links the existence of components like N to the concept
of neutrally stable strategies, which was introduced by Maynard Smith (1982)
as a generalization of evolutionarily stable strategies.

Suppose a whole population adopts a certain strategy s of some game. Then
s is neutrally stable if s is a Nash equilibrium and if there exists no strategy s′

that yields a higher payoff when played against itself than s yields when played
against s′. Thus, neutral stability implies that a strategy is robust against
invasion by selection (but it is not robust against drift).

Pawlowitsch (2008) finds an elegant characterization of neutrally stable strate-
gies in Lewis signaling games: if P is a sender matrix and Q is a receiver matrix,
then (P,Q) is neutrally stable if and only if (i) P or Q has no zero-column and
(ii) neither P nor Q has a column with multiple maximal elements λ such that
0 < λ < 1. Thus, a signal can represent more than one event, but then these
events cannot be represented by any other signal. Similarly, an event can be
linked to more than one signal; in this case, however, the signals cannot be
linked to any other event.

In terms of the replicator dynamics (3), a neutrally stable strategy is a
point in a component of strategies such as N ; i.e., if (P,Q) is neutrally stable
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and is contained in a component of other neutrally stable strategies, then this
component attracts an open set of population frequencies. Whether the reverse
statement is also true is an open problem.

Signaling games with n = 2 are a special case. In such binary signaling
games the existence of a component N that attracts an open set of population
frequencies depends on the weights attached to the two events. If both weights
are 1

2 , then no such component exists: almost all solution curves converge to
one of the signaling systems. Once the weights are asymmetric, however, there
exists a component N .

Thus we may conclude that for the replicator dynamics (3) signaling systems
do not evolve generically. Numerical simulations show that the size of the basins
of attraction of signaling systems is decreasing in n; moreover, it is already non-
negligible for n = 3 (Huttegger et al., 2008).

To understand the evolutionary dynamics of signaling games, a complete
analysis of the replicator equations (3) is only a first step. The model of evolu-
tion as given by (3) can be extended and modified in various directions. Such
explorations seem all the more necessary since the situation of having compo-
nents of Nash equilibria is quite peculiar, as we shall explain now.

3.2 Selection-mutation dynamics

From the point of view of dynamical systems, the continua of rest points cor-
responding to these Nash equilibrium components are not structurally stable
(see Guckenheimer and Holmes 1983 or Kuznetsov 2004).3 Structural stability
refers to small perturbations of a system of differential equations like (3) (small
relative to the functions constituting the differential equations and their partial
derivatives). The system is structurally stable if such small perturbations do
not change the qualitative properties of the solution trajectories. The solution
trajectories of the original and the perturbed system are topologically equivalent.
A system that is not structurally stable is called degenerate.

Systems with continua of rest points are always degenerate. This follows
from the fact that continua of rest points are associated with zero-eigenvalues
of the Jacobian matrix (the sign of the eigenvalues determines the qualitative
nature of the solution trajectories near rest points). Perturbing the system will
push zero-eigenvalues into the positive or the negative reals. This implies that
the qualitative nature of the flow will change close to continua of rest points.
Depending on the perturbation, the dynamics might change in many different
ways. Thus, it is essential to choose a plausible perturbation of the dynamical
system.

Hofbauer and Huttegger (2007, 2008) argue that the selection-mutation dy-
namics provides a plausible and (to some extent) tractable perturbation of the
replicator equations (3) (for more information on this dynamics see Bürger 2000;

3Notice that continua of Nash equilibria are generic; i.e., if we perturb payoffs in a way that
respects the extensive form of the game, Nash equilibrium components persist (cf. Cressman
2003 and Jäger 2008).
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Hofbauer 1985; Hofbauer and Sigmund 1998; see also Huttegger et al. 2008). The
selection-mutation dynamics is given by

ẋi = xi(u(xi, x)− u(x, x)) + ε(1−mxi), (4)

where ε > 0 is a uniform mutation rate and m = n2n is the number of strategies
for a signaling game with n signals. The first term on the right-hand side of (4)
is the selection term, while the second term describes uniform mutation. The
mutation term expresses the fact that a type might change into another type
at each point in time, at a rate given by ε. If ε = 0, the selection-mutation
dynamics coincides with the replicator dynamics.

Hofbauer and Huttegger (2007, 2008) do not study the selection-mutation
dynamics (4) directly. They instead focus on the two-population selection-
mutation dynamics with a sender population and a receiver population. This
enhances the tractability of the model and can be justified by assuming that
the roles of sender and receiver are independent. Our remarks below refer to
the two-population selection-mutation dynamics.

There are two general results concerning the selection-mutation dynamics of
signaling games. Both are statements about the location of rest points of the
selection-mutation dynamics in comparison to the location of rest points of the
replicator dynamics. First, all rest points of the selection-mutation dynamics
are close to Nash equilibria of the signaling game. This rules out rest points that
are close to rest points of the replicator dynamics which are not Nash equilibria
(Hofbauer and Huttegger, 2008). Second, perturbed signaling systems exist, are
unique and asymptotically stable. By a perturbed signaling system we mean a
rest point of the selection-mutation dynamics close to a signaling system. Note
that the proof of its uniqueness is necessary to define a perturbed signaling
system properly. For details of the proof and additional remarks concerning
rest points of the selection-mutation dynamics in general consult Hofbauer and
Huttegger (2008).

Unfortunately, no general results are available for the existence and stability
properties of possible rest points close to the attracting components of Nash
equilibria that we described in the previous sections. Indeed, if N is such a
component, then there are no general mathematical statements that would allow
us to derive conclusions about the behavior of selection-mutation dynamics close
to N .

Hofbauer and Huttegger (2007, 2008) analyze the behavior of the selection-
mutation dynamics close to N with the help of Taylor expansions in terms of the
mutation rates, index or degree theory (Hofbauer and Sigmund, 1998, Section
13.2), and Morse theory (Milnor, 1963). Their results do not give a clear-cut
answer to the problem of the evolution of signaling systems. Whether perturbed
signaling systems emerge depends the parameters involved, notably the ratio of
the mutation rate of the sender population to the mutation rate of the receiver
population and the probability distribution over the events.

If all events are equiprobable (the distribution has maximum entropy), then
communication is most important (Nowak et al., 2002, Box 2). As the entropy
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(the evenness) of the probability distribution decreases, communication becomes
less important; always guessing the most probable event and ignoring signals is
more attractive in this than in the equiprobable case. Hence, as the distribution
becomes less even, the possibility of ending up in a state with suboptimal com-
munication increases. If the receiver population’s mutation rate is sufficiently
lower than the sender population’s mutation rate, then it also becomes more
likely to end up in a suboptimal state under the selection-mutation dynamics.
This can heuristically be explained by the receivers not being responsive enough
to the experiments of the senders. For a precise mathematical formalization of
these argument see Hofbauer and Huttegger (2008).

It is important to notice that these results are specific for the perturbation
(4), which is linear. Alternative perturbations could also include non-linear
terms, which might create any finite number of of perturbed rest points with
all kinds of stability properties. Such alternative perturbations might, however,
not have an equally clear empirical interpretation like the one given in (4).

3.3 Structurally stable signaling games

Jäger (2008) studies games which he calls structurally stable. Structural sta-
bility in Jäger’s sense does not refer to perturbations of the dynamics, as in
the previous subsection, but to perturbations in the payoffs of the players. In
particular, he allows for the possibility of an uneven probability distribution for
the set of events (like Nowak et al. 2002 and Hofbauer and Huttegger 2007) and
requires that different signals incur differential costs.

These features lead to a perturbation of the players’ payoffs, which does not
destroy the existence of neutrally stable components, however. Jäger (2008)
shows that the replicator dynamics still converges to neutrally stable compo-
nents of Nash equilibria from an open set of initial conditions. Given this result,
it seems necessary to approach the problem of degeneracy in signaling games
(i.e. the existence of components of Nash equilibria) from dynamical systems
theory, as we outlined in the previous paragraph.

3.4 Finite population models

An alternative way to deal with degeneracy in signaling games with techniques
from dynamical systems is to consider finite population models. We shall men-
tion this possibility only briefly, since it is the subject of Pawlowitsch’s contri-
bution to this volume.

Pawlowitsch (2007) studies signaling games under the frequency-dependent
Moran process (cf. Nowak et al. 2004). Her results show that selection never
favors a a strategy replacing a signaling system, whereas it favors some strategy
to replace any strategy other than a signaling system (including neutrally stable
strategies). It is important to notice that the model of Pawlowitsch also employs
a kind of perturbation (given by weak selection). As is argued in Huttegger
et al. (2008), a Moran-process without any kind of perturbation does yield
qualitatively the same results as the replicator dynamics.
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Some models of finite populations also involve more population structure
than is used in either the replicator dynamics or the Moran process. So called
cellular automata models use grid structures where individuals are constrained
to interact only with their neighbors. Zollman (2005) considers the 2-state/2-
signal/2-act signaling game with equiprobable states. He finds that although
every individual adopts a signaling system strategy, both type of signaling sys-
tem strategies persist. On the grid regions form, where individuals are perfectly
communicating with those in their region, but are failing with those outside.
Without mutation these states are stable, and with mutation they only undergo
small persistent changes in the location of the borders. Wagner (2009) extends
this model to include 3-state/3-signal/3-act signaling games and also to pop-
ulation structures other than the grid. He finds that population structure of
various sorts significantly reduces the probability that either partial or total
pooling equilibria will evolve.

4 Learning models

Unlike population models that usually consider a large population of players
playing a game against one another, models of individual learning usually con-
sider two players playing against one another repeatedly. Each player chooses a
play for each round by following a rule which uses the past plays and payoffs of
the game. These models attempt to capture the process by which individuals
come to settle on particular behaviors with one another.

The literature is replete with different models of individual learning. In an-
alyzing a wide variety of different learning rules scholars are usually interested
in one of three questions. First, how little cognitive ability is needed to learn a
signaling system? In the replicator dynamic model we found that at least some
of the time a biological process, like natural selection, can result in the emer-
gence of language. Can other simple dynamic systems which are implemented
at the individual level result in the same outcome? Second, is the replicator
dynamics an appropriate approximation for models of individual learning? If
individual learning results in similar outcomes, we have some reason to suppose
the replicator dynamics offers a good approximation.4 Finally, scholars are in-
terested in determining the relationships between features of the learning rules
and their ultimate outcomes. Do all models that have limited memory converge
to signaling systems? What about all those that remember the entire history?

With respect to the first question, it appears that very little cognitive ability
is needed to result in signaling systems. In fact some very simple learning rules
perform better than other more complex counterparts. This later fact also shows
that no particular mathematical model (like the replicator dynamics) is likely to
capture the range of possibilities presented in individual learning. This suggests
that the study of learning in games represents an important avenue of research

4Since the replicator dynamics offers a sometimes mathematically simpler model than
other learning rules having it represent an adequate approximation can reduce the amount of
analysis substantially.
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for those interested in the emergence of behavior in games. The last question,
regarding the relationship between features of the learning rule and results, is
complicated. We will postpone detailed discussion until the end of this section.

In the replicator dynamic models of signaling it is usually supposed that
each individual is endowed with a contingency plan over all states or signals.
In the one population model every individual had both receiver and sender
contingency plans, while in the two population model individuals had only the
relevant contingency plan (sender or receiver depending on their population).
This model fits well with biological evolution, where individuals’ responses are
determined by a heritable biological mechanism. A similar model is less plausible
in the case of learning. Suppose that state a occurs and a player sends signal
x to a counterpart receiver who acts correctly – both receive a reward. It
would be unrealistic to suppose that the reward received would influence the
sender’s propensity to send signal y in state b even though it did not occur.
But this would often be the case if we modeled individuals as learning on entire
strategies (full contingency plans for each state or signal). Instead, much of
the learning literature restricts the learning to particular states or signals and
models rewards as effecting only the behavior of the individual with regard to
that state or signal.5

4.1 Minimal memory

We will begin our investigation by turning to the simplest learning rules, those
that remember only the most recent round of play. One such learning rule,
Win-stay/Lose-switch, was initially considered in a different context by Robbins
(1952),6 and then later applied to in game theoretic situations by Nowak and
Sigmund (1993). As its name suggests, players will remain with their most
recent strategy when they “win” and switch to another strategy when they
“lose.” For general game theoretic situations, much turns on what is classified
as a win or loss, but since signaling games feature only two payoffs this need
not concern us here.

Barrett and Zollman (2008) consider Win-stay/Lose-switch and similar Win-
stay/Lose-randomize learning rules. They find that Win-stay/Lose-randomize
will converge in the limit to perfect signaling both when learning is done on
contingency plans and also when learning is done in individual states and signals.
Interestingly such a result is not guaranteed for Win-stay/Lose-switch since the
forced switch can make players miscoordinate forever.

These learning rules require only limited knowledge of the situation and re-
quire no sophisticated reasoning. We might imagine a slightly more cognitively
complex learning rule where individuals are capable of counterfactual reason-

5It should not be presumed that a strategy learning model is totally implausible, however.
For instance, if I am able to observe many plays of a the game before adopting a new strategy, I
might be able to observe contingency plans. Similarly, if I recognize the situation as strategic,
I may attempt to formulate reasonable contingency plans and adopt them.

6Robbins was considering a class of problems known now as bandit problems (cf. Berry
and Fristedt, 1985).
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ing, but still only consider the previous round. One such learning rule has an
individual take the best response to the play of the opponent on the previous
round. This requires more knowledge on the part of the player, since she must
be capable of calculating what would have happened if she had acted differ-
ently.7 So-called “myopic best response” or “Cournot adjustment dynamics”
has been considered extensively in the economics literature (cf. Fudenberg and
Levine, 1998). In the case of 2-state/2-signal/2-act signaling games this learning
rule has the same problem faced by Win-stay/Lose-switch, it can cycle forever.
Beyond this fact, little is known about this learning rule and how it compares
to the other short-memory learning rules.

It is not always appropriate to assume that individuals have only a one period
memory. We will now turn to a learning rule which is at the other extreme – it
remembers the entire history of play.

4.2 Indefinite memory

We will again return to considering learning rules which only consider their own
actions and payoffs without engaging in counterfactual reasoning. So called Her-
rnstein reinforcement learning is one such learning rule. It was first introduced
in the game theoretic literature by Roth and Erev (1995) and Erev and Roth
(1998), but the underlying motivation traces to Herrnstein’s (1970) matching
law – that the probability of an individual taking an action will be propor-
tional to the sum of the rewards accrued from taking that action. Herrnstein’s
matching law is instantiated by defining the probability of an action a using the
following formula:

wa∑
x wx

(5)

wa is the total rewards from taking action a and the sum in the denominator
is the total rewards for taking all actions over past plays. This function for
taking past successes and translating them into current propensities for action
is known as the “linear response rule.”

As was done with the replicator dynamics, we will first consider the simplest
case, two states, signals, and acts, with equiprobable acts. In this case, it has
been proven that a separate sender and receiver both employing reinforcement
learning on individual actions will converge (almost surely) to signaling systems
(Argiento et al., 2007). Unfortunately, the proofs for this case are difficult and
generalizations have not been forthcoming. Almost all that is known about
other cases is the result of simulation studies.

Barrett (2006) found that for signaling games with more signals, states and
acts will often converge to the partial pooling equilibria described above. As the
number of states, signals, and acts grow, the proportion that converge to one
form of partial pooling or another grow as well, reaching almost 60% for eight
state, signal, act games. Barrett did find, however, that those systems always

7In signaling games, this learning rule would also require that the receiver by informed of
the state after failure, so that she might calculate the best response.
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achieved some success at information transfer. He observed no simulation that
succeed less than half of the time, and a vast majority achieved relatively high
success.8 Skyrms (2009) reports that failures similar to the replicator dynamics
are observed when states are not equiprobable. In a two state, signal, act
game with unequal state distributions total pooling equilibria are sometimes
observed. Similar results are reported by Barrett (2006) regarding unequal
state distributions for games with more signals, states, and acts.

The story here is interesting. In the replicator dynamics it appears that the
introduction of random shocks is sufficient to avoid the pitfalls of partial and
total pooling equilibria (at least in some cases). Herrnstein reinforcement learn-
ing has persistent randomness, but the magnitude of that randomness decreases
over time. Simulation results suggest that this randomness is insufficient to
mimic the randomness obtained by the selection-mutation dynamics and thus
insufficient to avoid partial pooling equilibria.

Akin to Win-stay/Lose-switch, Herrnstein reinforcement does not use infor-
mation about one’s opponent’s actions or about one’s alternative responses to
those actions. One might modify Herrnstein reinforcement learning to consider
such a case, where an individual attempts to “learn” the, possibly mixed, strat-
egy of one’s opponent by observing past play.9 One assumes that the proportion
of past plays represents an opponent’s strategy and then takes the best response
to that strategy. So called “fictitious play” has been applied in many settings
in game theory (cf. Fudenberg and Levine, 1998), but it has not been studied
extensively in signaling games. There are also other, more complex, Bayesian
learning rules which have likewise not been applied to this game (cf. Young,
2004)

There have, however, been several other modifications to Herrnstein rein-
forcement that have been considered. They all retain the central idea that one’s
play is determined only by the rewards one has received in the past and not by
strategic considerations like those used in myopic best reply or fictitious play.

4.3 Similar reinforcement models

There are many different ways to modify Herrnstein reinforcement in order to
introduce larger persistent randomness. Only a few have actually been studied
and there has not been anything close to an exhaustive search of the possibilities.

One might begin by modifying the way by which propensities are updated.
It is usually assumed that the game being studied does not have negative pay-
offs so that propensities cannot become negative (and thus result in incoherent
probabilities). Alternatively, one might allow for negative payoffs but truncate
the propensities to remain above zero. Barrett (2006) investigates a collection
of models where failure receives a payoff of less than zero and thus results in
a “punishment” which decreases the probability of taking that action (rather

8For instance in a four state, signal, act game he found that, of those that failed, all
approached a success rate of 3/4.

9The term “learn” may be a bit of a misnomer since, if one is playing against a opponent
who is also using this learning rule, there is no stable strategy to learn.
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than keeping it the same). Results of simulations involving different amounts of
punishment suggests that this substantially decreases the basins of attraction of
partial pooling equilibria and results in more efficient languages. Although this
depends on the magnitude of the different rewards and punishments. Games
with unequal state distributions have not been studied with this model.

In addition, Barrett (2006) considers a model where the propensities are
subject to random shocks. Shocks are modeled as a number α which is drawn
from some distribution with expectation of 1. On every round the propensities
are multiplied by α resulting in random perturbations. Barrett finds that these
shocks are sufficient to eliminate partial pooling equilibria in signaling games
with more than two states, signals, and acts. Again, however, unequal state
distributions have not been studied.

Rather than modifying the updating rules, one can also modify the response
rule. Skyrms (2009) considers a model where the probabilities are determined
by a logistic (or exponential) response rule:

eλwa∑
x e

λwx
(6)

This exponential response rule alters the way that propensities are translated
into probabilities over actions. The structure of this rule allows for small differ-
ences in propensities to have very little influence while larger differences have
more significant influence. Skyrms (2009) finds that for reasonably small values
of λ learners almost always learn to signal both for unequal state distributions
and larger number of states signals and acts. This occurs largely because, when
λ is small, initial play is more random and later play is more deterministic (than
Herrnstein reinforcement) resulting in more early exploration.

4.4 More radical departures

The modifications considered so far preserved the underlying idea that weights
are updated by addition (and potentially perturbed). Barrett and Zollman
(2008) consider a model where the weights are updated by a weighted average
instead of addition and propensities are calculated according to the exponential
response in (6). They find that for particular parameter values individuals
learn to optimally signal in games with three states, signals, and acts. This
occurs largely because this learning rule approximates Win-stay/Lose-switch by
continually exploring until it succeeds and then locks into the strategy that
produces that success.

Barrett and Zollman (2008) also consider a yet more radical departure
from Herrnstein reinforcement, the Adjustable Reference Point (ARP) learn-
ing model. ARP was first developed to explain human behavior in games by
Bereby-Meyer and Erev (1998). We will avoid specifying the model here, but it
is a reinforcement like model meant to capture four features absent in Herrnstein
reinforcement: (1) what counts as success and failure can evolve based on past
experience, (2) how one responds to “successes” and “failures” can differ, (3)
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more distant rewards and punishments have less effect than more recent ones,
and (4) rewards in one domain can have effects on other domains as well. Bar-
rett and Zollman find that the ARP model significantly outperforms Herrnstein
reinforcement in converging to near-optimal signaling systems.10 They attribute
this success to the persistent randomness introduced by feature (3) – its ability
to forget the past. Their conclusion is largely based on the apparent success of
other learning rules discussed above which also discard past experience.

5 Conclusions

Overall it does appear that some successful communication can emerge out of
initial confusion. Both models of evolution and of individual learning often
result in the emergence of somewhat successful communication. Such success is
not always guaranteed, however. In signaling games with more than two states,
signals, and acts, perfect communication is not guaranteed to emerge. Similarly
the emergence of perfect signaling is not certain in games where the states
are not equiprobable. These conclusions hold both for evolution and learning
models. However, we did find that signaling can emerge with very little cognitive
sophistication. Communication can emerge from natural selection alone, or from
some very simple learning rules like Win-stay/Lose-switch.

Several similarities between the models of learning and evolution are ap-
parent. The results for the replicator dynamics coincided with the results for
Herrnstein reinforcement learning. The relationship between these two models
is more significant than the similarities mentioned here, and so this result is not
entirely surprising (cf. Beggs, 2005; Hopkins and Posch, 2005). The selection-
mutation dynamics (for appropriate parameter values) converges to perturbed
signaling systems. This coincides with the results obtained for the ARP learning
model. However, many of the other learning rules always converge to a (non-
perturbed) signaling system – we have no version of the replicator dynamics
which models this result.

Many of the learning rules which converged to signaling systems had an inter-
esting feature: they began by exploring the space of possibilities, but then later
began playing successful strategies with high probability. This feature is found
in Win-stay/Lose-randomize and both reinforcement models with exponential
response. Similarly, those that forget the past appeared to perform better than
counterparts that did not, as was the case with ARP learning, Herrnstein rein-
forcement learning with random shocks, Smoothed reinforcement learning, and
Win-stay/Lose-randomize.

These learning rules have large persistent randomness (at least early in the
process). This feature is partially shared by the selection-mutation dynamics,
which has persistent randomness throughout the process of evolution. The re-
sults from the extant literature on the evolution of communication suggests that

10Because there is persistent randomness in ARP learning it will not ever converge to any
pure strategy.
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this randomness is required in order for populations or individuals to converge
on optimal signaling.
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Számádo, S. and E. Szathmáry (2006). Selective scenarios for the emergence of
natural language. Trends in Ecology and Evolution 21, 555–561.

Taylor, P. D. and L. Jonker (1978). Evolutionarily stable strategies and game
dynamics. Mathematical Biosciences 40, 145–156.

Trapa, P. E. and M. A. Nowak (2000). Nash equilibria for an evolutionary
langauge game. Journal of Mathematical Biology 41, 172–188.

Wagner, E. (2009). Communication and structured correlation. Forthcomming
in Erkenntnis

Wärneryd, K. (1991). Evolutionary stability in unanimity games with cheap
talk. Economics Letters 36, 375–378.

Young, H. P. (2004). Strategic Learning and its Limits Oxford: Oxford Univer-
sity Press.

Zollman, K. J. (2005). Talking to neighbors: The evolution of regional meaning.
Philosophy of Science 72, 69–85.

19


