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Abstract. This paper outlines a second-philosophical account of arithmetic that places it on a
distinctive ground between those of logic and set theory.

In a pair of recent books,1 I’ve proposed an austere naturalistic approach to philosophiz-
ing, characterized by the practices of an idealized inquirer called the Second Philosopher—
an inquirer equally interested in all aspects of the world and our place in it, equally at home
in physics, astronomy, biology, psychology, linguistics, sociology, anthropology, etc., and
even logic and mathematics, as the need arises. The closest conventional classification is
‘methodological naturalism,’ described by one prominent taxonomist, David Papineau, as
a family of views that ‘is concerned with the ways of investigating reality, and claims
some kind of general authority for the scientific method.’2 I shy away from this succinct
portrayal—and come at Second Philosophy roundabout, as what the Second Philosopher
does—in order to highlight the fact that the Second Philosopher doesn’t think of herself as
marching under any banner of ‘science method’; instead, she simply begins with ordinary
perceptual experience, gradually develops more sophisticated means of observation and
generalization, theory formation and testing, and so on. What she doesn’t do is attempt any
overarching account of her ‘method’;3 when she turns her attention to the question of how
best to investigate the world, she fully appreciates that her techniques of inquiry often end
up needing revision and supplementation, an open-ended process that can’t be foreseen
and corralled in advance.4 We describing her might use the rough label ‘scientific’ for her
approach, but a true understanding the nature of Second Philosophy requires tracing her
efforts in various particular cases and getting the hang of predicting how she would react
in a new one.

In Second Philosophy, in one of those particular cases, the Second Philosopher turns
her attention to logic, to the question of what grounds logical truth. Toward the end of
that book, and as the main event in Defending the Axioms, she investigates the proper
methods for higher set theory,5 and the metaphysical and epistemological background that
explains why these methods are the proper ones. The result is a sharp contrast between
the robust worldly supports she identifies for logic, and the objective but metaphysically

Received: July 15, 2013.
1 Maddy (2007, 2011).
2 See Papineau (2009).
3 This would be to provide what’s customarily described as a ‘demarcation criterion’ between

science and nonscience.
4 For example, in 1900, it wasn’t unreasonable to think that the existence of entities like atoms could

never be established, because they couldn’t be observed. Perrin showed otherwise, introducing a
subtle new method of confirmation into physical chemistry.

5 By ‘higher set theory,’ I mean set theory that goes beyond number theory and into analysis, the
study of reals and sets of reals, and beyond. From here on, I leave the ‘higher’ implicit.
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neutral account she offers in the case of set theory. Now what about arithmetic? Though
this topic isn’t the main focus of either discussion, a few glimpses turn up along the way:
elementary arithmetic claims like 2 + 2 = 4 are assimilated to those robust logical facts;
a standard arithmetic of a potentially infinite natural number sequence6 is not (where this
is characterized by commonplace assumptions along the lines of informal Peano axioms—
every number has a successor, proof by induction, etc.).7

One simple possibility would be to combine the classification of elementary arithmetic
with logic and the classification of standard arithmetic with set theory, but I think this
can’t be quite right. In fact, I suspect there’s something to the widely held belief that our
grasp of the standard model of arithmetic is much more determinate than our grasp of V—
which isn’t to say that I lean toward the other extreme of lumping the notion of an infinite
sequence8 with the likes of 2 + 2. The goal here is to give a second-philosophical account
of the intermediate status enjoyed by standard arithmetic.

The discussion begins with a quick and sketchy recap of the two extremes represented
by elementary logic and set theory (in §§I and II, respectively).9 Much of this will be
familiar to those hearty souls who’ve read the two books mentioned, but here the focus
is on what I’ve sometimes called ‘the ground of logical truth’ or ‘the ground of set theo-
retic practice.’10 Very roughly, the thought is that the ground of a stretch of discourse is
something extra-linguistic that guides and constrains what counts as proper or correct in
that discourse, something extra-linguistic to which the discourse is responsive and respon-
sible.11 The plan is to characterize the contrast between logic and set theory in these terms,
then to introduce the relevant point in between (in §III). Placing this proposal in a Kantian
setting (in §IV) then serves to highlight the question of how and why arithmetic applies to
the world (the topic of the final §V).

§1. A second philosophy of logic. The Second Philosopher’s view of logic begins
from her common sense observation of the world: much of it consists of individual objects
(stones, trees, cats, houses, planets), with various properties (cats can change their locations
but trees can’t), standing in various relations (houses are generally bigger than stones,
sometimes even made of stones), and one situation involving those objects often depends
on another (this billiard ball moves because that billiard ball collided with it, this flower
blooms because that seed was well planted and nurtured). True to her inquisitive ways,

6 The further assumption of a completed set of natural numbers invokes the axiom of infinity,
perhaps the characteristic hypothesis of set theory. Cantor’s bold move paid off in spades with
the rise of modern set-theoretic mathematics (see, e.g., Maddy, 1988, p. 486 or 1997, pp. 51–52),
but as noted, the plan here is to distinguish this type of grounding (discussed in §II) from that of
standard arithmetic.

7 This shouldn’t be taken as a rejection of Logicism (see footnotes 51 and 52).
8 Here and elsewhere, ‘potentially’ is left unstated.
9 For more on the topics of §I, see Maddy (2007, Part III) and also Maddy (2014, Unpublished); for

§II, see Maddy (2011). For present purposes, I won’t attempt to treat all the issues these positions
raise, or even all the issues addressed in these other presentations.

10 I use the word ‘ground’ with some trepidation, recognizing that it has recently become a
contentious term of art in a priori metaphysics. No entry into that discussion is intended here.

11 This is intended in a metaphysical, not an epistemological sense: adding ‘this plant is a rose
bush’ to our store of botanical wisdom is ‘proper or correct’ when the plant in question in fact
enjoys the fundamental botanical features common to roses, not when, given our current state of
understanding, it seems to us that it does.
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the Second Philosopher examines the credentials of this common wisdom. Her inquiry
reveals that the atomic and molecular structures present in the apparent interior of stones
and cats differ markedly from the surrounding air, that various constraints and forces of
cohesion hold these structures together and keep them moving as a unit, that electro-
magnetic features of the tree’s surface conspire with similar features of my hand to prevent
the largely empty hand from moving through the largely empty trunk;12 in other cases, like
rainbows or mirages, this same inquiry reveals that apparent objects are sometimes only
apparent. Similarly, she describes and confirms transfers of momentum between billiard
balls and tests for the efficacy of such expedients as the use of Miracle Gro. Finally, she
recognizes that few properties and relations are be fully determinate (there are tadpoles and
frogs, juvenile and fully mature specimens of a certain biological kind, and just as surely
there are borderline cases between these two).

Various forms of skepticism threaten this straightforward account. After all, the Second
Philosopher’s investigation itself relies on her beliefs about the properties and relations
of many objects, including, for example, various measuring devices and detectors—what
kind of evidence does she have for those beliefs, and for the beliefs on which that evidence
relies, and so on? One such worry is that any inquiry beginning from beliefs involving
objects with properties, standing in relations, with dependencies, will inevitably confirm
the existence of such things. We’ve seen that this isn’t true in the broadest sense: the
Second Philosopher’s inquiry does in fact lead to a rejection of some apparent objects,
and she eventually uncovers a blanket failure of our usual ideas of objects with properties,
standing in relations, when she looks into the ‘particles’ of quantum mechanics,13 where
her familiar style of dependencies also appears to fail.14 But could such an inquiry ever
lead her to conclude that the entire framework is flawed, at every level of description,
that all such objects are ultimately illusory? It might seem that this couldn’t happen, that
the discovery that there are no ordinary objects would undermine the considerations that
produced it in the first place, but perhaps this is too quick: in the wake of such a surprising
discovery, the discredited ordinary objects might be reinterpreted as crude markers for
the (nonobject-like) realities of fundamental physics, markers too crude to be legitimate
entities that are simply constituted by those underlying realities.15 In any case, at least
it isn’t obvious that conceptualization in terms of objects with properties, standing in
relations, with dependencies, is trivially self-justifying. There remains the radical skeptical
worry that all our theorizing about the external world is baseless, but this is too large a
subject to broach here.16

12 Some (e.g., Eddington, Sellars, Ladyman and Ross) would distinguish the ordinary tree trunk
from the largely empty tree trunk. For discussion, see Maddy (2014).

13 I allude here to such phenomena as the twin-slit experiment (particles don’t appear to traverse
continuous trajectories), the challenge to individual identity from quantum statistics (the state
with particles a and b, in that order, doesn’t appear to differ from the state in which they are
switched), and Stern-Gerlach experiments (a particle can’t have vertical and horizontal spin
properties at the same time). See Maddy (2007, §§III.4.i and ii), and the references cited there.

14 This time I have in mind EPR-type phenomena, where measuring a particle here seems to
affect the properties of a particle over there with no intervening mechanism. See Maddy (2007,
§III.4.iii), and the references cited there.

15 As I understand it, this is the position of Ladyman & Ross (2007). Though I obviously don’t en-
dorse their line of thought (see footnote 12), it does illustrate how this sort of discovery could go.

16 Unlike some naturalists, the Second Philosopher doesn’t simply dismiss the external world
skeptic. See Maddy (2007, §§I.1 and I.2, 2011a) for her take on the dream argument, and Maddy
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Thus, in telegraphic summary, the relevant metaphysics. On the epistemic side, develop-
mental psychologists have confirmed that we come to detect the presence and absence of
these medium-sized objects and their properties and relations quite early on, prelinguisti-
cally, along with conjunctions and disjunctions of these and simple transfers of momentum.
Indeed, we share these abilities with a wide range of animals, from birds to monkeys, which
suggests an evolutionary origin.

To summarize, then, the Second Philosopher concludes that much of the world displays
a familiar abstract template—a domain, properties and relations, dependencies—amenable
to a strong Kleene three-valued scheme;17 let me call this formal structuring KF, in honor of
Kant and Frege, from whom it derives. Any KF-world validates most classical inferences
involving ‘and,’ ‘or,’ ‘not,’ ‘all’ and ‘exists’: for example, the DeMorgan laws, the dis-
tributive laws, double negation elimination, universal instantiation, etc. Exceptions arise,
for example, with the Law of Excluded Middle (if p is indeterminate, so is p-or-not-p),
modus tollens (if-p-then-q and not-q only imply that p isn’t true, but it might be indeter-
minate), and (for similar reasons) reductio ad absurdum. This much rudimentary logic is
reliable in any domain with KF-structuring, and thus valid in our world insofar as it enjoys
this structure.

Consider, for example, a simple logical truth: if the book is either red or green, and it’s
not red, then it’s green. This claim is true in a given bibliographical situation not because
the book has a certain physical composition or light behaves a certain way, but simply
because the book is an individual object with properties, and red and green are such
properties.18 As long as this structure is present, the inference is reliable: the rare books
are bound in a special red binding and shelved on the third floor with the green books;
this book is shelved on the third floor, but it’s easily available from Amazon; therefore,
this book is green. Here our particular interest is in what grounds this sort of inference,
that is, what makes it reliable, or in my more general terms, what makes it a proper or
correct move to make in this stretch of discourse. We now have the Second Philosopher’s
simple answer: all that matters is the presence of KF-structuring. This is not unlike the
sense in which the interactive behaviors of a given chemical compound are grounded in
the arrangements of its molecules and so on, not in the cost of a beaker of the stuff.

So the Second Philosopher’s position is that (1) this rudimentary logic applies to any
aspect of the world with KF-structuring, which many of the world’s aspects, at various
levels,19 do enjoy, (2) human beings tend to trust its simpler inferences because their
most primitive cognitive mechanisms detect and represent many of these structures,20 and
(3) those primitive cognitive mechanisms are as they are because human beings (and their
evolutionary ancestors) interact almost exclusively with aspects of the world that do enjoy
this structure.

(2011b) for the argument from illusion. There remain arguments based on the infinite regress of
justifications and the closure principle, which I hope to discuss one day.

17 The exception is the rudimentary conditional, which retains some nontrivial dependency relation
between antecedent and consequent (see the transition to classical logic below).

18 Of course color properties are more complex than this suggests, but I hope I may be forgiven this
oversimplification for the sake of illustration.

19 For example, it appears among various decks of cards with various back designs standing
in various spatial relations, but also among various individual cards of various different suits
standing in ordering relations within a single deck. Indeed, the relevant structures can crosscut at
a single size-scale, as with Quine’s rabbits and rabbit stages.

20 There are no doubt many aspects of the world with this structure that we can’t or don’t notice.
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In stark contrast to the status of logical truth and validity on most philosophical treat-
ments, here rudimentary logic is contingent on the way many aspects of our world happen
to be, as is clear from the fact that it doesn’t work, isn’t reliable, in the quantum world,
where the requisite structure is missing. The distributive law is a familiar example: it’s valid
in rudimentary logic, but in the quantum world, it may be that a given electron has vertical
spin up or vertical spin down, and horizontal spin right or horizontal spin left, even though
none of the obvious conjunctions—vertical spin up and horizontal spin right, vertical spin
up and horizontal spin left, vertical spin down and horizontal spin right, vertical spin down
and horizontal spin left—in fact obtains.

Despite this, the conviction that the world must exhibit KF-structuring, that all possible
worlds have (at least) that much structure, remains strong, so strong that some less natural-
istically minded philosophers are willing to reject quantum mechanics! This reaction is un-
derstandable: KF-structure is embedded in our most primitive ways of thinking; a modern
day neo-Kantian might even claim that it’s impossible for us to cognize, either perceptually
or theoretically, without it. The Second Philosopher sees no firm ground on which to draw
this strong conclusion, but there’s no doubt that the sway of these forms runs very deep, so
deep that we’ve enshrined them in our very conception of a ‘possible world.’ Little wonder,
then, that logical laws strike us as necessary, and that quantum mechanics is so baffling.

Another orthodox view is that our knowledge of logic is a priori. If in fact those primitive
cognitive mechanisms are instilled by evolution, written into our genetic code, then it
could be that our tendency to trust the simpler inferences of rudimentary logic comes
to us with no input from experience—and a sufficiently externalist epistemologist might
argue that this counts as a priori knowledge. To defend our belief, however, to collect
sufficient evidence for the reliability of rudimentary logic, requires empirical investigation
of the sort summarized here, so an internalist epistemologist might call the case the other
way. The Second Philosopher sees no special need to pass judgment on the ‘concept of
knowledge’—she may doubt that anything sufficiently precise actually answers to our
undeniably effective use of the word ‘know’—so she rests content with describing the
relevant facts of the case.

Finally, there is the venerable philosophical notion of analyticity, so often affirmed on
logic’s behalf: in modern form, logic is said to be true by virtue of the meanings of the
logical particles. So, for example, it might be claimed that the distributive law can’t fail,
because its validity follows from, or is somehow contained in, the meanings of ‘or’ and
‘and.’ This may be true—just as the validity of the inference from any p to any q follows
from, or is contained in, the meaning of ‘tonk’21—but no amount of truth by virtue of
meaning will make the distributive law viable in application to that electron considered a
moment ago. In other words, perhaps one can make whatever one likes true by adopting
the appropriate meanings, but it remains a contingent matter, an empirical question, which
meanings are suitable, which are effectively applicable, in which worldly situations. So
even if rudimentary logic is analytic in some sense, its successful use remains answerable
to the presence of the worldly structures identified by the Second Philosopher.

One final step is needed, because rudimentary logic, a rather weak and ineffective instru-
ment, lies at some distance from the full force and glory of classical logic. What bridges
the gap? The Second Philosopher’s answer is that various idealizations are brought into
play: we pretend that every referring expression of the language in question succeeds

21 Begin with p. By the introduction rule for ‘tonk,’ it follows that ‘p tonk q.’ Then, by the
elimination rule for ‘tonk,’ we arrive at q.
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in picking out an individual, that its predicates aren’t vague or otherwise indeterminate,
that the dependence of one situation on another can be adequately represented by the
material conditional. As with any scientific idealization, these should only be employed
where and when they are both effective and benign, and care must always be taken not
to abuse them: just as neglecting friction too broadly leaves us unable to explain how we
manage to walk, neglecting vagueness too broadly can leave us with a sorites problem.
Many of the well-known nonclassical logics—free logic, various conditional logics, the
many attempted logics of vagueness, etc.—can and, from the second-philosophical point of
view, should be viewed as arising from the conviction that the corresponding idealization is
either not effective or not benign in some or all situations, and that the proposed alternative
is preferable. It isn’t enough to show that a certain corner has been cut or falsification
introduced—on the proposed account, the classical logician admits as much—the more
difficult task is showing where and when this amounts to a damaging distortion and how
an alternative logic (not just more careful use of classical logic) does a better job. This is
no doubt a worthy project, but at least for now, I think it’s not clear that such a case has
been convincingly made.

Thus, in quick summary, the Second Philosopher’s account of logic: rudimentary logic,
where it holds, is grounded in facts of the world’s contingent structure22; classical logic
results from a string of (apparently) beneficial and benign idealizations. Now we turn to
the other extreme, the case of set theory.

§2. A second philosophy of set theory. As the Second Philosopher’s investigation of
the world becomes more sophisticated, she eventually feels the need for mathematical tools
beyond logic and arithmetic, just as Newton felt the need for the calculus. Recapitulating
the developments of the 18th century, she devises ever-improving methods of analysis,
following Euler and his contemporaries; retracing the progress of the 19th century, she
begins to see the wisdom in pursuing pure mathematics, if only to provide a greater variety
of potential abstract models for physical situations.23 At that point, her mathematical in-
quiries often aim at internal mathematical goals, like Cantor’s desire to extend the theory of
trigonometric representations, or Dedekind’s interest in representation-free definitions, or
Zermelo’s hope of analyzing fundamental mathematical notions like ‘number’ and ‘order’
and ‘function’ in their simplest form, or the modern set theorist’s pursuit of a mathemati-
cally rich theory of sets of real numbers. Given the relevant mathematical goals, she isolates
and evaluates the methods of contemporary set theory, assessing them as proper insofar as
they facilitate the attainment of those goals.

But knowing how to go about set theory isn’t all there is to her study; she also wants to
understand what this particular human practice is doing: does it have a subject matter of its
own, like physics or botany? If so, how do its methods manage to track the truth about that
subject matter? Phrased in slightly nontraditional terms, these are the classic metaphysical
and epistemological questions in the philosophy of mathematics.

The answers proposed in Defending the Axioms proceed in three stages: description
of two apparently second-philosophical takes on set theory, depending on whether or not
it’s regarded as a body of truths, followed by an account premised on an analysis of the
relationship between these two. At stage one, then, we suppose the Second Philosopher

22 To be clear, the claim isn’t just that rudimentary logic holds where there’s KF-structuring—a near
tautology—but also that many aspects of the physical world do in fact have this structure.

23 This isn’t the only reason, as should become clear by the end of this section.
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takes set theory to be a body of truths. Assuming those truths say what they seem to say, it
follows that many sets exist, and along the way, many of their properties and relations are
catalogued. The standard practices invoke no dependence on us, no positioning in space or
time, no causal interactions, so according to the only methods so far identified as reliable
for finding out about sets, our ontology satisfies the usual negative criteria for abstractness.

This may seem to raise the familiar Benacerrafian epistemological challenge—how do
we come to know anything about entities of this abstract variety?24—but notice that the line
of thought behind that challenge runs something like this: set theory is an a priori discipline
concerned with the features of a domain of abstract objects; we humans live in the physical
world, which is entirely separate from the world of abstracta; how do our mundane proce-
dures of selecting axioms and proving theorems manage to track what’s going in that en-
tirely separate world? This style of reasoning—from a metaphysical account of the nature
of set theory to a question about the propriety of its actual methods—reverses the Second
Philosopher’s approach: she begins by isolating and analyzing those actual methods and
assessing their rationality as means toward the goals of the practice; when she comes to re-
gard set theory as a body of truths, she judges that the very methods that accomplished this
are (largely)25 reliable in tracking the facts about the relevant domain. For her, the question
of set theory’s metaphysics comes last, in a form with a faintly Kantian flavor—what
are sets that we can know them in these ways?—and she adopts the simplest hypothesis
available: that is precisely what sets are, things that can be known about in these ways. She
resists the temptation to make any claims about sets that go beyond what set theory tells us.

We have here two forms of realism about the domain of set theory: a Robust Realism
that begins from the metaphysical end, argues that a nontrivial epistemology is needed, then
presents a challenge to the actual methods of set theory; a Thin Realism that begins from
the methodological end, argues that the actual methods are (largely) reliable, then posits
a minimal metaphysics consistent with that conclusion. The Robust Realist worries over
the determinacy of the Continuum Hypothesis (CH), as a matter of metaphysics—is V or
the concept of ‘set’ (or some such) sufficiently determinate?—then considers that excluded
middle may be mis-applied in this case; the Thin Realism trivially derives the determinacy
of CH from the centrality of excluded middle among set theory’s effective methods.

But this Thin Realism may seem too easy. Shouldn’t an objective ontology imposes some
constraints on our practices? And if it does, don’t we fall back into demanding the sort
of nontrivial epistemology characteristic of Robust Realism? The Second Philosopher’s
answer is that set-theoretic methods track sets, of course, and that its methods are ob-
jectively constrained. Just as the concept ‘group’ was shaped by the kinds of mathemat-
ical goals that abstract algebra in general, and the developing group theory in particular,
aimed to serve, the choice of axioms for set theory is guided by the various mathematical
jobs the theory is intended to do: extending the theory of trigonometric representations
(as in Cantor), facilitating representation-free definitions and abstract reasoning (as in
Dedekind), clarifying the notions of ‘real number’ and ‘continuity’ (as in Dedekind) and
of ‘number’ and ‘order’ and ‘function’ (as in Zermelo)—and eventually, providing an
intra-mathematical style of foundation for classical mathematics,26 enriching the theory

24 See Benacerraf (1973).
25 Of course there’s always room for discovering and correcting errors—errors of judgment in the

selection of concepts or axioms, as well as logical errors in proofs—and improving those methods.
26 I have in mind here neither a metaphysical foundation—which tells us what mathematical

objects ‘really are’—nor an epistemological foundation—which explains how we come to know
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of reals and sets of reals (as in determinacy theory), and perhaps one day settling the
Continuum Hypothesis. The suggestion is that all these can be seen as ways of promoting
the kind of thing often loosely classified as ‘deep’ mathematics,27 and that ‘depth’ here
is an objective mathematical feature, not just a matter of passing fashion or subjective
whim.28 So the Thin Realist’s methods are indeed answerable to sets, but these sets turn
out to be markers for the objective currents of mathematical depth.

Thin Realism, then, is the second-philosophical account of set theory that results when
set theory is regarded as a body of truths. The other option is to see the set theorist
as engaged in a largely successful practice of developing a theory of sets in pursuit of
important mathematical goals of the sort listed a moment ago—not in the business of
uncovering truths, but of devising effective ways of doing various pressing mathematical
jobs, just as group theory, when the concept was being formed, was out to devise effective
ways of doing important mathematical jobs of its own. On this picture, no metaphysics, no
abstract ontology, is differentiating correct from incorrect decisions on axiom or concept
choice; nevertheless, it’s emphatically false to say that ‘anything goes’: those decisions
are sharply constrained by the demands of the mathematical aims in play. Call the Second
Philosopher who follows this line of development an Arealist.

The Thin Realist and the Arealist may appear far apart—one holds that sets exist and
set theory describes them, the other holds that sets don’t exist and set theory isn’t in
a descriptive line of work at all—but in fact the similarities are more striking than the
differences: at a fundamental level, the objective reality that guides both the Thin Realist’s
description of sets and the Arealist’s development of set theory is precisely the same strains
of mathematical depth; the considerations that lead the Thin Realist to think a given axiom
candidate is true are precisely the same considerations that lead the Arealist to think that
axiom candidate is a good one to add to the official list of axioms. As far as the pursuit of set
theory goes, the practice of actually doing set theory, the two are entirely indistinguishable.
The difference only comes in the aftermath, where one adds the words ‘true,’ ‘exist,’
‘know,’ etc., and the other feels no need to so embellish.29 The real contrast, we come to

mathematics—nor a conceptual foundation—which provides a conceptual framework in which all
mathematics should take place (for more, see Maddy, 1997, §I.2). As sketched in Maddy (2008)
and Part I of Maddy (2011), the rise of pure mathematics at the end of the 19th century produced
a new methodological question for mathematics: how can the legitimate mathematical structures
and proofs be separated from the problematic ones, now that the relation to the physical world no
longer guides us? Set theory was designed, in part, to fill this particular need, a process I like to
call ‘queasiness removal.’ More disclaimers: this isn’t to say that the other types of foundation are
wrong-headed or impossible, just that queasiness removal is all I take set theory to aspire to; the
suggestion is that this is one of the goals of set theory, and thus properly bears on how set theory
should be conducted, not that set theory is necessarily the only way it could be achieved; seeing
set theory as this sort of foundation isn’t to limit mathematics to what set theory can found—it’s
set theory’s job to be broad enough, not mathematics’ job to be narrow enough.

27 In Maddy (2011), where ‘depth’ is introduced, no definition or analysis of the notion is attempted;
instead I provide a range of examples and undertake to explain how and why they qualify, in terms
of means/ends reasoning based on the goals of set-theoretic practice.

28 Of course, even natural science is tied to human interests and abilities, in that we are drawn to
certain areas of inquiry by our interests, hampered or helped by certain of our abilities, and so
on. The question is whether mathematical depth is tied to our interests and abilities in some more
fundamental way, and my claim here is that it isn’t.

29 Even the Arealist may indulge in ‘truth’ and ‘existence’ talk inside of set theory: a set ‘exists’ in
the sense that a certain existential statement follows from the axioms, or a theorem is ‘true’ in
the sense of holding in V. Where the Thin Realist goes further is in applying external notions of
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see, is between the Thin Realist and the Arealist, on the one hand, and the Robust Realist,
on the other. Of the three, only the Robust Realist thinks that the methods of set theory
need ratification from an extra-mathematical source.

Thus stages one and two. At the final stage three, the Second Philosopher called upon
to adjudicate: who’s right, the Thin Realist or the Arealist? They begin from the same
second-philosophical starting point—investigating the world in ordinary empirical ways,
gradually correcting and improving their methods—they both come to applied, then to
pure mathematics by the same route—recognizing the usefulness of the former in their
theorizing, coming to appreciate the value of pure mathematics, if only for its unexpected
applications30—they both ratify the actual methods of set theory and pursue it in exactly
the same ways, guided by the same mathematical values. The only point of contention
arises when they’re faced with deciding whether or not to classify set theory along with
physics, chemistry, botany, astronomy, linguistics, psychology and so on.31 The Thin Re-
alist is particularly impressed by the similarities between sets and concreta, for example,
in the logically relevant features of enjoying properties, standing in relations, exhibiting
dependencies, and in the use of logic, theory formation, and means-ends reasoning in their
study; overall, she concludes that set theory is yet another body of truths, that her step-by-
step investigations of the world have revealed the presence of abstract as well as concrete
entities. Meanwhile, the Arealist is more impressed by the differences between abstracta
and concreta, between set-theoretic methods and her more familiar ways. She sees set
theory as a new sort of practice, different in kind from her investigations of the world, and
feels no need to fit it into that mold. So who’s right?

Tempting as it is to think there must be a right and a wrong answer here, my suggestion
in Defending the Axioms is that this is an illusion, that no fact of the matter determines
whether or not the notions of truth and existence, quite at home in empirical science, should
be extended to set theory and the rest of mathematics. The case runs more-or-less parallel,
I propose, to that of amorphous ice, a nice example of Mark Wilson’s:32 when water is
cooled very quickly, it doesn’t form the crystalline structure of ordinary ice, but a less orga-
nized solid structure more like that of ordinary glass. So, is amorphous ice really ice? Some
chemists describe it as a kind of ice, others describe it as an ice-like solid, but once the
underlying facts are clear, either way of speaking seems acceptable. In this way, I propose
that once we understand how set theory arose, what set-theoretic practice aims at, what its
methods are designed to track, the Thin Realist’s way of describing it and the Arealist’s way
of describing it are both acceptable. The choice is an inconsequential matter of preference.

So in the end, the Second Philosopher differs from both the Thin Realist and the Arealist
on ontological issues—she thinks we don’t go wrong speaking in either idiom—but our
central concern here is the ground of set-theoretic practice: what guides and constrains our
choice of new axioms?, to what the extra-linguistic something is the discourse responsible
and responsive? The answer, it turns out, is that common core of both Thin Realism
and Arealism: those underlying facts of mathematical depth, facts analogous to the ones

‘truth’ and ‘existence,’ notions available at the level of the Second Philosopher’s discussion of set
theory as a human practice. This is the point at which the Arealist demurs.

30 For example, group theory (see Maddy, 2007, pp. 330–331). As remarked in footnote 23, this
isn’t the only motivation (as comes out in a moment).

31 I put the question this way, rather than simply asking whether or not set theory counts as a science,
because neither the Thin Realist nor the Arealist, both Second Philosophers at heart, employs a
demarcation criterion for separating science from nonscience.

32 See Wilson (2006, pp. 55–56).
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about the behavior of water when quickly cooled. If this is right, and for present purposes
I assume that it is, we now see why its surprising applications aren’t the only reason the
Second Philosopher has for pursuing pure mathematics: the phenomenon of deep math-
ematics is as real as any other she studies, and her curiosity naturally extends to tracing
its contours and understanding its nature. What we have here is a form of Objectivism
without objects, and even without truth. We’ve taken Kreisel’s famous aphorism—that
what grounds mathematics isn’t mathematical objects, but the objectivity of mathematical
truth—and gone one better: what grounds it isn’t even truth, it’s mathematical depth.

§3. The ground of arithmetic. At this point, the stark differences between rudimen-
tary logic and higher set theory are obvious. Both are grounded in objective phenomena—
KF-structuring and mathematical depth, respectively—but those objective realities are quite
different, and the two practices are guided and constrained by them, responsive and re-
sponsible to them, in different ways. On the one hand, KF-structuring is a straightforward
feature of (some aspects of) the physical world, and it exercises its influence in equally
straightforward fashion: ‘if the book is either red or green, and it’s not red, then it’s green’ is
true because the book is an object and colors are properties, just as ‘compound X interacts
with Y to form Z’ is true because of the molecular structures of X, Y, and Z.33 The facts
of mathematical depth, on the other hand, certainly don’t appear to be ordinary physical
facts; the attractions of the concept of group or an axiom of large cardinals derive from
their role in the fruitful pursuit of abstract algebra or higher set theory, in their purely
mathematical virtues. These facts of mathematical depth don’t make a given large cardinal
axiom true—or at least they do so only in the entirely optional usage of the Thin Realist—
what they do is make it a good axiom to add to our list; they ‘guide and constrain’ the
practice of set theory, the practice is ‘responsible and responsive’ to them, but in the looser
sense of determining proper or correct development, not in sense of generating truths. In
the terminology of §II, the Second Philosopher’s account of logic in §I counts as a robust
form of realism—the developmental story anchors a nontrivial epistemology, the tell-tale
mark of robustness—while the realism of §II is thin at best.

Now, at last, we’re in a position to take up our central question: where does arithmetic fit
into this picture? Let’s begin from the logical end of the spectrum, where the connections
are closest. So far we’ve talked about cases like our simple bibliographical example, but if
we’re studying logic itself, not library science, our interest isn’t in claims about individual
books and their colors, but in generalizations like disjunctive syllogism: for any objects,
any properties, an inference from Pa-or-Qa and not-Pa to Qa will be valid. This is a claim
about any KF-structure: if the first two hold in such a structure, so will the third.

Compare this with a claim of elementary arithmetic, like 2 + 2 = 4. In a particular
case—two apples and two oranges on the table make four fruits—this is just another fact
of rudimentary logic, a valid inference only somewhat more complex than the one about the
book and its color: from ‘there is a thing, and another thing, both apples, both on the table,
and a thing, and another thing, both oranges, both on the table’ and ‘nothing’s both an apple

33 I don’t think either of these presupposes a more-than-disquotational brand of truth: ‘if the book
. . .‘ is true iff (by disquotational truth) if the book . . . iff (by the grounding of logic) the book
is an object and colors are properties; ‘compound X . . . ‘ is true iff (by disquotational truth)
compound X . . . iff (by the grounding of chemistry) the molecular structures are so-and-so. See
Maddy (2007, pp. 370–376), for an extended argument that the distinction between Robust and
Thin Realism is independent of the distinction between correspondence and disquotational truth.
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and an orange’ to ‘there’s a thing, and another thing, and still another thing, and yet another
thing, all fruits, all on the table.’34 2+2 = 4, like disjunctive syllogism, is a generalization
of these individual facts, again a generalization that doesn’t depend on botanical facts, but
only on the presence of logical structure.35 In both cases, our real interest is in general
features of any KF-structure.

So far so good. But there’s a well-known limitation to this approach: if the world is
finite, if there’s an upper bound on the size of actual KF-structures, then simple logico-
arithmetical inferences that reach above that bound will come out wrong. For example,
if the most numerous logical structure that exists in our world has only ten objects, then
the inferences corresponding to 6 + 7 = 1 and 6 + 7 = 10 will both be valid, that is,
any situation with the 6 + 7 structure will have both the 1 structure and the 10 structure,
because there aren’t any situations with the 6 + 7 structure. So the worldly features that
ground rudimentary logic aren’t enough by themselves to sustain arithmetic.

This is the sort of thing that drives many philosophers to modality: we aren’t just talk-
ing about all actual KF-structures, but about all possible KF-structures. In the spirit of
Russell’s dismissal of human limitations as ‘merely medical,’ we’re tempted to think that
the lack of large KF-structures is a ‘merely physical’ limitation, and to posit a sort of
metaphysical possibility. Despite the confident judgments of many modal metaphysicians
that flying pigs and talking donkeys are possible, I think it’s reasonable to expect the
Second Philosopher to be perplexed by this notion, at least initially, to be uncertain of
its purport. Perhaps better to tackle the local problem on its own terms, simply to ask what
does ground arithmetic, given that the ordinary physical ground of rudimentary logic is not
enough. What supports our confident judgments about the large finite, the ‘and so on’, the
‘. . .’ of an infinite sequence?

Before taking this on, let’s pause a moment to note that the ‘. . .’ also turns up early on
in our study of logic. It’s all very well to talk about individual logical truths and inferences,
but as soon as we turn to precise discussion of even simple generalizations like disjunctive
syllogism, we find ourselves reluctant to restrict, say, the length or complexity of the
formulas allowed in the disjunctive premise—and this sort of thought puts us on the road
to recursive definitions of ‘term’ and ‘formula’ and so on, to proofs by induction on length,
and all the rest of formal logic. Just as every number has a successor, every formula has
a negation; whatever it is that grounds the ‘. . .’ of arithmetic might be expected to do the
same for the ‘. . .’ of logic. But what is that?!

Let me sneak up on this question by first asking another, about ordinary human psy-
chology: what prompts us to think that for every number there’s always a next number?
This new question returns us for the moment to the developmental literature.36 There the
evidence indicates that we have two primitive proto-numerical systems. The first, which
delivers information about small numbers (up to three for infants, four for adults), is the
very mechanism that underlies our ability to detect and represent individual objects; its
basic function is to keep track of these individuals as they appear, as in ‘here’s an object,
here’s another, here’s still another.’ This so-called ‘object tracker’ is obviously implicated

34 The assumption that apples and oranges are fruits is left implicit.
35 Though ‘2 + 2 = 4’ doesn’t look like a generalization over KF-structures—it looks like a

claim about certain individuals, an operation and a relation—this can be viewed as a notational
convenience, introduced because we operate more easily with singular terms, etc. This expedient
fails when we reach quantified statements about numbers (see below).

36 For summaries, see Maddy (2007, pp. 319–327), and the references cited there. For expert
overviews, see Bloom (2000, chap. 9), Carey (2009, chap. 4, 7 and 8).
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in our treatment of both rudimentary logic and elementary arithmetic. The other primitive
system, called the ‘analog system,’ handles larger collections, but does so imprecisely: an
infant can distinguish 8 dots from 16 and 16 dots from 32, but muddles 8 vs. 12; an adult’s
system is only slightly more accurate, up to a ratio of 2:3. Both these systems are present
in animals, again suggesting an evolutionary origin, but neither is equipped for the ‘. . ..’
So where does this element arise?

One conspicuous oddity here is that a young child might know what ‘one,’ ‘two’ and
‘three’ mean—that they apply to a single individual, a group of two individuals, a group
of three individuals—and also know how to count, say, up to ten—that is, know how to
generate the sequence ‘one, two, three, four, five, . . . ten’ in the correct order, and how to
match number words with individuals in a group of objects in a one-to-one fashion—and
at the same time, this same child might well not realize that the final number generated
in such a counting procedure is the number of objects in the group counted. For example,
asked to give the experimenter six objects, the child might give four; prompted to count,
the child does so perfectly—‘one, two, three, four’—and then confidently concludes that
there are indeed six objects.37 In fact, the course of development is fairly uniform: starting
at about two years of age, the child understands that ‘one’ means one, but treats ‘two’
and higher roughly the same as ‘some’; after several months, ‘two’ is mastered, then
‘three’; somewhere around three-and-a-half years, somewhere between learning ‘three’
and learning ‘five,’ there’s a sudden generalization, and in a flash, the child understands the
meanings of all the number words in her counting range.

This breakthrough doesn’t occur in nonhuman animals: they can be taught, laboriously,
to associate groups of objects with numerical symbols of some kind, but this continues to
be an arduous task at each stage, with ‘four’ or ‘six’ as difficult and time-consuming as
‘three.’38 The decisive factor in humans appears to be their command of number words:

. . . human numerical cognition develops only as a result of children
acquiring the linguistic counting system of their culture. (Bloom, 2000,
p. 236)

The key insight of the toddler is that adding one object to a group corresponds to moving
up one step in her store of number words; counting then becomes a way of detecting the
number properties present in the world. The reason this is so difficult and takes so long
may well be that the sequence of number words has a quite different cognitive basis from
the object tracker or the analog system; it traces to the mechanisms underlying language,
sometimes referred to, in black box terms, as the ‘language-learning device.’ This is why
the young human eventually outshines his animal counterparts:

. . . it is not a coincidence that nonhuman primates lack both generative
numerical understanding and a generative language: they lack a gener-
ative numerical system just because they lack the capacity to develop a
generative communication system. (Bloom, 2000, p. 236)

Numerical understanding apparently arises from one particular aspect of language, the
sequence of number words,39 but nonlinguistic animals lack even this much.

37 See Bloom (2000, pp. 219–220), and the references cited there; also Carey (2009, pp. 297–302).
38 See Carey (2009, pp. 330–331).
39 See Bloom (2000, pp. 236–237): ‘The claim here is not that numerical understanding emerges

from language in general but that it emerges from learning the system of number words. Some
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So, once again, back to our central question: whence the ‘. . .’? Even after the sudden
realization that each of their counting words is linked to a certain worldly feature, human
children will often agree to take up the challenge of naming the largest number—only to
see each worthy candidate foiled by the sly expedient of adding ‘plus one.’40 This kind
of exercise soon prompts the belief that there is always another entry in the sequence of
number expressions, and this conviction is presumably based, not in the object tracker,
not in the analog system—not even in reality, since there’s actually a finite limit to the
expressions we can produce—but in a fundamental feature of the language-learning device:

All approaches agree that a core property of [the language-learning de-
vice] is recursion . . . [it] takes a finite set of elements and yields a poten-
tially infinite array of discrete expressions. (Hauser et al., 2002, p. 1571)

I’m not aware of any empirical work probing the child’s understanding of numerical ex-
pressions too large to write or speak, but it seems fair to say that by the time we master
something like the decimal system, we have come to think that despite the limits of paper,
pencil and human breath, there is always, at least in principle, another numeral.

This, I submit, is the root of the ‘. . .’: the ‘in principle’ structure of the sequence of nu-
merical expressions, grounded in the language-learning device. Much as our primitive cog-
nitive architecture, designed to detect KF-structure, produces our firm conviction in simple
cases of rudimentary logic, our human language-learning device produces a comparably
unwavering confidence in this potentially infinite pattern. And given the child’s hard-won
understanding that the number sequence measures the size of collections, this brings with
it a corresponding conviction that the size of KF-structures is also, in principle, unlimited:

It is not that somehow children know that there is an infinity of numbers
and infer that you can always produce a larger number word. Instead,
they learn that one can always produce a larger number word and infer
that there must therefore be an infinity of numbers. (Bloom, 2000, p. 238)

Similarly, we

might figure out that there is an infinity of possible musical composi-
tions by noting the generative nature of musical notation. (Bloom, 2000,
p. 238)

And we noted earlier that the same sort of conviction arises in formal logic.
At this point, the essential element is in place—our basic conception of the ‘. . .,’ which

eventually grows into our ‘intuition’ (as mathematicians and philosophers of mathematics
like to call it) of an infinite sequence—but these primitive ‘numbers’ are still just conve-
nient shorthand for the numerical properties of KF-structures: ‘2 + 2 = 4’ stands in for

people might have little knowledge of syntax, but so long as they have learned the system of
number words (as is the case for numerical idiot savants), a rich understanding of number is
possible. On the other hand, a person needs to have command of a counting system to have a
precise understanding of larger numbers or any appreciation of the generative nature of number,
regardless of how otherwise sophisticated his or her language is.’

40 Thanks to Barbara Sarnecka and Teddy Sarnecki for this way of putting the point. Bloom’s
example is the realization that ‘one can say “a trillion,” “a trillion trillion,” “a trillion trillion
trillion,” and so on’ (Bloom, 2000, p. 238), not decimal notation or ‘one,’ ‘one plus one,’ ‘one
plus one plus one,’ but the underlying idea is clear.



A SECOND PHILOSOPHY OF ARITHMETIC 235

a more complicated fact of rudimentary logic.41 Standard arithmetic is a first attempt to
systematize these rudimentary logical facts with principles like the Peano Axioms, and it
turns out to work well in that capacity, but it does so by quantifying over, by reifying, some
things called ‘numbers.’ What does the Second Philosopher make of these new entities?

In §II, we confronted the same question for sets, and here the Second Philosopher
follows a similar line of thought. First comes the move to reject Robust Realism: she
has a mathematical theory that’s doing just what it’s designed to do—systematizing the
individual facts of elementary arithmetic—and she sees no reason to doubt the propriety of
those effective methods, so she rejects the Robust Realist’s insistence that they be held to
a standard imposed by some prior metaphysical theory.42 Just as before, her understanding
of whether standard arithmetic is true, whether numbers exist, rests on her assessment of
how standard arithmetic does and doesn’t resemble her familiar ways of investigating, and
just as before, she concludes that both Thin Realist and Arealist ways of speaking are
legitimate. But if the metaphysical status of numbers is comparable to that of sets, what
grounds, what guides and constrains, the two practices is quite different: standard arith-
metic is out to describe the structure present in the ‘. . .,’ a fixed point of human cognition,
probably genetically shaped; set theory employs whatever diverse and innovative methods
it can find, in pursuit of explicit and implicit mathematical goals, guided and constrained
solely by the hope of uncovering strains of deep mathematics.

For the record, notice that the Second Philosopher eventually sees the wisdom—that
is, the mathematical advantages—of embedding standard arithmetic in a fully set-theoretic
setting: she exchanges the vagaries of rudimentary logic for classical logic and the potential
infinity of the ‘. . .’ for the completed infinity of the set of natural numbers,43 opening
up the realm of analytic number theory and beyond.44 Looking back, she now sees that
the rudimentary logical facts of elementary arithmetic are more closely reflected in the

41 Here the intuitionist might protest: why assume the ‘. . .’ gives rise to a KF-structure?, why
think rudimentary logic is correct? (Though both rudimentary and intuitionistic logic do without
excluded middle, they disagree, e.g., about double negation elimination.) Assuming (as in §I) that
KF-structuring and rudimentary logic are part of our most primitive cognitive machinery, it’s not
surprising that these are the Second Philosopher’s first thought, but this psychological fact doesn’t
guarantee that these notions, developed for and grounded in a prevalent feature of the physical
world, should be transferred to the ‘. . .,’ to abstracta like numbers. To intervene at this stage of the
Second Philosopher’s arithmetic thinking, the intuitionist would presumably hold that the ‘. . .’ or
numbers inhabit some non-KF structure, but it isn’t clear to me what arguments might be given for
this so early on. Two other possible points of intervention are considered in footnotes 42 and 44.

42 The intuitionist might step in here. With the Robust Realist, he thinks we’re first called upon to
show that the Peano axioms are true of our intended subject matter. Noting the familiar troubles
the Robust Realist encounters in the search for a reasonable, trustworthy epistemology, the
intuitionist advocates some kind of idealistic metaphysics, some alternative to KF-structuring, and
argues that intuitionistic logic is correct for these things. (The idea that the intuitionist’s Creative
Subject points the way toward a non-KF conception is explored in Maddy, 2007, pp. 231–233,
273–279 (sporadically), and 296, and in Maddy, Unpublished.) The Second Philosopher—who
lets the method dictate the metaphysics, not the other way ‘round—remains unmoved.

43 It seems to me that these two moves are separable, but I won’t try to sort this out here.
44 This presents another point of entry for the intuitionist. Here the mathematical considerations

emphasized in McCarty (2005) come into play: as I would put it, there are good reasons to think
that intuitionistic analysis also tracks important strains of mathematical depth. There’s no reason
the Second Philosopher can’t embrace and pursue both; though intuitionistic logic differs from
rudimentary logic, her commitment to that logic applies only to various physical situations (see
footnote 41); for abstracta she’s open to other possibilities (though she would like an alternative
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language of finite sets,45 but also, for that very reason, that number talk made a better
shorthand. She now sees that the number sequence is really just a tool for measuring
the sizes of KF-structures or finite sets, a role that can be played by various set-theoretic
sequences, most conveniently by the von Neumann ordinals.46 The Thin Realist might say
she’s discovered that she has no good evidence for the existence of two kinds of abstracta,
of numbers in addition to sets; the Arealist that there’s no call to clutter up our theory
with both; both come to appreciate that a standard theory of finite sets and their number
properties can be grounded in KF-structures and our intuition of the ‘. . ..’ All that said,
let’s return our attention here to the simpler context of standard arithmetic.

The contrast, again, is between this intuitive grounding and the depth-based grounding
of higher set theory. Now some would claim that higher set theory, too, is grounded in an
image or picture or intuition, namely in the iterative conception, the cumulative hierarchy,
the structure of V. It’s worth observing that in fact this image of the universe of sets
came along rather late in the history of the subject, around 1930;47 whatever Cantor and
Dedekind were doing in the 1880s, it doesn’t appear to have involved this intuitive picture.
Still, perhaps contemporary set theory is so grounded; perhaps this picture is now what
guides and constrains the practice. As it happens, the punch-line of Defending the Axioms
is that this isn’t so. Many hold that intrinsic justifications for decisions in the practice
of set theory—that is, justifications based on intuitive evidence like our picture of the
cumulative hierarchy—are primary, and that extrinsic justifications—based on fruitfulness,
productivity, etc.—are only secondary, at best, but I argue, on the contrary, that intrinsic
justifications have force only insofar as they play an instrumental role in allowing us to
track depth;48 if a line of deep mathematics conflicts with our current concept of set, it’s
the concept that should give way.49 So while in set theory, the intuition of V plays a merely
heuristic role, in arithmetic, the intuition of an infinite sequence isn’t secondary at all: it’s
what grounds the subject!

Notice also that much of the intuitive force behind the iterative conception would seem
to derive from the same source as that of an infinite sequence: the recursive aspect of the
language-learning device. The other key elements in the set-theoretic case are the com-
pleted infinite, starting with ω, and the combinatorial notion of the power set operation—
additions that may or may not enjoy any fundamental cognitive backing. Either way, our
intuitive picture of V, generated by an amalgam of these three elements, can’t help but be
considerably foggier that of an infinite sequence.

to KF-structuring to guide her thinking). She disagrees with the intuitionist only when he insists
that classical mathematics be rejected.

45 In Maddy (1990), I would have counted finite sets of physical objects, rather than their KF-
structures, as robustly real; the preface to Maddy (2011) gives a quick summary of my reasons
for abandoning this position.

46 The view of natural numbers as measuring devices for cardinality properties of finite sets descends
from Maddy (1990, chap. 3).

47 See Zermelo (1930).
48 For example, the iterative conception may suggest large cardinal axioms, but they must then prove

their worth by their extrinsic merits.
49 This is one way of characterizing the debate over the axiom of choice: opponents argued that it

was inconsistent with the idea of a set as the extension of a predicate, or as generated by a rule or
construction; proponents were impressed by the mathematics it generated; in the end, the iterative
conception, with its combinatorial notion of subset, replaced the earlier conception and preserved
the vital mathematics.
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Still it’s important to recognize that the comparative clarity of the intuition of the ‘. . .’
provides no guarantee of the other virtues we typically take for granted: that we all share
the same notion of a infinite sequence, that this notion is coherent and fully determinate.
William Tait expresses a related caution when he writes that the basis of our notion of
number in our understanding of finite iteration (the ‘. . .’) . . .

. . . does not rule out the possibility that the idea of Number is incoherent

. . . Can it be that we could correctly construct [a proof of 0 = 1] in
primitive recursive arithmetic? On the basis of our understanding of
Number, we would say not. But this understanding is our final court of
appeal in the matter . . . we cannot hope to prove absolutely that such a
construction is impossible. Thus there is a sense in which security must
always elude us. (Tait, 1981, p. 41).

The Second Philosopher would cite the large-scale similarity of brain structure from one
person to the next as some reason to hope that we’re all talking about roughly the same
pattern, and to centuries of work in number theory as evidence of coherence and determi-
nacy, but of course this is all merely empirical support and could at some point turn out to
have been mis-leading.50

In sum, then, standard arithmetic differs from set theory, not in the metaphysics of its
purported objects, but in the type of thing that grounds its practice: our concept of the ‘. . .’
vs. the facts of mathematical depth. This places arithmetic at some distance from one end
of our pair of extremes, the set-theoretic end, but this is only half of the story. On the other
extreme, we’ve seen that claims of elementary arithmetic, like ‘2 + 2 = 4,’ correspond to
rudimentary logical facts, grounded in the KF-structuring of the ordinary physical world
(where it occurs), but that standard arithmetic goes beyond rudimentary logic into the re-
cursive conceptual element drawn from the human language-learning device.51 So here we
have the advertised intermediate point between the two extremes: a conceptual grounding
distinct from the robust worldly features of KF-structure, on the one hand, and from the
purely mathematical facts of depth, on the other.

But notice that arithmetic now appears to serve two distinct masters, to be answerable
to two distinct grounds: the logical facts of elementary arithmetic and conceptual ‘. . .’ of
standard arithmetic.52 This raises a new, pressing concern: how do arithmetic’s two distinct

50 Cf. Woodin (1998, RI). Koellner (CRI) describes one upshot of this work: ‘there are people who
point out that there is always the possibility of an inconsistency in the transfinite. This points out
that the situation is no different for the large finite’. See also Hamkins (QMO).

51 Just to be clear: this needn’t involve a rejection of arithmetic logicism. I use the term ‘rudimentary
logic’ for various claims most people would classify as Logic and the term ‘classical logic’ for
rudimentary logic with no indeterminate properties or relations and a material conditional, but
these are merely convenient labels; no principled distinction between Logic and nonLogic is
intended or presupposed. So nothing here precludes counting arithmetic as Logic for one reason
or another. What matters for present purposes isn’t a contrast between Logic and nonLogic, but
between what grounds rudimentary logic and what grounds the theory of the ‘. . ..’

52 Analogous dualities appear in the grounding of formal logic, and the formal theory of musical
compositions, if there is such a thing: facts about physically realized formulas and musical
notations on the one hand, the concept of the recursive ‘. . .’ on the other. (As indicated in
the previous note, I’m not interested here in separating Logic from nonLogic, but with all the
ingredients arrayed before me on the table, I can’t resist one passing observation. Presumably
one motivation for logicism is the thought that Logic, unlike Mathematics, enjoys some sort of
epistemic transparency. If this is cashed out in terms of decidability, the truth table method does
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grounds fit together? More pointedly: what justification is there for using the conceptually
based theory of the ‘. . .’ to codify and systematize various robust logical facts about the
physical world? Why should standard arithmetic be reliable as an indicator of the facts of
elementary arithmetic?53

Before addressing these questions, I’d like to follow up another line of thought suggested
by this account of arithmetic. For the historically minded, any view according to which a
bit of mathematics is the study of some aspect of our basic cognitive endowment can’t help
but ring Kantian bells. In addition, the robustly realistic portion of the proposed account
also has its Kantian echoes. Partly as stage-setting for the issue of applications, I pause
in the next section to explore these themes. Readers less than fascinated by historical
interrelations of this sort are invited to skip directly to §V.

§4. A Kantian digression. There’s a common misconception that Kant takes the in-
tuition of time to ground arithmetic just as the intuition of space grounds geometry. That
this isn’t correct is noted by ‘all careful writers on the subject’ (Friedman, 1992, p. 105);
as Michael Friedman puts it:

In the Transcendental Aesthetic, §5 (The Transcendental Exposition of
the Concept of Time) corresponds to §3 (The Transcendental Exposition
of the Concept of Space), where the synthetic a priori knowledge of
geometry is explained in terms of the pure intuition of space. In §5, how-
ever, arithmetic is not mentioned; instead, the synthetic a priori science
whose possibility is explained by the pure intuition of time is identified
as ‘the general doctrine of motion’ (B49). . . . The science of time, for
Kant, is therefore not arithmetic, but rather pure mechanics or the pure
doctrine of motion. (op. cit.)54

So arithmetic isn’t simply the study of our pure intuition of time. Still, pure intuition must
be involved somehow or other, because for Kant arithmetic, like geometry, is synthetic a
priori.

the job for propositional logic, but alas, Church’s Theorem ends the hope of an algorithm for
validity in first-order predicate logic (more or less what I’ve been calling ‘formal logic’). Now
consider rudimentary logic. Assuming that the world is finite, that there’s a maximum, N, to the
number of objects in any worldly situation, then the validity of an inference ϕ to ψ is decidable;
we just have to check through the finite number of situations of form ϕ to make sure they’re all
of form ψ . (This decidable set of validities will include items like the N = N + 1 inference; that
there are at most N objects is a rudimentary logical fact about the world.) The same goes for the
truths of what I’ve called ‘classical logic.’ Undecidability enters the picture with formal logic,
when the ‘. . .’ is injected into our understanding of the ‘situations’ that need to be considered.
So, does Church’s theorem tell us that Logic is undecidable, or that formal logic goes beyond
Logic into arithmetic?)

53 Superficially, this may sound like Hilbert’s question—why should an ideal, infinitary system
be a reliable guide to contentful, finitary arithmetic?—but Hilbert’s ‘finitary arithmetic’ isn’t
our ‘elementary arithmetic’: Tait (1981) is generally regarded as having shown that ‘finitary’
for Hilbert coincides with primitive recursive arithmetic, which, Tait argues, rests in turn on
the primitive notion of finite iteration. So Hilbert’s contentful mathematics already includes the
‘. . .’; what he rules out are infinite totalities. Though primitive recursive arithmetic uses only
free variables, not quantifiers as in standard arithmetic, what matters for our purposes is that it
encompasses the ‘. . ..’

54 See also Parsons (1969, p. 62, 1983, p. 133).
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In fact, the basis for arithmetic is quite different from that of geometry. In the Aesthetic,
geometry is traced to the spatial form of intuition; since this form helps constitute the
world of appearance, it follows that geometry applies to our world and that we can know
this a priori. But arithmetic depends on the categories, so understanding its source and
justification requires not just the Aesthetic, but the Analytic, as well.55 Taking for granted
the conclusion of the Aesthetic—that space and time are forms of intuition, and thus
transcendentally ideal—in the case of arithmetic, we must also ask: what is the status of
the categories?

The answer to this question begins with the claim that the table of the logical forms of
judgment provides ‘the clue to the discovery of all pure concepts of the understanding’
(A70/B95). The forms of judgment themselves, in turn, originate in the structure of the
discursive intellect—that is, any being who cognizes the world through concepts, through
features several objects can share. Such an intellect employs two distinct faculties: a recep-
tive sensibility passively affected by the world, and a spontaneous understanding actively
applying concepts.56 Our human discursive intellect’s forms of sensibility are space and
time, but the sensibility of another discursive intellect might take very different forms.
The connection with logic now comes in a rush: Kant claims that any judgment, by any
discursive intellect, whatever his forms of intuition, will take one of the twelve forms
listed in the Table of Judgments (A70/B95), and thus, that any judgment, by any discursive
intellect, is bound by the laws of logic.57 And finally, the infamous Metaphysical Deduction
follows up the promised ‘clue’ and concludes that for each entry in the Table of Judgments,
there is a corresponding entry in the Table of Categories (A80/B106). So the categories
arise from the structure of the discursive intellect.

One important point here is that logical truths—like our well-worn sample, if the book
is red or green, and it’s not red, then it’s green—or logical validity—the reliability of the
corresponding inference—apparently come out as analytic on this account. At least this
follows if ‘analytic’ means ‘not-intuitive’: spatiotemporal intuition is not involved; the
same logic holds for any discursive intellect, whatever his forms of intuition. On the other
hand, if ‘analytic’ means ‘predicate concept contained in the subject concept,’ the case
is obviously more problematic; indeed, our example isn’t even of subject-predicate form.
Still, most commentators allow Kant some leniency on this definition, figuring ‘true by
virtue of the concepts involved’ should be good enough. Even then, the forms of judgment
aren’t literally concepts, but they are rules for synthesis—perhaps the very same rules

55 Of course, geometric cognition, like all cognition, also depends on the categories and the work
of the Analytic (see the Axioms of Intuition, where the principle that ‘all intuitions are extensive
magnitudes . . . makes pure mathematics in its complete precision applicable to the objects of
experience’ (B202, A165/B206)). But as Kant puts it at the beginning of the Analytic: ‘We
have above [in the Aesthetic] traced the concepts of space and time to their sources by means
of a transcendental deduction, and explained and determined their a priori objective validity’
(A87/B119-120); the job that’s left is a transcendental deduction for the pure categories and
eventually the schematism, which is where number comes in (see below).

56 The contrast cases are the intuitive intellect, whose intuiting actually creates the object (God),
and the empirical intellect, whose sensibility is directly stamped with the features of the object
(eventually shown to be impossible in the Critique); both get by without an understanding that
applies concepts. For more on the subject of this paragraph and the next, see Maddy (2007, §III.2).

57 ‘Thus’ because logical laws are implicit in the forms of judgment themselves (see, e.g.,
Longuenesse, 1993, pp. 90–93.) Of course, for Kant, the laws in question are those of syllogistic
(A303-305/B359-361).
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as for the corresponding category, just applied in a different context58—so that Henry
Allison, for example, is moved to speak of them as ‘judgmental concepts’ (Allison, 2004,
p. 149). To avoid opening a gap between nonintuitive and analytic, it seems best to opt for
this friendly amendment and to classify logic as analytic. Notice, however, that this isn’t
the trivial analyticity of ‘all bachelors are unmarried,’ whose predicate, in Kant’s terms,
is just one feature we explicitly included when we constructed the subject. Instead, the
‘judgmental concepts,’ like the corresponding pure categories, must be given concepts, not
constructed by us, whose features are difficult to tease out, and about which we can easily
go wrong.

Now that we’ve identified the source of the categories, the characteristically Kantian
question arises: why should these features of our understanding, products of our cognitive
endowment, apply to the world? In the case of the forms of intuition, the Aesthetic has an-
swered this question with its Transcendental Idealism: since those forms help constitute the
world of appearance, we can know a priori that they will apply to it. But the categories are
more remote, emerging from the more rarified features shared by any discursive intellect
whatsoever. Why should they be reliable in application to our world? This is the question
addressed in the Transcendental Deduction.

If the case for the applicability of the categories in the Analytic is to run parallel to
that for the forms of intuition in the Aesthetic, then Kant needs to establish that they
are necessary conditions for experiencing the world of appearance.59 To that end, he first
observes that

All experience contains in addition to the intuition of the senses, through
which something is given, a concept of an object that is given in intu-
ition, or appears. (A93/B126)

The plan, then, is to show that the categories underlie this fact:

They . . . are related necessarily and a priori to objects of experience,
since only by means of them can any object of experience be thought at
all. (A93/B126)

In the B-deduction, this argument proceeds in two steps. First Kant argues that any thought
of an object requires the unification or synthesis provided by the categories, but even if this
is so, there remains the possibility that the deliverances of the sensibility might resist this
thought-processing. In the second part, Kant observes that we sense objects in stretches of
space and time, which requires that these stretches themselves be unified in cognition—
and this synthesis again is provided by the categories. So in the end, the categories are
necessary conditions for all experience of objects.60

Before turning to the place of number in all this, let’s pause a moment to reflect on
the account of logic that emerges. Its laws are implicit in the forms of judgment, which
are inseparable from the categories; since the world of any discursive intellect, whatever

58 This is one leading thought on what drives the Metaphysical Deduction (see Allison, 2004, pp.
152–156). My general understanding of Kant has been helped immeasurably by Allison’s book
(2004) and Gardner’s introduction (1999). On Kant’s view of arithmetic, I’m particularly indebted
to Parsons (1969, 1984) and also Rohloff (2007).

59 Transcendental Idealism is presupposed, having been established in the Aesthetic.
60 For a full analysis of the Deduction, see the introductory exposition of Gardner (1999, chap. 6),

or the more thorough treatment of Allison (2004, chap. 7).
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his forms of intuition,61 is shaped by these a priori concepts, it will satisfy those logical
laws. Consider, for example, the logical forms subject-predicate and if-then;62 the corre-
sponding categories are object-with-properties and ground-consequent.63 Setting aside the
remainder of the Tables, the Kantian idea could be put this way: the world of any discursive
intellect consists of objects-with-properties standing in ground-consequent relations, and
we can know a priori that the laws of logic apply in any such world. I trust it’s obvious
that the fundamental outlines of the Second Philosopher’s position sketched in §I more
or less result simply by removing the idealism from Kant’s account (and updating the
logic a bit by way of Frege, so that object-with-properties becomes objects-in-relations):
many aspects of the world itself are so-structured, and for that reason, rudimentary logic
applies to them.64 Much as the applicability of logic for Kant depends, not on the forms of
intuition, but only on the pure categories, we noted earlier that, for example, the reliability
of the library inference depends, not on any physical details of the book, but only on the
KF-structure of the situation.

Now back to Kant proper. If the Deduction has succeeded, he’s established that the cate-
gories help constitute the world of appearance, that these a priori concepts must necessarily
shape the inputs of sensibility. What hasn’t been explained is how this takes place:

Pure concepts of the understanding . . . [and] empirical (indeed in gen-
eral sensible) intuitions, are entirely unhomogeneous . . .how is the sub-
sumption of the latter under the former, thus the application of the
category to the appearances possible . . . ? (A137/B176)

The answer to this question follows hard upon the Deduction, in the Schematism, where
we’re introduced to the notion of a ‘transcendental schema’:

It is clear that there must be a third thing, which must stand in homo-
geneity with the category on the one hand and the appearance on the
other . . . intellectual on the one hand and sensible on the other. Such a
representation is the transcendental schema. (A138/B177)

Admittedly, this solution can sometimes seem little more than a restatement of the problem,
but thinking of the schema for the a priori concept of a triangle might help. There’s the

61 I assume that whatever this discursive intellect’s forms of intuition are, he will experience objects
in their terms, which will require the general sort of synthesis Kant appeals to in the second part
of the Transcendental Deduction. No peculiarities of space and time in particular appear to play
a role there.

62 I use these slightly updated terms for what Kant calls ‘categorical’ and ‘hypothetical’ (A70/B95),
the first two relational forms.

63 Kant calls these ‘inherence and subsistence’ and ‘causality and dependence (cause and
effect)’(A80/B106). As the pure categories involve no element of space or time, both of which
seem closely linked to our current understanding of causation, I prefer the more neutral term
‘ground-consequent,’ which Kant uses in his gloss of ‘hypothetical’ judgments (A73/B98).
‘Cause and effect’ then emerges when ‘ground-consequent’ is schematized (see below). No
connection to the notion of ‘ground of a discourse’ is assumed or intended.

64 This is only the metaphysical side of the story. The Second Philosopher’s epistemological notion
that our initial belief in the simpler truths of rudimentary logic arises from our most basic
cognitive structures also recalls Kant’s thinking; the Second Philosopher differs in trading his
transcendental psychology for empirical psychology and taking the psychological structures to be
produced by the world structures, not vice versa. In Maddy (2007, §§III.2 and III.3) and Maddy
(TLM), the second-philosophical view of logic is explicitly derived from Kant in this way.
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concept of a three-sided planar figure, and there are various particular representations of
triangles in pure and empirical intuition; the schema is the ‘the representation of a general
procedure of the imagination for providing a concept with its image’ (A140/B180-181).
In other words, the schema is a rule or recipe, if you will, for generating a spatiotemporal
representation answering to the concept, in this case, a triangular representation in intuition
(perhaps something like this: trace a line segment, then another from one of its endpoints,
connect the endpoint of the second segment to the other endpoint of the first).

Here, at last, is where number fits in. The Table of Judgments includes three forms of
quantity—singular, particular, and universal—very roughly, ‘Socrates is wise,’ ‘Someone
is wise,’ ‘Everyone is wise.’65 The corresponding categories of quantity are unity, plurality,
totality. Of these three,

the third category . . . arises from the combination of the first two . . . to-
tality . . . is nothing other than plurality considered as a unity. (B110-111)

And finally, number, it turns out, is the schema for these categories:

The pure schema of magnitude . . . as a concept of the understanding,
is number, which is a representation that summarizes the successive
addition of one . . . unit to another. (A142/B182)

Number, then, is a rule or recipe for generating a spatiotemporal representation of a unit
(unity), adding successive units (plurality), and collecting the units into a whole (totality).
In other words, for counting.66

But this story presents us with a serious puzzle: why suppose that number enters the
picture only at the point when the pure categories are schematized? Consider again a
discursive intellect with forms of intuition different from our own. He still has the pure
categories of unity, plurality and totality; why couldn’t he form units, generate a plurality,
combine it into a totality? To perform actual counting of objects, he’d have to schematize
these categories according to his own forms of sensibility, but why shouldn’t he be able to
appreciate as well as we do that 2 + 2 = 4, just as he does the reliability of disjunctive
syllogism? Clearly our geometry is beyond him, but why shouldn’t he grasp our elementary
arithmetic?

One observer who’s pondering mightily on a version of this question is Charles
Parsons:

The difficulty can be put this way: the synthetic and intuitive character
of geometry gets a considerable plausibility from the fact that geometry
can naturally be viewed as a theory about actual space and figures con-
structed in it. . . . The content of arithmetic does not immediately suggest
such a special character or such a connection with sensibility. (Parsons,
1969, p. 58, 1983, p. 128)

65 It’s actually difficult to understand what Kant has in mind for singular judgments (see Parsons,
1984, pp. 140–141). Also, I’ve adjusted the ordering of the three forms of judgment to line up
properly with that of the corresponding categories (see Parsons, 1984, p. 141 and footnote 17;
Longuenesse, 1993, pp. 248–249).

66 The categories of quantity are intended to cover continuous magnitudes as well, but I leave that
aside here.
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Furthermore, in the Critique,

The status of the pure categorical notions, and in particular the relation
of number to the pure categories, is obscured by Kant’s characterizing
number as the schema of quantity (A142/B182) and by the fact that most
of Kant’s explanation of notions of quantity comes in the Axioms, where
he is principally concerned with the schematized categories. (Parsons,
1984, p. 146)

Faced with these obstacles, Parsons turns for illumination to Kantian writings both before
and after the Critique.

The evidence from before the Critique (1781/1787) comes from the Inaugural Disser-
tation (1770), where Kant writes:

It is one thing, given the parts, to conceive for oneself the composition
of the whole, by means of an abstract notion of the intellect; and it is
another thing to follow up this general notion . . . through the sensitive
faculty of knowledge, that is to represent the same notion to oneself in
the concrete by a distinct intuition. (Quoted and translated from §1 of the
Dissertation in Parsons, 1984, p. 145)
There is a certain concept which in itself indeed is intellectual, but whose
activation in the concrete . . . requires the assisting notions of time and
space (by successively adding a number of things and setting them si-
multaneously beside one another). This is the concept of number, which
is the concept treated in ARITHMETIC. (Quoted and translated from
§12 of the Dissertation in Parsons, 1984, p. 145. See also Parsons, 1969,
p. 63, 1983, p. 134.)

Here we apparently find the very distinction needed to describe our nonhuman discursive
intellect: he has the ‘intellectual concept’ of number, but has a different way of ‘activating
it in the concrete.’ Even if neither he nor we can access the fact that 2 + 2 = 4 without our
respective ‘activations in the concrete,’ it would seem that the shared ‘intellectual concept’
alone serves to ground that fact.

The evidence from after the Critique is found primarily in a letter to Johann Schultz
(1788). There Kant takes the subject matter of arithmetic to be ‘merely quantity . . ., that
is, the concept of a thing in general by determination of magnitude.’ As for the role of
sensibility,

Time . . . has no influence on the properties of numbers (as pure deter-
minations of magnitude), . . . the science of number, not considering the
succession, which every construction of magnitude requires, is a pure
intellectual synthesis which we represent to ourselves in our thoughts.
(Quoted and translated in Parsons, 1984, pp. 149–150—also Parsons,
1969, p. 63, 1983, p. 134—as amended in Parsons, 2012, p. 112.)

Here, post-Critique, the pure categories of quantity (magnitude) are explicitly cited and the
science of number based squarely on their intellectual synthesis. In Parsons’ final analysis,

The conclusion to be drawn from examining these texts, in my opinion,
is that Kant did not reach a stable position on the place of the concept of
number in relation to the categories and the forms of intuition. (Parsons,
1984, p. 152)
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There may have been larger, more systematic motivations for Kant’s position in the Cri-
tique,67 but viewed simply in terms of the considerations reviewed here, the road appears
open to a Kantian treatment of arithmetic dramatically different from that of geometry—as
grounded in the pure, unschematized categories, independent of the forms of intuition.

If this is right, then there’s at least a version of Kantianism that places arithmetic much
closer to logic than to geometry:68 both logic and arithmetic are grounded in the forms
of judgment and the pure categories; geometry rests on the pure intuition of space. All
three sciences could be known a priori, because both the forms of intuition and the pure
categories are instrumental in constituting our world of appearance. It follows that all three
would also be, in some sense, transcendentally ideal, but logic and arithmetic would hold
in the world of appearance for any discursive intellect, while geometry is confined to our
human world. And on this version of Kantianism, 2 + 2 = 4, like disjunctive syllogism,
would be classified as analytic—independent of intuition—but again not in the trivial sense
that ‘all triangles are three-sided’ is analytic.69

We noted above the close resemblance between Kant and the Second Philosopher on
logic. We now see that, for this version of Kantianism, their affinity carries over to the
Second Philosopher’s position on elementary arithmetic: for both, the status of 2 + 2 = 4
is the same as the status of disjunctive syllogism. In this connection, it’s worth noting
Parsons’ observation that in the Critique

Kant focuses on singular propositions about numbers, so that the ques-
tion how to interpret generalizations about them is not raised. (Parsons,
1984, p. 139. See also Friedman, 1992, p. 109)

This dovetails with Kant’s insistence that arithmetic has no axioms (A163-165/B204-206).
If Kant limits himself in this way, if he doesn’t aspire to account for more than the likes of
2 + 2 = 4, then his interest is confined to the Second Philosopher’s elementary arithmetic,
and the further question of what grounds the ‘. . .’ is irrelevant to our comparison between
the two.

Incidentally, Parsons (1984, pp. 139, 146) and others criticize Kant for failing to distin-
guish between the number n and an n-element set. A similar complaint might be lodged
against the Second Philosopher’s account of elementary arithmetic, with its focus on
the logical structure of one object, another object, and nothing more,70 rather than the
number 2. In §III, ‘2’ in the likes of ‘2 + 2 = 4’ is regarded as a mere notational conve-
nience;71 the thin reification of numbers comes only in the transition to standard arithmetic.
If the Second Philosopher is right in this, and if Kant’s only interest is in elementary
arithmetic, perhaps his neglect of the number 2 is less surprising. The fact remains that
for a complete treatment of number theory, the question of the ‘. . .’ must be addressed.

And here the Second Philosopher appeals to an idea that’s roughly Kantian in another
way, not in the tight parallel both draw between logic and elementary arithmetic, but in the

67 See, for example, Parsons (1969, p. 61, 1983, pp. 131–132), Longuenesse (1993, p. 283).
68 This would appear to bring Kant surprisingly close to logicism.
69 As above, I’m taking the concept triangle to be ‘three-sided planar figure.’
70 The position of Maddy (1990) comes closer to Kant, or Parsons’ version of Kant, on this point,

identifying the relevant worldly structure as a two-element set, understood (as I would now say)
in the sense of Robust Realism; the number 2 is then taken to be a property of a two-element set.
As mentioned in footnote 45, the preface to Maddy (2011) summarizes what I now take to be a
persuasive case against this view.

71 See footnote 35.
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notion that a mathematical theory—geometry and elementary arithmetic for Kant, standard
arithmetic for the Second Philosopher—can be grounded in an aspect of our cognitive
endowment. The pressing concern from the end of §III then arises for both: why should
the deliverances of our cognitive mechanisms apply to the world? Kant’s answer, as we’ve
seen, depends essentially on his transcendental idealism—the relevant conceptual devices
help to constitute the world—but the Second Philosopher is reluctant to follow that path.
What is her alternative? The structure of the language-learning device inclines us think
of the number properties we detect as embedded in an infinite sequence; why should we
trust that this inclination won’t lead us astray? How does standard arithmetic mesh with
the robust worldly realities that ground elementary arithmetic?

§5. Arithmetic and the world. The general question of how and why mathematics so
often works in application to the world is large and complex. Elsewhere,72 I’ve suggested
that contemporary pure mathematics is best regarded as providing a store of abstract mod-
els, that the mathematizing scientist should be understood as claiming that the worldly
phenomenon in question resembles an abstract model in various ways—some of which
we can specify and some of which, at least for now, we don’t completely understand—
and furthermore, that the much-discussed ‘miracle of applied mathematics’ is perhaps
less miraculous than it first appears.73 But standard arithmetic, as we’re understanding
it here, isn’t some rarified deliverance of pure mathematics; it arose directly as a piece
of applied mathematics, as a way of systematizing and codifying the individual facts of
elementary arithmetic. The question is why a study that’s grounded in conceptual features
of the language-learning device should work so well as a systematization and codification
of the worldly realm of KF-structures.

It may help to consider a few familiar examples of applied mathematics for comparison:
we treat the ocean as infinitely deep when analyzing waves on its surface; we treat discrete
items, like incomes or test scores, as continuous variables in statistical analyses; we treat
fluids as continuous substances in fluid dynamics. In each of these cases and many more,
a finite worldly phenomenon is embedded in an infinitary mathematical setting—much as
we embed the worldly facts of elementary arithmetic in the infinitary structure of standard
arithmetic. What does the applied mathematician require by way of legitimizing these
mathematizations?

As noted in the brief discussion of idealization in §I, at least part of the answer must
be that the mathematization should be beneficial and benign: it should have real advan-
tages, and there should be persuasive evidence that it doesn’t distort the target physical
phenomena in misleading ways. In all three of our cases, the benefits, the advantages, are
roughly the same: the treatment becomes more manageable, predictions more feasible.
It would be extremely difficult to factor in the effects of waves rebounding from the
bottom of the ocean; applying the calculus to continuous variables in statistics allows easy
computation of values like optima; the use of continuum mechanics in fluid dynamics
brings a wide range of engineering uses within workable reach. Furthermore, in each
case there is evidence that the mathematizing is benign: given the depth of the ocean, the
rebound effects are small; if the population in question is large enough, the approximations
are close; as Tritton explains in his fluid dynamics text, the effective use of continuum

72 See Maddy (2008) or (2011), Part I, especially §2, ‘how applied mathematics became pure.’
73 See Maddy (2007, §IV.2.iii).
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mechanics depends on there being ‘a significant plateau’ (Tritton, 1988, p. 50) between
volumes so small that properties like temperature or average velocity fluctuate wildly as
individual molecules enter and depart, and volumes so large that these same properties
vary dramatically from one portion to another. But in the end, despite these reasons for
thinking the mathematization is benign, Tritton goes on to remark that the applicability of
continuum mechanics in this context

. . . is only a hypothesis. The above discussion [concerning the ‘sig-
nificant plateau’] suggests that it is plausible, but nothing more. The
real justification for it comes subsequently, through the experimental
verification of predictions of the equations developed on the basis of the
hypothesis. (Tritton, 1988, p. 51)

Often in the applied mathematician’s working life, the only way of knowing that neglected
effects are small enough or approximations close enough or idealizations nondistorting
enough is to check.

Now what about the case for embedding the facts of elementary arithmetic in the infini-
tary setting of standard arithmetic? If the physical world is finite, if there’s a upper bound
on the size of actual KF-structures, then standard arithmetic, like our other examples of
applied mathematics, will deliver some falsehoods, like ‘every number has a successor,’ or
‘for every prime there’s a larger prime,’ or even ‘n �= n+1’ for n above that upper bound (as
noted in §III). Nevertheless, it’s also clearly beneficial, again in much the same sense as our
previous examples: most conspicuously, definition by recursion and proof by induction are
extremely powerful tools for doing a lot of things at once. So, for example, we can prove by
induction that addition is commutative for all pairs of numbers; first figuring out the size N
of the largest logical structure in the world, then establishing commutativity piecemeal up
to that large N and no further, would be onerous, if not impossible. We also have a strong
conviction that this mathematization is benign, because, after all, we’re simply ignoring the
‘merely medical’ or ‘merely physical’ limitations on the extension of the number sequence.

But here there’s a glaring disanalogy with our comparison examples: no one defends
the harmlessness of taking the ocean to the infinitely deep by claiming that the ocean is
infinitely deep ‘in principle,’ or that the existence of the ocean floor is just an insignificant
accident; likewise for test scores or fluids. In these cases, we consciously and deliberately
falsify our description of the situation—for good reason, of course—and we fully recognize
that this move needs defending—by the sorts of plausibility arguments and empirical
evidence just cited. In contrast, when we move from elementary arithmetic to the ‘. . .’
of standard arithmetic we don’t feel that we’re falsifying, we’re just moving to the realm
of ‘in principle.’ And we believe there’s no choice in the matter: Peano arithmetic must
be correct, every number must have a successor, mathematical induction must be reliable.
What must be right doesn’t stand in need of defense.

This deep psychological conviction is understandable, given that the infinitary structure
in this case, unlike the others, springs directly from our basic cognitive machinery. This
sentiment, in turn, motivates efforts to show that standard arithmetic is just logic or analytic
or, for Kant, transcendentally ideal. But consider for a moment what these efforts are out
to explain: the a priori truth of arithmetic, or for Kant, its a priori applicability. And aren’t
these philosophical explananda just manifestations of that same underlying psychological
conviction—that our application of standard arithmetic simply can’t go wrong?

The most the Second Philosopher allows in this direction is some claim to a priori
knowledge of elementary arithmetic, and then only in the most extended externalist sense.
Despite the undeniable attraction of our idea of the ‘. . .,’ she doesn’t see that it provides
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any guarantee of uniqueness or coherence or determinateness—as we saw in §III—nor, we
might now add, of usefulness or applicability. These days, no one takes the applicability of
geometry to be known a priori; the Second Philosopher is suggesting that the same should
be true of standard arithmetic. In the end, whatever our convictions, the case for the harm-
lessness of standard arithmetic in application to the elementary logical structures of the
world rests on Tritton-like evidence that our concept of the ‘. . .’ is shared, coherent, suffi-
ciently determinate to settle questions of elementary arithmetic, and to settle them correctly
enough to be effective. And after all, this evidence—centuries of it!—is overwhelming.

§6. Conclusion. I’ve tried here to outline a philosophy of arithmetic that’s plausi-
ble from a second-philosophical point of view. It begins from an account of elementary
arithmetic—the arithmetic of simple claims like 2 + 2 = 4—that places them among the
robust objective truths of rudimentary logic. These logico-arithmetic validities hold in any
worldly situation with the requisite KF-structuring—objects with properties, standing in
relations, with dependencies—their truth is contingent, not on the physical details of the
situation, but on the presence of that underlying form.

To reach the arithmetic of a potentially infinite number sequence—the kind of thing
encoded in the Peano axioms—requires a further step to the ‘. . .,’ to the notion of an
infinite sequence. This idea isn’t to be found among the basic number-detecting capacities
that we humans share with various animals; rather, it turns up in our natural language
number sequence, apparently a direct manifestation of the recursive element of the so-
called ‘language-learning device.’ Here a conceptual endowment, not a worldly structure,
provides the grounding, which raises a series of questions: how can I be sure that your
notion of an infinite sequence is the same as mine?; even if we all share a single notion,
how can we be sure that it’s coherent or fully determinate in all respects?; how can we be
sure that standard arithmetic won’t lead us astray about the worldly truths of elementary
arithmetic? Much philosophical theory-making has gone into efforts to answer these ques-
tions with strong assurances, but the Second Philosopher doesn’t see how a conceptual
grounding can provide any such guarantees, at least without a strong idealism about the
physical world that she finds otherwise unmotivated.

From her point of view, embedding the individual facts of elementary arithmetic into
the infinitary structure of a standard sequence is an instance of abstract modeling compa-
rable to many others in applied mathematics—introducing falsehoods just as they do, and
justified, as they are, when and only when these falsehoods are beneficial and benign. The
case of standard arithmetic strikes us as different only because its source lies so deep in our
conceptual mechanisms that we don’t see ourselves as deliberately choosing to falsify, but
this psychological fact doesn’t alter the justificatory structure of the situation: the prudence
of the move to standard arithmetic is still a matter of the advantages it confers and the
unlikelihood of significant distortion, not its psychological force. And these factors can
only be assessed Tritton-style, by ordinary experience.

So in the end arithmetic both resembles rudimentary logic—in the worldly grounding
of the logico-arithmetical claims of elementary arithmetic—and differs from it—in the
conceptual grounding of standard arithmetic. When it comes to the purported abstract
ontology of numbers, arithmetic reveals its commonalities with set theory: in both cases,
there’s no fact of the matter to choose between a thin-realistic description that posits
abstracta, but denies the need for a nontrivial epistemology, and an arealistic description
that doesn’t take ‘truth,’ ‘existence,’ and so on, to be at issue. But standard arithmetic
differs starkly from set theory, too, in the nature of the forces that guide and constrain the
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practice: the intuitive picture of an infinite sequence is the object of arithmetical study,
while set theory aims to uncover those productive contours of mathematical depth. The
grounding of standard arithmetic lies in our conceptual endowment, fully distinct from
both the simple worldly realm and the purely mathematical virtues.

In sum, then, we have an integrated second-philosophical take on the so-called ‘a pri-
ori disciplines,’ from rudimentary logic, through arithmetic and number theory, to the
far reaches of pure mathematical set theory. Only a small foothold remains for a priori
knowledge of an externalist variety in rudimentary logic, and for a weak shadow in the thin-
realistic description of set theory, but firm groundings run throughout, from the world’s KF-
structures, to the recursive element of the language-learning devise, to the more esoteric
facts of mathematical depth. For the naturalistically minded, I hope this account marks a
congenial elaboration of the second-philosophical world view. For those less sympathetic,
my question is this: we have here74 at least the beginnings of answers, loosely empirical
answers, to the traditional philosophical questions of what grounds logic, arithmetic, and
set theory; are ordinary answers of this sort somehow unacceptable in principle?75 Finally,
if nothing else, perhaps we’ve established for all parties that the Second Philosopher has
more resources at her employ than it might have seemed at first blush!76
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