ECON 105C. Problem Set 5.

Question 1.

Consider the following definitions related to firm’s investment decisions over time:

\(\bar{K} \): Industry wide capital

\(\pi(\bar{K}) \): profits per unit of capital

\(K_t \) = Firm specific capital in period \(t \)

\(I_t \) = Firm specific investment in period \(t \)

\(P_t \) = Price of purchasing capital in period \(t \)

\(C(I_t) \) = Firms cost of adjusting its capital stock

a) Write up the firms profit maximization problem taking into account that

\(K_{t+1} = \bar{K}_t + I_t \)

b) Set up the Lagrangian (Hint: remember that there are \(t \) constraints)

c) What is the interpretation of the Lagrangian multiplier in this model?

d) Write up the Lagrangian expressing the multipliers in time \(t \) value.

(Hint: \(q_t = (1+r)^t \lambda_t \))

e) What is the interpretation of \(q_t \)?

f) Write the F.O.C. w.r.t \(I_t \) and \(K_t \). (Hint: for the F.O.C. w.r.t. \(K_t \) remember that \(K_t \) appears in two constraints)

g) Focus on the F.O.C. w.r.t. \(I_t \). Interpret this condition. (Hint: before interpreting multiply both sides by \((1+r)^t \) and solve for \(q_t \))

h) Consider the case when \(C'(0)=0 \) (e.g. there is no investment in the period). What happens to capital? Does it increase, or decrease? Plot the condition derived in g) in the \((\bar{K}_t, q_t/P_t) \) space (graph relating \(q_t/P_t \) to \(\bar{K}_t \))

i) Explain the dynamics of \(K_t \) in the graph. In order to do it consider what is the sign of \(C'(I_t) \) and \(I_t \) when \(q_t > 1 \) and when \(q_t < 1 \).

j) Now focus on the F.O.C w.r.t. \(K_t \). Multiply both sides of this equation by \((1+r)^t \) and rearrange so that \(\pi(\bar{K}) \) appears as a function of \(q_t \) and \(\Delta q_t \). Interpret this condition.

k) Assume now that \(\Delta q_t = 0 \). Draw this condition in a graph relating \(q_t \) to \(\bar{K}_t \).

l) Explain the dynamics of \(q_t \) in the same graph.

m) Combine the graphs derived in h) and k). Explain the dynamics of \(K_t \) and \(q_t \) starting from each of the four quadrants determined by the graph.

n) Use the graph in m) to explain the effects (and the dynamics) of a permanent tax credit. What happens if the tax credit is temporary?

o) Use the graph in m) to explain the effects (and the dynamics) of a permanent upward shift in \(r \). What happens if the shift is temporary?