Criteria for color constancy in trichromatic bilinear models

Geoffrey Iverson and Michael D'Zmura

Department of Cognitive Sciences and Institute for Mathematical Behavioral Sciences, University of California, Irvine, Irvine, California 92717

Received July 20, 1993; revised manuscript received January 26, 1994; accepted January 26, 1994

We examine conditions under which the spectral properties of lights and surfaces may be recovered by a trichromatic visual system that uses bilinear models. We derive criteria for perfect recovery, formulated in terms of invariant properties of model matrices, for situations in which either two or three lights are shone sequentially on a set of surfaces.

Key words: color constancy, spectral recovery

INTRODUCTION

In recent research\(^1\) we studied color-constancy algorithms that use the lights reflected from surfaces seen under changing illumination. We derived a general, two-stage linear recovery algorithm for recovering spectral descriptions of lights and surfaces from quantum catches. The algorithm uses bilinear models of how quantum catches depend on illuminant spectral power distributions, surface-reflectance functions, and visual-system photoreceptoral spectral sensitivities.\(^1\)\(^4\)

We investigated conditions under which the recovery algorithm works flawlessly.\(^2\)\(^3\) We showed that the algorithm can fail even when the number of quantum-catch data compares favorably with the number of unknown spectral descriptors. For example, a dichromatic visual system cannot recover two-dimensional descriptions of lights and surfaces when provided reflected lights from two surfaces.

For a recovery algorithm to work perfectly, it is necessary and sufficient that the algorithm’s bilinear model provide a one-to-one relationship between sets of lit surfaces and quantum-catch data. If different sets of lit surfaces give rise to identical quantum-catch data, there is no hope of recovering unique spectral descriptions of lights and surfaces from quantum-catch data.\(^2\)\(^3\)

For two-stage linear recovery procedures, the necessary and sufficient conditions for perfect recovery can be expressed in terms of a homogeneous system of polynomial equations that has only the trivial zero solution if recovery is to work. These equations form the basis of a model-check algorithm for proving color-constancy theorems.\(^2\)\(^3\) Although the model-check algorithm is numerically tractable, its function is not overly accessible to intuition.

We present here a more intuitive criterion for the perfect function of trichromatic color-constancy schemes. We show how invariant properties of bilinear model matrices afford simple criteria for the perfect recovery of three spectral descriptors per surface reflectance by a trichromatic visual system. Bilinear model matrices must differ in some fundamental way from one another if recovery is to be possible, for if they do not, different sets of lit surfaces would give rise to identical quantum-catch data and so be indistinguishable. The invariant properties of irreducibility and indecomposability capture this intuition and provide our criteria. The methods that we use complement our earlier eigenanalysis\(^5\) of the recovery of two spectral descriptors per surface reflectance. This research was presented in preliminary form elsewhere.\(^5\)

TRICROMATIC BILINEAR MODELS

We use the notation of D'Zmura\(^1\) and D'Zmura and Iverson.\(^2\)\(^3\) We first construct a bilinear model of the interaction among reflectances, illuminants, and photoreceptors. A single such model instantiates particular choices of finite-dimensional linear models for reflectances and illuminants and a choice of three photoreceptoral spectral sensitivities, \(Q_k(A), k = 1, 2, 3.\)

We take surface reflectance functions \(R(A)\) to fall within the span of some known, three-dimensional model for reflectances.\(^6\) The model provides three orthogonal basis functions, \(R_j(A), j = 1, 2, 3,\) that are combined linearly to match a particular reflectance:

\[
R(A) = \sum_{j=1}^{3} r_j R_j(A),
\]

where the descriptors \(r_j\) of the reflectance \(R(A)\) are given by

\[
r_j = \int R(A) R_j(A) dA.
\]

Likewise, a three-dimensional model for illumination provides three basis functions, \(A_i(A), i = 1, 2, 3,\) that are combined linearly to match a particular illuminant that falls within the span of the model:

\[
A(A) = \sum_{i=1}^{3} a_i A_i(A),
\]

where the descriptors \(a_i\) of the illuminant \(A(A)\) are given by

\[
a_i = \int A(A) A_i(A) dA.
\]
We continue by defining the three bilinear model matrices β_k with entries b_{jik} given by

$$b_{jik} = \int R_j(\lambda)A_k(\lambda)Q_k(\lambda)d\lambda,$$

thus providing one bilinear model matrix per photoreceptor spectral sensitivity. We find that the quantum catch q_k of the kth photoreceptor mechanism is given by

$$q_k = \sum_{j=1}^3 \sum_{i=1}^3 r_{ij} b_{jik} a_i \quad \text{for } k = 1, 2, 3. \quad (2)$$

We now extend the model to treat multiple views of multiple surfaces. Each view of a surface is provided by a distinct illuminant. Lighting a single surface successively with each of v illuminants provides v quantum-catch vectors, each with entries q_k of the form given in Eq. (2). Similarly, introducing s surfaces with linearly independent vectors of descriptors, each of which is lit, in turn, by the v illuminants, provides sv quantum-catch vectors. In what follows we assume that $s = 3$.

Introducing the index t to range over the three surfaces and the index w to range over the v views, we have the following generalization of Eq. (2):

$$q_{twk} = \sum_{j=1}^3 \sum_{i=1}^3 r_{ij} b_{jtwk} a_i \quad \text{for } t = 1, 2, 3, \quad \text{and } w, k = 1, 2, 3. \quad (3)$$

We introduce the following matrices: Δ_k with entries q_{twk}, R with entries r_{ij}, and A with entries a_i. Then Eq. (3) reads

$$\Delta_k = R \beta_k A, \quad k = 1, 2, 3. \quad (4)$$

The matrix of reflectances R and the three bilinear model matrices β_k are 3×3, and the matrix of illuminants A and the data matrices Δ_k are $3 \times v$.

CRITERIA

We first provide a criterion for the perfect recovery of three descriptors for each illuminant and surface reflectance in the situation in which three views of three surfaces are provided. This criterion provides a springboard for the second criterion, which concerns the problem of two views of three surfaces that was introduced by D'Zmura.

Given data Δ_k and matrices β_k, recovery algorithms seek a reflectance matrix R and an illuminant matrix A that satisfy Eq. (4). Note that if some pair (R, A) satisfies Eq. (4) for some fixed (but arbitrary) data, then so will the pair $(R/c, cA)$ for any choice of nonzero c. However, there may be other pairs of reflectances and illuminants of the form $(R/c, cA)$ that also satisfy Eq. (4). In this event, Eq. (4) cannot be inverted successfully: algorithms for recovering spectral descriptors, such as those of Maloney and Wandell and of D'Zmura, cannot work.

The purpose of this paper is to describe criteria on the bilinear model matrices β_k that, when satisfied, guarantee that the only solutions to Eq. (4) are of the form $(R/c, cA)$.

Suppose that given data Δ_k can be expressed in terms of both a matrix pair (R, A) and a matrix pair (S, Z); i.e.,

$$\Delta_k = R \beta_k A = S \beta_k Z, \quad k = 1, 2, 3.$$

Because matrix S and matrices β_k are assumed invertible, one has

$$\beta_k^{-1}S^{-1}R \beta_k Z = Z, \quad k = 1, 2, 3.$$

With $E = S^{-1}R$, we have, equivalently,

$$(\beta_k^{-1}E \beta_k - \beta_1^{-1}E \beta_1)A = 0, \quad k = 2, 3. \quad (5)$$

At this point it is useful to introduce the associated model matrices $G_{k1} = \beta_k \beta_1^{-1}, k = 2, 3$. In terms of these matrices, Eq. (5) becomes

$$[G_{k1}, E] \beta_1 A = 0, \quad k = 2, 3, \quad (6)$$

where we have used standard notation $[X, Y]$ to denote the commutator product $XY - YX$ of square matrices X, Y of common dimension. We seek criteria on the matrices G_{k1}, G_{31} so that regardless of the matrix A of illuminant descriptors, the only matrices E that satisfy Eq. (6) are of the form

$$E = cI, \quad (7)$$

for some nonzero constant c. Note that if $E = cI$ are the only solutions of Eq. (6), then the pairs $(R/c, cA)$ are the only solutions of Eq. (4); i.e., recovery is unique.

To facilitate compact expression of the desired criteria, we now introduce appropriate terminology.

Irreducible, Indecomposable, and Regular Models

A square matrix X acting in a vector space W has an invariant subspace V if $Xv \in V$ for all $v \in V$. If V is nontrivial, i.e., $V \neq \{0\}$ and $V \neq W$, then X is reducible. If X is reducible, so is any matrix similar to X; i.e., if $Y = MXM^{-1}$ for some nonsingular matrix M (Y is similar to X), then Y is reducible if and only if X is reducible. A matrix that is not reducible is said to be irreducible. By an appropriate similarity transformation, a reducible 3×3 matrix can be brought into one of two forms, according to whether the invariant subspace is one or two dimensional. These forms are, respectively,

$$\begin{pmatrix} x & x & 0 \\ x & x & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} x & x & x \\ x & x & x \\ x & x & x \end{pmatrix}, \quad (8a)$$

where x denotes an entry that is not necessary zero. We define a trichromatic model to be reducible if both G_{31} and G_{31} are reducible with respect to a common invariant subspace. A model that is not reducible is irreducible.

A second critical concept is decomposability, which is a special kind of reducibility. If V_1, V_2 are subspaces of a linear space W, and every vector $w \in W$ can be written in the form $w = v_1 + v_2$ with $v_1 \in V_1$ and $v_2 \in V_2$ in one and only one way, then W is the direct sum of V_1 and V_2, and one writes $W = V_1 \oplus V_2$. If V_1 and V_2 are nontrivial invariant subspaces for X, and $W = V_1 \oplus V_2$, then X is decomposable (or fully reducible). All matrices that are
similar to a decomposable matrix are themselves decomposable. By an appropriate similarity transformation, a decomposable 3×3 matrix can be brought into the form
\[
\begin{bmatrix}
x & 0 & 0 \\
0 & x & x \\
0 & x & x
\end{bmatrix}.
\] (8b)

We define a trichromatic model to be decomposable if both G_{21} and G_{31} can be brought simultaneously into the form of expression (8b) under a similarity transformation. A model that is not decomposable is indecomposable. We show below that the notions of irreducibility and indecomposability help to guarantee that the only solutions to Eq. (4) are of the form of the desired form given by Eq. (7). Conversely, if a regular trichromatic model is irreducible, then there always exist solutions E of Eq. (10) that are not of the form of expression (8b) unless E commutes with both G_{21} and G_{31}. Let us examine the problem in which a trichromatic visual system attempts to recover three spectral descriptors for each of three linearly independent illuminants and three independent surfaces, in the case in which the illuminants are shone sequentially on the three surfaces. Matrix A is then a 3×3 invertible matrix, and Eq. (6) simplifies to
\[
[G_{21}, E] = 0 = [G_{31}, E].
\] (10)

That is, matrix E commutes with both G_{21} and G_{31}. A well-known result from linear algebra, namely Schur’s lemma (see Lang12) applies: if a trichromatic model is irreducible, then the only solutions of Eq. (10) [or, equivalently, Eq. (6)] are given by Eq. (7): recovery is unique. This result applies to all trichromatic models, regular or not. However, within the class of regular models we can establish a stronger result:

Theorem 1. If a trichromatic model is regular and indecomposable, then the only solutions E of Eq. (10) are of the desired form given by Eq. (7). Conversely, if a trichromatic model is decomposable, then there always exist solutions E of Eq. (10) that are not of the form of expression (8b).

Proof. (Necessity.) The model is assumed to be regular, so that G_{21} can be taken as diagonal [Eq. (9)]. In terms of the entries e_{ij} of E, we find that
\[
[G_{21}, E] = \begin{bmatrix}
0 & (\lambda_1 - \lambda_2)e_{12} & (\lambda_1 - \lambda_3)e_{13} \\
(\lambda_2 - \lambda_1)e_{21} & 0 & (\lambda_2 - \lambda_3)e_{23} \\
(\lambda_3 - \lambda_1)e_{31} & (\lambda_3 - \lambda_2)e_{32} & 0
\end{bmatrix}.
\] (11)

and by Eq. (10) this matrix is null. Since eigenvalues λ_1, λ_2, and λ_3 of G_{21} differ from one another, we obtain $e_{ij} = 0$ for $i \neq j$. In other words, E is diagonal. The commutator $[G_{31}, E]$ is then given by
\[
[G_{31}, E] = \begin{bmatrix}
0 & (e_{22} - e_{11})g_{12} & (e_{33} - e_{11})g_{13} \\
(e_{11} - e_{22})g_{21} & 0 & (e_{33} - e_{22})g_{23} \\
(e_{11} - e_{33})g_{31} & (e_{22} - e_{33})g_{32} & 0
\end{bmatrix}.
\] (12)

where the g_{ij} are the entries of the matrix G_{31}. Since $[G_{31}, E] = 0$ by Eq. (10), it follows from Eq. (12) that either
\[
\begin{align*}
(a) & \quad e_{11} = e_{22} = e_{33} \\
(b1) & \quad e_{11} \neq e_{22} \text{ and } e_{11} \neq e_{33}, \\
(b2) & \quad e_{11} \neq e_{22} \text{ and } e_{22} \neq e_{33}, \\
(b3) & \quad e_{11} \neq e_{33} \text{ and } e_{22} \neq e_{33}.
\end{align*}
\]

Three Views of Three Surfaces

Two Views of Three Surfaces

For the problem the two columns of $B_1 A$ span a two-dimensional subspace of R^3. Let α be perpendicular to this subspace, i.e., $\alpha^T B_1 A = 0$. Then Eq. (6) is equivalent to the pair of equations
\[
[G_{21}, E] = z \alpha^T, \tag{13a}
\]
\[
[G_{31}, E] = z^* \alpha^T, \tag{13b}
\]
where z, z^* are 3-vectors. For this problem, the analog of Theorem 1 reads as follows:

Theorem 2. If a regular trichromatic model is irreducible, then the only solutions E of Eqs. (13a) and (13b) are of the form given by Eq. (7). Conversely, if a regular
trichromatic model is reducible, there always exist solutions E of Eqs. (13a) and (13b) [or, equivalently, Eq. (6)], which do not conform to Eq. (7).

Proof. (Necessity.) By regularity, we may assume, without loss of generality, that G_3 is diagonal and is given by Eq. (9). The commutator $[G_{21}, E]$ is as given earlier in Eq. (11).

We proceed by specializing the vector α that specifies, in part, the right-hand terms in Eqs. (13a) and (13b). There are three cases to consider: (a) no element of α is zero, (b) exactly one element of α is zero, and (c) exactly two elements of α are zero.

Case (a). $\alpha_1 \neq 0$, $\alpha_2 \neq 0$, and $\alpha_3 \neq 0$. Writing out the right-hand term of Eq. (13a) in detail, we have

$$
[G_{21}, E] = \begin{bmatrix}
z_1\alpha_1 & z_1\alpha_2 & z_1\alpha_3 \\
z_2\alpha_1 & z_2\alpha_2 & z_2\alpha_3 \\
z_3\alpha_1 & z_3\alpha_2 & z_3\alpha_3
\end{bmatrix}, \quad (14)
$$

and from Eq. (11) we see that the diagonal terms $z_i\alpha_i$ vanish for each $i = 1, 2, 3$. Since $\alpha_i \neq 0$, $i = 1, 2, 3$, we have $z = 0$. It follows that $[G_{21}, E] = 0$, and by Eq. (11) we have $e_{ij} = 0, i \neq j$. Thus E is diagonal, and the commutator $[G_{31}, E]$ is given by both Eq. (12) and Eq. (13b). When written out in detail, Eq. (13b) takes the form of Eq. (14) with z_i replaced by z_i^*. Comparing diagonal terms in Eqs. (12) and (13b), we deduce that $z_i^* = 0$ for $i = 1, 2, 3$. Thus $[G_{31}, E] = 0$. By assumption, the model is irreducible, and a fortiori, indecomposable. Theorem 1 applies and assures us that the only solutions of Eqs. (13a) and (13b) are those of the form $E = cI$ for some $c \neq 0$. (We could also apply Schur's lemma to reach the same conclusion.)

Case (b). $\alpha_1 \neq 0$, $\alpha_2 \neq 0$, and $\alpha_3 = 0$. (The possibilities $\alpha_1 = 0, \alpha_2 \neq 0, \alpha_3 = 0$ and $\alpha_1 \neq 0, \alpha_2 = 0, \alpha_3 \neq 0$ are simply notational variants of the case that we treat in detail.) Comparison of Eqs. (11) and (14) reveals that $z_1 = z_2 = 0$ and $e_{12} = e_{21} = e_{13} = e_{23} = 0$. That is, diagonal. The commutator $[G_{31}, E]$ is then given by both Eq. (12) and the following expression, which follows from Eq. (13b) and from the fact that α_3 is zero:

$$
[G_{31}, E] = \begin{bmatrix}
z_1^* \alpha_1 & z_1^* \alpha_2 & 0 \\
z_2^* \alpha_1 & z_2^* \alpha_2 & 0 \\
z_3^* \alpha_1 & z_3^* \alpha_2 & 0
\end{bmatrix}. \quad (15)
$$

We have, in particular, $z_1^* \alpha_1 = e_{31}g_{13}$, $z_1^* \alpha_2 = e_{32}g_{13}$, $z_2^* \alpha_1 = e_{31}g_{23}$, and $z_2^* \alpha_2 = e_{32}g_{23}$. If we use $z_3^* \alpha_1 = (\lambda_3 - \lambda_1)e_{21}$ and $z_3^* \alpha_2 = (\lambda_3 - \lambda_2)e_{32}$ (which follow from Eq. (15)), the first two of these four equations yield $z_3g_{13} = (\lambda_3 - \lambda_1)e_{31}^* = (\lambda_3 - \lambda_2)e_{21}^*$. Likewise, the second pair of equations yields $z_3g_{23} = (\lambda_3 - \lambda_1)e_{32}^* = (\lambda_3 - \lambda_2)e_{23}^*$. Since $\lambda_1 \neq \lambda_2$, it follows that $z_1^* = z_2^* = 0$ and hence $g_{13} = g_{23} = 0$: the model is reducible, contrary to assumption.

Case (c). $\alpha_1 \neq 0, \alpha_2 = 0, \alpha_3 = 0$. (The possibilities $\alpha_1 = 0, \alpha_2 = 0, \alpha_3 \neq 0$ and $\alpha_1 = 0, \alpha_2 \neq 0, \alpha_3 = 0$ are notational variants of the case that we treat in detail.) We set $\alpha_1 = 1$ without loss of generality. From Eqs. (11) and (13a) we deduce that $e_{12} = e_{13} = e_{32} = 0$ and that $z_1 = 0$; E has the form

$$
G_{21} = \begin{bmatrix}
e_{11} & 0 & 0 \\
0 & e_{22} & 0 \\
e_{31} & e_{32} & e_{33}
\end{bmatrix},
$$

and

$$
[G_{21}, E] = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
z_3\alpha_1 & z_3\alpha_2 & 0
\end{bmatrix}.
$$

If $z_3 = 0$, we obtain $e_{31} = 0$ and $e_{32} = 0$, and E is
This implies that Eq. (6) is satisfied with \(E = eI \), where \(I \) is the identity matrix. The commutator \([G_{31}, E]\) is as follows:

\[
[G_{31}, E] = \begin{bmatrix}
0 & 0 & 0 \\
z_1 & 0 & 0 \\
z_2 & 0 & 0 \\
z_3 & 0 & 0
\end{bmatrix}.
\]

(16)

We compute the commutator \([G_{31}, E]\) and obtain the following result:

\[
[G_{31}, E] = \begin{bmatrix}
e_{21}g_{12} + e_{31}g_{13} & (e_{22} - e_{11})g_{12} & (e_{33} - e_{11})g_{13} \\
x & -e_{31}g_{12} + (e_{22} - e_{33})g_{22} & -e_{31}g_{13} \\
e_{21}g_{12} & x & -e_{31}g_{12} + (e_{22} - e_{33})g_{22}
\end{bmatrix}.
\]

(17a)

where the entries marked \(x \) represent expressions that are not relevant for our present purpose. The second equality follows from Eq. (13b) and \(\alpha = [1 \\ 0 \\ 0]^T \).

If \(e_{22} \neq e_{33} \) then \(E \) has either a unique eigenvector \([0 \\ 1 \\ 0]^T\), corresponding to the eigenvalue \(e_{22} \), or a unique eigenvector \([0 \\ 0 \\ 1]^T\), corresponding to eigenvalue \(e_{33} \). In the first case the eigenvector \([0 \\ 1 \\ 0]^T\) of \(E \) is also an eigenvector of \(G_{31} \), and it follows from Eq. (17a) that \(g_{12} = g_{32} = 0 \). In the second case the eigenvector \([0 \\ 0 \\ 1]^T\) of \(E \) is also an eigenvector of \(G_{31} \), and it follows that \(g_{13} = g_{23} = 0 \). In both cases the model is reducible, contrary to assumption.

The other possibility is that \(e_{22} = e_{33} \). Comparing the second two columns of the matrices on the right-hand sides of Eqs. (17a) and (17b), we obtain (second column) \((e_{22} - e_{11})g_{12} = e_{31}g_{12} = g_{31}g_{12} = 0\) and (third column) \((e_{33} - e_{11})g_{13} = e_{31}g_{13} = g_{31}g_{13} = 0\). If \(g_{12} \neq 0 \) or \(g_{31} \neq 0 \), we obtain \(E = 0 \). Otherwise, \(g_{12} = g_{31} = 0 \) and the model is reducible, contrary to assumption.

(Sufficiency.) We assume that the model is reducible, so that \(G_{31} \) has the diagonal form given by Eq. (9), and \(G_{31} \) has one of the forms listed in expression (8a). Let us consider first the form on the right-hand side of expression (8a):

\[
G_{31} = \begin{bmatrix}
g_{11} & 0 & 0 \\
g_{21} & g_{22} & g_{23} \\
g_{31} & g_{32} & g_{33}
\end{bmatrix}.
\]

Let us take \(E \) to be of the following diagonal form \((e_{22} = e_{33}; e_{11} \neq e_{33}):\)

\[
E = \begin{bmatrix}
e_{11} & 0 & 0 \\
0 & e_{33} & 0 \\
0 & 0 & e_{33}
\end{bmatrix}.
\]

Calculation shows that the two commutators \([G_{21}, E]\) and \([G_{31}, E]\) have a common form, namely,

\[
\begin{bmatrix}
0 & 0 & 0 \\
x & 0 & 0 \\
x & 0 & 0
\end{bmatrix}.
\]

This implies that Eq. (6) is satisfied with \(E = cI \) when the illuminants lie in the subspace spanned by the vectors \([0 \\ 1 \\ 0]^T\) and \([0 \\ 0 \\ 1]^T\).

Finally, let us consider the case in which \(G_{31} \) has the form on the left-hand side of expression (8a), namely,

\[
G_{31} = \begin{bmatrix}
g_{11} & g_{12} & 0 \\
g_{21} & g_{22} & 0 \\
g_{31} & g_{32} & g_{33}
\end{bmatrix}.
\]

If \(g_{31} = g_{32} = 0 \), the model is decomposable, and we already know, from Theorem 1, that not all solutions \(E \) of Eq. (6) are multiples of identity matrix \(I \). Thus assume either that \(g_{31} \neq 0 \) or that \(g_{32} \neq 0 \). Take \(E \) to have the following diagonal form \((e_{22} = e_{11}; e_{11} \neq e_{33}):\)

\[
E = \begin{bmatrix}
e_{11} & 0 & 0 \\
0 & e_{33} & 0 \\
0 & 0 & e_{33}
\end{bmatrix}.
\]

Calculation shows that \([G_{21}, E] = 0 \) and that

\[
[G_{31}, E] = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
-g_{31}(e_{33} - e_{11}) - g_{32}(e_{33} - e_{11}) & 0 & 0
\end{bmatrix}.
\]

From the latter expression we find that \([G_{31}, E]a_1 = \begin{bmatrix} g_{31} \\ g_{31} \\ g_{31} \end{bmatrix}a_2 = 0 \), where \(a_1 = [0 \\ 0 \\ 1]^T \) and \(a_2 = [-g_{32} g_{31} 0]^T \). The proof is complete.

DISCUSSION

We tested the criteria on the trichromatic bilinear models with components listed in Table 1.1 For \(3 \times 3 \) model matrices, the case of interest, model reducibility is equivalent to the property that at least two associated model matrices (e.g., \(G_{21} \) and \(G_{31} \)) share a common eigenvector, or at least two of the transposes of the associated model matrices (e.g., \(G_{21}^T \) and \(G_{31}^T \)) share a common eigenvector. None of the 60 bilinear models, which we formed by choosing a set of spectral sensitivities, an illuminant basis, and a surface-reflectance basis, has this property.2,13 We remind the reader that an irreducible model is necessarily indecomposable, so that all the models that we checked work perfectly to recover descriptors when either two or three views are provided. The positive results for these models agree with the results found with use of the model-check algorithm of D'Zmura and Iverson.2,3

The present criterion for three views provides both necessary and sufficient conditions for perfect recovery and
Table 1. Tested Bilinear Model Components

<table>
<thead>
<tr>
<th>Photoreceptors</th>
<th>CIE 10° observer<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Smith and Pokorny<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Hurvich and Jameson<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Sony XC-007 CCD RGB</td>
<td></td>
</tr>
<tr>
<td>Sony XC-711 CCD RGB</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Illuminants</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Judd et al.<sup>d</sup></td>
<td></td>
</tr>
<tr>
<td>Dixon<sup>e</sup></td>
<td></td>
</tr>
<tr>
<td>Indoor (D<sub>65</sub>, A, F<sub>2</sub>)<sup>c</sup></td>
<td></td>
</tr>
<tr>
<td>Fourier</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reflectances</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohen<sup>f</sup></td>
<td></td>
</tr>
<tr>
<td>Parkkinen et al.<sup>g</sup></td>
<td></td>
</tr>
<tr>
<td>Fourier</td>
<td></td>
</tr>
</tbody>
</table>

^aRef. 14.
^bRef. 15.
^cRef. 16.
^dRef. 8.
^eRef. 9.
^fRef. 6.
^gRef. 7.

so is equivalent, for regular models, to the model-check algorithm for three views.^{2,3} For two views, the present criterion expresses necessity and sufficiency for regular models, representing an improvement over the model-check algorithm, which provides only sufficient conditions. The present criteria are more intuitive. They ensure that bilinear model matrices that must be different from one another do, in fact, differ appropriately. We formulate this intuition more precisely in terms of invariant properties of bilinear model matrices, namely, the properties of irreducibility and indecomposability. The numerical algorithm to check irreducibility is straightforward and, in our experience, suffices to classify trichromatic bilinear models for both two and three views.

ACKNOWLEDGMENTS

We thank Al Ahumada, David Brainard, Michael Landy, Larry Maloney, Jeff Mulligan, Misha Pavel, and Brian Wandell for helpful discussions. We also thank two anonymous reviewers for their helpful remarks. This work was supported by National Eye Institute grant EY10014 to M. D'Zmura and by National Science Foundation grant DIR-9014278 to the Institute for Mathematical Behavioral Sciences, University of California, Irvine, R. D. Luce, Director.

REFERENCES AND NOTES