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We consider group decision-making on an optimal stopping problem, for which large and stable
individual differences have previously been established. In the problem, people are presented
with a sequence of five random numbers between 0 and 100, one at a time, and are required
to choose the maximum of the sequence, without being allowed to return to earlier values
in the sequence. We examine group decision-making on these problems in an experimental
setting where group members are isolated from one another, and interact solely via networked
computers. The group members register their initial accept or reject decision for each value
in the sequence, and then providing a potentially revised decision having viewed the recom-
mendations of the other group members. Group decisions are made according to one of three
conditions, requiring either consensus to accept from all group members, a majority of accept
decisions from the group, or the acceptance of an appointed group leader. We compare indi-
vidual decision-making to group decision-making under these three conditions, and find that,
under some conditions, groups often significantly outperform even their best members. Using a
signal detection analysis we provide an account of how the group decision-making conditions
differ from one another, and from individual decision-making. Key findings are that people
do not often revise their decisions, but, in the consensus and leadership conditions, are more
conservative in their initial decisions. This conservatism removes the individual bias towards
choosing values too early in the sequence, allowing the groups to perform better than their
individual members. In the majority condition, however, people continue to behave as they did
individually, and the group shows the same bias in decision-making.

Introduction

Optimal Stopping Problems

Most human decision-making can be conceived as search-
ing through a sequence of alternatives until a choice is made.
Often the number of possible alternatives considered is rela-
tively small, because there are limited options in the external
task environment, or because of the need to make fast deci-
sions in a competitive world. In some situations, it is also not
possible to re-consider a previously rejected alternative. In
dynamic environments, previous evaluations may no longer
be accurate, or—think, for example, of mate selection—the
earlier act of rejection may incur large costs that make recon-
sideration prohibitive.

A class of optimization problems, generically known as
optimal stopping problems (see Ferguson, 1989, for a his-
torical overview), have features that make them well-suited
to studying human decision-making on limited sequences
of alternatives. For this reason, these problems have re-
ceived steady theoretical and empirical attention over a
long period in cognitive psychology (e.g., Bearden, Murphy,
& Rapoport, 2005; Corbin, Olson, & Abbondanza, 1975;
Dudey & Todd, 2001; Kahan, Rapoport, & Jones, 1967; Lee,
2006; Seale & Rapoport, 1997, 2000; Rapoport & Tversky,
1970) and other fields, such as experimental economics (e.g.,
Cox & Oaxaca, 1992; Kogut, 1990; Zwick, Rapoport, Lo, &

Muthukrishnan, 2003)
In this paper, we consider human performance—both as

individuals, and in various group settings—on an optimal
stopping problem where people are presented with a list of
five randomly chosen numbers between 0 and 100. People
are told there are five numbers in the list, and they were cho-
sen randomly. Individuals or groups are then shown the num-
bers one at a time, and are instructed to choose the maximum,
subject to the constraint that they must choose a number at
the time it is presented, and that any choice below the maxi-
mum is incorrect.

Gilbert and Mosteller (1966) provide an integrated
overview of mathematical results for optimal stopping prob-
lems. Most interestingly, they describe the optimal decision
process, the adherence to which maximizes the probability of
making the correct choice for any randomly generated prob-
lem. This optimal decision-making process is to choose the
first value that is both the maximum value observed in the
sequence thus farand exceeds a threshold level for its po-
sition in the sequence. Gilbert and Mosteller (1966, Tables
7 and 8) provide these optimal thresholds and the associated
probabilities of making a correct decision.

As a concrete example, Figure 1 shows a five-point prob-
lem, with the circles representing successive values in the
problem, and the solid line showing the optimal threshold
for each of the five positions (since the last value is a forced
choice, its threshold is effectively zero). In this example, the
optimal choice is the third value presented, as it is the max-
imum value seen to that point in the sequence, and is above
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Figure 1. An example optimal stopping problem, showing the se-
quence of five values between 0 and 100, and the curve correspond-
ing to the optimal decision process.

the threshold defined by the optimal curve. Note, however,
that this choice is incorrect in the sense that it does not corre-
spond to the maximum value in the sequence, which occurs
in the fifth and final position. In this way, as argued pre-
viously by Lee (2006), optimal stopping problems naturally
distinguishing between performance based on achieving op-
timal outcomes (i.e., choosing the final value), and perfor-
mance based on following optimal decision processes (i.e.,
choosing the third value). Simon (1976) termed these differ-
ent measures ‘procedural’ and ‘substantive’ rationality, re-
spectively, and noted that procedural measures are inherently
less noisy, because the optimal decision process can always
be followed, even when optimal outcomes cannot always be
achieved.

Individual Decision-Making

Most of the previous research examining human decision-
making on optimal stopping problems has used versions of
the problem that provide rank order information, rather than
the values themselves (e.g., Dudey & Todd, 2001; Seale &
Rapoport, 1997, 2000). These rank order problems, how-
ever, have a very different optimal decision rule, and so it
is unclear to what extent their findings generalize to the cur-
rent context. Kahan et al. (1967) did study human decision-
making on a more similar partial-information task, where
values rather than ranks are presented, but the distribution is
not explicitly given to participants. These authors used prob-
lems of length 200, withifferent problems involving values
drawn from either a positively skewed, negatively skewed,
or a uniform distribution. No evidence was found for the
different distributions affecting the decisions made. Corbin
et al. (1975) considered human decision-making on prob-
lems like ours and, by systematically manipulating the val-
ues presented, found sequential and contextual dependencies

within problems. Other empirical studies (e.g., Cox & Oax-
aca, 1992; Kogut, 1990; Rapoport & Tversky, 1970; Zwick et
al., 2003) have used very different experimental methodolo-
gies, such as requiring subjects to expend resources to con-
sider additional alternatives, usually because they are inter-
ested in applications to economic decision-making.

The series of studies most directly relevant to the current
one were conducted by Lee, O’Connor, and Welsh (2004),
Lee (2006), and Campbell and Lee (in press). Lee et al.
(2004) considered human performance on problems with
lengths 10, 20 and 50, and evaluated three candidate mod-
els of the way people made decisions. They concluded that
the best accounts were provided by ‘threshold’ models in
which people choose by comparing the presented value to
fixed thresholds. What Lee et al. (2004) observed, how-
ever, was that there seemed to be significant individual differ-
ences in the exact thresholds that people used. Some subjects
behaved consistently with applying a single fixed threshold
across the entire sequence. Effectively, these people chose
the first number that exceeded a fixed value. Other subjects,
however, behaved consistently with using thresholds that de-
creased as the sequence progressed, as with the optimal so-
lution.

Lee (2006) examined the possibility of individual differ-
ences in more detail, observing that, over a total of 147 par-
ticipants, each completing one of two different sets of 40
problems, there was evidence of individual differences, but
no evidence of learning. In other words, the proportion of
times the optimal solution process was followed differed be-
tween participants, but did not appear to change as the same
participant answered additional problems. In addition, based
on a model of the decision-making process, Lee (2006) was
able to make inferences about the various thresholds used
by people, and observed a wide variety of different types of
solution processes being employed. Campbell and Lee (in
press) provided additional evidence of the stability of these
individual differences by testing a total of 75 participants on
120 problems of length five, under various feedback and fi-
nancial incentive conditions, and observing no evidence of
learning in any of the conditions.

Group Decision-Making

The finding of large and stable individual differences in
decision-making raises a number of interesting questions
about how groups will solve optimal stopping problems. Be-
cause people make different decisions as individuals, group
decision-making must involve some sort of compromise
across, or competition between, alternative answers. And,
because people show few signs of learning or changing their
decision-making on these problems over repeated trials, it
is not obvious how such compromise or competition will be
resolved.

A further attraction of studying group behavior on the op-
timal stopping problem is that has many desirable properties
previously identified in the group decision-making literature.
As Gigone and Hastie (1997) point out, most laboratory tasks
involving group decision-making have required background
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knowledge, which is difficult to quantify. In contrast, the lack
of background knowledge required to solve optimal stop-
ping problems makes them amenable to quantitative analy-
sis. In addition, an important question in the study of group
decision-making is whether groups attenuate or exacerbate
individual decison-making bias (see Kerr & Tindale, 2004,
p. 634). To do this, as noted by Gigone and Hastie (1997),
it is necessary to be able to collect repeated measures of in-
dividual and group decision-making. The optimal stopping
task is also well suited to these demands. It is straightfor-
ward to generate and administer large numbers of essentially
equivalent but new problems.

As far as we are aware, however, group decision-making
on optimal stopping problems has never been considered
experimentally (see the thorough experimental reviews in
Gigone & Hastie, 1997; Hastie, 1986). The only previous
empirical study to consider group effects of any form is that
reported by Kahan et al. (1967). These authors compared
the performance of individuals making optimal stopping de-
cisions in an isolated setting with those still making decisions
as individuals, but in a group setting under the condition that
they had to remain in the experimental setting until the entire
group had completed their problems. Not surprisingly, they
found that in the group setting people chose to accept values
earlier in the sequence than they did in isolation.

In this paper, we examine the decision-making of individ-
uals, and groups of five people, completing five-point opti-
mal stopping problems. We consider three within-group ma-
nipulations, involving consensus, majority and leadership-
based decision-making for the group. Following the frame-
work suggested by Gigone and Hastie (1997), we distinguish
between ‘individual’ decisions made in isolation, ‘member’
decisions made at the beginning of a group process, ‘revised
member’ decisions made after interaction with the other
members of a group, and the final ‘group’ decision. We adopt
a signal-detection theory approach to provide measures of
both accuracy and bias on detailed decision-by-decision per-
formance. We then use these measures to examine how deci-
sion making evolves in a group setting, how different group
decision processes differ from one other, and how they differ
from those of individual decision-makers.

Experiment

Participants

We tested seven groups of five participants, comprised of
13 male and 22 female participants, with an average age of
24.4 (SD=9.10) years. Participants were randomly assigned
to groups, with gender and age distributions that broadly
matched those of the entire sample.

Procedure

Individual Setting. Participants first completed a set of
20 problems working as individuals. For each problem par-
ticipants were sequentially presented with numbers ranging
from 0.00 to 100.00, and were instructed to choose the max-
imum value. It was emphasized that (a) the values were uni-

formly and randomly distributed between 0.00 and 100.00,
(b) a value could only be chosen at the time it was presented,
(c) the goal was to select the maximum value, with any se-
lection below the maximum being completely incorrect, and
(d) if no choice had been made when the last value was pre-
sented, they would be forced to choose this value. As each
value was presented, its position in the sequence (e.g., the
information that “this is the third number out of five”) was
shown, together with ‘yes’ and ‘no’ response buttons. No
feedback was provided, and the order of the problems was
randomized for each participant.

Group Setting. Participants then completed a total of 30
problems working as a member of a five-person group, with
each person located remotely at a computer terminal and in-
teracting only through the networked software that ran the
experiment. For each successive number in each problem,
this software showed the number, and its position in the se-
quence, to all members of the group, and asked for a member
accept or reject decision. This decision was made by each
group member in isolation, without knowledge of the deci-
sions of the other members. Once all member decisions had
been made, the software provided a graphical representation
of the decisions to all group members. Each participant was
then asked for a revised member accept or reject decision for
the same number.

Over their experimental session, each group operated un-
der three decision-making conditions we call ‘consensus’,
‘majority’ and ‘leadership’ conditions, and did ten problems
in each condition. In the consensus condition, everybody
in the group was required to make an accept decision at the
member stage for that value to be chosen by the group as a
whole. In the majority condition, three or more of the group
had to accept the value for it to be chosen by the group. In
the leadership condition, the one group member who was
appointed leader made a decision at the member stage that
became the group decision for that value. Leaders were as-
signed at random, and were changed, without re-selecting the
same person, for each problem set. Whatever the condition,
the accept or reject decision generated by each group for each
value was treated in the same way as the individual decision-
making setting. That is, groups continued to be presented
with values in the problem sequence until one was selected,
or the last value became a forced choice.

The basic group decision-making process is summarized
in Figure 2. The five member of the group are shown, mak-
ing decisions in relation to the presented value. A sample
progression through member to revised member decisions is
shown. From the revised member decisions, the group de-
cision is determined by the consensus, majority or leader-
ship condition rule. For this reason, in the leadership condi-
tion, a revised member decision was only required from the
assigned leader. Each group did different randomly gener-
ated problems, and the order of the decision-making condi-
tions was counterbalanced, to the maximum extent possible,
across groups.
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YES YES NO NO YES
Member

YES YES NO YES YES
Revised Member

Group Decision

Figure 2. Overview of the basic experimental procedure for group
decision-making, showing an example sequence of member and re-
vised member decisions, from which the group decision is deter-
mined.

Basic Results

Figure 3 summarizes the accuracy of the decisions made
by individuals and groups, both in terms of making opti-
mal decisions, and in choosing the maximum value. This
analysis makes clear a few basic conclusions. First, there
are large differences in accuracy between individuals, and
between groups using the same decision-making method.
Any analysis of decision-making accordingly needs to ac-
commodate individual differences. Secondly, there seem to
be differences between the accuracy of groups and those of
individuals. In particular, many consensus and leadership
groups adhere perfectly to the optimal decision process, a
feat no single individual achieved. Taken together, these ob-
servations suggest that there are difference between individ-
ual and group decision-making, and between different group
decision-making conditions.

Signal Detection Analysis

We rely on a form of signal detection analysis (e.g., Green
& Swets, 1966) to explore the differences in individual and
group decision-making in more detail. The behavioral data
we use are the individual, member, revised member, and
group accept and reject decisions. As shown in Table 1,
by comparing each accept and reject decisions to those re-
quired by the optimal decision process, we obtain counts of
hits, false alarms, misses, and correct rejections. From these
counts, it is straightforward to make inferences about the hit
rateθh and false alarm rateθ f of a decision-maker. Analyz-
ing these data provides a much more detailed characteriza-
tion of the decision-making process than simply considering
the final decision.
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Figure 3. Proportion of optimal decisions against proportion of
maximum values chosen, for individual participants, and for each
decision-making condition. Each point has been slightly peturbed
for visibility.

Table 1
Signal detection table relating human decisions to the opti-
mal decision process.

Optimal Decision
accept reject

Human accept hit false alarm
Decision reject miss correct rejection

Standard Signal Detection Theory

We assume the standard Gaussian equal-variance form of
signal detection theory shown in Figure 4, because it allows
the hit and false alarm rate information to be converted to
useful and interpretable measures of decision-making perfor-
mance. In signal detection theory, two stimulus distributions
are proposed, representing signal and noise, separated by
some distanced′ that measures their discriminability. In gen-
eral, the task of the decision-maker is to distinguish signal
from noise stimuli. Signal detection theory assumes, in at-
temting to achieve this, that on each trial the decision-maker
samples the stimulus from the signal or noise distribution as
appropriate, and compares it to a referent criterionk. If the
stimulus sample is greater than the criterion, the stimulus is
identified as signal, otherwise it is identified as noise. The
criterionk can be re-expressed in terms of a bias measureβ,
which is the ratio of the density of the signal to noise distri-
butions atk, and in terms of the differencec between thek
and the unbiased criterion value.

For our optimal stopping problem, the signal distribution
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Figure 4. Standard signal detection theory framework.

corresponds to those values large enough for their position in
the sequence to warrant an accept decision according to the
optimal decision rule. The noise distribution corresponds to
values that ought to be rejected. Discriminability now pro-
vides a direct measures of how well a decision-maker is per-
forming in making accept and reject decisions, and so as-
sesses how well they are adhering to the optimal decision
process.

Because the signal distribution corresponds to those that
should be accepted, the criterionk is not a fixed value against
which the presented numerical values are compared. Rather,
it is defined relative to the optimal decision process. It is
also important to note that the unbiased criterion, and hence
the definition of bias given byc, depends on the base rates
for values that should be accepted and rejected. If, for ex-
ample, there are four times as many values to be rejected as
accepted, the optimal criterion is the one that gives aβ value
of four. We determined the actual base rates for our five-point
problems, in each position, by simple Monte Carlo simula-
tion.

Accordingly our measure of biasc is the difference be-
tween the actual criterionk and the unbiased criterion value,
defined so as to take into account the position in the se-
quence. To the extent that a decision-maker does not fol-
low the optimal decision process, the bias measure indicates
whether they are tending to accept values that they should
reject, corresponding to negative bias in our formulation, or
reject values they should accept, corresponding to positive
bias.

Extending Signal Detection Theory to Groups

While standard signal detection provides an account of the
discriminability and bias of a single decision-maker (whether
a single individual, or a single group), it does not provide any
formal account of a collection of decision-makers. Given the
large individual differences already noted, we want to com-
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Figure 5. Individual and group behavior under each of the
decision-making conditions. Within each panel, markers show the
expected discriminability (d′) and bias (c) derived from the deci-
sionsmade by each individual and each group. Superimposed are
the 50% and 95% contours for the expected Gaussians distribution
over individuals and the groups.

pare thedistributions of discrimability and bias for collec-
tions of individual, member, revised member and group de-
cisions. To achieve this, we use a hierarchical Bayesian sig-
nal detection theory framework Rouder and Lu (2005). The
technical details of our statistical methods are available as an
on-line technical note from the first author’s web page.

The hierarchical model extends basic signal detection the-
ory by including an extra level of representation that de-
scribes how the discriminability and bias characteristics for
a collection of decision-makers are distributed. Specifi-
cally, we assume these distributions are Gaussians, and that
discriminability and bias are independent. Using standard
statistical methods, we can then make inferences from the
counts in Table 1 about the discriminability and bias of the
decision-maker, but also about the mean and variance of
the discriminabilities and biases of a collection of decision-
makers. In turn, we can use standard statistical methods to
test whether two collections of decision-makers are the same
or different in their discriminability and bias distributions.

Individual and Group Behavior

Figure 5 summarizes the results of applying the hierar-
chical signal detection model to the individual decisions and
group decisions. The three panels correspond to the consen-
sus, majority and leadership group decision-making condi-
tions. Within each panel, crosses show the expected discrim-
inability (d′) and bias (c) derived from the decisions made
by each of the 35 individuals, and circular, square or trian-
gular makers show the expected discriminability and bias for
each of the seven groups. Also shown are the 50% and 95%
contours for the expected Gaussian distributions over the in-
dividuals and the groups.

Table 2 details the Bayes Factors (e.g., Kass & Raftery,
1995) that test whether the discriminability and bias distri-
butions are the same or different in each case. The Bayes
Factors are measured on the often-used logarithmic scale.
On this scale, zero is the point of indifference: the point at
which the data provide as much evidence for the distribu-
tions being the same as they do for the distributions being
different. Positive values indicate evidence in favor of the
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distributions being the same, while negative values indicate
evidence of a difference. Because the values themselves are
simply the logarithm of a likelihood ratio, they are readily in-
terpreted. We follow the suggested guide of Kass and Raftery
(1995), where (absolute) values less than one are regarded as
“not worth more than a bare mention”, values between one
and three are regarded as “positive”, between three and five
are regarded as “strong”, and larger than five are regarded as
“very strong”. We are particularly interested in cases where
individual and group decision-making differ, and so Table 2
highlight in bold those log Bayes Factors that are negative,
with a magnitude greater than one.

Table 2 shows that the consensus and leadership groups
have different levels of both discrimation and bias to indi-
viduals. With reference to Figure 5, it is clear that discrim-
inability improves in both groups settings. It is also evident
that a large negative bias for individuals is reduced to some-
thing close to an unbiased state in the consensus condition,
and is also reduced, but to a lesser extent, in the leadership
condition.

Individual Behavior in Groups

To consider the sequence of decisions each participant
made—moving from their decisions as individuals to their
their member to their revised member decisions in group
settings—we use a ‘within-subjects’ version of the hierar-
chical signal detection analysis. This involves, instead of
considering separate discriminability and bias measures for
both member and revised member decisions, considering the
change in discriminability∆d′ and change in bias∆c between
these stages for each individual.

Figure 6 summarizes the results of applying the hierar-
chical signal detection model to the individual to member
changes. Table 2 gives the Bayes Factors, which compare an
account that assumes there is no change in discriminability
and bias, with one that does allow for the change. As before,
the Bayes Factors are measured on the log scale, and negative
values indicate evidence for change. From these analyses, it
is clear that in both the consensus and leadership decision-
making conditions, but not in the majority condition, there is
a change in discriminability and bias. In particular, the deci-
sions people make as members show greater discriminability.
It is also clear, with reference to Figure 5, that the increase
in the value of the bias measure in the consensus and leader-
ship condition has the effect of making the member decisions
much closer to being unbiased than the individual decisions.

Figure 7 summarizes the results of applying the hierarchi-
cal signal detection model to the member to revised mem-
ber changes, and Table 2 again gives the log Bayes Factors.
These analyses suggest that there are no significant changes
in either discriminability or bias as people move from mak-
ing member to revised member decisions.

Analysis of Changes

The finding that there are no major changes in discim-
inability or bias in revising member decisions does mean that
it is not worth examining those changes that do occur. Such
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Figure 6. Changes from individual to member behavior under
each of the decision-making conditions. Within each panel, markers
show the expected change in discriminability (∆d′) and change in
bias (∆c) derived for each participant moving from their individ-
ual to their member decision-making. Superimposed are the 50%
and 95% contours for the expected Gaussian distribution over the
collection of differences.
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Figure 7. Changes from member to revised member behavior un-
der each of the decision-making conditions. Within each panel,
markers show the expected change in discriminability (∆d′) and
change in bias (∆c) derived for each participant moving from their
member to their revised member decision-making. Superimposed
are the 50% and 95% contours for the expected Gaussian distribu-
tion over the collection of differences.

an analysis is presented in Figure 8, which shows the pro-
portion of changes, relative to the total number of decisions
in that condition, in each decision-making condition. These
changes are shown according to whether they are ‘good’
changes (i.e., changes that changed a member decision not
in accord with the optimal rule into a revised member deci-
sion that was in accord), or ‘bad’ changes (i.e., changes away
from a member decision in accord with the optimal rule).
These good and bad changes are shown further divided into
those where the subject was ‘encouraged’ to change a mem-
ber reject into a revised member accept decision, and those
where the subject was ‘discouraged’ to change a member ac-
cept into a revised member reject decision.

Figure 8 shows that, under the consensus and majority
condition, only about 15% of decisions were changed mov-
ing from the member to the revised member stage of the
decision-making process. In the leadership condition, the
leader changed their member decision about 20% of the time.
These changes were much more often good changes than
bad ones, especially in the leadership condition. The good
changes were more often discouragements than encourage-
ments, again especially in the leadership condition. And, fi-
nally, bad changes were almost exclusively encouragements.
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Table 2
Log Bayes factors testing whether individual vs group, individual vs member, and member vs revised member decision-making
have the same or different discriminability (d ′) and bias (c) characteristics. Positive values give evidence in favor of sameness;
negative values give evidence in favor of differences. Negative values indicating substantial differences are highlighted in bold.

Discriminability (d′) Bias (c)

Consensus Majority Leadership Consensus Majority Leadership

individual vs group -7.10 1.89 -7.64 -4.97 0.98 -1.83
individual vs member -3.66 0.81 -5.53 -4.72 0.66 -2.66

member vs revised member -0.24 1.82 0.60 0.66 0.37 0.61
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Figure 8. Analysis of changes in member to revised member de-
cisions. The three panels show, top to bottom, the consensus, ma-
jority, and leadership conditions. Each panel shows the number of
‘good’ and ‘bad’ changes for five, ten and twenty point problems.
These counts are further divided into how many changes were ‘en-
couragements’ versus ‘discouragements’.

Individual Learning

Our final analysis examines the possibility that individ-
uals learned while completing their 20 problems. While
previous results strongly suggest there will be no learning,
it is an important check, because otherwise the compari-
son of group and individual decision-making would be con-
founded with practise effects. Figure 9 shows the results of
a within-participants hierarchical signal detection analysis of
the change in discriminability and bias between the first and
second sets of ten problems completed by each participants.
It seems clear that there is no evidence of change in either
discriminability or bias. The log Bayes factors comparing
the change model to one that assumes no change support
this conclusions, showing evidence in favor of the no-change
model of 1.93 for discriminability and 1.65 for bias.
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Figure 9. Change in individual discriminability and bias between
the first 10 and second 10 problems completed. The markers show
the expected change in discriminability (∆d′) and change in bias
(∆c) for each participant between the first and second blocks of 10
problems. Superimposed are the 50% and 95% contours for the
expected Gaussian distribution over the collection of differences.

Discussion

Individual Decision-Making

Our data for individual decision-making on the optimal
stopping problem replicate all of the important findings that
made group decision-making on the problem interesting.
The raw data analysis in Figure 3 and the hierarchical sig-
nal detection analysis in Figure 5 both show large individual
differences. The within-participants comparison of the first
half or individual trials against the second half, as shown in
Figure 9, shows no evidence of learning. And there is clear
evidence that individual tend to make a choice too early in
the sequence. Using signal detection theory, this can be seen
most clearly in Figure 5, which shows that the bias for the in-
dividuals clearly errs on the lenient side of optimal decision-
making.

Group and Individual Performance

Previous empirical findings for group decision-making
on cognitive tasks have found considerable evidence that
groups, typically with sizes between three and seven, rarely
outperform their best members (see, for example, the reviews
of Hastie & Kameda, 2005; Kerr & Tindale, 2004). Our
data, in contrast, provide intriguing evidence that, under var-
ious circumstances, and to various extents, group decision-
making can correct an individual bias of choosing too early
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in the optimal stopping problem.
This is clear in the analysis of the raw data in Figure 3, par-

ticularly when measuring participants’ decision-making with
respect to optimal processes rather than chance-influenced
outcomes. In this way, we observe an improvement in
discriminability for some group decision-making conditions
over individual decision-making, to the extent that some
groups clearly out-perform their best member. Hastie and
Kameda (2005) suggest those examples showing superior
group-decision typically use tasks in which different group
members having different pieces of relevant information, or
allowing one or more individuals in a group has the oppor-
tunity to convince the others of the ‘correctness’ of their de-
cision. Those explanations are clearly not applicable here.
An obvious difference between our study and many previous
ones (as reviewed, for example, by Kerr & Tindale, 2004),
is that group members all had exactly the same information
available, and interacted only in the most limited of ways,
by viewing each others accept or reject member decisions.
These characteristics of the task preclude information pool-
ing, and also do not support any deliberation process.

Insights from Signal Detection Analysis

Our use of hierarchical signal detection theory to analyze
the entire sequence of accept and reject decisions provides
a series of useful insights into the how the group conditions
differ. In particular, it is able to isolate where in the decision-
making process group decision-making diverges from being
simply the combined decisions of a collection of independent
individuals.

It is clear that in the consensus condition that member de-
cisions are significantly more conservative than those made
by the same participants as individuals. In addition, the con-
sensus condition is inherently conservative, since it requires
all members of the group to agree on an accept decision.
Taken together, the left panel of Figure 5 shows that group
decision-making is now essentially unbiased, and with im-
proved discriminability.

In the leadership condition, member decisions are again
significantly more conservative than the individual decisions.
After these member decisions are viewed, the analysis of
changes in Figure 8 shows the leader is sometimes further
discouraged from their member accept decision, and this
change is always a good one. Taken together with the ini-
tially more conservative member decision, the right panel of
Figure 5 shows that these trends make the leadership group
decisions much less biased, and also show improved discrim-
inability.

In the majority condition, however, the behavior is quite
different. There is no evidence that member decisions are
different from individual ones, nor, indeed, that the group de-
cisions differ in discriminability or bias from the individual
decisions. In this sense, in the majority condition, the group
behaves as a collection of individuals, whereas the consen-
sus and leadership groups behave differently from the sum
of their individual parts.

Our findings suggest, though, that where consensus and

leadership group decision-making differs from individual
decision-making is not where it might have been predicted.
A straightforward prediction would be that individual and
member decisions would be extremely similar, since the
same information is available to the decision-maker in both
circumstances, but that revised member decisions might be
different, because of the additional information provided by
seeing the recommendation of other group members. Our
analysis makes very clear, however, that it is at the member
stage that decisions differ, and relatively few revisions are
made from that point onwards. This makes it difficult to ex-
plain the large changes in group decision-making in term of
group polarization effects that have been a central focus in
social group decision-making (e.g., Moscovici & Zavolline,
1969).

Accountability in Group Decision-Making

The difference between individual and member decisions
in general, and the different (and inferior) behavior of the
majority condition are interesting, and requires some expla-
nation. This is particularly true since there is some evidence
and advocacy1 for the effectiveness of a majority rule in the
existing literature (e.g. Hastie & Kameda, 2005; Sorkin,
Hays, & West, 2001). The basic theoretical idea is that ma-
jority rules have the attraction of serving to amplify moder-
ately correct individual decisions, especially in cases where
the individual decisions are not strongly correlated.

One possible reason for this is that majority condition is
the only one in which a member’s decision is not necessarily
directly responsible for a group decision. The leader’s deci-
sion is the group decision, and it seems likely other members
assume the leader will scrutinize their recommendation. In
the consensus condition, all members must agree, and so ev-
erybody is directly accountable for an accept decision. In the
majority condition, in contrast, the responsibility for both ac-
cept and reject decisions by the group can only be attributed
to a collection of group members, and never to one individ-
ual.

Perhaps this lack of direct accountability is the reason the
majority condition seems to differ from the other two. Such
a line of argument seems related to the issue of group mo-
tivational gains, where group members exert greater effort
than as individuals. Existing demonstrations of this effect
(see Kerr & Tindale, 2004, p. 628, for an overview) typically
involve different group decision-making situations, of a more
inherently social nature. Nevertheless, at least one element
believed to be important in these situations, that of social
comparison, seems likely to be present in our experimental
procedure. In group decision-making, member decisions are
effectively individual decisions that will be seen by others.
It is especially interesting, therefore, that when member de-
cisions must coincide with group-decision in the consensus
condition, or must be evaluated by a leader, people become

1 Sorkin, Shenghua, and Itzkowitz (2004) advocated consensus
group decision-making, but for the very different circumstance in-
volving extensive information-sharing and deliberation.
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more conservative, but the mere visibility of a member de-
cision in the majority decision does not produce the same
change.

Conclusion

We have presented an analysis of group decision-making,
under three different decision-making conditions, on a well-
controlled and easily measured optimal stopping task for
which there are stable individual differences. Our primary
finding is that, in the group setting, the decisions of individ-
uals, for this task at least, are quite different from those they
supplied as individuals, under conditions where their initial
decision can be accountably linked to the decision of the
group. This is, perhaps a surprising finding, especially given
the fact that our participants had no interaction with one an-
other in revising their decisions, and, in fact, were socially
isolated from other group members, and that the task dealt
with abstract stimuli in a mathematically described task. It
may be the case, therefore, that the effect we observed is a
pervasive one across more real-world stimuli and social set-
tings. If true more generally, our findings suggest that theo-
ries and models of group decision-making on even abstract
cognitive tasks need to focus not only on issues of informa-
tion pooling and deliberation, but also on the latent effects
merely being in a group have upon the decision-making of
individuals.
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