
A Survey of Model Evaluation Approaches with a
Tutorial on Hierarchical Bayesian Methods

Richard M. Shiffrin
Departments of Psychology & Cognitive Science

Indiana University

Michael D. Lee
Department of Cognitive Sciences

University of California, Irvine

Woojae Kim
Departments of Psychology & Cognitive Science

Indiana University

Eric-Jan Wagenmakers
Department of Psychology
University of Amsterdam

Abstract

We review current methods for evaluating models in the cognitive sci-
ences, including theoretically-based approaches, such as Bayes Factors
and MDL measures, simulation approaches, including model mimicry
evaluations, and practical approaches, such as validation and general-
ization measures. We argue that, while often useful in specific settings,
most of these approaches are limited in their ability to give a general as-
sessment of models. We argue that hierarchical methods generally, and
hierarchical Bayesian methods specifically, can provide a more thorough
evaluation of models in the cognitive sciences. We present two worked
examples of hierarchical Bayesian analyses, to demonstrate how the
approach addresses key questions of descriptive adequacy, parameter
interference, prediction, and generalization in principled and coherent
ways.



Introduction

Models play a central role in cognitive science. They provide the formal bridge
between theories and empirical evidence. They make explicit ideas about how cogni-
tive processes operate, and how psychological variables guide those processes. They
allow theoretical assumptions to be tested in the laboratory, and make predictions
about how cognition will behave in new or different circumstances. The central role
models play makes their evaluation an important issue. It is necessary to be able to
choose between models, and decide whether a model is ‘good’. There is, however,
no simple or unitary answer to the question of what makes a model good. Our view
is that good models should help in achieving at least the following five related, but
different, goals:

1. Achieve a basic level of descriptive adequacy. A model should agree with
observed data well enough that something sensible can be said about how a cognitive
process behaves. For example, a model of memory retention that shows a negatively
accelerating decrease in retention over time describes some basic aspects of the data.
The model serves to give a formal expression of important empirical regularities.

2. Provide insight and understanding. A model should help us understand
things not directly evident from looking at the data, thereby leading to further studies
and tests. It should allow us to deepen, refine, and elaborate our understanding of the
cognitive processes at work. For example, a category learning model may account for
data only when using a particular value of a selective attention parameter. The value
of this parameter has psychological meaning, and provides part of an explanation of
how category learning was achieved.

3. Facilitate prediction and generalization. A good model should help make
predictions about what will be observed in the future, or generalizations about what
would be observed under altered circumstances.

4. Direct new empirical explorations. A good model should lead us to develop
new empirical studies that have the greatest chance of increasing our understanding
and adding to our knowledge.

5. Foster theoretical progress. There is a sense in which the goal of modeling
is not to find answers, but to sharpen questions. Modeling forces theoretical ideas
to take precise forms, and to encounter empirical evidence head on. Models help
make clear the predictions of theories, and suggest critical tests. To the extent that
a model clarifies where theory is working and where it is failing, it makes a valuable
contribution.

In this paper, we begin by reviewing current methods for evaluating models in
the cognitive sciences, many of which have been covered in recent special issues and
review articles (e.g., I. J. Myung, Forster, & Browne, 2000; Pitt, Myung, & Zhang,
2002; Wagenmakers & Waldorp, 2006). These include theoretically-based approaches,
such as Bayes Factors and MDL measures, simulation approaches, including model
mimicry evaluations, and practical approaches, such as validation and generalization
measures. We point out that, while often useful in specific settings, most of these
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approaches are limited in their ability to give a general assessment of a model. Many of
the measures focus on only one narrow aspect of what makes a model good, and often
provide too concise a summary to guide further model development. We suggest that
hierarchical methods—which are rapidly becoming the approach of choice in scientific
and statistical modeling—can provide a more thorough evaluation of models in the
cognitive sciences. Such methods are easily implemented in a Bayesian framework,
and in light of the general advantages of Bayesian inference, we restrict our attention
to hierarchical Bayesian methods. We present two worked examples to demonstrate
how the hierarchical Bayesian approach addresses questions of descriptive adequacy,
parameter interference, and prediction and generalization in principled and coherent
ways.

Current Approaches to Model Evaluation

Throughout the cognitive science literature, even with a restricted focus on
quantitative and statistical goals, a large number of approaches to model selection
and evaluation have been used. It is useful to classify these roughly into three classes:
Theoretical approaches develop formal measures designed to assess models on the ba-
sis of some well-justified criterion; Simulation approaches use computational methods
to explore the relationship between models and data; Applied approaches evaluate
the ability of models to predict new or different data.

Each of these approaches potentially offers different and useful information in
evaluating and comparing models. No two approaches, whether within or between
these classes, always agree with each other, but many pairs agree in substantial num-
bers of cases. Theoretical approaches have the potential to offer deep and general
insights, but are not guaranteed to give better answers than the other approaches,
especially in light of the many differing goals of model evaluation. In addition, it
is not always feasible to apply the best theoretical approaches, especially for models
so complex that it is hard to understand their full range of behavior. Simulation
approaches offer some insight into how and why models perform differently, and usu-
ally scale better to the more complex models. Applied approaches are almost always
possible, but will not necessarily provide any insight into what underlies the observed
success or failure of a model to predict unseen data. Yet applied approaches map well
onto the goal of predicting new data that many researchers have in mind for selecting
models.

Theoretical Approaches

One way of understanding the range of theoretical measures available to cogni-
tive science is to think in terms of three underlying philosophies (see Grünwald, 2005,
p. 13). The Bayesian philosophy champions the model or model class that is most
likely, in the sense of providing the most robust fit to the data (i.e., fits well at the
most parameterizations), given a prior state of knowledge. The Minimum Description
Length (MDL) philosophy champions the model that best compresses the data, in
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the sense that the length of the description of the model and the data as encoded by
the model is minimal. The Prequential philosophy champions the model that best
predicts unseen data.

These philosophies are not necessarily in direct competition, and there are many
consistencies, both in terms of conceptual motivation and technical results, in their
relationships to each other. Often, a model that compresses the data the best is the
one that fits the data most robustly, and also predicts unseen data better. Neverthe-
less, the three philosophies give theoretical primacy to different aspects of what makes
a model good. It should be expected the three philosophies will give rise to measures
that reach different conclusions for specific model evaluation problems. Such differ-
ences should be interpreted not in terms of flaws of the measures, but in terms of the
differing goals: robustness, compression, and prediction.

Bayesian Methods. Bayesian inference has a clear and compelling foundation in
probability theory (Jaynes, 2003; Lee & Wagenmakers, 2005). What makes a statis-
tical inference Bayesian is the way uncertainty is handled. The Bayesian assumption
is that uncertainty is always represented by probability distributions. This allows
probability theory, in the form of Bayes Rule, to provide an automatic method of
inferential updating when useful information, such as empirical observation, becomes
available.

The use of probability theory also allows for ‘marginalization’, in which what is
known about one variable can be conditioned upon what is known about every other
relevant variable. Marginalization is the key component of Bayesian Model Selection,
because it allows the robustness of the fit between a model and data to be measured,
and embodies an automatic form of Ockham’s Razor.

As a simple example, consider the problem of testing whether a coin is fair or
biased. The fair model, Mf asserts that the rate of observing heads θ = 1/2. The
biased model, Mb, asserts that the rate could be 0 < θ < 1. If we assume that both
heads and tails are observable outcomes, there is a justification for making the prior
assumption that each possible rate θ is equally likely, and so using a uniform prior
(see Lee & Wagenmakers, 2005). For observed data D giving k heads out of n tosses,
the likelihood functions are

p (D | Mf) =

(
n

k

)(
1

2

)k (1

2

)n−k

=
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)(
1

2

)n

, (1)

for the fair model and

p (D | Mb, θ) =

(
n

k

)
θk (1 − θ)n−k , (2)

for the biased model.

4



The fair model has no parameters, and so its likelihood provides a complete de-
scription of how the model relates to the data. For the biased model, the Bayesian ap-
proach averages the likelihood over all possible values of the parameter θ, as weighted
by the prior. This average is the marginal likelihood p (D | Mb), and provides a mea-
sure of how robustly the model—in all of its possible forms—fits the data. Formally

p (D | Mb) =
∫

p (D | Mb, θ) p (θ) dθ

=
∫ 1

0

(
n

k

)
θk (1 − θ)n−k dθ

=
1

n + 1
. (3)

The ratio of marginal likelihoods for the two models is known as the Bayes
Factor (Kass & Raftery, 1995), and can also be thought of as the ratio of posterior
to prior odds. In this sense, the Bayes Factor measures the evidence data provide for
one model over another. The Bayes Factor is widely-used for model selection, and
is optimal under the assumption of 0-1 loss (i.e., that one model is the true data-
generating model, and the other model is false). The Bayesian framework has the
potential to define alternative model selection measures, corresponding to different
loss assumptions, that deserve wider exposure and exploration for assessing models
of cognition (see Gelfand, 1996, p. 148).

For our coin example, the Bayes Factor is

p (D | Mf)

p (D | Mb)
=

(
n
k

) (
1
2

)n

1
n+1

, (4)

and so, for data giving k = 12 heads out of n = 20 tosses, gives approximately the
value 2.52. This means that it is about two-and-a-half times more likely the coin is
fair, rather than biased, based on the evidence provided by the data. As this example
makes clear, a feature of Bayesian approaches to model selection is that its measures
have naturally meaningful interpretations, because they are probability statements,
and do not require a separate calibration. It is arguable that none of the other model
selection approaches we discuss have this highly desirable property.

For most cognitive models, however, it is difficult or impossible to produce an
analytic expression for the marginal probabilities, so some sort of simulation or ap-
proximation must be undertaken. Popular Bayesian measures such as the Bayesian
(or Schwarz) Information Criterion (BIC: Schwarz, 1978), the Laplace Approximation
(Kass & Raftery, 1995), and the Geometric Complexity Criterion (I. J. Myung, Bala-
subramanian, & Pitt, 2000), are asymptotic analytic approximations to the marginal
probabilities. The differences between them derive from how close an approximation
they are to the exact marginal probability and, in particular, whether or not they
are good enough approximations to be sensitive to the part of model complexity that
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arises from the functional form of the interactions between parameters (I. J. Myung
& Pitt, 1997).

Computational methods have recently emerged in cognitive science and in com-
putational Bayesian statistics (Courville, Daw, & Touretzky, 2006; Lee, 2008) as an
alternative approach to approximating the integrated probability across the param-
eterized class. There exist various computational algorithms, most often developed
within the Markov Chain Monte-Carlo (MCMC) framework, that are based on draw-
ing samples from the joint posterior distribution of the parameters of a model. Ap-
proximating the desired probability of the model class from posterior samples is often
difficult, but useful techniques are being developed along a number of different lines
(e.g., Carlin & Chib, 1995; Chib, 1995; Raftery, Newton, Satagopan, & Krivitsky,
2007). A particularly useful approach may be that termed Reversible-Jump MCMC
(Green, 1995). We provide a concrete example of obtaining the Bayes Factor using
MCMC methods later, when we discuss hierarchical Bayesian approaches.

MDL Methods. The MDL approach (see Grünwald, 2007, for a thorough recent
treatment) has its foundation in information and coding theory, and particularly in
the theory of Kolmogorov or algorithmic complexity. The basic idea is to view models
as codes that express expected regularities, and prefer those codes or models that best
compress the observed data. The key measure for model evaluation under the MDL
approach is the code length, or stochastic complexity, of the data under the model.
The minimal code length used to evaluate is the combined code length for the model
and data described by the model.

Various MDL measures have been developed as approximations to this code
length. Initial two-part code approximations (Rissanen, 1978) were later extended
to the Stochastic Complexity Criterion (SCC: Rissanen, 1987, 1996), also sometimes
described as the Fisher Information Approximation. The most recent MDL measure
is the Normalized Maximum Likelihood (Rissanen, 2001), which is based in a re-
conceptualization of the original stochastic complexity measure. NML measures how
well a model fits observed data, relative to how well that model could fit any possible
data, and has found application to cognitive models (I. J. Myung, Navarro, & Pitt,
2006). Formally, the NML is given by

NML =
p (D | θ∗ (D))

∑
D′ p (D′ | θ∗ (D′))

, (5)

where D denotes the observed data, D′ denotes any possible data, and θ∗ (·) denotes
the maximum likelihood parameter values for a given set of data.

Loosely, it is reasonable to think of two-part code MDL measures as being like
the BIC approximation, which equates the complexity of a model with a count of
parameters, the SCC with the Bayesian Laplacian-style approximations, which are
also sensitive to functional form complexity, and the NML with the Bayesian marginal
probability, which are exact.
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To make the NML idea concrete, we apply it to our earlier coin example. The
possible observations involve k′ = 0, . . . , n heads out of the 20 tosses. Thus, for the
fair model,

NMLMf
=

(
n
k

) (
1
2

)n

∑n
k′=0

(
n
k′

) (
1
2

)n . (6)

For the biased model, the best fitting (i.e., maximum likelihood) value of the param-
eter is θ∗ (D) = k/n for observed data with k heads out of n tosses, and so

NMLMb
=

(
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) (
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)k (
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n
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∑n
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(
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) (
k′

n

)k′ (
1 − k′

n

)n−k′ . (7)

Given the observed data k = 12 heads out of n = 20 tosses we considered earlier,
the NML values are approximately 0.12 for the fair model, and 0.04 for the biased
model, and so the fair model is preferred, as in the Bayesian analysis. It is interesting
to note that although the MDL and Bayesian approaches can give similar answers,
their theoretical bases are quite different. For example, the Bayesian approach relies
on the likelihood principle: the idea that only what has been observed matters, not
what could have been observed. The Bayesian approach therefore calculates the
probability of the observed data for every parameterized model in each model class
in contention, and then normalizes so the probabilities add to one. In contrast the
normalized maximum likelihood approximation to MDL considers only the model
in each parameterized class that has the highest probability of the observed data,
and for each model class normalizes by the sum of these maximum probabilities for
every data set that could have been observed. These approaches appear almost polar
opposites, and deep and non-obvious analysis is needed to understand why they often
produce similar results.

Prequential Methods. The prequential method (from “sequential prediction”;
Dawid, 1984, 1991, 1992; Dawid & Vovk, 1999; Skouras & Dawid, 1998) is based on
the philosophy that the relevant criterion for model selection is the minimization of
prediction error for unseen data. An ideal model—one that captures only replicable
structure, and ignores all idiosyncratic noise—has the smallest prediction errors for
future data coming from the same source. The prequential method estimates the
predictive power of a model by using one part of the data to estimate the parameters
the model, and using another part of the data to assess the predictions of the model.
The model with the best predictive performance is preferred. The distinguishing
features of the prequential method are that the size of the data set used for estima-
tion continually grows, and that the method concerns itself only with one-step-ahead
predictions.

For instance, when you want to know which of two weather forecasting systems is
more accurate, the prequential method prescribes that you consider only the forecasts
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for the next day. As the days go by and more information becomes available, the
forecasting systems are free to continually update their predictions; their predictive
performance, however, is assessed only for the next–day weather that has not yet
been observed. At each point in time, the relative merit of the weather forecasting
systems is given by the difference in the sum of their prediction errors that have been
observed so far (i.e., the Accumulated one–step–ahead Prediction Errors or APE).

More specifically, assume that we have a data set xn = (x1, x2, ..., xn), and a
model Mj for which one wants a prequential performance estimate. The calculation
then proceeds as follows (Wagenmakers, Grünwald, & Steyvers, 2006):

1. Based on the first i − 1 observations, calculate a prediction p̂i for the next obser-
vation i.

2. Calculate the prediction error for observation i (e.g., (xi − p̂i)
2).

3. Increase i by 1 and repeat steps 1 and 2 until i = n.

4. Sum all of the one–step–ahead prediction errors calculated in step 2. This yields
the accumulative prediction error (APE). Thus, for model Mj the accumulative
prediction error is given by

APE (Mj) =
n∑

i

d
[
xi,
(
p̂i | xi−1

)]
, (8)

where d indicates the specific function that quantifies the discrepancy between
what is observed and what is predicted.

In our coin example, suppose that the successive predictions for n coin tosses
xn = (x1, ..., xn) are based on the logarithmic loss function − ln p̂i(xi), so that the
larger the probability that p̂i (determined based on the previous observations xi−1)
assigns to the observed outcome xi, the smaller the loss. As in the Bayesian analysis,
we assume a uniform prior distribution. This distribution is used to provide a predic-
tion for the first datum. Under these conditions, the prequential method will always
prefer the same model as the Bayes factor. To see why this is the case, note that from
the definition of conditional probability, p(xi | xi−1) = p(xi)/p(xi−1), it follows that

p(x1, . . . , xn) = p(xn | xn−1)p(xn−1 | xn−2) . . . p(x2 | x1)p(x1). (9)

This equation shows that the probability of the data may be decomposed as a series
of sequential probabilistic predictions p(xi | xi−1). The APE with logarithmic loss
and the Bayesian predictions satisfy

− ln p(xn | Mj) =
n∑

i=1

− ln p(xi | xi−1,Mj). (10)
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The Bayes factor prefers the model Mj that minimizes the left-hand side, whereas
the prequential method prefers the model that minimizes the right-hand side, and
hence the two procedures are equivalent (for details see Wagenmakers et al., 2006,
pp. 152–153).

This procedure may appear reasonable, but so do many others. For instance,
why not use “two–step ahead prediction error”, or why not weight the most recent
prediction errors more than the older prediction errors? The reason is that the pre-
quential method as formulated above has strong theoretical ties to both Bayesian
methods and the predictive version of the Minimum Description Length principle
(Rissanen, 1986b). In certain situations (i.e., logarithmic loss and Bayesian one–
step–ahead predictions), the prequential method and Bayesian model selection are
exactly equivalent, and in other situations (e.g., squared error loss and maximum
likelihood predictions) the methods converge as many data are collected (for details
see Wagenmakers et al., 2006). This theoretical connection provides both a theo-
retical foundation for the prequential method, and a predictive interpretation of the
Bayesian and MDL methods.

Although the prequential method has seen little application in psychological re-
search, its advantages are readily apparent. The prequential method is a data–driven
procedure that at least partly approximates Bayesian model selection, and yet it does
not require the specification of priors. It lends itself readily to simulation methods,
and model complexity is taken into account easily and automatically through the
focus on predictive performance. The only requirement for the prequential procedure
to work is that the models under consideration are able to generate predictions for
the next observation. This means that the general method is very flexible and can,
for instance, also be applied to complex models or architectures of cognition that may
not even have a likelihood function. Finally, prequential model selection is consistent
in the sense that when the set of candidate models contains the true data–generating
model, the prequential model will start to prefer it over the other models as the num-
ber of observations increases. In our opinion, the prequential method and its variants
are under-appreciated and deserve more study.

The prequential method, promising as it is, also has its limitations (Wagenmak-
ers et al., 2006, pp. 154–155). One problem is that it is not immediately clear how
the method should be applied in case the data do not have a natural ordering. In
weather forecasting, data arrive sequentially, and there can be no discussion about
what observation to predict next. In most psychological experiments, however, the
data may arrive sequentially but this is often considered accidental. When the se-
quential predictions are not made by a Bayesian system, the ordering of the data can
lead to different results, at least for small data sets. One solution to this problem
calculates the final APE as an average of APEs for many random orderings of the
same data set (Kontkanen, Myllymäki, & Tirri, 2001; Rissanen, 1986a).
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Simulation Approaches

In many psychological applications, only a handful of candidate models carry
substantive interest. Often, the investigation centers on which one of two competing
models is to be preferred. In such cases, an important question concerns the extent to
which the models are able to mimic each other’s behavior (Navarro, Pitt, & Myung,
2004; Wagenmakers, Ratcliff, Gomez, & Iverson, 2004).

Suppose, for instance, that a researcher sets out to determine what model of
response time is best: the diffusion model (e.g., Ratcliff, 1978) or the mutual inhibition
model (e.g., Usher & McClelland, 2001). Both models may differ in the number of
parameters, and the parameters of the two models certainly differ in functional form.
It may transpire that for a particular data set, the diffusion model provides a better
fit to the data. To what extent is this diagnostic? Perhaps the diffusion model is
a chameleon–like model that is able to fit well not just its own data, but also data
generated by the mutual inhibition model. The mimicry method involves generating
data sets with each of the two model classes, and fitting each generated data set
with both models. At the end one has two distributions of fit differences, one when
Model A generated the data sets, and one when Model B generated the data sets.
The potential ability to select the actual generating model, with choice of a suitable
choice criterion, is determined by the separation of the two distributions. The mimicry
characteristics are determined by the placement of each distribution relative to the
zero difference of fit.

To be more specific, the following steps are used to produce the desired distri-
butions (Navarro et al., 2004; Wagenmakers et al., 2004):

1. Generate data from model A.
2. Fit data from step 1 with model A and model B, and calculate the difference

in goodness–of–fit ∆GOFA.
3. Generate data from model B.
4. Fit data from step 3 with model A and model B, and calculate the difference

in goodness–of–fit ∆GOFB.
5. Repeat steps 1–4 n times to yield ∆GOFA[1, 2, ..., n] and ∆GOFB[1, 2, ..., n].
An important question involves the best way to generate data from the model

classes, because one would want to generate data sets with different parameter choices,
and perhaps with differences across subjects. One local or data–informed method
generates data from the posterior distribution for the parameters. This method is
computationally straightforward but from a model selection perspective it often as-
signs too much weight to the complex model (cf. Wagenmakers et al., 2004, Figure
8). The global or data–uninformed method generates data from the prior distribution
for the parameters (Navarro et al., 2004). The choice of parameters for generating
data sets is critical to the method, and involves choices of the range and distributions
of parameters within that range for each model class. How to choose these in a way
that is fair to the model classes under comparison is an open question, analogous to
questions about the way in Bayesian methods to choose priors that are fair to the
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model classes under comparison. For an example of the use of these methods in prac-
tice, applied to model selection for models in different classes for different tasks, see
(Cohen, Sanbord, & Shiffrin, in press). Whatever method is used to generate data
sets, one can find the criterion (on the difference-of-fit axis) that maximizes the choice
of the actual generating model. When the data sets are generated in a way that does
match the actual environment, then classifying them with this optimal criterion will
optimize the total number of correct classifications.

In the coin example, model Mf assumes a fair coin, θ = 1
2
, whereas model Mb

assumes a biased coin, 0 < θ < 1. Model Mb will therefore always be able to mimic
model Mf perfectly, whereas model Mf will only be able to mimic Mb for values
of θ that are close to 1

2
. To illustrate the model mimicry method, we applied the

data–uninformed PBCM and generated 1,000,000 simulated data sets from both Mf

and Mb. Under model Mb, each data set was generated by first sampling a particular
θ from a uniform distribution. Note that, just as the observed data, each simulated
data set contained exactly 20 observations.

The two models were fitted to the 2,000,000 simulated data sets, and the differ-
ence in goodness–of–fit was quantified by the differences in the log probability that
Mf and Mb assign to the data, that is, log( Pr(k|n=20,Mb)

Pr(k|n=20,Mf )
). For instance, for the ob-

served data (i.e., k = 12) we calculate Pr (k = 12 | n = 20,Mf ) =
(

n
k

)
1
2

n ≈ 0.12 and

Pr(k = 12|n = 20,Mb) =
(

n
k

)
θ̂k(1 − θ̂)n−k ≈ 0.18, where θ̂ = k/n is the maximum

likelihood estimate. The difference between 0.12 and 0.18 is log(0.18
0.12

)≈ 0.403.

An examination of the discrete distributions of log differences revealed that the
observed difference of approximately 0.403 is more likely to occur under Mf than it
is under Mb. Specifically, the difference of approximately 0.403 is observed with a
probability of 0.24 under Mf , and 0.10 under Mb. It is tempting to conclude that
the data are 2.4 times more likely under Mf than they are under Mb. Note the
quantitative correspondence to the Bayes factor conclusion that the data are about
two-and-a-half times more likely under the fair coin model than under the biased coin
model.

It is not always the case, however, that the Bayes factor analysis and the model
mimicry analysis produce almost exactly the same answer. For instance, J. I. Myung,
Pitt, and Navarro (in press) have shown that adding parameters may substantially
increase a model’s complexity (as indicated by MDL or Bayes factor methods) but
does not necessarily increase a model’s ability to mimic a competing model. The
advantages of the model mimicry method are clear: it is easy to apply to complex
models and it yields an intuitive measure for the capacity of models to mimic each
other. It also can be used to optimize the goal of the selection of the actual generat-
ing model, although it could be argued that this goal does not penalize complexity
sufficiently. Also, the method can be used to determine how many experimental trials
are necessary to distinguish two models. The model mimicry method is still relatively
unexplored. Future work will have to study more carefully the extent to which the
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mimicry method is related to other model selection procedures.

Practical Validation Approaches

The philosophy that underlies validation methods is the same as the one that un-
derlies the prequential method: The preferred model class is the one whose (weighted)
parameterized models best predict unseen data from the same source. In usual ap-
proaches the best parameterized model in the class is used for prediction, but it is
also possible to predict by weighting the predictions of all parameterized models in
the class. In these approaches the models are fitted to one part of the data—the
“calibration” or training set—and their predictive performance is assessed for the
remaining part of the data—the “validation” or test set.

Although validation methods divide the observed data in a training set and a
test set, there are many ways in which this can be done. This is illustrated by a
summary of the most popular methods.1

1. Split-sample or hold-out method. This method is often used to assess predic-
tive performance of neural networks. In the split–sample method, only one part of
the data is ever used for fitting (i.e., the training set and the test set do not change
roles), and this leads to results with a relatively high variance.

2. Split–half cross–validation. In split-half cross-validation, the first half of the
data forms the training set and the second half of the data forms the test set. After
the prediction error for the test set has been assessed, the same procedure is repeated,
but now the second half of the data forms the training set and the first half of the
data forms the test set (i.e., training and test set “cross”). The overall prediction
error is the average of the prediction error on the two test sets. Note that each time
the model is fitted to only 50% of the data – a procedure that yields relatively large
prediction errors.

3. Leave–one–out cross–validation.— In leave-one-out cross-validation, a data
set of n observations is repeatedly split into a training set of size n − 1 and a test
set of size 1. The overall prediction error is given by the average prediction error for
the n test sets (Browne, 2000; Stone, 1974). The computational advantage of this
procedure is that it only requires a sequence of n model predictions.

4. K–fold cross–validation. In K-fold cross-validation, the data are split in K
blocks, and one of those blocks is successively selected to be the test set (i.e., the
training set is always K − 1 blocks large). The overall prediction error is the average
of the prediction error on the K test sets. The problem with this method is that
different choices of K may lead to different results.

5. Delete–d cross–validation. This method is the same as K-fold cross-
validation, except that the test blocks consist of every subset of d observations from
the data. As with K–fold cross–validation, different choices of d may lead to different
results.

1This summary is based in part on http://www.faqs.org/faqs/ai-faq/neural-nets/part3/
section-12.html, a neural net FAQ maintained by Warren S. Sarle.
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6. Bootstrap model selection. The bootstrap method (e.g., Efron & Tibshirani,
1993) is usually applied to obtain standard errors for parameter estimates. The boot-
strap procedure works by resampling the observed data (with replacement) in order
to use the variability in the observed data as a plug-in estimate for the variability
in the population. The bootstrap method can, however, also be applied to smooth
the results obtained by cross-validation. In particular, the so-called .632+ bootstrap
procedure has been shown to improve on cross–validation in a number of problems
(Efron & Tibshirani, 1997). Because the bootstrap resamples are supported by ap-
proximately 63.2% of the original sample points, results from the .632+ bootstrap
method generally correspond closely to those from split-half cross-validation.

Model selection by validation has a number of clear advantages. Validation
methods are data-driven, and replace complicated mathematical analysis by raw com-
puting power (Efron & Gong, 1983). Validation methods are relatively easy to imple-
ment, and they can be applied to complicated models without much thought. Despite
the intuitive and practical appeal of validation, the many variants of the method show
there are open questions about the best implementation. In particular the balance
point between training data and test data remains an open question. Relatively large
training sets lead to overfitting, but relatively small training sets lead to underfitting.
Further, as the number of observations increases, most cross-validation methods will
start to prefer models that are overly complex (i.e., the methods are not consistent;
for a discussion see Shao, 1993; Stone, 1977). These problems of choice and consis-
tency go back to the fact that cross-validation does not make explicit its underlying
assumptions. These considerations negate some of the appeal of the validation meth-
ods.

We illustrate both leave-one-out cross-validation and split-half validation by
revisiting the example of a coin that comes up heads 12 out of 20 tosses. For the leave–
one–out method, the biased coin model Mb is fit to training sets of 19 observations,
and the maximum likelihood estimate θ̂ is then used to determine the fit to the
remaining data point (i.e., the test set). The fair coin model Mf does not learn
from the training data, as it always predicts that heads will come up with probability
θ = 1

2
. The difference in goodness–of–fit between the models for the data from the test

set, Dv, is calculated by the ratio of the probabilities that the models assign to the
data: R = Pr(Dv|θ̂)/Pr(Dv |θ = 1

2
). For the leave-one-out method, this procedure

only needs to be repeated 20 times. Somewhat surprisingly, the leave-one-out method
prefers the biased coin model in 12 out of the 20 cases. The average value of R is 1,
indicating no preference for one or the other model.

For the split-half validation method, the data are divided in 10 observations
that form the training set, and 10 observations that form the test set. This procedure
was repeated 10,000 times for random permutations of the data. The assessment of
the ratio of probabilities R proceeds in the same way as it did for the leave-one-out
model. In 34% of cases, the split–half method preferred the biased coin model Hb,
in 42% of cases it preferred the fair coin model Hf , and in 24% of cases their was an
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exact tie (a tie occurs when the biased coin model has θ̂ = 1
2
). The average value of

R is about 0.80, indicating a preference for the fair coin model. In sum, the results
show that leave-one-out cross-validation has a slight preference for the biased coin
model, whereas the split-half procedure prefers the fair coin model.

When carrying out simulations, it is possible to explore predictive validation as
a model selection criterion in a way that eliminates many of the problems that arise
in practice, because one knows the ‘true’ model and its generating parameter values.
Thus for a given data set one can estimate parameters for the models in contention,
and then determine how well those estimated parameters predict the (infinite) data
distributions produced by the true model with its true generating parameters. The
model that on the average does the best job of predicting the true distribution of
future data is to be preferred. In one sense, this simulation method can be used to
compare and contrast different model selection methods. For an example, see Cohen
et al. (in press).

The Generalization Criterion Method. The goal of the generalization criterion
method (Busemeyer & Wang, 2000) is to quantify model adequacy by assessing pre-
dictive performance. As in cross–validation, the observed data are divided in two sets:
a calibration or training set to estimate the model parameters, and a validation or
test set to assess predictive performance. The crucial difference with cross–validation
is that in the generalization criterion method, the training set and the test set do not
overlap in terms of experimental design. For instance, Ahn, Busemeyer, Wagenmak-
ers, and Stout (2008, this volume) compared several models of reinforcement learning
by fitting them to one experiment (e.g., the Iowa gambling task; Bechara, Damasio,
Damasio, & Anderson, 1994), and evaluating them on a different experiment (e.g.,
the Soochow gambling task; Chiu et al., 2005).

Thus, in the generalization criterion method, parameters are fit to different con-
ditions than those that are used to evaluate predictive performance. This way, the
model comparisons “are based on a priori predictions concerning new experimental
conditions. Essentially, this tests the models ability to accurately interpolate and
extrapolate, which is one of the major goals of a general scientific theory.” (Buse-
meyer & Wang, 2000, p. 179). In contrast to cross–validation, the generalization
criterion method does not necessarily favor complex models over simple models when
the sample size grows large.

Worked Hierarchical Bayesian Examples

All of the approaches to model evaluation we have reviewed have important lim-
itations in their ability to address the basic goals of modeling—achieving descriptive
adequacy, enhancing explanation through inference about parameters, making predic-
tions and generalizations, and furthering theoretical development—that we identified
at the outset. A theoretical Bayes Factor, MDL or predictive measure, or a validation
or generalization test result provide useful information about which of a number of
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competing models has better performance. These measures will usually give some
indication of likely parameter values, and give a basis for inferring which model will
predict future data better. But they do not give a full account of how and why the
models succeed and fail to various degrees, and provide little direct information to
drive subsequent theorizing.

Hierarchical Methods

We believe hierarchical methods in general, and hierarchical Bayesian meth-
ods in particular, represent an approach to model development and evaluation in
the cognitive sciences that address many of these concerns. Hierarchical Bayesian
methods are standard and powerful ways of analyzing models and drawing inferences
about parameters from data, and are widely used in statistics, machine learning, and
throughout the empirical sciences. The hierarchical Bayesian approach employs the
basic machinery of Bayesian statistical inference, with all the advantages it entails
(e.g., Jaynes, 2003; Sivia, 1996), but is designed to work with richly structured hier-
archical models. Introductions to hierarchical Bayesian methods can be gained from
textbook accounts in statistics and machine learning (e.g., Gelman, Carlin, Stern,
& Rubin, 2004; MacKay, 2003), or from recent expositions aimed at psychologists
(e.g., Griffiths, Kemp, & Tenenbaum, in press; Lee, 2008). We do not, of course,
claim this approach is a final solution, or the only sensible approach. But it has a
number of important and useful features, including the ability to check descriptive
adequacy, allow inferences about parameters, make predictions and generalizations,
compare models, and suggest modeling extensions and refinements, that we hope to
make clear.

We emphasize that hierarchical models should not be confused with models hav-
ing a tree structure, such as a neural net with a hidden layer. For present purposes
we may define hierarchical models as models in which some parameters are partly
determined (e.g., chosen from distributions defined by) other parameters. The de-
termining parameters are typically termed hyperparameters. As a concrete example,
consider modeling data from several subjects. Each subject is assumed to produce
data according to the same class of model, but with different parameter values. In a
hierarchical model one might assume that the parameters for each subject are chosen
from a normal distribution with mean and variance parameters, and the mean and
variance would be the hyperparameters. As usual one would determine the likelihood
of the observed data for all subjects for each combination of the two hyperparam-
eters, and each choice of individual parameters. In this example we see the usual
tension between fitting each subject as well as possible (optimal choice of individ-
ual parameters) and fitting the group as a whole (by choosing a small variance for
the Gaussian hyperparameter). This tension results in a movement of the individual
parameters toward the group mean, a desirable characteristic given that we do not
desire to overfit the data, and fit the noise in each individual’s data.
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Our Two Examples

Our examples present generative models for a cognitive task. Such models
describe how the theory, with its probabilities and parameters, produce the observed
data. For a given model class, and a given set of parameters, the observed data is
produced with a specifiable and derivable probability. Of course some parameters give
rise to higher probabilities than others. If our model is ‘heads occur with probability θ’
and we observe 20 heads in 25 coin flips, a θ of 0.8 (say) gives rise to a high probability
of the observed outcome, and a θ of 0.2 (say) gives rise to a low probability of the
outcome. The general Bayesian approach is to convert these differing probabilities into
degrees of plausbility or belief for the θ values, based on both the probabilities assigned
to the observed data by the different θ values, and also their prior probabilities.

It is becoming common to represent probabilistic generative models as graphical
models (for introductions, see Jordan, 2004; Griffiths et al., in press; Lee, 2008). We
believe these conventions are quite useful, and deserve to be seen and understood by
members of our field. Hence we present our models using these descriptive formalisms,
and try to induce understanding by showing how the example models are represented
in this format.

Example One: Memory Retention

Finding a lawful relationship between memory retention and time is about the
oldest cognitive modeling question, going back to Ebbinghaus in the 1880s. The usual
experiment involves given people (or animals) many items of information on a list,
and then testing their ability to remember items from the list after different periods of
time have elapsed. Various mathematical functions, usually with psychological inter-
pretations, have been proposed as describing the relationship between time and the
level of retention. These include models like exponential decay, power, and hyperbolic
functions (Rubin & Wenzel, 1996; Rubin, Hinton, & Wenzel, 1999).

Our case study relies on a simplified version of the exponential decay model. The
model assumes that the probability an item will be remembered after a period of time
t has elapsed is θt = exp (−αt)+β, with the restriction 0 < θt < 1. The α parameter
corresponds to the rate of decay of information. The β parameter corresponds to a
baseline level of remembering that is assumed to remain even after very long time
periods. This model may or may not be regarded as a serious theoretical contender in
the memory retention modeling literature, but is useful for simulation and illustrative
purposes. Our analyses are based on fictitious data from a potential memory retention
study.

Our fictitious data are given in Table 1, and relate to 4 subjects tested on 18
items at 10 time intervals: 1, 2, 4, 7, 12, 21, 35, 59, 99, and 200 seconds. The number
of items tested and the first 9 time intervals are those used by Rubin et al. (1999), in
an attempt to consider data that realistically could be measured in a psychological
experiment. Each datum in Table 1 simply counts the number of correct memory
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Table 1: Fictitious memory retention data, giving the number out of 18 items correctly
recalled for 3 subjects over 9 time intervals, and including an extra retention interval of 200
secs and an extra subject as missing data.

Time Interval (secs)

Subject 1 2 4 7 12 21 35 59 99 200

1 18 18 16 13 9 6 4 4 4 –
2 17 13 9 6 4 4 4 4 4 –
3 14 10 6 4 4 4 4 4 4 –
4 – – – – – – – – – –

recalls for each subject at each time interval. Included in Table 1 are missing data,
shown by ‘–’ symbols, so that we can test the prediction and generalization properties
of models. All of the subjects have missing data for the final time period of 200
seconds, so we can test the ability of the model to generalize to new measurements.
For Subject 4, there are no data at all, so we can test the ability of models to generalize
to new subjects.

No Individual Differences

Graphical Model. The graphical model for our first attempt to account for the
data is shown in Figure 1. In the gaphical model, nodes represent variables of inter-
est, and the graph structure is used to indicate dependencies between the variables,
with children depending on their parents. We use the conventions of representing
continuous variables with circular nodes and discrete variables with square nodes,
and unobserved variables without shading and observed variables with shading. For
unobserved variables, we distinguish between stochastic variables with single borders
and deterministic variables with double borders. We also use plate notation, enclos-
ing with square boundaries subsets of the graph that have independent replications
in the model.

The model in Figure 1 assumes is that every subject has the same retention
curve, and so there is one true value for the α and β parameters. The outer plate
with j = 1, . . . , T corresponds to the T = 10 different time periods, whose values
are given by the observed tj variable. Together with the α and β parameters, these
time periods define the probability and item with be remembered. The probability
of remembering for the jth time period is the deterministic θj node.

The inner plate with i = 1, . . . , N corresponds to the N = 4 subjects. Each
has the same probability of recall at any given time period, but their experimental
data, given by the success counts kij and (potentially) the number of trials nij vary,
and so are inside the plate. For the data in Table 1, the kij data are the counts of
remembered items, and nij = 18. because 18 items were presented for every subject
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tj θj

kij

nij

α β

α ∼ Uniform(0, 1)

β ∼ Uniform(0, 1)

θj = exp (−αtj) + β 0 < θj < 1

kij ∼ Binomial(θj, nij)

i = 1, . . . , N

j = 1, . . . , T

Figure 1. Graphical model for the exponential decay model of memory retention, assuming
no individual differences.

at every time interval. The success counts are Binomially distributed according to
the success rate and number of trials.

Inference Via Posterior Sampling. The graphical model in Figure 1 defines a
complete probabilistic relationship between the model parameters and the observed
data. The graphical model is a generative one, specifying how an α rate of decay
rate and a β level of permanent retention combine to produce observed retention
performance. Once the data in Table 1 are observed, each set of parameter values
assigns a probability to that dta set, and Bayesian inference allows us to reverse
the generative process and assign probabilities to the various parameter sets. The
posterior probability distribution represents this information, specifying the relative
probability of each possible combination of α and β being the ones that generated
the data.

Modern Bayesian inference approximates the posterior distribution by drawing
samples using computational methods. Throughout this case study, we implement
the graphical models using WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000),
which uses a range of Markov Chain Monte Carlo computational methods, including
adaptive rejection sampling, splice sampling, and Metropolis-Hastings (see, for exam-
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Figure 2. The joint posterior over the decay and permanent retention parameters α and
β, for the model that assumes no individual differences.

ple Chen, Shao, & Ibrahim, 2000; Gilks, Richardson, & Spiegelhalter, 1996; MacKay,
2003) to perform posterior sampling. The basic idea is that, over a large number
of samples, the relative frequency of a particular combination of parameter values
appearing corresponds to the relative probability of those values in the posterior dis-
tribution. This correspondence allows the information that is conceptually in the
exact joint posterior distribution to be accessed approximately by simple computa-
tions across the posterior samples. For example, a histogram of the sampled values
of a variable approximates its marginal posterior distribution, and the arithmetic
average over these values approximates its expected posterior value.

Results. We evaluated the retention model in Figure 1 using the data in Table 1,
by drawing 105 posterior samples after a ‘burn-in’ period (i.e., a set of samples that
are not recorded, so that the sampling algorithms can adapt) of 103 samples. The
joint posterior distribution over α and β is shown in the main panel of Figure 2, as a
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Figure 3. The posterior predictive for the model that assumes no individual differences,
against data from the four subjects.

two-dimensional scatterplot. Each of the 50 points in the scatterplot corresponds to
a posterior sample selected at random from the 105 available. The marginal distri-
butions of both α and β are shown below and to the right, and are based on all 105

samples. The marginals show the distribution of each parameter, conditioned on the
data, considered independently (i.e., averaged across) the other parameter.

It is clear from Figure 2 that the joint posterior carries more information than
the two marginal distributions. If the joint posterior were independent, it would be
just the product of the two marginals, and carry no extra information. But the joint
posterior shows a mild relationship, with larger values of α generally corresponding to
larger values of β. This can be interpreted psychologically as meaning the relatively
higher baselines are needed to model the data if relatively greater rates of decay are
used.
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Figure 3 shows the posterior predictive distribution over the number of success-
ful retentions at each time interval. The posterior predictive is the prediction about
observed data for each possible combination of parameter values under the model,
weighting according to the posterior probability of each combination (as represented
in Figure 2). For each subject, at each interval, the squares show the posterior mass
given to each possible number of items recalled. These correspond to the models
predictions about observed behavior in the retention experiment, based on what the
model has learned from the data. Also shown, by the black squares and connecting
lines, are the actual observed data for each subject, where available.

It is important to understand that the predictions shown are not generated for
each time lag independently. Rather, for each sampled posterior parameter value we
generate predictions for all time points, and this procedure is repeated to produce
the observed predictions. This is the same generative procedure used to determine
the likelihood of the observed data in the process of determining the posterior for the
model parameters.

The obvious feature of Figure 3 is that the current model does not meet a basic
requirement of descriptive adequacy. For both Subjects 1 and 3 the model gives little
posterior probability to the observed data at many time periods. It predicts a steeper
rate of decay than shown by the data of Subject 1, and a shallower rate of decay than
shown by the data of Subject 3. Evaluating the model using the posterior predictive
analysis, we conclude the assumption that there are no individual differences is inap-
propriate, and needs to be relaxed in subsequent model development. It is important
to understand that this conclusion negates the usefulness of the posterior distribution
over parameters, as shown in Figure 2. This posterior distribution is conditioned on
the assumption that the model is appropriate, and is not relevant when our conclusion
is that the model is fundamentally deficient.

Full Individual Differences

A revised graphical model that does accommodate individual differences is
shown in Figure 4. The change from the previous model is that every subject now
has their own αi and βi parameters, and that the probability of retention for an item
θij now changes for both subjects and retention intervals.

Once again, we evaluated the model by drawing 105 posterior samples after a
burn-in period of 103 samples. The joint posterior distributions for each subject are
shown in the main panel of Figure 5. Each point the scatterplot corresponds to a
posterior sample, with different markers representing different subjects. The first,
second, third and fourth subjects use ‘+’, ‘?’, ‘x‘ and ‘o’ markers, respectively. The
marginal distributions are shown below and to the right, and use different line styles
to represent the subjects.

Figure 6 shows the same analysis of the posterior predictive distribution over the
number of successful retentions at each time interval, for each subject. It is clear that
allowing for individual differences lets the model achieves a basic level of descriptive

21



tj θij

kij

nij

αi βi

αi ∼ Uniform(0, 1)

βi ∼ Uniform(0, 1)

θij = exp (−αitj) + βi 0 < θj < 1

kij ∼ Binomial(θij, nij)

i = 1, . . . , N

j = 1, . . . , T

Figure 4. Graphical model for the exponential decay model of memory retention, assuming
full individual differences.

adequacy for Subjects 1 and 3. The posteriors in Figure 5 show that different values
for the α decay parameter are used for Subject 1, 2, and 3, corresponding to our
intuitions from the earlier analysis.

The weakness in the current model is evident in its predictions for Subject 4.
Because each subject is assumed to have decay and permanent retention parameters
that are different, the only information the model has about the new subject are the
priors for the α and β parameters. The relationships between parameters for subjects
that are visually evident in Figure 5 are not formally captured by the model. This
means, as shown in Figure 5, the posteriors for Subject 4 are just the priors, and so
the posterior predictive does not have any useful structure. In this way, the current
model fails a basic test of generalizability, since it does not make sensible predictions
for the behavior of future subjects.

Intuitively one might want to predict that Subject 4 will be likely to have
model parameters represented by some sort of average of Subjects 1 to 3. Carrying
this intuition a bit further, one might also want Subjects 1 to 3 to have their highest
likelihood parameters closer to their group mean than is the case when choosing
individual parameters independently. These intuitions are captured formally in the
hierarchical model we turn to next.
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Figure 5. The posterior predictive for the model that assumes no individual differences,
against data from the four subjects.

Structured Individual Differences

The relationship between the parameters of structures is naturally addressed
in a hierarchical model, which is able to represent knowledge at different levels of
abstraction in a cognitive model. Just as the data have been assumed to be generated
by the latent decay and permanent retention parameters for individual subjects, we
now assume that those parameters themselves are generated by more abstract latent
parameters that describe group distributions across subjects.

The specific graphical model we used to implement this idea is in Figure 7.
The key change is that now we are modeling the variation in the different αi and βi

parameters for each subject, by assuming they have a Gaussian distribution across
subjects. This means that the αi and βi parameters are now sampled from over-
arching Gaussian distributions, themselves with unknown parameters in the form of
means µα and µβ and precisions λα and λβ.
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Figure 6. Analysis of the posterior predictive for the model that assumes full individual
differences, against data from the four subjects.

Because they are now sampled, the α memory decay and βi permanent reten-
tion parameters no longer have priors explicitly specified, but inherit them from the
priors on the means and precisions of the Gaussian distributions. It is important to
understand this means inferences made for one subject influence predictions made
for another. Since the means and precisions of the group-level distributions are com-
mon to all subjects, what is learned about them from one subject affects what is
known about another. It is in this way the hierarchical model formally represents the
relationships between subjects.

Once again, we evaluated the model by drawing 105 posterior samples after a
burn-in’ period of 103 samples. The joint and marginal posterior distributions for this
model are shown in Figure 8 are shown using the same markers and lines as before.
For Subjects 1, 2, and 3, these distributions are extremely similar to those found
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tj θij

kij

nij

αi βi

µαλα µβ λβ

µα ∼ Uniform(0, 1)

λα ∼ Gamma(.001, .001)

µβ ∼ Uniform(0, 1)

λβ ∼ Gamma(.001, .001)

αi ∼ Gaussian(µα, λα) 0 < αi < 1

βi ∼ Gaussian(µβ, λβ) 0 < βi < 1

θij = exp (−αitj) + βi 0 < θij < 1

kij ∼ Binomial(θij, nij)

i = 1, . . . , N

j = 1, . . . , T

Figure 7. The joint posterior for the model that assumes full individual differences, against
data from the four subjects.

using the full individual differences model. The important difference is for Subject
4, who now has sensible posterior distributions for both parameters. For the decay
parameter α there is still considerable uncertainty, consistent with the range of values
seen for the first three subjects, but for the permanent retention parameter β, Subject
4 now has a much more constrained posterior.

The posterior predictive distributions for each subject under the hierarchical
model are shown in Figure 9. The predictions remain useful for the first three subjects,
and are now also appropriate for Subject 4. This effective prediction for a subject
from whom no data have yet been collected arises directly from the nature of the
hierarchical model. Based on the data from Subjects 1, 2, and 3, inferences are made
about the means and precisions of the group distributions for the two parameters of
the retention model. The new Subject 4 has values sampled from the Gaussians with
these parameters, producing the sensible distributions in Figure 8 that lead to the
sensible predictions in Figure 9.
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Figure 8. The joint posterior for the model that assumes full individual differences, against
data from the four subjects.

Comparing Models

At this point, we have developed a model that seems to describe adequately
the observed retention data, makes sensible predictions about a future time interval
for which no data have been collected, and generalizes reasonably to a new subject
for whom no data have been collected. A useful question to ask is whether the same
properties could be achieved with a simpler version of the model. Visual examination
of the marginal distribution of the permanent retention parameter β for each subject
in Figures 5 and 8 suggests that there might not be individual differences for this
aspect of retention. This observation could also be supported by examination of the
marginal posterior for the precision λβ, which we have not shown.

The obvious possibility for a simpler model, then, is one that assumes a single
β parameter for all subjects, but retains the full hierarchical account for the α decay
parameter. It is straightforward to formulate the corresponding graphical model, and
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Figure 9. Analysis of the posterior predictive for the model that assumes full individual
differences, against data from the four subjects.

its parameter estimation and prediction properties are indeed extremely similar to
the hierarchical model in Figure 7. Our analysis here seeks to evaluate formally the
simpler model against the more complicated one from which it was developed.

To do the evaluation, we use the graphical model in Figure 10 as a means
of calculating the Bayes Factor. The graphical model represents the full hierarchical
model on the left as Model ‘A’, and the simplified version with the single β parameter
on the right as Model ‘B’. These two models independently generate their predicted
retention rates θA

ij and θB
ij for each subject at each time interval. Which of these is

used to model the observed data is determined by the latent binary variable z. When
z = 0 the retention rate of the simpler model is used, but when z = 1 the rate of the
full model is used.

The posterior sampling of z, counting the proportion of times it is 0 and 1,
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ij if z = 1

kij ∼ Binomial(θij, nij)
j = 1, . . . , T

i = 1, . . . , N

Figure 10. Graphical model for comparing a full hierarchical model of retention (Model ‘A’
on the left) to a simpler version that assumes no individual differences in the β parameter
(Model ‘B’ on the right) using a latent model indicator variable z to move between the
models.

then amounts to an evaluation of the relative usefulness of each model. By setting
a Bernoulli (1/2) prior on z, its posterior mean z̄ estimates the Bayes Factors as
z̄/ (1 − z̄).2

We evaluated the Bayes Factor using the graphical model in Figure 10, and
drawing 105 posterior samples after a burn-in period of 103 samples for four indepen-
dent chains (i.e., separate runs of the sampling algorithm, with two initialized with
z = 0 and the other two initialized with z = 1). We observed that the four chains
converged to give the mean z̄ = 0.998, corresponding to a Bayes Factor of about 900
in favor of the simpler model. As mentioned earlier, because probabilities and odds
lie on a meaningful scale calibrated by betting, this Bayes Factor can be interpreted
in the context of the research question it addresses. Our conclusion would be that,
given the assumptions made about prior distributions, there is strong evidence that
the permanent retention level does not differ across subjects, and the simpler model
is the better one.

2Technically, our approach could be regarded as a variant of the Carlin and Chib (1995) product
space method, which requires specifying ‘pseudo-priors’ through which the parameters of the model
not being indexed by the indicator variable are updated. For conceptual simplicity, these pseudo-
priors were not included in the graphical model (i.e., we view them as part of the sampling method,
rather than as part of the substantive probabilistic model).
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We do acknowledge, however, that our prior assumption about the variance of
the group distribution in λβ was a vague one, making Model ‘A’ more complicated
than might be appropriate. In a real application, with real data, it would be important
to check the sensitivity of the Bayes Factor to the exact form on knowledge that is
represented by this prior. We do not view this prior sensitivity as an inherent flaw
for Bayes Factors. It is sensible and necessary that our model evaluation conclusions
should change when we have different information. But, when it is difficult to be
quantitatively precise about that information, some form of sensitivity analysis should
be done.

Example Two: The SIMPLE Model

In this example, we move beyond toy models and fabricated data, and con-
sider a recently proposed model of memory and seminal data. Brown, Neath, and
Chater (2007) proposed a temporal ratio model of memory called SIMPLE. The model
assumes memories are encoding with a temporal component, but that the representa-
tions are logarithmically compressed, so that more distant memories are more similar.
The model also assumes distinctiveness play a central role in performance on mem-
ory tasks, and that interference rather than decay is responsible for forgetting. And,
perhaps most importantly, SIMPLE assumes the same memory processes operate at
all time scales, unlike theories and models that assume different short- and long-term
memory mechanisms.

Brown et al. (2007) evaluate SIMPLE on a wide range of memory tasks, fitting
the model to many classic data sets from the memory literature. All of the parameter
fitting is based on minimizing a sum-squared error criterion, producing point param-
eter estimates, and goodness-of-fit is primarily assessed using R2 variance explained
measures. While this approach provides a useful first look at how the model relates
to data, it allows only limited exploration of what the model tells us about human
memory.

Brown et al. (2007, p. 545) seem aware of these limitations, saying “We re-
port R2 values as a measure of fit despite the problems with the measure; direct
log-likelihood calculations and model comparison are infeasible in most cases.” It is
probably worth pointing out the claim about infeasibility of direct log-likelihood cal-
culations is technically inaccurate. The sum-squared error criterion used corresponds
exactly to a log-likelihood if the data are assumed to be drawn from Gaussian distri-
butions with common variance (see I. J. Myung, 2003, for a tutorial). In this sense,
the analyses reported by Brown et al. (2007) already incorporate direct log-likelihood
calculations, although with an unusual choice of likelihood function. The current (im-
plied) Gaussian choice assumes, among other things, that a 0.99 probability of recall
is as variable as a 0.50 probability, and allows for the possibility of recall probabilities
less than 0 and greater than 1. A more natural choice of likelihood function, which
we will adopt, is a Binomial that relates the ki times the ith item was recalled in the
n total trials across all subjects to a θi probability of recall.
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More importantly, it is not difficult to implement fully Bayesian analyses of
the SIMPLE model. Our goal in this example is to show how the straightforward
application of hierarchical Bayesian analysis permits stronger evaluation, and deeper
exploration of the model.

Bayesian Analysis of SIMPLE

We focus our demonstration on the first application considered by Brown et
al. (2007), which involves seminal immediate free recall data reported by Murdock
(1962). The data give the proportion of words correctly recalled averaged across
participants, for lists of 10, 15, and 20 words presented at a rate of 1 s per word, and
lists of 20, 30 and 40 words presented at a rate of 2 s per word.

Brown et al. (2007) make some reasonable assumptions about undocumented
aspects of the task (e.g., the mean time of recall from the end of list presentation), to
set the time, Ti between the learning and retrieval of the ith item. With these times
established, the application of the SIMPLE the free recall data involves five stages,
as conveniently described in Brown et al. (2007, Appendix).

First, the ith presented item, associated with time Ti, is represented in memory
using logarithmic compression, given by Mi = log Ti. Secondly, the similarity between
each pair of items is calculated as ηij = exp (−c |Mi −Mj |), where c is a parameter
measuring the “distinctiveness” of memory. Thirdly, the discriminability of each pair
of items is calculated as dij = ηij/

∑
k ηik. Fourthly, the retrieval probability of each

pair of items is calculated as rij = 1/ (1 + exp (−s (dij − t))), where t is a threshold
parameter and s is a threshold noise parameter. Finally the probability the ith item
in the presented sequence will be recalled is calculated as θi = min (1,

∑
k rik).

Graphical Model. These stages are implemented by the graphical model shown
in Figure 11, which makes it possible to subject SIMPLE to a fully Bayesian analysis.
The graphical model has nodes corresponding to the observed times between learning
and retrieval, Ti, and the observed number of correct responses ki for the ith item
and total trials n. The similarity (ηij), discriminability (dij), retrieval (rij) and free
recall probability (θi) nodes are deterministic, and simply link the times properties
of the items to their accuracy of recall according to the SIMPLE model and its three
parameters.

In Figure 11 the times, responses and free recall probabilities apply per item,
and so are enclosed in a plate replicating over items. The similarity, discriminability
and retrieval measures apply to pairs of variables, and so involve an additional plate
also replicating over items. We follow Brown et al. (2007) by fitting the c, t, and s
parameters independently for each condition. This means the entire graphical model
is also enclosed in a plate replicating over the x = 1, . . . , 6 conditions in the Murdock
(1962) data.

Results. Our results are based on 105 posterior samples, collected after a burn-in
of 105 samples, and using multiple chains to assess convergence. Figure 12 shows the
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Figure 11. Graphical model implementing the SIMPLE model of memory.

posterior prediction of the SIMPLE model for the six Murdock (1962) data sets. The
solid lines show the probability the item in each serial position was correctly recalled.
A total of 50 samples from the posterior predictive are shown for each serial position
as gray points, making a gray area that spans the range in which the model expects
the data to lie. It is clear that, consistent with the excellent R2 model fits reported
by Brown et al. (2007), the SIMPLE model accounts well for all of the serial position
curves.

Where the Bayesian approach significantly extends the original model fitting
is in understanding the inference made about the parameters. Figure 13 shows the
joint posterior parameter distribution as a three-dimensional plot, with 20 posterior
samples for each condition shown by different markers. Also shown, projected onto
the planes are the pairwise joint distributions of each possible combination of pa-
rameters (marginalized over the other parameter in each case). Finally, the marginal

31



0 10 20 30 40
0

0.2

0.4

0.6

0.8

1 10−2 

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1 15−2 

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1 20−2 

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1 20−1 

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1 30−1 

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1 40−1 

Serial Position

P
ro

ba
bi

lit
y 

C
or

re
ct

Figure 12. Posterior prediction of SIMPLE model for the six conditions of the Mur-
dock (1962) immediate free recall data. The solid lines show the data, and the gray areas
show 50 posterior predictive samples for the item at each serial position. The conditions are
labeled according to the number of items and the rate of presentation, so that, for example,
the ‘10-2’ condition had ten items presented at 1 s per item.
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Figure 13. Joint posterior parameter space for the SIMPLE model for the six conditions
of the Murdock (1962) immediate free recall data.

distributions for each parameter are shown along the three axes.

Figure 13 attempts to convey the detailed information about the distinctiveness,
threshold, and threshold noise parameters provided by the computational Bayesian
approach. The point estimates of the original analysis are now extended to include
information about variability and co-variation. This additional information is impor-
tant to understanding how parameters should be interpreted, and for suggesting model
development. For example, the lack of overlap of the three-dimensional points for the
six conditions suggests that there are important differences in model parameters for
different item list lengths and presentation rates. In particular, it seems unlikely that
an alternative approach to fitting the six conditions using a single discriminability
level and threshold function will be adequate.

Another intuition, this time coming from the two-dimensional joint posteriors is
that there is a trade-off between the threshold and threshold noise parameters, since
their joint distributions (shown by the points in the bottom plane) show a high level
of correlation for all of the conditions. This means that the data in each condition
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are consistent with relatively high thresholds and relatively low levels of threshold
noise, or with relatively low thresholds and relatively high levels of threshold noise.
This is probably not an ideal state of affairs: generally parameters are more easily
interpreted and theoretically compelling if they operate independently of each other.
In this way, the information in the joint parameter posterior suggests an area in which
the model might need further development or refinement.

As a final example of the information in the joint posterior, we note that the
marginal distributions for the threshold parameter shown in Figure 13 seem to show a
systematic relationship with item list length. In particular, the threshold decreases as
the item list length increases from 10 to 40, with overlap between the two conditions
with the most similar lengths (i.e., the ‘10-2’ and ‘15-2’ conditions, and the ‘20-2’ and
‘20-1’ conditions). This type of systematic relationship suggests that, rather than
treating the threshold as a free parameter, it can be modeled in terms of the known
item list length. We now consider how this idea can be implemented in a hierarchical
extension to the SIMPLE model.

A Hierarchical Bayesian Extension of SIMPLE

Graphical Model. Our hierarchical Bayesian extension of SIMPLE is represented
by the graphical model shown in Figure 14. There are two important changes from
the model that replicated the assumptions of Brown et al. (2007). First, the distinc-
tiveness (c) and threshold noise (s) parameters are now assumed to have the same
value for all experimental conditions. In Figure 14, their nodes are outside the plate
replicated over conditions, and they are no longer indexed by x. We do not believe
this is a theoretically realistic assumption (indeed, as we pointed out, the joint pos-
terior in Figure 13 argues against it), but it allows us to construct a tutorial example
to demonstrate our main point.

It is the second change that captures this main point, and corresponds to the
way the thresholds tx are determined. Rather than being assumed to be independent,
these threshold now depend on the item list length, denoted Wx for the xth condition,
via a linear regression function tx = a1Wx+a2 parameterized by the coefficients a1 and
a2. Consistent with the intuitions gained from Figure 13, we make the assumption
the linear relationship expresses a decrease in threshold as item list length increases,
by using the prior a1 ∼ Uniform(−1, 0).

The goal of our hierarchical extensions is to move away from thinking of param-
eters as psychological variables that vary independently for every possible immediate
serial recall task. Rather, we now conceive of the parameters as psychological vari-
ables that themselves now need explanation, and attempt to model how they change
in terms of more general parameters.

This approach not only forces theorizing and modeling to tackle new basic
questions about how serial recall processes work, but also facilitates evaluation of
the prediction and generalization capabilities of the basic model. By making the
threshold parameter depend on characteristics of the task (i.e., the number of words
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Figure 14. Graphical model implementing a hierarchical extension to the SIMPLE model
of memory.

in the list) in a systematic ways, and by treating the other parameters as invariant,
our hierarchical extension automatically allows SIMPLE to make predictions about
other tasks.

Results. To demonstrate these capabilities, we applied the hierarchical model
in Figure 14 to the Murdock (1962) conditions, and also to three other possible con-
ditions, for which data are not available. These generalization conditions all involve
presentations rates of 1 s per item, but with 10, 25, and 50 items, corresponding to
both interpolations and extrapolations relative to the collected data.

Our results are again based on 105 posterior samples from the graphical model,
collected after a burn-in of 105 samples, and using multiple chains to assess conver-
gence. The posterior predictive performance is shown in Figure 15. The top two rows
show the Murdock (1962) conditions, while the bottom row shows the predictions the
model makes about the generalization conditions.
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Figure 15. Posterior prediction of the hierarchical extension of the SIMPLE model for
the six conditions of the Murdock (1962) immediate free recall data, and in generalizing to
three new conditions. The solid lines show the data, and the gray areas show 50 posterior
predictive samples for the item at each serial position.

Figure 16 shows the modeling inferences about the distinctiveness, threshold
noise and threshold parameters. For the first two of these, the inferences take the
form of single posterior distributions. For the threshold parameter, however, the
posterior inference is now about its functional relationship to item list length. The
posterior distribution for this function is represented in Figure 16 by showing 50
posterior samples at each possible length W = 1, . . . , 50. These posterior samples
are found by taking joint posterior samples (a1, a2) and finding t = a1W + a2 for all
values of W .

We emphasize that the particular model being evaluated is not being proposed
as a useful or realistic one, but simply the demonstrate what hierarchical Bayesian
methods can provide for evaluating a cognitive process model like SIMPLE. In this
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Figure 16. Posterior parameter inference for the SIMPLE model parameters in its hierar-
chically extended form.

context, we emphasize that Figure 15 shows the descriptive adequacies and inade-
quacies of the hierarchical model in relation to the available data, and details its
prediction to new experimental situations for which data are not available. We also
emphasize that Figure 16 shows not only the posterior distribution of individual
parameters, but the posterior distribution over the functional relationship between
parameters and characteristics of the experimental task.

Discussion

In this paper, we have motivated the use of hierarchical Bayesian methods by
arguing they provide the sorts of inferential power and flexibility to evaluate and refine
cognitive models. We have tried to demonstrate this power and flexibility using two
worked examples, relying on graphical modeling and posterior sampling as a means
of specifying and doing inference with psychological models and data.

One possible practical objection is that it may require considerable intellectual
investment to master Bayesian methods, leaving a temptation to continue applying
traditional frequentist techniques. It is true that traditional frequentist statistical
approaches are commonly applied to hierarchical models. However, we think it is ex-
tremely difficult to make sure these traditional methods are adequately implemented,
and almost impossible to insure they reach the same standards as the Bayesian ap-
proach. Traditional approaches do not naturally represent uncertainty, automatically
control for model complexity, easily marginalize nuisance parameters, represent rel-
evant prior information, work in the same way for all sample sizes, or do a range of
other things needed to guarantee good inference. For some hierarchical models and
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data sets and analyses, it may be that these deficiencies do not affect the conclusions,
but there must always be the concern that one or more of them is causing a problem.
As argued by Dennis, Lee, and Kinnell (in press), remedying the inherent weakness
of traditional statistical methods requires ad hoc workarounds, which may have to
be tailored for each specific problem, and usually demand considerable statistical
sophistication. It is rare to see analyses in the cognitive modeling literature that cus-
tom build expectation-maximization algorithms for missing variable inference in each
modeling context, employ random effects to account for uncertainty and variability
throughout a model, use exact permutation test for small samples sizes, condition
satisfactorily on ancillary variables, incorporate relevant prior information in formal
ways, adjust significance depending on stopping rules, and so on. All of these dif-
ficulties in retaining traditional statistical methods stand in stark contrast to the
conceptual and practical simplicity of implementing the Bayesian approach. For this
reason, we believe the investment in learning Bayesian methods will be worthwhile
for any researcher interested in making complete, coherent and principled inferences
about their models and data.

In this context, our examples show advantages both of Bayesian analysis gener-
ally and hierarchical Bayesian analysis in particular, for the purposes of model eval-
uation and comparison. The information in posterior distributions over parameters,
and posterior predictive distributions over data, both provide very direct information
about how a model accounts for data, and allow strengths in a model to be identified
and weaknesses to be remedied. Allowing hierarchical development also means that
modeling can take place at different levels of psychological abstraction, so that both
the parameters controlling memory retention for individuals, and the parameters con-
trolling individual differences can be considered simultaneously. And we showed that
it is conceptually straightforward to test alternative models, using MCMC methods
that can provide measures like Bayes Factors.3

Although our examples considered relatively straightforward models, the hier-
archical Bayesian framework can in principle be applied to any model amenable to
probabilistic characterization. Lee (2008) presents a number of additional working
examples, including the multidimensional scaling model of stimulus representation,
the Generalized Context Model of category learning, and a signal detection theory
account of decision-making. Other excellent applications of hierarchical Bayesian
methods to cognitive science models are provided by Rouder and Lu (2005), Rouder,
Lu, Speckman, Sun, and Jiang (2005), and Rouder, Lu, Morey, Sun, and Speckman
(in press). Finally, Lee and Vanpaemel (in press, this volume) present an involved
category learning example, showing, among other things how hierarchical Bayesian
methods can be used to specify theoretically-based priors over competing models.

We see the hierarchical Bayesian framework as a powerful and general one for
developing, evaluating, and choosing between computational models of cognition.

3Although our Bayes Factor example was between nested models, there is no theoretical difficulty
in using the same approach to compare any classes of models.
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Of course, no method is perfect, and hierarchical Bayesian methods share with all
Bayesian methods the problem of finding suitably formal ways to convert all relevant
forms of prior knowledge into prior probability distributions for parameters. Also, the
computational demands in fully Bayesian analyses may mean they do not scale to the
most simulation-intensive cognitive models. However, we hope our examples make it
clear that hierarchical Bayesian methods can make a significant positive contribution
to the enterprise of model development and testing for many areas in cognitive science.

It is noteworthy that advances in the field have brought hierarchical modeling
within the reach of many researchers who produce models for data. For example, in
a recent article Cohen et al. (in press) examined model selection methods when there
are few data for individual subjects. They focused solely on two approaches: analyz-
ing subjects separately, and then combining the results, or analyzing grouped data
formed by combining the data from all subjects into a single pseudo-subject. They
pointed out the obvious advantages of using hierarchical approaches, but did not pur-
sue these partly on the basis that such approaches would be out of reach not only for
most non-modelers, but also most modelers. As illustrated in this article, the field is
advancing rapidly and with useful and sophisticated software like WinBUGS increas-
ingly available, we should see hierarchical Bayesian modeling increasingly considered
and used by modelers. We would be surprised if this approach does not become the
method of choice for years to come.

To sum up, the ability to evaluate whether a model is useful, and to choose
between numbers of competing models, is a basic requirement for progress in cog-
nitive science. In this review, we have tried to emphasize the multi-dimensional
nature of model evaluation and selection, arguing that good models should describe
data well, allow for inferences about psychologically meaningful variables, be able to
predict new data, and facilitate future empirical and theoretical progress. We have
reviewed a number of theoretical, simulation-based, and practical validation methods
for evaluation and selecting models, but highlighted their limitations in addressing
the general question of mode evaluation. We think that a practical and useful al-
ternative involves hierarchical Bayesian methods. We have tried to demonstrate in
worked examples that these methods offer very general and powerful capabilities for
developing, evaluating, and choosing between models of cognition.
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