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Abstract
The Bayes Factor is an averaged likelihood ratio for evaluating models using
data. It automatically balances goodness-of-fit with complexity, and is
among the most important and widely-used measures in Bayesian statistics.
We argue that Bayes Factors are useful measures for the quantitative
evaluation of statistical hypotheses and specific models in psychology, but
have been under-used because they are often difficult to compute. We
develop a largely automated method for estimating Bayes Factors based
on the pioneering work of Carlin and Chib (1995), and provide all of the
code needed for practical implementation. The method uses a conceptually
simple approach, and is applicable to a very general range of situations,
including the comparison of non-nested and hierarchical hypotheses and
models. We demonstrate our method in two illustrative examples, and
validate its accuracy where possible using an alternative method for
estimating Bayes Factors. We conclude with a discussion of the strengths
and limitations of our method, and argue it offers a relatively easy-to-use
and general capability for the quantitative evaluation of hypotheses and
models in psychology.

Keywords: Bayes factor, Bayesian statistics, graphical modeling, hi-
erarchical modeling, hypothesis testing, model selection.

Introduction

A key to progress in psychology is the ability to evaluate theoretical ideas quantitatively
against empirical observations. One common approach to quantitative evaluation involves
the statistical analysis of data, which relies on general statistical models. Another common
approach involves the evaluation of more specific psychological models, which provide detailed
accounts of people’s behavior in psychological tasks.
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In both situations, one of the most basic challenges for quantitative evaluation is to be
able to choose between competing models. For general statistical models, this comparison is
usually called hypothesis testing. For more specific psychological models it is often called model
selection. There are, of course, many formal and quantitative ways to compare and choose
between models using data. Frequentist hypothesis testing relies on p-values, confidence
intervals, and other devices developed within the sampling distribution statistical approach,
despite well-known and well-documented problems (see Wagenmakers, 2007, for a recent
overview focused on the issues as they are relevant to psychology). More recently, psychology
followed the lead of modern statistics, and other empirical sciences, in adopting Bayesian
methods to evaluate their models (e.g., Lee, 2008; Pitt, Myung, & Zhang, 2002; Shiffrin,
Lee, Kim, & Wagenmakers, 2008). The Bayesian approach has the advantages of being a
conceptually simple, theoretically coherent, and generally applicable way to make inferences
about models from data (see Lee & Wagenmakers, 2005).

In this paper, we focus on the most popular—but certainly not the only—Bayesian
method for choosing between competing models, known as the Bayes Factor (Jeffreys, 1961;
Kass & Raftery, 1995). Intuitively, Bayes Factors simply measure the relative level of evidence
data provide for one model over another, in the form of a likelihood ratio. Bayes Factors also
automatically account for formal aspects of model complexity, rewarding simple models and
penalizing complicated ones. This property is important to avoid choosing models that over-fit
data (Pitt et al., 2002).

The psychological literature has a number of recent examples of the Bayes Factor being
applied, including in general statistical settings (e.g., Hoijtink, 2001; Rouder, Speckman, Sun,
Morey, & Iverson, 2009; Wetzels, Raaijmakers, Jakab, & Wagenmakers, 2009), and to specific
psychological models (e.g., Gallistel, 2009; Kemp & Tenenbaum, 2008; Lee, 2002, 2004; Pitt et
al., 2002; Steyvers, Lee, & Wagenmakers, 2009), but it could hardly be described as a widely
used approach. There are a few possible reasons for the lack of application of Bayes Factors.
Most obviously, there is a strong temptation to stay with known methods for analyzing data
while they remain acceptable practice, whatever the limitations those methods impose or the
errors they make.

More interestingly, even among those who accept the need to use the Bayesian approach,
it is understood that it can be difficult to calculate Bayes Factors in practice. Sometimes,
easily calculated but theoretically limited approximations to the Bayes Factor, such as those
based on the Bayesian Information Criterion (BIC), have been used (e.g., Vickers, Lee, Dry,
& Hughes, 2003). But, more often, Bayesian statistical methods have focused on parameter
estimation rather than model selection. This has especially been the case when the models
themselves have been complicated enough—often taking the form of hierarchical models—to
warrant the use of modern computational approaches to Bayesian inference (e.g., Kuss, Jäkel,
& Wichmann, 2005; Lee, 2006, 2008; Rouder & Lu, 2005; Rouder, Lu, et al., 2007; Rouder,
Lu, Morey, Sun, & Speckman, 2008).

The aim of this paper is to develop and demonstrate a method for estimating Bayes
Factors using a computational approach, based on the pioneering work of Carlin and Chib
(1995). The method is general, in the sense that it can be applied to compare any models,
including hierarchical models, and to any model comparison, including between non-nested
models. We first provide a formal account of the Bayes Factor, and its estimation using the
method developed by Carlin and Chib (1995). We then extend their method, and provide an
easy-to-use and general implementation, which we demonstrate on two psychological exam-
ples. We conclude with a discussion of the strengths, weaknesses, and niche of application for
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our method.

Understanding and Estimating Bayes Factors

Understanding Bayes Factors

A Bayes Factor compares two probabilistic models, each of which may have some num-
ber of parameters. Parameters are variables that index the predictions a model can make. In
a general statistical model, a parameter might correspond to the size of the difference between
means in experimental groups, or the size of an interaction effect. In a more specific model,
a parameter might correspond to a psychological variable, like a learning rate, or a memory
capacity, or a response threshold, that is assumed to help control a psychological process.

The Bayes Factor compares two models by considering on average how well each can
fit the observed data, where the average is taken with respect to all of the possible values
of the parameters. It is this averaging that accounts for differences in model complexity,
because more complicated models (i.e., those that can fit many data patterns by changing
their parameter values) will have lower average levels of fit than simple models which can
only predict the observed data.

Formally, if Model A with parameters θa is being compared to Model B with parameters
θb using data D, the Bayes Factor is defined as

BAB =
p (D | MA)
p (D | MB)

=
∫

p (D | θa, MA) p (θa | MA) dθa∫
p (D | θb, MB) p (θb | MB) dθb

. (1)

Equation 1 shows that the Bayes Factor is the ratio of two likelihoods, p (D | MA) and
p (D | MB), representing how likely the data are under each model, and that these likelihoods
are found by averaging or marginalizing the likelihood across the prior parameter space for
each model. Intuitively, the Bayes Factor is the likelihood ratio for the two models, averaged
across all of the predictions they make. For the marginal likelihood to be high, a model must
not only be able to fit the observed data well, but also must not predict data different from
those observed.

The standard definition of the Bayes Factor in Equation 1 can be rewritten as

p(MA | D)
p(MB | D)

= BAB × p(MA)
p(MB)

, (2)

which can be read as: “Posterior model odds = BAB×Prior model odds.” This gives a second
interpretation of the Bayes Factor as the change in the model odds resulting from observing
data. That is, whatever the prior odds in favor of Model A, the Bayes Factor BAB is the
multiple that describes the increase or decrease in those odds following from the new evidence
provided by the data D.

Because Bayes Factors can be considered as likelihood ratios, it is easy to interpret
and calibrate them in the context of betting. Raftery (1995) proposed a useful interpretation
scheme for values of the Bayes factor, as presented in Table 1. This table includes a verbal
expression of the strength of evidence, and corresponding ranges for the Bayes Factor BAB

itself, for its logarithmic rescaling logBFAB , and for the posterior probability of Model A
Pr(MA | D), assuming equal prior probabilities for the models. Expressing Bayes Factors
on the logarithmic scale has the advantages of making zero the point of indifference between
the two models being compared (i.e., the point at which the Bayes Factor is 1, and the
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data provide no more evidence for one model than the other), and making equal increments
correspond to equal changes in the relative probabilities (i.e., logBFAB = +2 is the same
level of evidence in favor of Model A as logBFAB = −2 is in favor of model B). The posterior
probability is a convenient and easily interpreted value in cases where the two models being
compared are the only ones of theoretical interest.

Table 1: Interpretation for values of the Bayes factor, the logarithm of the Bayes Factor, and the
corresponding posterior model probability, according to Raftery (1995).

Interpretation BAB log(BAB) Pr(MA | D)
Very strong support for MB < .0067 < -5 < .01

Strong support for MB .0067 to .05 -5 to -3 .01 to .05
Positive support for MB .05 to .33 -3 to -1 .05 to .25

Weak support for MB .33 to 1 -1 to 0 .25 to .50
No support for either model 1 0 .50

Weak support for MA 1 to 3 0 to 1 .50 to .75
Positive support for MA 3 to 20 1 to 3 .75 to .95
Strong support for MA 20 to 150 3 to 5 .95 to .99

Very strong support for MA > 150 > 5 > .99

Estimating Bayes Factors

For all but the simplest models, the integrations required to calculate Bayes Factors
are analytically intractable. Accordingly, a large number of methods have been developed
to approximate Bayes Factors. The earliest methods focused on analytic approximations to
the required integration (see Kass & Raftery, 1995, for a review). Many of these approaches
continue to be refined (e.g., Myung, Balasubramanian, & Pitt, 2000), and remain useful and
applicable methods for many simple statistical and psychological models.

More recently, Bayes Factor estimation has been approached within a computational
sampling-based framework for inference, mirroring the shift in inferences about parameters
from analytic to computational methods. Within the computational framework, there are at
least two quite different approaches for estimating Bayes Factors. The first approach is based
on estimating the marginal model likelihoods for both models separately, as per Equation 1.
This approach includes methods such as prior simulation (Kass & Raftery, 1995), importance
sampling (DiCiccio, Kass, Raftery, & Wasserman, 1997; Geweke, 1989), candidate estimation
(Chib, 1995), and the Laplace (Tierney & Kadane, 1986), and Laplace-Metropolis methods
(Lewis & Raftery, 1997).

The second computational approach to Bayes Factor approximation is rooted in trans-
dimensional Markov Chain Monte Carlo (MCMC) methods. It involves estimating posterior
model odds for chosen prior model odds, as per Equation 2. Reversible jump MCMC (Green,
1995) is one widely used transdimensional MCMC method. A less widely used method is one
developed by Carlin and Chib (1995), known as the product space method. Both methods
are conceptually very simple, and rely on combining the two models to be compared within
one hierarchical “supermodel.”

Figure 1 presents the basic framework of this approach graphically. The hierarchical
combination of Model A and Model B is achieved using a single binary ‘model indicator’
variable M that controls which model generates the observed data D. The prior of the model
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Figure 1. The general framework for the transdimensional MCMC method of estimating Bayes
Factors. The two models to be compared—Model A and Model B—are hierarchically joined by a
model indicator variable M that controls which model generates the observed data D. The Bayes
Factor can then be estimated by comparing the prior and posterior distribution of the M .

indicator variable corresponds to the prior model odds, and is specified in defining the com-
bined hierarchical model. The posterior of the model indicator variable corresponds to the
posterior odds, and can be estimated by MCMC posterior sampling methods. Combining
these two odds (the first exact, the second estimated) according to Equation 2 then auto-
matically gives an estimate of the Bayes Factor. In the schematic demonstration in Figure 1,
for example, both models are equally likely in the prior, but Model B is about three times
more likely in the posterior. This change from prior to posterior odds corresponds to a Bayes
Factor of about 3.

An Implementation of the Product Space Method

The conceptual simplicity of the product space approach is unfortunately not matched
by a practical simplicity in its implementation. There are two important computational
issues—involving pseudopriors for parameters, and priors for models—that need to be ad-
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dressed before the product space approach provides a working estimation method for many
interesting statistical and psychological models. It is by addressing these two problems that
our approach extends and makes more accessible the pioneering work of Carlin and Chib
(1995).

Parameter Pseudopriors

The first problem our method addresses involves the “linking densities” or “pseudo-
priors” that have to be specified to guarantee continuous sampling for all parameters in the
supermodel. When the model indicator takes the value M = 0, and so Model A is being used
to model the data, posterior values are sampled for θa conditional on the data, as is normally
the case using MCMC. At the same time, however, values are drawn from the pseudoprior for
θb. That is, even though Model B is not being used to model the data for the current sample,
values for its parameters must be sampled, and this sampling is done from a pseudoprior
distribution. Similarly, for samples with M = 1, posterior values for θb are sampled according
to the data, and values are drawn from the pseudoprior of θa.

As Carlin and Chib (1995) note, for the entire product space approach to be efficient,
it is important to choose pseudopriors that approximate the true posterior distributions of
θa and θb. In previous practical implementations of the product space method, these choices
have been made using separate analyses of the individual models against the data (e.g., Carlin
& Chib, 1995; Spiegelhalter, Thomas, Best, & Gilks, 1996). For example, the pseudoprior of a
parameter might be assumed to have a Gaussian form, and then the mean and variance of the
Gaussian is estimated from the posterior of the parameter when only that model is applied
to data. This approach is sensible, but can be inefficient or problematic if good choices for
pseudopriors are not well described by the chosen distribution (e.g., if a pseudoprior should
be highly skewed, but a Gaussian form is assumed).

Our method solves this problem by approximating the pseudoprior distributions directly
using posterior sampling. We conduct independent inferences for each of the two models si-
multaneously with the estimation of the supermodel, and use the posterior samples of model
parameters from these independent runs as the required samples from the pseudopriors. This
direct computational approach avoids the need to choose a parametric distribution, and pro-
vides an efficient characterization of the pseudopriors.

Model Priors

The second problem our method addresses involves choosing the prior distribution on
the model indicator variable. The prior is a Bernoulli distribution, parameterized by the prior
probability π̂ that Model A is true. It is the choice of the probability π̂ that is important.
Ideally, for the efficiency of computational estimation, this prior should lead to both models
being considered equally often, so that the posterior probabilities for both models are 0.5.
A strong asymmetry in the proportion of times each model is considered (e.g., if one of the
models is considered on fewer than 10% of the samples) will result in poor estimation of
the parameters of that model. This failing, in turn, affects the quality of the Bayes Factor
estimate.

To address this problem, our method iteratively tunes the prior distribution on the
model indicator variable. A first Bayes Factor estimate B̂AB is obtained for some initial
choice of prior, usually given by the π̂ = 1/2. Then, given the goal of obtaining equal
posterior probabilities, the prior model probabilities can be updated according to π̂new =
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B̂AB/(1 + B̂AB). Our method repeats this updating as often as required for the posterior
probabilities to be approximately equal. As the prior is updated, the quality of B̂AB improves.

Implementation

Our method implements these extensions of the Carlin and Chib (1995) approach in
a unified and largely automated way within the widely used WinBUGS software (Lunn,
Thomas, Best, & Spiegelhalter, 2000; Lunn, Spiegelhalter, Thomas, & Best, in press). In this
way, our method potentially provides a general way of estimating Bayes Factors for the wide
array of statistical and psychological models that can be expressed as probabilistic graphical
models (e.g., Donkin, Averell, Brown, & Heathcote, in press; Kemp, Shafto, Berke, & Tenen-
baum, 2007; Lee, 2008; Lee & Wagenmakers, 2009; Shiffrin et al., 2008; Vandekerckhove,
Tuerlinckx, & Lee, 2008; Wetzels, Vandekerckhove, Tuerlinckx, & Wagenmakers, in press).
An online appendix that provides all of the technical details, together with WinBUGS and R
code, is available at http://sites.google.com/site/tomlodewyckx.

Two Illustrative Applications

We present two applications of the product space method for hypothesis testing in
the domain of subliminal priming (Rouder, Morey, Speckman, & Pratte, 2007; Zeelenberg,
Wagenmakers, & Raaijmakers, 2002). For each application, we first describe the research
question, experimental setup and data, and discuss the original statistical analyses. We then
show our method can estimate Bayes Factors for an appropriate hypothesis test or model
selection problem, to address the same research question.

Illustration 1: Is Priming Subliminal?

Research Question. In a standard subliminal priming task, the participant is presented
a prime stimulus for a very short time interval. The research question is whether and how some
characteristics of the prime influence subsequent behavior. It is often indirectly assumed that
the presentation time of the prime stimulus is so short that the participant does not perceive
stimuli consciously, implying that any influence on the overt behavior is due to unconscious
processes. However, it is not clear to what extent primes are perceived on a subliminal level,
or whether there are important individual differences.

Experimental Design and Data. Rouder, Morey, et al. (2007) conducted an experiment
to test the validity of the assumption of subliminality. The visually presented stimulus ma-
terial consisted of the numbers 2, 3, 4, 6, 7 and 8. In each trial, one of these numbers was
presented on the computer screen as a 22 ms prime stimulus, followed by a 66 ms mask and
another number as a 200 ms target stimulus. In the prime-identification task, the participant
had to indicate whether the prime stimulus in the current trial was higher or lower than 5.
The dependent measure was the accuracy of the answer, so that the experiment resulted in
K successes out of N trials. All 27 participants were presented 288 trials.1

The proportions of successes and a non-parametric density estimate of the proportions
are presented in Figure 2. Under the assumption of subliminal perception, a correct iden-
tification of the higher-than-five status of the prime stimulus is expected in about half of
the trials (i.e., “performance at chance”). Assuming supraliminal perception, performance is
expected to be better than chance level.

1For some of the participants, the data are incomplete such that N < 288.
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Figure 2. Proportions of successes for the 27 participants in the prime-identification task reported by
Rouder et al. (2007), marked as ticks on the horizontal axis. The curve is a non-parametric density
estimate of these proportions.

Previous Analysis. The “mass at chance model” (Rouder, Morey, et al., 2007) is an ad-
vanced model to analyze counts of successes in subliminal priming experiments. The essence
of the model is that a binomial rate parameter can be higher than 0.5, implying supralimi-
nality, whereas the value of 0.5 corresponds to subliminal perception, which is the theoretical
lower limit for that rate parameter. Therefore, the mass below the value of 0.5 is squeezed
to the value of 0.5. Using this model Rouder, Morey, et al. (2007) concluded that there was
evidence in favor of subliminal perception for only 3 of the 27 participants, with marginal
evidence for another 2 participants. For the remaining 22 participants, they concluded: “Al-
though many of these participants may be truly at chance, we do not have sufficient evidence
from the data to conclude this.”

Bayes Factor Analysis. One way to test the subliminality assumption is to find the
Bayes Factors comparing the supraliminal and subliminal models for each participant. Both
competing models are formally described in Figure 3, using the notation provided by graphi-
cal models. Graphical models are a standard language for representing probabilistic models,
widely used in statistics and machine learning (e.g., Gilks, Thomas, & Spiegelhalter, 1994;
Jordan, 2004; Koller, Friedman, Getoor, & Taskar, 2007), and recently finding some popular-
ity in psychological modeling (e.g., Kemp et al., 2007; Lee, 2008; Shiffrin et al., 2008).

The graphical model presented in Figure 3 uses the same notation as Lee (2008). Nodes
in the graph correspond to variables, and the graphical structure is used to indicate depen-
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i

Mi ∼ Bernoulli(π̂)

θA
i = Φ(φA

i )

θB
i = Φ(φB

i )

φA
i = 0

φB
i ∼ Normal(0,+∞)(0, 1)

Ki ∼
{

Binomial(θA
i , Ni) if Mi = 0

Binomial(θB
i , Ni) if Mi = 1

Figure 3. Graphical model for the individual participant Bayes Factor analysis of the Rouder et al.
(2007) data.

dencies between the variables, with children depending on their parents. Continuous variables
are represented with circular nodes and discrete variables with square nodes. Observed vari-
ables (i.e., usually data) are shaded and unobserved variables (i.e., usually model parameters)
are not shaded. Deterministic variables—that is, variables that are simply functions of other
nodes, and included for conceptual clarity—are shown as double-bordered nodes.

In Figure 3, Ki is the (observed, discrete) number of successes out of the (observed,
discrete) number of trials Ni for the ith participant. These data are modeled as following
a Binomial distribution, using either a rate parameter θA

i , generated according to Model A,
or a rate parameter θB

i , generated according to Model B. Which rate generates the data is
controled by the (unobserved, discrete) model indicator variable M .

The supraliminal and subliminal models correspond to different assumptions about the
prior distribution on the rate of success. These different priors are most easily expressed on a
reparameterization of θ, given by φ = Φ−1(θ). This is the probit transformation, or the inverse
cumulative standard normal distribution function. It is useful to model rate parameters this
way, because it facilitates the construction of priors (Rouder & Lu, 2005). Specifically, in
Figure 3 the subliminal model, with a chance level of performance, needs a prior θA

i = 0.5
which corresponds to φA

i = Φ−1(0.5) = 0. The supraliminal model, in contrast, uses truncated
Normal prior that allows only positive values, φB

i ∼ Normal(0,+∞), corresponding to a uniform
prior over rates with performance better than chance.

It is straightforward to interpret the combined hierarchical graphical model in Figure 3
in terms of the schematic framework provided by Figure 1. The model indicator M controls
whether the observed data Ki are generated according to the subliminal Model A on the left,
or the supraliminal Model B on the right. For the more elaborate models we will consider
later, however, it becomes unwieldy to show the full combined hierarchical graphical model.
Instead, we will reply on a graphical model characterization like that shown in Figure 4, which
is a compact representation of the same model information. It simply shows the generating
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MA : φ = 0

MB : φ ∼ Normal(0,+∞)(0, 1)

θ = Φ(φ)

K ∼ Binomial(θ, N)

Figure 4. A compact graphical model representation for the individual participant Bayes Factor
analysis of the Rouder et al. (2007) data.

process that is common to both models, and indicates the different choices of priors that
distinguish the models. We also do not explicitly denote each of the participants in Figure 4,
since they all are defined identically and completely by the generating process shown.

Returning to the main aim of comparing the models, we estimated the log Bayes factor
comparing the subliminal and supraliminal models for each participant using our product
space method. To do this, we used three chains, which are independent runs of the MCMC
sampler. Each chain contained 100,000 samples after removing a burn in of 1000 samples.
Random draws from the joint prior distribution were used as initial values. Convergence was
evaluated with the R̂ statistic, comparing within-chain variance and between-chain variance
(Gelman, Carlin, Stern, & Rubin, 2004). We observed that the chains always converged,
except for the data for one participant who had a proportion correct of 0.73, which is so
extreme that it did not allow the prior model probability to be calibrated within the available
computational precision. All of the retained samples from all three chains were used to
estimate the log Bayes factor.

As a check of accuracy, we also estimated the same log Bayes Factors using an alternative
method known as the Savage-Dickey method (Dickey & Lientz, 1970; Wetzels et al., 2009),
which is applicable in this case, because the simpler subliminal model is nested within the more
general supraliminal model. Figure 5a shows that the estimates for our product space method,
log BPS

AB , are consistent with the validation estimates log BSD
AB provided by the Savage-Dickey

method.
Figure 5b shows logBPS

AB as a function of the observed proportions of correct identifica-
tions Ki/Ni for all participants. As expected, support for the subliminal model is stronger for
participants with a proportion close to or smaller than 0.5. There is at least strong support
for this model when the participant answered fewer than 48% of the trials correctly. This is
the case for only five participants. These are the same five participants identified by Rouder,
Morey, et al. (2007), and so our basic conclusions match the results of their previous analyses.

Illustration 2: Does Previous Study Improve Visual Discriminability?

Research Question. Zeelenberg et al. (2002) report the results from a series of exper-
iments examining whether previous exposure to a stimulus facilitated visual discriminabil-
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Figure 5. Bayes Factor results for the Rouder et al. (2007) data, showing (a) the comparison of
our logBPS

AB product space estimates with the log BSD
AB Savage-Dickey validation estimates for the 26

participants, and (b) logBPS
AB as a function of the proportions of correct identifications, with dashed

lines indicating bounds for interpretation, as detailed in Table 1.

ity. A basic experimental trial involved presenting one of a pair of visually similar pictures
(e.g., a clothes peg and a stapler) for 40ms, as a ‘target’, and then presenting both pictures.
The participant’s task is to identify the target, within a simple two-alternative forced-choice
paradigm.

We focus on the third experiment presented by Zeelenberg et al. (2002), which included
a study block and a test block. In the study block, participants were able to study half of
the picture pairs. In the test block, participants were presented with all 42 picture pairs.
This design naturally divides each test trial into ‘studied both’ (SB) and ‘studied neither’
(SN) experimental conditions, and the observed data are counts KSB

i and KSN
i of correct

identifications in each condition for the ith participant. Figure 6 shows the relationship
between the proportions of successes in the two experimental conditions for all 74 participants.

Previous Analysis. Zeelenberg et al. (2002) found a significant group effect, using a
paired t-test: the percentage of correct trials was higher in the Study Both condition (74.7%)
than in the Study Neither condition (71.5%), with t(73) = 2.19, p < .05. This result was
taken to support the hypothesis that prior study leads to an improved visual discriminability.

Individual Participant Bayes Factor Analysis. The graphical model used in our anal-
ysis is presented in Figure 7, in the compact form discussed earlier. For both experimental
conditions, we assume the counts of correct identifications are Binomially distributed with
success rates θSB and θSN . As in the previous application, we use probit transformations of
these rates φSB and φSN to help in setting prior distributions.

The key part of the analysis then concerns the difference between the success rates
for the two conditions, formalized as the difference α = φSB − φSN . To test whether a
participant performed better in the Study Both condition than in the Study Neither condition,
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Figure 6. Proportions of correct identifications of the 74 participants in the Study Both and Study
Neither conditions, using jitter to distinguish participants with the same proportions.

we compared the model that assumes no difference α = 0 (MA) with the model that assumes
a positive difference α > 0 (MB). Specifically, we assumed a truncated normal prior with a
mean of 0 and standard deviation equal to 0.85.2

For each participant, we again collected three chains using our product space method,
each containing 100,000 samples after removing a burn in of 1000 samples. Once again,
we checked convergence using the R̂ statistic, and used all of the samples to obtain the
log Bayes factor estimate. We also used the samples for the α to estimate the log Bayes
Factor using the Savage-Dickey method. In Figure 8a, the consistency of our estimates with
the Savage-Dickey estimates is shown. Figure 8b plots the log Bayes Factor estimates as
a function of the difference of the proportions of correct identifications in both conditions
KSB

i /NSB
i − KSN

i /NSN
i . As expected, they are positively related, showing that the greater

the difference in proportions of correct identifications, the more support for an improved
discriminability effect.

The results in Figure 8b support only cautious conclusions about the effect of priming.
More than half of the participants have log Bayes Factors with magnitude less than one (i.e.,
they fall in the weak support region), suggesting that the experiment does not provide con-
clusive evidence for or against priming for many participants. There are only two participants
whose behavior provides strong evidence in favor of an improvement in primed discrimination

2This standard deviation is obtained when simulating α = φSB − φSN , assuming a truncated standard
normal distribution for φSB and φSN .



ESTIMATING BAYES FACTORS 13

φSB

θSB

KSB

NSB

α

φSN

θSN

KSN

NSN

MA : α = 0

MB : α ∼ Normal(0,+∞)(0, 0.852)

φSB = φSN + α

θSN = Φ(φSN )

θSB = Φ(φSB)

KSN ∼ Binomial(θSN , NSN)

KSB ∼ Binomial(θSB , NSB)

Figure 7. Graphical model for the individual participant Bayes Factor analysis of the Zeelenberg et
al. (2002) data.
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performance. Thus, while the Bayes Factors are not inconsistent with the original conclu-
sion of Zeelenberg et al. (2002), they suggest a more nuanced understanding, in which there
are individual differences between participants, and the experiment itself does not provide a
decisive test of the research question.

Group Bayes Factor Analysis

Our first analysis focused on comparing the possible differences in discrimination at the
level of the individual participants. In some ways, this is a different focus of analysis from
that used by Zeelenberg et al. (2002), who focused on a group comparison. Accordingly, we
undertook a second analysis using the Bayes Factor to test for a difference at the group level.
This change in emphasis from the individual to group level requires the testing of hierarchical
models within the Bayesian setting, and allows us to demonstrate the applicability of our
method to this very general class of models.

The graphical model for this hierarchical group-level analysis is shown in Figure 9.3 It
assumes that the φSN

i and αi parameters for the ith participant are drawn from a common
group-level Normal distribution with means and standard deviation µφ, µα, σφ and σα. At
this group level, the standardized mean of the proportion differences between the conditions
is defined as δ = µα/σα. The group level Bayes Factor compares the models δ = 0 (MA) with
δ > 0 (MB).

This Bayes Factor examines all of the participants simultaneously, and asks whether
there is evidence for an increase in successful discrimination for stimuli that were previously
studied over the group as a whole. In this sense, it is more consistent with the t-test reported
by Zeelenberg et al. (2002). It is not simply a Bayesian surrogate for this test, however,
because the hierarchical model in Figure 9 allows for individual participant differences in
determining the group effect.

We estimated the log Bayes factor ten times using our product space method, and for
the Savage-Dickey method, using the same MCMC settings as used previously. The mean
of the estimated log Bayes Factor was 1.46 (SD = .26) for the product space method and
1.46 (SD = .03) for the Savage-Dickey method. We interpret this as positive support for the
model that asserts an increased discrimination ability for primed stimuli, consistent with the
general conclusion of Zeelenberg et al. (2002).

Bayes Factors For Other Model Comparisons

To this point, we have been able to validate our product space method for estimating
Bayes Factors against the alternative Savage-Dickey method. This has been possible because
all of the Bayes Factors have involved comparing a more complicated model, which allows for
a parameter to be in a broad range, to a simpler model that requires the parameter to take
a single value within that range. Under these circumstances, the Savage-Dickey method can
be applied.

Many research questions, however, are best addressed by Bayes Factors involving models
that do not have this special relationship. A key advantage of our product space approach is
that it can be applied to more general model comparisons.

For example, one reasonable question might be whether or not the effect of priming on
visual discriminability at the group level is large for the Zeelenberg et al. (2002) data. One

3This model is also presented in Wagenmakers, Lodewyckx, Kuriyal, and Grasman (submitted), where it
is used to illustrate the Savage-Dickey method.
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Figure 9. Graphical model for the group Bayes Factor analysis of the Zeelenberg et al. (2002) data.

way of formalizing this question in terms of the Bayes Factor is to compare the model with
prior 0 < δ < 1, corresponding to the assumption that there is a small effect, against the
model with prior δ > 1, corresponding to the assumption that there is a large effect. Note
that these models are not nested, and so the Savage-Dickey method cannot be applied. 4

Applying our method, using the same MCMC settings as before, the log Bayes Factor is able
to be estimated as 1.37 (SD = 0.30) in favor of the first model. This provides evidence that
there is more likely a small than a large effect.

Another interesting model comparison tests the model with prior δ > 0, corresponding
to the assumption that there is some effect (of any magnitude), against the model with prior
δ > 0.5, corresponding to the assumption the effect is at least moderately large. While these
hypotheses are nested, it is not the case that one is simply a point hypothesis within the
other, and so the Savage-Dickey method again cannot be applied. Using our method, the log
Bayes Factor is estimated as -0.15 (SD = 0.14), meaning that the data provide little evidence
in favor of either model. It is just as likely an assumed effect has any magnitude as it has a
magnitude greater than 0.5.

These two additional model comparisons are intended as illustrative examples, rather

4We do note, however, that this particular comparison could also be done using the encompassing pri-
ors method developed by Klugkist, Kato and Hoijtink (2005; see also Wetzels, Grasman, & Wagenmakers,
submitted).
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than conclusive analyses. They demonstrate the range of Bayes Factor comparisons that can
be estimated using our method, including those involving non-nested hypotheses. It should be
clear that, with this sort of flexibility in defining candidate models for comparison, carefully
tailored research hypotheses can be evaluated against available data for almost any research
question.

Discussion

In Bayesian statistics, the Bayes Factor is one of the most important and widely-used
methods for the quantitative evaluation of hypotheses and models. Bayes Factors have an
important role to play in the psychological sciences, which regularly seeks to test statistical
hypotheses and substantive psychological models. We have developed, demonstrated, and
validated where possible a general computational method, based on the original work of Carlin
and Chib (1995), for estimating Bayes Factors. Our method can be applied to any statistical
hypotheses or psychological model than can be expressed as a probabilistic graphical model,
and can be applied to non-nested comparisons and hierarchical models.

An attractive feature of our method is its conceptual simplicity. Like all transdimen-
sional MCMC methods, the basic approach is to estimate the posterior distribution of a model
indicator variable that controls which model generates predictions about data. This variable
directly corresponds to our intuitions about model selection, because it solves the problem of
finding the model that best accounts for the available data. Each model begins with some
prior probability of being true, and is updated to a posterior probability, based on the ev-
idence provided by data. These prior and posterior probabilities are represented explicitly
by the model indicator variable, and the change in their ratio from the prior to posterior
captures the meaning of the Bayes Factor in a very direct way.

Like all practical methods, our implementation works better in some circumstances
than others. In our worked illustrative examples, we noted that the method can be hard
to apply when the data provide overwhelming evidence for one hypothesis or model over
its competitor. This does not seem like a serious limitation, because in these circumstances
formal model selection measures do not contribute much to our understanding about the
appropriate answers to the motivating research questions.

Overall, we think our method occupies a useful niche between alternative approaches,
based on a trade-off between ease-of-implementation and generality of application. The
Savage-Dickey method we used for validation is relatively easy to implement, but, as we
demonstrated in our final example, is only applicable to a restricted class of comparisons
involving point-nested hypotheses or models. More powerful and general transdimensional
MCMC methods like Reversible Jump, on the other hand, have the advantage of being able
to compare more than two hypotheses or models simultaneously, but are much more difficult
to implement. Very often in the psychological sciences, it suffices to compare only a few alter-
native formal models against available data, but these models will often not be point-nested.
In these circumstances, we believe our method provides a relatively powerful and easy-to-use
approach for estimating Bayes Factors, and quantifying the evidence the data provide for and
against the competing hypotheses or models.
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