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Abstract

We demonstrate the potential of using hierarchical Bayesian methods
to relate models and data in the cognitive sciences. We do this using a
worked example, considering an existing model of category representa-
tion, the Varying Abstraction Model (VAM), which attempts to infer
the representations people use from their behavior in category learning
tasks. The VAM allows for a wide variety of category representations to
be inferred, but we show how a hierarchical Bayesian analysis can pro-
vide a unifying explanation of the representational possibilities using
two parameters. One parameter controls the emphasis on abstraction
in category representations, and the other controls the emphasis on
similarity. Using 30 previously published data sets, we show how infer-
ences about these parameters, and about the category representations
they generate, can be used to evaluate data in terms of the ongoing
exemplar versus prototype and similarity versus rules debates in the
literature. Using this concrete example, we emphasize the advantages
of hierarchical Bayesian models in converting model selection problems
to parameter estimation problems, and providing one way of specifying
theoretically-based priors for competing models.



Introduction

For a cognitive scientist interested in category learning, there are two ways
Bayesian statistics might make a contribution. The first way is to use Bayesian
methods as a theoretician would, as a metaphor or working assumption about how
the mind solves the inference problems it faces. Anderson’s (1991) rational model
of categorization, and its recent developments and extensions (e.g., Griffiths, Canini,
Sanborn, & Navarro, 2007), are good examples of this approach. Consistent with
other ‘rational’ or ‘computational-level Bayesian’ models (e.g., Chater, Tenenbaum,
& Yuille, 2006), these models provide accounts of what sorts of inferences people
make if they aim to categorize objects according to Bayesian ideals.

The second way of using Bayesian methods in category learning is as a statisti-
cian would, as a framework for making justified inferences from the available models
and data. In this application, there are no constraints on the nature of the cate-
gory learning models that can be considered, and existing process models that do not
necessarily have any Bayesian basis (e.g., Kruschke, 1992; Love, Medin, & Gureckis,
2004; Nosofsky, 1986) can be considered. The role of Bayesian methods is to improve
the analysis of the models and data, consistent with the push to adopt Bayesian
statistical inference throughout cognitive modeling (e.g., Lee & Wagenmakers, 2005;
Pitt, Myung, & Zhang, 2002).

This article considers how Bayesian methods—especially in their hierarchical
form—can help in modeling category learning when used in the second, statistical
sense. Hierarchical Bayesian methods are standard and powerful ways of analyzing
models and drawing inferences about parameters from data, and are widely used in
statistics, machine learning, and throughout the empirical sciences. The hierarchical
Bayesian approach employs the basic machinery of Bayesian statistical inference,
with all the advantages it entails (e.g., Jaynes, 2003; Sivia, 1996), but is designed
to work with richly structured hierarchical models. Introductions to hierarchical
Bayesian methods can be gained from textbook accounts in statistics and machine
learning (e.g., Gelman, Carlin, Stern, & Rubin, 2004; Mackay, 2003), or from recent
expositions aimed at psychologists (e.g., Griffiths, Kemp, & Tenenbaum, in press;
Lee, in press; Shiffrin, Lee, Wagenmaker, & Kim, submitted).

To make our case that hierarchical Bayesian methods can contribute to under-
standing category learning, we tackle a specific example in some detail. We focus
on two fundamental debates in the category representation literature. One debate—
comparing exemplar and prototype representations—asks to what extent abstraction
is involved in representing categories (e.g., Komatsu, 1992; Nosofsky, 1987, 1992;
Smith & Minda, 2000). Another debate—comparing the use of similarities and rules—
asks on what basis categories cohere into a single meaningful representation of a class
of stimuli (e.g., Nosofsky, Clark, & Shin, 1989; Nosofsky & Palmeri, 1998). Both
debates can usefully be regarded as model selection or evaluation problems. Progress
has most often been sought by developing models that adopt the various theoretical
positions, and seeking evidence for or against these models on the basis of experimen-



tal data.

While this approach is a sensible starting point, it has a number of difficulties
and limitations. One is that specifying separate models for different theoretical posi-
tions can obscure underlying compatibilities, and forces model evaluation to become
a matter of choosing one model to the exclusion of the other, rather than searching for
the good and bad elements of each model. We show how hierarchical Bayesian meth-
ods can address this problem by converting a model selection problem to a parameter
estimation problem.

A second difficulty with comparing distinct models is that any complete ap-
proach to evaluating models, including particularly Bayesian model selection, requires
the specification of their prior probabilities (Pitt et al., 2002). Most current evalua-
tions make the working assumption of equal prior probabilities (i.e., that there is no
reason to believe one model is better than another until data have been collected),
even when there is existing knowledge that makes this assumption problematic. The
assumption of equal prior probabilities comes primarily from a lack of formal methods
for determining priors. We show that hierarchical Bayesian methods provide one av-
enue for determining the required prior probabilities formally, using existing theories
and knowledge.

To demonstrate these properties of hierarchical Bayesian analysis, we focus on
the recently developed Varying Abstraction Model (VAM: Vanpaemel & Storms, in
press) of category representation. Our aim is to show how, using hierarchical Bayesian
methods to do inference with the VAM, basic but otherwise difficult questions about
category representation can be addressed.

This paper is structured as follows. We begin by providing an intuitive introduc-
tion to the VAM account of category representation, before explaining our approach
to its hierarchical Bayesian analysis. We then analyze 30 previously studied data
sets from the category learning literature using hierarchical Bayesian methods. The
results demonstrate the sorts of insights into category representation—particularly
in terms of the exemplar versus prototype and similarity versus rules debates—that
can emerge from the analysis. We conclude with a discussion of how the hierar-
chical Bayesian approach helped in providing these evaluations, and mention future
possibilities for the approach in the cognitive sciences more generally.

The Varying Abstraction Model

Figure 1 shows 15 different representations of a category with four stimuli. Each
stimulus is represented by a two-dimensional point in space. The different represen-
tations are formed by merging one or more subsets of the stimuli. The exemplar
representation in Panel A is the one where no stimuli are merged. Panel B shows the
representation created when two of the stimuli are merged, with the original stim-
uli shown as white squares, joined by lines to their merged representation, which are
black squares. The remaining panels Figure 1 show the representations resulting from
averaging other stimuli. Panels B-G show the results of single merge, while Panels H-



Figure 1. The 15 possible VAM representations for a four-stimulus category structure.

N show the results of two merges. The representation in Panel O shows the prototype
representation in which all four stimuli are merged into a single representation.

The category representations shown in Figure 1 are exactly those described by
the VAM. They naturally encompass both exemplar and prototype accounts, as well
as allowing for various intermediate accounts, including ones that use multiple pro-
totypes. In addition, which stimuli are merged in the representations spans a range
of possibilities in the similarity versus rules debate. For example, if similarity plays a
central role, the category representations B and E are more likely than C and D. In
this way, the class of VAM representations generalizes and unifies the exemplar versus
prototype and similarity versus rules distinctions. It includes the extreme versions
of these theoretical positions as special cases, but introduces a set of intermediate
representations that facilitate asking estimation rather than selection questions. It
was for these reasons we chose to focus on the VAM in a hierarchical Bayesian set-
ting, although there are other category learning models, including SUSTAIN (Love
et al., 2004), and various mixture-models (e.g., Rosseel, 2002), that are also worth
considering in the future.

Original applications of the VAM (Vanpaemel & Navarro, 2007; Vanpaemel
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& Storms, in press, submitted; Vanpaemel, Storms, & Ons; 2005) inferred which
of the VAM class of representations was being used from existing behavioral data.
Choosing between the representations amounted to a model selection problem, which
was tackled using maximum likelihood methods. While the results of these analyses
are informative, they have at least three important limitations.

The most obvious limitation is that maximum likelihood evaluation is insensitive
to the different inherent complexities of the various representations. The importance
of balancing goodness-of-fit with complexity in model evaluations has been empha-
sized in psychology in recent years (e.g., Myung, Forster, & Browne, 2000; Pitt et
al., 2002), and model evaluation therefore requires better techniques than maximum
likelihood methods.

A second important limitation of previous VAM modeling is that it does not
capture important relationships between the representations. For example, inferring
from data that representation A or B in Figure 1 are the ones likely being used de-
mands a very different interpretation from inferring that representations A or O is
being used. In the first case, both possibilities are consistent with exemplar represen-
tation, in the sense that little abstraction is being used. In the second case, however,
it is not clear whether exemplar or prototype representation in being used. Formally,
though, the VAM modeling in both cases just reports that two representations are
likely. The close theoretical links between representations A and B, and the impor-
tant theoretical differences between representations A and O are not captured. In
this sense, the model is incomplete as a mechanism for estimating from data the level
of abstraction used in category representation. The same is true for the problem of
inferring the importance of similarity.

A final limitation of previous VAM modeling is that representational models
are evaluated without incorporating prior probabilities. In relation to Figure 1, for
example, it has been assumed that each of the 15 representations is equally likely
a priori. It seems reasonable, however, to assert that some of the representations
are more likely than others. In particular, there exists evidence for both the pure
exemplar and pure prototype representations A and O, and representations including
B, E, G and L seem more likely than many of the others. It is desirable to have
a method for incorporating priors with these sorts of properties into the evaluation
process. The goal of specifying priors is not, of course, to try to over-ride the evidence
provided by data. Rather the goal is to provide an inductive bias, preferring some
representations to others on some principled basis. Given sparse data, these biases
will help guide more intuitive inferences. Given overwhelming data, they will be
over-turned where inappropriate.
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Figure 2. Schematic representation of the hierarchical Bayesian analysis.

Hierarchical Bayesian Analysis for the VAM
The Hierarchical Analysis

We address all of these limitations using hierarchical Bayesian methods to ex-
tend and analyze the VAM, taking our lead from Vanpaemel and Lee (2007). Figure 2
provides a schematic representation of our hierarchical analysis!, showing the three
levels in the hierarchy. At the bottom level are the observed data, in the form of
counts k of the number of times each stimulus is classified as belonging to Category
A in a two-category task?.

In the middle level is the category representation. This includes the VAM
representation x that is used (i.e., x is a counting number indicating which of the
VAM family of representations—as, for example, in Figure 1—is the one being used).
It also includes the generalization gradient ¢ and attention weight w that are applied
to this representation. In the hierarchical VAM, as in the original VAM, it is assumed
the categorization process follows the Generalized Context Model (GCM: Nosofsky,
1986). We describe this category learning process in detail below.

It is the top level of the hierarchy in Figure 2, however, that makes our analysis
hierarchical, and extends the original VAM. Rather than placing a prior distribution
directly on the representations x—in effect, this is what the original VAM did, using
a uniform prior, and so making each possible VAM representation equally likely—
we assume that the VAM representations themselves are generated by an additional
psychological process. This process is called the Merge process, and is driven by

LA more detailed version of the analysis, in the form of a graphical model representation, can be
found in Vanpaemel and Lee (2007).

2All of our analysis in this article relates to two-category tasks, with stimuli represented using
two dimensions. Generalization to more categories and dimensions are both straightforward.



two parameters, 8 and . The parameter 6 controls the merging probability, and so
dictates whether exemplar-like or prototype-like VAM representations are generated.
The parameter v controls the emphasis on similarity, and so dictates the extent to
which similar stimuli are merged.

The Merge Process. More formally, the merge process starts with the exemplar
representation. The parameter 0 < # < 1 then gives the probability that an additional
merge will take place. This means, at any stage, there is a 1 — 0 probability that the
current representation will be maintained as the final one. When an additional merge
is undertaken, it is based on the similarities between all of the current representations
(i.e., the original stimuli, or their merged replacement). The similarity between the
1th and jth representations is modeled as an exponentially decaying function of the
distance between their points, according to a Minkowski r-metric:

1/r
Sij = €Xp 4 — [Z (lvi — UjkV)] : (1)

k

where v;, is the coordinate location on the kth dimension for the point that rep-
resents the ¢th stimulus. Given these similarities, across all pairs in the current
representation, the probability, m,;, of choosing to merge the pair (i, ) is given by
an exponentiated Luce-choice rule

_ (expsij)’
B > ZyZm (exp suy)” @

The parameter v > 0 controls the level of emphasis given to similarity in determining
the pair to be merged. As 7 increases, the maximally similar pair dominates the
others, and will be chosen as the pair to be merged with probability approaching one.
At the other extreme, when v = 0, similarity is not taken into account. All choices of
pairs to merge then are equally likely, and the merge is essentially chosen at random.
Values of v between these two extremes result in intermediate behavior.

Given a value for the # and ~ parameters, every VAM representation has some
probability of being generated by the merging process. The top five rows in Figure 3
give some examples, for the 15 VAM representations in Figure 1. In the top row
0 = 0.99, so merging is very likely, and hence the prototype representation almost
always results. In the second row 6 = 0.01, so merging is very unlikely, and hence
the exemplar representation is almost always retained. The third, fourth and fifth
rows show, for a fixed # = 0.7, the effect of the v parameter. When v = 0 in the
third row, the exemplar and prototype representations are most likely, but all others
are possible. In particular, any representation arising from a single merge is equally
likely, and any representation arising from two merges is equally likely, because the
pair of stimuli to be merged is chosen at random. In the fourth row, when v = 1,
representations like B and L that involve merging similar stimuli become much more

mij
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Figure 8. The bottom row shows the 15 possible VAM representations for a four-stimulus
category structure. The top five rows give the probability distribution over these 15 repre-
sentations for specific combinations of the § and + parameters.

likely, although some other possibilities remain. Once v = 10 in the fifth row, only the
most similar stimuli are merged, and B and L are the only intermediate possibilities
between exemplar and prototype representation with non-negligible probability.

The GCM Process. In the categorization process, the attention-weighted dis-
tances between the original stimuli and representations are calculated, according to
the Minkowski r-metric, so that

dij = (wpa—vial" + (1—w) [pe—vspl|") ", (3)

where p;. is the value of the ¢th stimulus on the kth dimension, and w is the at-
tention weight parameter measuring the relative emphasis given to the first stimulus
dimension over the second.

From the distances, the generalization gradient with scale parameter ¢ and shape
a determines the similarities,

Nij = exp{—cd%}. (4)

The assignment of the representations to the two categories is defined by the
category structure of the task. The probability of the ith stimulus being chosen as a
member of the Category A is determined by the sum of similarities between the ith
stimulus to the N, representations in each category, according to the choice rule

Zj ;g
> amij + 225 (1 —ag)miy’
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where a; indicates the category to which the jth stimulus belongs.

Finally, the response probabilities are used to account for the observed data,
which are the counts, k; of the number of times the ith stimulus was chosen in
Category A out of the t; trials it was presented. The counts k; follow a Binomial
distribution

k; ~ DBinomial (ti, n-) ) (6)

The only way in which this categorization process differs from the GCM is
that the category similarity of the stimuli presented to participants is formed from
their similarities to the VAM category representation (i.e., the possibly abstracted v
coordinates), rather than to an assumed exemplar representation (i.e., the original
pix coordinates).

Priors. The final part of the hierarchical Bayesian analysis involves specifying
priors for the € and ~ parameters of the Merge process, and the ¢ and w parameters
of the categorization process. For the generating level parameters, we use priors

6 ~ Uniform (0,1),
v ~ Erlang (1). (7)

The uniform prior for the rate 6 is an obvious choice. The Erlang prior for v gives
support to all positive values, but has most density around the modal value one, cor-
responding to our prior expectations. As an alternative prior for v we considered a
Uniform distribution on the range (0,10). All of our results were qualitatively identi-
cal, and quantitatively extremely similar, with this alternative prior. It is common for
hierarchical analyses to have this property, where conclusions become less sensitive
to the choice of priors, as more levels are included in a hierarchical model (Gelman
et al., 2004).
For the category representation level parameters, we use priors

w ~ Uniform (0, 1),

¢ ~ Gamma (g,¢). (8)
The uniform distribution for w is again an obvious choice. The ¢ parameter functions
as an inverse scale (i.e., 1/c scales the distances), implying ¢? functions as a precision,
and so is given the standard near non-informative Gamma prior with ¢ = .001 set
near zero.

Inference Methods

The hierarchical Bayesian analysis of the VAM defines a precise and complete
probabilistic relationship between the parameters of the model and the observed data.
That is, it specifies a likelihood function giving the probability of observed data for a



given parameterization. The four parameters are the # and v parameters that control
the representation, and the ¢ and w parameters that control the categorization.

Bayesian inference uses the relationship between parameters and data to up-
date what is known about the parameters, converting their joint prior distribution
to a joint posterior distribution, using the evidence provided by data. One of the
great advantages of the Bayesian approach is that these inferences are conceptually
straightforward. Once behavioral data are observed, inference just involves reversing
the generative process, and working out what parameter combinations are the ones
likely to have produced the data. The posterior probability distribution represents
this information, specifying the relative probability of each possible combination of
0, v, ¢, and w being the ones that generated the data. We give some details on how
we calculated the posterior probability statements of interest for this application in
the Appendix.

Features of the Hierarchical Analysis

The hierarchical Bayesian analysis of the VAM has many attractive properties.
In particular, it addresses the three shortcomings of the original application of the
VAM—balancing goodness-of-fit with model complexity, relating and interpreting the
VAM representations, and having sensible prior probabilities for the representations—
we identified earlier.

Principled Statistical Inference. The posterior distributions obtained from
Bayesian analysis are complete and coherent. Once a model is built (i.e., the like-
lihood function that relates parameters to models is specified), and the priors are
given, the observed data automatically dictate what the posterior inferences must
be, governed by the laws of probability theory (e.g., Cox, 1961). These posterior
distributions represent everything that is know and unknown about the parameters,
based on the model, the prior assumptions, and the data. This clarity and generality
contrasts favorably with the ad hoc set of methods for model analysis that currently
dominate practice in the cognitive sciences.

Perhaps most importantly though, hierarchical Bayesian methods implement
full Bayesian model selection, and so automatically balance goodness-of-fit with com-
plexity. As has been pointed out a number of times in the context of cognitive
modeling (e.g., Pitt et al., 2002; Lee, 2004, in press), the key feature of fully Bayesian
analysis is that it evaluates how well a model fits data on average (i.e., the marginal
likelihood), rather than how well it fits data in the best-case scenario (i.e., the maxi-
mum likelihood). More complicated models, by definition, are those that are able to
predict more data patterns by varying their parameters (Myung, Balasubramanian,
& Pitt, 2000). This means that, by considering the average fit of a model, Bayesian
model selection penalizes more complicated models, because it includes those predic-
tions that poorly fit the observed data in the average.
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Figure 4. The 15 possible VAM representations for a four-stimulus category structure, and
the inductive bias over these representations defined by the hierarchical analysis.

Interpreting VAM Representations. The original VAM, by introducing a range of
category representations between prototypes and exemplars, conceived of the debate
between these two possibilities as a problem of estimating the level of abstraction,
rather than choosing one extreme over the other. The hierarchical analysis provides
the extra benefit of allowing the representations to be interpreted and related to one
another. In particular, the parameters of the Merge process quantify interpretable
properties of the VAM representations relating to the level of abstraction, and the
role of stimulus similarity in abstraction.

This means the posterior distributions over # and v inferred from category
learning data directly convey the conclusions that can be drawn about abstraction
and similarity. Returning to our earlier example, if representations A and B are the
most likely, the posterior for 6 will give most probabilities to low values, showing
the consistent (near) exemplar nature of the representations. If representations A
and O are most likely, the posterior for € will show the divergent nature of the
conclusions, giving density to both low and high values. In this way, the hierarchical
introduction of the parameterized merge process captures the relationships between
VAM representations.

Priors Using Inductive Bias. Figure 4 shows the overall inductive bias over the
15 VAM representations in Figure 1 imposed by the Merge process. This is simply
the average of all of the distributions, like those shown in Figure 3, that result from
some combination of € and v, weighted by the priors on 6 and ~, as given formally
by Equation 11 in the Appendix. It can be seen in Figure 4 that the bias is strongly
towards pure exemplar or pure prototype representations A and O, and with some
greater emphasis on the intuitively more likely representations like B, E, G, H and L.

The inductive bias distribution in Figure 4 is naturally and appropriately inter-
preted as a prior distribution for the VAM category representations. The distribution
follows directly from the way the Merge process works, and the priors on the 6 and
~ parameters that control the process. This means it directly follows from theoreti-
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cal assumptions about how the VAM category representations are generated, and is
fully specified before any data have been observed, or inferences have been made. In
this sense, our hierarchical Bayesian analysis defines a theoretically principled prior
distribution over the category representations.

We emphasize that the inductive bias corresponds to priors at the category
representation level, not at the level of the # and ~ parameters. The goal of the
current modeling is to place sensible priors on the category representations, because
they do not all seem equally plausible, and this is achieved by introducing the higher-
level generating process. A worthy, but different, goal would be to determine priors
from first-principles for the 6 and  parameters of the generating process itself (using,
perhaps, the transformation invariance ideas advocated by Jaynes, 2003, Ch. 12).

Data for Empirical Evaluation

To apply our hierarchical Bayesian approach to the VAM, we considered 30
previously published data sets, taken from six papers presented by Nosofsky and
colleagues (Nosofsky, 1986, 1987, 1989; Nosofsky & Palmeri, 1997; Nosofsky et al.,
1989; Nosofsky & Palmeri, 1998). These data sets are detailed in Table 1, and have
previously been analyzed by Vanpaemel and Storms (submitted) using the original
VAM and maximum likelihood methods .

The experiments all involve learning various two-category structures over a small
number of stimuli, all of which vary on two continuous dimensions. In each exper-
iment, a subset of training stimuli are assigned to Categories A and B, and the
remaining stimuli are retained as transfer stimuli. In most of the experiments, a
training-test procedure is used, which consists of a training (or category learning)
phase followed by a test phase. During the training phase, only the training stimuli
are presented, with corrective feedback. The relevant data for modeling are from the
test phase, recording how people categorized all stimuli, including those for which
they had not received training.

Collectively, the data sets span a range of possibilities for category learning
tasks. Some report single participant data, and others report aggregated data over
groups of participants. Some also report data at different stages in the learning
sequence. The stimuli vary from simple geometric shapes, to colors, to combinations
of visual and auditory stimuli. The category structures that must be learned vary
widely, and include some that require selective attention for effective learning. Several
of the tasks involve a variety of instruction conditions, including people being told to
follow rules. And the data sets vary significantly in the number of test trials used.

Results of Hierarchical Bayesian Analysis

Using the observed behavioral data, we drew inferences about the model pa-
rameters for all 30 of the data sets listed in Table 1. Our primary interest is on two
posterior distributions: the representation posteriors p (z | D), which describe the
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Data Set Reference Exp. Stimuli r o« Categories Condition s t
1 Nosofsky (1986) - Shepard circles 2 2 Criss-cross Participant 1 1 219¢
2 Nosofsky (1986) - Shepard circles 2 2 Criss-cross Participant 2 1 225
3 Nosofsky (1986) - Shepard circles 2 2 Diagonal Participant 1 1 250¢
4 Nosofsky (1986) - Shepard circles 2 2 Diagonal Participant 2 1 225
5 Nosofsky (1986) — Shepard circles 2 2 Dimensional Participant 1 1 225°
6 Nosofsky (1986) Shepard circles 2 2 Dimensional Participant 2 1 200%
7 Nosofsky (1986) Shepard circles 2 2 Interior-exterior  Participant 1 1 256%
8 Nosofsky (1986) — Shepard circles 2 2 Interior-exterior Participant 2 1 144°
9 Nosofsky (1987) 2 Munsell colors 2 1 Brightness — 49 10
10 Nosofsky (1987) 2 Munsell colors 2 1 Criss-cross — 24 10
11 Nosofsky (1987) 2 Munsell colors 2 1  Saturation A - 24 T7.5¢
12 Nosofsky (1987) 2 Munsell colors 2 1 Saturation B - 40 10
13 Nosofsky (1989) — Shepard circles 2 2 Angle — 41 4@
14 Nosofsky (1989) - Shepard circles 2 2 Criss-cross - 37 4
15 Nosofsky (1989) Shepard circles 2 2 Diagonal — 43 4@
16 Nosofsky (1989) - Shepard circles 2 2 Size - 37 4
17 Nosofsky et al. (1989) 1 Shepard circles 1 1 Interior-exterior Free 122 5
18 Nosofsky et al. (1989) 2 Shepard circles 1 1 Interior-exterior Rule 1 30 5
19 Nosofsky et al. (1989) 2 Shepard circles 1 1 Interior-exterior Rule 2 28 5
20 Nosofsky et al. (1989) 3 Pitch and line length 1 1 Conjunctive rule Free 1 30 5
21 Nosofsky et al. (1989) 3 Pitch and line length 1 1 Conjunctive rule Free 2 30 5
22 Nosofsky et al. (1989) 3 Pitch and line length 1 1 Conjunctive rule Rule 30 5
23 Nosofsky and Palmeri (1997) 2 Munsell colors 2 1 u7 - 31 8
24 Nosofsky and Palmeri (1997) 2 Munsell colors 2 1 U8 - 31 8
25 Nosofsky and Palmeri (1998) 1 Shape and brightness 1 1 Interior-exterior Beginning blocks 164 3
26 Nosofsky and Palmeri (1998) 1 Shape and brightness 1 1 Interior-exterior = Middle blocks 164 3
27 Nosofsky and Palmeri (1998) 1 Shape and brightness 1 1 Interior-exterior End blocks 164 3
28 Nosofsky and Palmeri (1998) 2 Shape and brightness 1 1 Interior-exterior Beginning blocks 120 1
29 Nosofsky and Palmeri (1998) 2 Shape and brightness 1 1 Interior-exterior =~ Middle blocks 120 1
30 Nosofsky and Palmeri (1998) 2 Shape and brightness 1 1 Interior-exterior End blocks 120 3

Notes: r=Metric; a=Similarity function; s=Number of participants; t=Number of trials per test stimulus per participant;

a=Approximate average value;

Table 1: Details of the 30 data sets.
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Figure 5. The upper panels show the maximum a posteriori representations for 14 of
the data sets, labeled according to Table 1. Black symbols correspond to the category
representation, and are connected to the stimuli they merge, which are shown as white
symbols. The two categories are shown by circles and squares. The bottom panel shows
the posterior distribution over 6 for data sets 5 (solid line), 7 (dotted line), and 4 (dashed
line).

inferences made by the model about what VAM representation is being used; and
the marginal parameter posteriors p (6 | D) and p(« | D), which describe inferences
about what process people used to generate that representation, informing us about
the use of abstraction and the importance of similarity, respectively.

We divide the results presented here into three parts. First, we examine how
the results can inform the exemplar versus prototype issue. Secondly, we turn to the
similarity versus rules issue. Finally, we present a series of other findings that show
how our approach can move beyond the motivating research questions, and suggest
further theoretical and modeling developments.

Ezxemplar vs Prototype Representations

Figure 5 shows in the upper panels the maximum a posteriori VAM representa-
tions for 14 selected data sets. All of these single representations accounted for more
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Figure 6. The upper panels show the posterior distribution over category representations
for data sets 11 (left four panels) and 15 (right three panels). The posterior mass for each
representation is shown in brackets. The bottom panel shows the posterior distribution over
6 for the data sets (11=solid line, 15=dashed line).

than half of the posterior mass, and most accounted for almost all of the mass. The
data sets were selected because they demonstrated the ability of the model to infer
a range of outcomes, starting with pure exemplar representations, and finishing with
pure prototype representations. Between these extremes, there is evidence for partial
abstraction, in the form of a single merge of two similar stimuli (e.g., data sets 6, 7, 8,
and 14), or in a form that more closely resembles multiple-prototypes (e.g., data sets
9 and 13). The bottom panel of Figure 5 shows the posterior marginal distribution
for 6 for data sets 5, 7 and 4, corresponding to exemplar, intermediate, and prototype
representations. The posterior distributions clearly reflect these differences, giving
more density to lower values of § when there is less abstraction, and more density to
higher values of 6 when there is more abstraction.

Still considering the exemplar versus prototype debate, Figure 6 shows interest-
ing results for data sets 11 and 15. Unlike the data sets shown in Figure 5, no single
VAM representation dominated the posterior for these data sets. Rather, a posterior
distribution over possible representations was observed. The four most likely repre-
sentations for data set 11 are shown, together with their posterior mass, on the left of
Figure 6, and the three most likely for data set 15 are shown on the right. It is clear
that, for both data sets, there is uncertainty about the level of abstraction. Both
the pure exemplar and pure prototype representations have significant mass in both
cases, along with some intermediate possibilities. This uncertainty is represented in
the posterior marginal distributions for €, which have some multi-modality, giving
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Figure 7. The upper panels show the maximum a posteriori representation for two groups
of three related data sets. Data sets 25, 26 and 27 are shown on the left, corresponding the
beginning, middle and end blocks in the category learning task. Data sets 28, 29, and 30
are shown on the right. The bottom panels shows the posterior distribution over 8 for the
beginning and end blocks in each case.

significant density to both low and high values.

Figure 7 examines the issue of representational change over time (e.g., Johansen
& Palmeri, 2002; Smith & Minda, 1998), by showing the representations and posterior
distributions of # inferred by the hierarchical VAM for two groups of related data sets.
Data sets 25, 26 and 27 correspond to test performance from the beginning, middle,
and end of one category learning task. Data sets 28, 29 and 30 correspond to test
performance from the beginning, middle, and end of another category learning task.
For each data set, the maximum a posteriori representation is shown, and accounts
for almost all of the posterior mass. It is suggestive that, for both groups, there is
some evidence of a loss of abstraction, in the form of a shift towards pure or near
exemplar representation, as testing progresses. The posterior marginal distributions
for 6 show this change, giving more density to low values of € in the final data than
for the beginning data.

Similarity vs Rule-Based Representations

Data sets 17, 18 and 19 relate to the same category learning task, but involve
different instructions given to three groups of subjects. The first group was given no
special instructions, and so was expected to learn the category structure using the
similarity-based principles that underlie the GCM. The remaining two groups were
instructed to use one of two simple rules accurately describing the category structure.
Similarly, data sets 20, 21 and 22 involve one rule instruction condition, and two free
conditions, for the same category learning task.
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Figure 8. The upper panels show the maximum a posteriori representation for two groups
of three related data sets. Data sets 17, 18 and 19 are shown on the left, corresponding the
rule and free instructions conditions of the category learning task. Data sets 20, 21, and 22
are shown on the right. The bottom panels show the posterior distribution over 8 for each
data set (the distributions for the same instruction sets are so similar in each panel as to
be indistinguishable).

Figure 8 shows the maximum a posteriori representations for each instruction
condition for both groups of experiments. Once again, these representations ac-
counted for almost all of the posterior mass. For the category learning task on the
left, the free group have a VAM representation that does follow stimulus similarity,
collapsing the similar stimuli in the interior category to a prototype, and largely pre-
serving the less similar stimuli as exemplars in the exterior category. The groups given
the rule instructions, however, do not follow stimulus similarity closely, especially
through their merging of the same two dissimilar exterior stimuli. An examination
of the rules used in instruction reveals that both had in common a logical proposi-
tion that directly corresponds to these two dissimilar stimuli, and so encouraged this
merging. The v parameter shows a lack of emphasis on stimulus similarity. While
this does not directly represent ‘rule-like’ behavior, in this specific context, it can
appropriately be interpreted as corresponding to following rules.

The same analysis applies to the category learning task on the right, with the
free instruction groups using exemplar representations, but the rule group merg-
ing stimuli. The posterior marginal distribution for 7, shown in the lower panel of
Figure 8, neatly distinguishes whether or not representations were similarity-based,
giving more density to larger values for the free groups, and more density to values
less than one for the rule group.
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Figure 9. Five VAM representations, labeled by their data sets, all of which suggest
extensions to our modeling approach. See text for details.

Other Findings

One of the most important goals of model evaluation is not to provide definitive
answers, but to sharpen the questions, and suggest new theoretical and empirical
directions for future research. Our application of the hierarchical VAM suggested
a number of such directions, including modeling individual differences, unifying dis-
parate representations, and suggesting different types of category representations.
The relevant results motivating these ideas are summarized by the representations
shown in Figure 9, and we discuss them in turn.

The two left panels in Figure 9, showing the inferred category representations
for data sets 3 and 4, relate to two different subjects performing exactly the same
task. The representations strongly suggest the presence of individual differences,
with one participant using a near-exemplar representation, and the other using a
pure prototype representation. This finding suggests that it may no be appropriate
to aggregate category learning data over subjects (Estes, 1956), and encourages the
application of models, including hierarchical Bayesian ones, that attempt to account
for individual differences in cognitive processes (Lee & Webb, 2005)

The final three panels in Figure 9 show representations that suggest limitations
in the VAM, and the hierarchical approach to its analysis, that we have used. The
inferred representation for data set 13 seems naturally interpreted as a prototype-
plus-outlier approach. The VAM class of representations can express this type of
representation, but a more focused analysis is probably required to give it theoretical
attention. In particular, it is likely that the joint posterior of # and + needs to be
analyzed, because prototype-plus-outlier representations will require simultaneously
high values of both #, to generate the prototype, and ~, to leave dissimilar stimuli as
exemplar outliers.

Finally, the inferred representations for data sets 1 and 2 in Figure 9 suggest a
more basic deficiency in the class of VAM representations. For the category shown by
circles, there are several unusual merges involved in these representations, combining
pairs of very dissimilar stimuli. The result of these merges, however, is highly inter-
pretable, as forming prototypes in interior of the categories, and ignoring the exterior

17



stimuli altogether. In other words, the final category representations are ones that
would follow from deleting the external stimuli, and retaining the internal ones (i.e.,
the dissimilar stimuli that are merged result in a prototype that is essentially the
same as one of the original exemplars). The merging process that generates VAM
representations does not allow deletions, but these analyses present strong sugges-
tive evidence in favor of such a process for forming category representations. It is
only a fortunate coincidence of the geometry of the original stimuli, and the category
structures that had to be learned, that the VAM representations based on merging
are able to approximate the result of a deletion process in a different, and far less
interpretable, way. The net result of this analysis is to suggest it will be useful to
consider a new and different approach to forming category representations, which will
result in using something other than the VAM class of representations as the basic
units of analysis.

Discussion

It was not our goal in this paper to reach definitive conclusions regarding
whether people use exemplars or prototypes to represent categories, or whether they
rely on similarities or rules to form their representations. These questions almost
certainly do not have single answers, and even attempts to address the issues more
generally will produce results that depend heavily on the theoretical assumptions
made, and the nature of the empirical evidence used. Our goal in this paper was to
provide a detailed demonstration of how hierarchical Bayesian methods can be used
to extend and analyze cognitive models, and play a constructive and powerful role
in investigating a basic question for cognitive science like “how do people represent
categories?”.

One important strength of the hierarchical Bayesian approach was that it al-
lows inferences about model parameters to correspond directly to information about
the motivating psychological questions. The posterior distributions for 6 are readily
interpreted as measures of the extent of abstraction, and the posterior distributions
for v are readily interpreted as measures of the reliance on similarity in forming cate-
gory representations. A natural extension of this line of analysis would be to consider
data from many category learning experiments simultaneously. Different experimen-
tal designs will require different sets of VAM representations, because the number of
stimuli and their spatial locations will vary, but the more abstract 6 and v parameters
will remain commensurable across all possible sets of VAM representations. In this
way, hierarchical Bayesian analysis provides a promising avenue for using new data
to update existing evidence in a more formal way than is currently done.

The other contribution of the hierarchical Bayesian approach is that, by speci-
fying a process for generating VAM representations, together with sensible priors on
the parameters that control this process, an inductive bias is automatically imposed
on the VAM class of representations. This corresponds to specifying theoretically-
grounded priors for the different representations that are being compared. One in-
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teresting consequence of the sorts of priors derived from the Merge process is that
they potentially allow the VAM approach to be scaled to large numbers of stimuli.
The number of possible VAM representations grows very rapidly, according to what
are known as Bell numbers. For 100 stimuli, the number of representations is greater
than 106, Figure 4 suggests, however, that the prior over these representations
could be approximated well by considering just a small subset of the models with
non-negligible prior probability, as in Bayesian model averaging (Hoeting, Madigan,
Raftery, & Volinsky, 1999), making analysis computationally feasible.

Of course the specific results we report would be different if we used a different
generating process for the VAM representations, or put very different priors on the
generating parameters. This is unavoidable, and should be seen as desirable. It is not
possible to draw inferences without making assumptions. Our hierarchical approach
at least forces the assumptions to derive from explicit and theoretically-motivated
assumptions about how category representations might be formed. We think any
reasonable theory of this type, including our first attempt described here, will lead to
better priors than the uniform ones (i.e., that all representations are equally likely)
previously assumed.

More fundamentally, the whole hierarchical Bayesian exercise serves to shift
theoretical attention to the basic question of how category representations are gener-
ated. We have found evidence for processes involving deletion that were not originally
considered, and imply a class of category representations not captured by the VAM.
If ones of the goals of modeling is to find gaps in existing theories, and suggest ap-
proaches for improvement, then our modeling has served us well.

We think the advantages of the hierarchical Bayesian approach evident in our
application to category representation will be true for many areas of modeling in
cognitive science. There are many current debates that would benefit from being
re-cast as problems of estimation along a dimension, rather than choosing between
extremes. One possible example is the tension between random-walk and accumulator
versions of sequential sampling processes (e.g., Ratcliff, 1978; Vickers, 1979; Ratcliff
& Smith, 2004). Another is the tension between ‘one-reason’ and ‘rational’ accounts
of decision-making (e.g., Lee & Cummins, 2004; Newell, 2005).

Most generally, we think the ability for models to operate at many levels, and
relate these various levels all the way down to observed data, is a crucially important
one, with implications that go beyond what we have been able to demonstrate. It
drives theoretical questions to ever more fundamental levels, and demands that for-
mal models be developed and evaluated at these deeper levels. It offers a possibility
to model individual differences, rather than just observing and interpreting paramet-
ric variation in cognitive processes, by requiring models be developed at the level
where parametric variation captures individual differences. Hierarchical modeling
also allows the possibility of integrating relevant evidence across multiple psychologi-
cal tasks, with the higher levels corresponding to a constant psychological construct of
interest, but lower levels giving the details of how those constructs generate data for
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specific tasks. These sorts of applications of hierarchical Bayesian analysis represent
important and exciting areas of future research.
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Appendix: Some Details on the Inference

As noted in the main text, our primary interest focuses on the inferences that
can be drawn from two posterior distributions: the representation posteriors p(z | D),
which describe the inferences made by the model about what VAM representation
is being used; and the marginalized parameter posteriors p(f | D) and p(y | D),
which describe inferences about what process people used to generate that represen-
tation, informing us about the use of abstraction and the importance of similarity,
respectively.

Representation Posteriors

The representation posterior p(x | D) is the probability of the xth representation
being true given data D. It is computed by combining the likelihood of the data under
the representation with the probability of the representation being true before any
data are collected (i.e., its inductive bias) using Bayes’ rule:

pe|p) = HEIDPE, )

We discuss the three individual components of the right hand side in turn.
First, the marginal likelihood p (D | z) is defined as

p(D|x)

//P(D | c,w,2)p(c,w)de dw
= [ 1cwap@pwaca (10

where p (D | ¢, w, x) is the likelihood and p (¢) and p (w) are the category representa-
tion level parameter priors given in the main text.
Secondly, the representation prior p(z) is defined as

p(z) = //p(93|9,7)p(9,7) dé dvy
- //p@:w,wp(e)pm a6 d. (11)

where p (x| 0,7) is the Merge distribution and p (f) and p () are the generative level
parameter priors given in the main text.

The Merge distribution is defined by Monte-Carlo estimates of p (z | 8, 7), found
by simulating the iterative process over the stimuli and category structures used in
the applications across the grid 8 = (0.025,0.05,...,0.975) and v = (0,0.1,...,10).

Finally, the probability of the data p(D) serves as a normalizing constant, to
ensure that Y _p(z | D) = 1. To compare models, the posterior mass or the relative
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posteriors are used

p(z | D)
>,y | D)

p(D [ z)p(x)
>, (D y)p(y)

Since p (D) is the same for all models, it does not need to be evaluated.

(12)

Parameter Posteriors

As for the representation posteriors, the parameter joint posterior p (6, | D) is
computed using Bayes’ rule

p(D]0,7)p(0,7)

p0,v| D) =

p(D)
p(D168,7)p0)p()
(D) . (13)
The parameter marginal p (D | 0, ) is defined as
p(D16,y) = Y p(D|x)p(x|6,7), (14)

where the marginal likelihood p (D | ) is given by Equation 10 and p (x | €,~) is again
the Merge distribution. From the parameter joint posterior, the parameter marginal
posteriors p (6 | D) and p (7 | D) are computed by marginalizing:

p(0]D)

/ p(6.4|D) dv, (15)

and

p(v| D) / p(6.4|D) ab. (16)
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